Properties

Label 495.3.h.d.109.1
Level $495$
Weight $3$
Character 495.109
Analytic conductor $13.488$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(109,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.109"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{5}, \sqrt{-21})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 41x^{2} - 40x + 505 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.1
Root \(-0.618034 - 4.58258i\) of defining polynomial
Character \(\chi\) \(=\) 495.109
Dual form 495.3.h.d.109.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{2} +1.00000 q^{4} +(2.00000 - 4.58258i) q^{5} +11.1803 q^{7} +6.70820 q^{8} +(-4.47214 + 10.2470i) q^{10} +(4.00000 - 10.2470i) q^{11} +8.94427 q^{13} -25.0000 q^{14} -19.0000 q^{16} +15.6525 q^{17} +10.2470i q^{19} +(2.00000 - 4.58258i) q^{20} +(-8.94427 + 22.9129i) q^{22} +27.4955i q^{23} +(-17.0000 - 18.3303i) q^{25} -20.0000 q^{26} +11.1803 q^{28} +10.2470i q^{29} -3.00000 q^{31} +15.6525 q^{32} -35.0000 q^{34} +(22.3607 - 51.2348i) q^{35} -4.58258i q^{37} -22.9129i q^{38} +(13.4164 - 30.7409i) q^{40} +20.4939i q^{41} +22.3607 q^{43} +(4.00000 - 10.2470i) q^{44} -61.4817i q^{46} -64.1561i q^{47} +76.0000 q^{49} +(38.0132 + 40.9878i) q^{50} +8.94427 q^{52} +4.58258i q^{53} +(-38.9574 - 38.8242i) q^{55} +75.0000 q^{56} -22.9129i q^{58} +18.0000 q^{59} +71.7287i q^{61} +6.70820 q^{62} +41.0000 q^{64} +(17.8885 - 40.9878i) q^{65} -27.4955i q^{67} +15.6525 q^{68} +(-50.0000 + 114.564i) q^{70} -27.0000 q^{71} +58.1378 q^{73} +10.2470i q^{74} +10.2470i q^{76} +(44.7214 - 114.564i) q^{77} -61.4817i q^{79} +(-38.0000 + 87.0689i) q^{80} -45.8258i q^{82} +71.5542 q^{83} +(31.3050 - 71.7287i) q^{85} -50.0000 q^{86} +(26.8328 - 68.7386i) q^{88} -37.0000 q^{89} +100.000 q^{91} +27.4955i q^{92} +143.457i q^{94} +(46.9574 + 20.4939i) q^{95} -119.147i q^{97} -169.941 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 8 q^{5} + 16 q^{11} - 100 q^{14} - 76 q^{16} + 8 q^{20} - 68 q^{25} - 80 q^{26} - 12 q^{31} - 140 q^{34} + 16 q^{44} + 304 q^{49} + 32 q^{55} + 300 q^{56} + 72 q^{59} + 164 q^{64} - 200 q^{70}+ \cdots + 400 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.23607 −1.11803 −0.559017 0.829156i \(-0.688821\pi\)
−0.559017 + 0.829156i \(0.688821\pi\)
\(3\) 0 0
\(4\) 1.00000 0.250000
\(5\) 2.00000 4.58258i 0.400000 0.916515i
\(6\) 0 0
\(7\) 11.1803 1.59719 0.798596 0.601868i \(-0.205577\pi\)
0.798596 + 0.601868i \(0.205577\pi\)
\(8\) 6.70820 0.838525
\(9\) 0 0
\(10\) −4.47214 + 10.2470i −0.447214 + 1.02470i
\(11\) 4.00000 10.2470i 0.363636 0.931541i
\(12\) 0 0
\(13\) 8.94427 0.688021 0.344010 0.938966i \(-0.388214\pi\)
0.344010 + 0.938966i \(0.388214\pi\)
\(14\) −25.0000 −1.78571
\(15\) 0 0
\(16\) −19.0000 −1.18750
\(17\) 15.6525 0.920734 0.460367 0.887729i \(-0.347718\pi\)
0.460367 + 0.887729i \(0.347718\pi\)
\(18\) 0 0
\(19\) 10.2470i 0.539313i 0.962957 + 0.269657i \(0.0869102\pi\)
−0.962957 + 0.269657i \(0.913090\pi\)
\(20\) 2.00000 4.58258i 0.100000 0.229129i
\(21\) 0 0
\(22\) −8.94427 + 22.9129i −0.406558 + 1.04149i
\(23\) 27.4955i 1.19545i 0.801700 + 0.597727i \(0.203929\pi\)
−0.801700 + 0.597727i \(0.796071\pi\)
\(24\) 0 0
\(25\) −17.0000 18.3303i −0.680000 0.733212i
\(26\) −20.0000 −0.769231
\(27\) 0 0
\(28\) 11.1803 0.399298
\(29\) 10.2470i 0.353343i 0.984270 + 0.176672i \(0.0565330\pi\)
−0.984270 + 0.176672i \(0.943467\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.0967742 −0.0483871 0.998829i \(-0.515408\pi\)
−0.0483871 + 0.998829i \(0.515408\pi\)
\(32\) 15.6525 0.489140
\(33\) 0 0
\(34\) −35.0000 −1.02941
\(35\) 22.3607 51.2348i 0.638877 1.46385i
\(36\) 0 0
\(37\) 4.58258i 0.123853i −0.998081 0.0619267i \(-0.980275\pi\)
0.998081 0.0619267i \(-0.0197245\pi\)
\(38\) 22.9129i 0.602970i
\(39\) 0 0
\(40\) 13.4164 30.7409i 0.335410 0.768521i
\(41\) 20.4939i 0.499851i 0.968265 + 0.249926i \(0.0804062\pi\)
−0.968265 + 0.249926i \(0.919594\pi\)
\(42\) 0 0
\(43\) 22.3607 0.520016 0.260008 0.965606i \(-0.416275\pi\)
0.260008 + 0.965606i \(0.416275\pi\)
\(44\) 4.00000 10.2470i 0.0909091 0.232885i
\(45\) 0 0
\(46\) 61.4817i 1.33656i
\(47\) 64.1561i 1.36502i −0.730875 0.682511i \(-0.760888\pi\)
0.730875 0.682511i \(-0.239112\pi\)
\(48\) 0 0
\(49\) 76.0000 1.55102
\(50\) 38.0132 + 40.9878i 0.760263 + 0.819756i
\(51\) 0 0
\(52\) 8.94427 0.172005
\(53\) 4.58258i 0.0864637i 0.999065 + 0.0432318i \(0.0137654\pi\)
−0.999065 + 0.0432318i \(0.986235\pi\)
\(54\) 0 0
\(55\) −38.9574 38.8242i −0.708317 0.705895i
\(56\) 75.0000 1.33929
\(57\) 0 0
\(58\) 22.9129i 0.395050i
\(59\) 18.0000 0.305085 0.152542 0.988297i \(-0.451254\pi\)
0.152542 + 0.988297i \(0.451254\pi\)
\(60\) 0 0
\(61\) 71.7287i 1.17588i 0.808905 + 0.587940i \(0.200061\pi\)
−0.808905 + 0.587940i \(0.799939\pi\)
\(62\) 6.70820 0.108197
\(63\) 0 0
\(64\) 41.0000 0.640625
\(65\) 17.8885 40.9878i 0.275208 0.630582i
\(66\) 0 0
\(67\) 27.4955i 0.410380i −0.978722 0.205190i \(-0.934219\pi\)
0.978722 0.205190i \(-0.0657812\pi\)
\(68\) 15.6525 0.230183
\(69\) 0 0
\(70\) −50.0000 + 114.564i −0.714286 + 1.63663i
\(71\) −27.0000 −0.380282 −0.190141 0.981757i \(-0.560894\pi\)
−0.190141 + 0.981757i \(0.560894\pi\)
\(72\) 0 0
\(73\) 58.1378 0.796408 0.398204 0.917297i \(-0.369634\pi\)
0.398204 + 0.917297i \(0.369634\pi\)
\(74\) 10.2470i 0.138472i
\(75\) 0 0
\(76\) 10.2470i 0.134828i
\(77\) 44.7214 114.564i 0.580797 1.48785i
\(78\) 0 0
\(79\) 61.4817i 0.778249i −0.921185 0.389125i \(-0.872778\pi\)
0.921185 0.389125i \(-0.127222\pi\)
\(80\) −38.0000 + 87.0689i −0.475000 + 1.08836i
\(81\) 0 0
\(82\) 45.8258i 0.558851i
\(83\) 71.5542 0.862098 0.431049 0.902328i \(-0.358144\pi\)
0.431049 + 0.902328i \(0.358144\pi\)
\(84\) 0 0
\(85\) 31.3050 71.7287i 0.368294 0.843867i
\(86\) −50.0000 −0.581395
\(87\) 0 0
\(88\) 26.8328 68.7386i 0.304918 0.781121i
\(89\) −37.0000 −0.415730 −0.207865 0.978157i \(-0.566652\pi\)
−0.207865 + 0.978157i \(0.566652\pi\)
\(90\) 0 0
\(91\) 100.000 1.09890
\(92\) 27.4955i 0.298864i
\(93\) 0 0
\(94\) 143.457i 1.52614i
\(95\) 46.9574 + 20.4939i 0.494289 + 0.215725i
\(96\) 0 0
\(97\) 119.147i 1.22832i −0.789182 0.614160i \(-0.789495\pi\)
0.789182 0.614160i \(-0.210505\pi\)
\(98\) −169.941 −1.73409
\(99\) 0 0
\(100\) −17.0000 18.3303i −0.170000 0.183303i
\(101\) 102.470i 1.01455i −0.861784 0.507275i \(-0.830653\pi\)
0.861784 0.507275i \(-0.169347\pi\)
\(102\) 0 0
\(103\) 18.3303i 0.177964i 0.996033 + 0.0889821i \(0.0283614\pi\)
−0.996033 + 0.0889821i \(0.971639\pi\)
\(104\) 60.0000 0.576923
\(105\) 0 0
\(106\) 10.2470i 0.0966693i
\(107\) −156.525 −1.46285 −0.731424 0.681923i \(-0.761144\pi\)
−0.731424 + 0.681923i \(0.761144\pi\)
\(108\) 0 0
\(109\) 20.4939i 0.188017i −0.995571 0.0940087i \(-0.970032\pi\)
0.995571 0.0940087i \(-0.0299682\pi\)
\(110\) 87.1115 + 86.8136i 0.791922 + 0.789214i
\(111\) 0 0
\(112\) −212.426 −1.89666
\(113\) 164.973i 1.45994i 0.683482 + 0.729968i \(0.260465\pi\)
−0.683482 + 0.729968i \(0.739535\pi\)
\(114\) 0 0
\(115\) 126.000 + 54.9909i 1.09565 + 0.478182i
\(116\) 10.2470i 0.0883358i
\(117\) 0 0
\(118\) −40.2492 −0.341095
\(119\) 175.000 1.47059
\(120\) 0 0
\(121\) −89.0000 81.9756i −0.735537 0.677484i
\(122\) 160.390i 1.31467i
\(123\) 0 0
\(124\) −3.00000 −0.0241935
\(125\) −118.000 + 41.2432i −0.944000 + 0.329945i
\(126\) 0 0
\(127\) −31.3050 −0.246496 −0.123248 0.992376i \(-0.539331\pi\)
−0.123248 + 0.992376i \(0.539331\pi\)
\(128\) −154.289 −1.20538
\(129\) 0 0
\(130\) −40.0000 + 91.6515i −0.307692 + 0.705012i
\(131\) 215.186i 1.64264i −0.570467 0.821320i \(-0.693238\pi\)
0.570467 0.821320i \(-0.306762\pi\)
\(132\) 0 0
\(133\) 114.564i 0.861386i
\(134\) 61.4817i 0.458819i
\(135\) 0 0
\(136\) 105.000 0.772059
\(137\) 64.1561i 0.468292i −0.972201 0.234146i \(-0.924771\pi\)
0.972201 0.234146i \(-0.0752294\pi\)
\(138\) 0 0
\(139\) 225.433i 1.62182i 0.585171 + 0.810910i \(0.301027\pi\)
−0.585171 + 0.810910i \(0.698973\pi\)
\(140\) 22.3607 51.2348i 0.159719 0.365963i
\(141\) 0 0
\(142\) 60.3738 0.425168
\(143\) 35.7771 91.6515i 0.250189 0.640920i
\(144\) 0 0
\(145\) 46.9574 + 20.4939i 0.323844 + 0.141337i
\(146\) −130.000 −0.890411
\(147\) 0 0
\(148\) 4.58258i 0.0309633i
\(149\) 153.704i 1.03157i 0.856717 + 0.515786i \(0.172500\pi\)
−0.856717 + 0.515786i \(0.827500\pi\)
\(150\) 0 0
\(151\) 102.470i 0.678606i −0.940677 0.339303i \(-0.889809\pi\)
0.940677 0.339303i \(-0.110191\pi\)
\(152\) 68.7386i 0.452228i
\(153\) 0 0
\(154\) −100.000 + 256.174i −0.649351 + 1.66347i
\(155\) −6.00000 + 13.7477i −0.0387097 + 0.0886950i
\(156\) 0 0
\(157\) 50.4083i 0.321072i −0.987030 0.160536i \(-0.948678\pi\)
0.987030 0.160536i \(-0.0513223\pi\)
\(158\) 137.477i 0.870109i
\(159\) 0 0
\(160\) 31.3050 71.7287i 0.195656 0.448304i
\(161\) 307.409i 1.90937i
\(162\) 0 0
\(163\) 270.372i 1.65872i 0.558712 + 0.829362i \(0.311296\pi\)
−0.558712 + 0.829362i \(0.688704\pi\)
\(164\) 20.4939i 0.124963i
\(165\) 0 0
\(166\) −160.000 −0.963855
\(167\) −297.397 −1.78082 −0.890410 0.455159i \(-0.849583\pi\)
−0.890410 + 0.455159i \(0.849583\pi\)
\(168\) 0 0
\(169\) −89.0000 −0.526627
\(170\) −70.0000 + 160.390i −0.411765 + 0.943471i
\(171\) 0 0
\(172\) 22.3607 0.130004
\(173\) 143.108 0.827216 0.413608 0.910455i \(-0.364268\pi\)
0.413608 + 0.910455i \(0.364268\pi\)
\(174\) 0 0
\(175\) −190.066 204.939i −1.08609 1.17108i
\(176\) −76.0000 + 194.692i −0.431818 + 1.10620i
\(177\) 0 0
\(178\) 82.7345 0.464801
\(179\) −242.000 −1.35196 −0.675978 0.736922i \(-0.736278\pi\)
−0.675978 + 0.736922i \(0.736278\pi\)
\(180\) 0 0
\(181\) −258.000 −1.42541 −0.712707 0.701462i \(-0.752531\pi\)
−0.712707 + 0.701462i \(0.752531\pi\)
\(182\) −223.607 −1.22861
\(183\) 0 0
\(184\) 184.445i 1.00242i
\(185\) −21.0000 9.16515i −0.113514 0.0495414i
\(186\) 0 0
\(187\) 62.6099 160.390i 0.334812 0.857701i
\(188\) 64.1561i 0.341256i
\(189\) 0 0
\(190\) −105.000 45.8258i −0.552632 0.241188i
\(191\) 278.000 1.45550 0.727749 0.685844i \(-0.240567\pi\)
0.727749 + 0.685844i \(0.240567\pi\)
\(192\) 0 0
\(193\) −78.2624 −0.405505 −0.202752 0.979230i \(-0.564989\pi\)
−0.202752 + 0.979230i \(0.564989\pi\)
\(194\) 266.421i 1.37330i
\(195\) 0 0
\(196\) 76.0000 0.387755
\(197\) 196.774 0.998853 0.499426 0.866356i \(-0.333544\pi\)
0.499426 + 0.866356i \(0.333544\pi\)
\(198\) 0 0
\(199\) −53.0000 −0.266332 −0.133166 0.991094i \(-0.542514\pi\)
−0.133166 + 0.991094i \(0.542514\pi\)
\(200\) −114.039 122.963i −0.570197 0.614817i
\(201\) 0 0
\(202\) 229.129i 1.13430i
\(203\) 114.564i 0.564357i
\(204\) 0 0
\(205\) 93.9149 + 40.9878i 0.458121 + 0.199941i
\(206\) 40.9878i 0.198970i
\(207\) 0 0
\(208\) −169.941 −0.817025
\(209\) 105.000 + 40.9878i 0.502392 + 0.196114i
\(210\) 0 0
\(211\) 174.198i 0.825584i 0.910825 + 0.412792i \(0.135446\pi\)
−0.910825 + 0.412792i \(0.864554\pi\)
\(212\) 4.58258i 0.0216159i
\(213\) 0 0
\(214\) 350.000 1.63551
\(215\) 44.7214 102.470i 0.208006 0.476602i
\(216\) 0 0
\(217\) −33.5410 −0.154567
\(218\) 45.8258i 0.210210i
\(219\) 0 0
\(220\) −38.9574 38.8242i −0.177079 0.176474i
\(221\) 140.000 0.633484
\(222\) 0 0
\(223\) 394.102i 1.76727i −0.468175 0.883636i \(-0.655088\pi\)
0.468175 0.883636i \(-0.344912\pi\)
\(224\) 175.000 0.781250
\(225\) 0 0
\(226\) 368.890i 1.63226i
\(227\) 277.272 1.22146 0.610732 0.791837i \(-0.290875\pi\)
0.610732 + 0.791837i \(0.290875\pi\)
\(228\) 0 0
\(229\) 292.000 1.27511 0.637555 0.770405i \(-0.279946\pi\)
0.637555 + 0.770405i \(0.279946\pi\)
\(230\) −281.745 122.963i −1.22498 0.534624i
\(231\) 0 0
\(232\) 68.7386i 0.296287i
\(233\) 172.177 0.738958 0.369479 0.929239i \(-0.379536\pi\)
0.369479 + 0.929239i \(0.379536\pi\)
\(234\) 0 0
\(235\) −294.000 128.312i −1.25106 0.546009i
\(236\) 18.0000 0.0762712
\(237\) 0 0
\(238\) −391.312 −1.64417
\(239\) 225.433i 0.943234i −0.881804 0.471617i \(-0.843671\pi\)
0.881804 0.471617i \(-0.156329\pi\)
\(240\) 0 0
\(241\) 327.902i 1.36059i −0.732938 0.680295i \(-0.761851\pi\)
0.732938 0.680295i \(-0.238149\pi\)
\(242\) 199.010 + 183.303i 0.822356 + 0.757451i
\(243\) 0 0
\(244\) 71.7287i 0.293970i
\(245\) 152.000 348.276i 0.620408 1.42153i
\(246\) 0 0
\(247\) 91.6515i 0.371059i
\(248\) −20.1246 −0.0811476
\(249\) 0 0
\(250\) 263.856 92.2226i 1.05542 0.368890i
\(251\) −282.000 −1.12351 −0.561753 0.827305i \(-0.689873\pi\)
−0.561753 + 0.827305i \(0.689873\pi\)
\(252\) 0 0
\(253\) 281.745 + 109.982i 1.11361 + 0.434711i
\(254\) 70.0000 0.275591
\(255\) 0 0
\(256\) 181.000 0.707031
\(257\) 64.1561i 0.249634i −0.992180 0.124817i \(-0.960166\pi\)
0.992180 0.124817i \(-0.0398345\pi\)
\(258\) 0 0
\(259\) 51.2348i 0.197818i
\(260\) 17.8885 40.9878i 0.0688021 0.157645i
\(261\) 0 0
\(262\) 481.170i 1.83653i
\(263\) −199.010 −0.756692 −0.378346 0.925664i \(-0.623507\pi\)
−0.378346 + 0.925664i \(0.623507\pi\)
\(264\) 0 0
\(265\) 21.0000 + 9.16515i 0.0792453 + 0.0345855i
\(266\) 256.174i 0.963059i
\(267\) 0 0
\(268\) 27.4955i 0.102595i
\(269\) −162.000 −0.602230 −0.301115 0.953588i \(-0.597359\pi\)
−0.301115 + 0.953588i \(0.597359\pi\)
\(270\) 0 0
\(271\) 245.927i 0.907479i 0.891134 + 0.453740i \(0.149910\pi\)
−0.891134 + 0.453740i \(0.850090\pi\)
\(272\) −297.397 −1.09337
\(273\) 0 0
\(274\) 143.457i 0.523567i
\(275\) −255.830 + 100.877i −0.930290 + 0.366825i
\(276\) 0 0
\(277\) 58.1378 0.209884 0.104942 0.994478i \(-0.466534\pi\)
0.104942 + 0.994478i \(0.466534\pi\)
\(278\) 504.083i 1.81325i
\(279\) 0 0
\(280\) 150.000 343.693i 0.535714 1.22748i
\(281\) 163.951i 0.583456i −0.956501 0.291728i \(-0.905770\pi\)
0.956501 0.291728i \(-0.0942303\pi\)
\(282\) 0 0
\(283\) −250.440 −0.884946 −0.442473 0.896782i \(-0.645899\pi\)
−0.442473 + 0.896782i \(0.645899\pi\)
\(284\) −27.0000 −0.0950704
\(285\) 0 0
\(286\) −80.0000 + 204.939i −0.279720 + 0.716570i
\(287\) 229.129i 0.798358i
\(288\) 0 0
\(289\) −44.0000 −0.152249
\(290\) −105.000 45.8258i −0.362069 0.158020i
\(291\) 0 0
\(292\) 58.1378 0.199102
\(293\) 447.214 1.52633 0.763163 0.646206i \(-0.223645\pi\)
0.763163 + 0.646206i \(0.223645\pi\)
\(294\) 0 0
\(295\) 36.0000 82.4864i 0.122034 0.279615i
\(296\) 30.7409i 0.103854i
\(297\) 0 0
\(298\) 343.693i 1.15333i
\(299\) 245.927i 0.822498i
\(300\) 0 0
\(301\) 250.000 0.830565
\(302\) 229.129i 0.758705i
\(303\) 0 0
\(304\) 194.692i 0.640434i
\(305\) 328.702 + 143.457i 1.07771 + 0.470352i
\(306\) 0 0
\(307\) 447.214 1.45672 0.728361 0.685194i \(-0.240282\pi\)
0.728361 + 0.685194i \(0.240282\pi\)
\(308\) 44.7214 114.564i 0.145199 0.371962i
\(309\) 0 0
\(310\) 13.4164 30.7409i 0.0432787 0.0991640i
\(311\) −87.0000 −0.279743 −0.139871 0.990170i \(-0.544669\pi\)
−0.139871 + 0.990170i \(0.544669\pi\)
\(312\) 0 0
\(313\) 293.285i 0.937012i 0.883460 + 0.468506i \(0.155208\pi\)
−0.883460 + 0.468506i \(0.844792\pi\)
\(314\) 112.716i 0.358970i
\(315\) 0 0
\(316\) 61.4817i 0.194562i
\(317\) 50.4083i 0.159017i 0.996834 + 0.0795084i \(0.0253351\pi\)
−0.996834 + 0.0795084i \(0.974665\pi\)
\(318\) 0 0
\(319\) 105.000 + 40.9878i 0.329154 + 0.128488i
\(320\) 82.0000 187.886i 0.256250 0.587143i
\(321\) 0 0
\(322\) 687.386i 2.13474i
\(323\) 160.390i 0.496564i
\(324\) 0 0
\(325\) −152.053 163.951i −0.467854 0.504465i
\(326\) 604.570i 1.85451i
\(327\) 0 0
\(328\) 137.477i 0.419138i
\(329\) 717.287i 2.18020i
\(330\) 0 0
\(331\) −138.000 −0.416918 −0.208459 0.978031i \(-0.566845\pi\)
−0.208459 + 0.978031i \(0.566845\pi\)
\(332\) 71.5542 0.215525
\(333\) 0 0
\(334\) 665.000 1.99102
\(335\) −126.000 54.9909i −0.376119 0.164152i
\(336\) 0 0
\(337\) 243.731 0.723239 0.361619 0.932326i \(-0.382224\pi\)
0.361619 + 0.932326i \(0.382224\pi\)
\(338\) 199.010 0.588787
\(339\) 0 0
\(340\) 31.3050 71.7287i 0.0920734 0.210967i
\(341\) −12.0000 + 30.7409i −0.0351906 + 0.0901491i
\(342\) 0 0
\(343\) 301.869 0.880085
\(344\) 150.000 0.436047
\(345\) 0 0
\(346\) −320.000 −0.924855
\(347\) −4.47214 −0.0128880 −0.00644400 0.999979i \(-0.502051\pi\)
−0.00644400 + 0.999979i \(0.502051\pi\)
\(348\) 0 0
\(349\) 512.348i 1.46804i 0.679125 + 0.734022i \(0.262359\pi\)
−0.679125 + 0.734022i \(0.737641\pi\)
\(350\) 425.000 + 458.258i 1.21429 + 1.30931i
\(351\) 0 0
\(352\) 62.6099 160.390i 0.177869 0.455654i
\(353\) 293.285i 0.830835i −0.909631 0.415418i \(-0.863635\pi\)
0.909631 0.415418i \(-0.136365\pi\)
\(354\) 0 0
\(355\) −54.0000 + 123.730i −0.152113 + 0.348534i
\(356\) −37.0000 −0.103933
\(357\) 0 0
\(358\) 541.128 1.51153
\(359\) 635.311i 1.76967i 0.465906 + 0.884834i \(0.345728\pi\)
−0.465906 + 0.884834i \(0.654272\pi\)
\(360\) 0 0
\(361\) 256.000 0.709141
\(362\) 576.906 1.59366
\(363\) 0 0
\(364\) 100.000 0.274725
\(365\) 116.276 266.421i 0.318563 0.729920i
\(366\) 0 0
\(367\) 430.762i 1.17374i 0.809682 + 0.586869i \(0.199640\pi\)
−0.809682 + 0.586869i \(0.800360\pi\)
\(368\) 522.414i 1.41960i
\(369\) 0 0
\(370\) 46.9574 + 20.4939i 0.126912 + 0.0553889i
\(371\) 51.2348i 0.138099i
\(372\) 0 0
\(373\) −545.601 −1.46274 −0.731368 0.681983i \(-0.761118\pi\)
−0.731368 + 0.681983i \(0.761118\pi\)
\(374\) −140.000 + 358.643i −0.374332 + 0.958939i
\(375\) 0 0
\(376\) 430.372i 1.14461i
\(377\) 91.6515i 0.243107i
\(378\) 0 0
\(379\) −428.000 −1.12929 −0.564644 0.825335i \(-0.690986\pi\)
−0.564644 + 0.825335i \(0.690986\pi\)
\(380\) 46.9574 + 20.4939i 0.123572 + 0.0539313i
\(381\) 0 0
\(382\) −621.627 −1.62730
\(383\) 164.973i 0.430738i 0.976533 + 0.215369i \(0.0690955\pi\)
−0.976533 + 0.215369i \(0.930905\pi\)
\(384\) 0 0
\(385\) −435.557 434.068i −1.13132 1.12745i
\(386\) 175.000 0.453368
\(387\) 0 0
\(388\) 119.147i 0.307080i
\(389\) 228.000 0.586118 0.293059 0.956094i \(-0.405327\pi\)
0.293059 + 0.956094i \(0.405327\pi\)
\(390\) 0 0
\(391\) 430.372i 1.10070i
\(392\) 509.823 1.30057
\(393\) 0 0
\(394\) −440.000 −1.11675
\(395\) −281.745 122.963i −0.713277 0.311300i
\(396\) 0 0
\(397\) 669.056i 1.68528i −0.538478 0.842640i \(-0.681000\pi\)
0.538478 0.842640i \(-0.319000\pi\)
\(398\) 118.512 0.297768
\(399\) 0 0
\(400\) 323.000 + 348.276i 0.807500 + 0.870689i
\(401\) −107.000 −0.266833 −0.133416 0.991060i \(-0.542595\pi\)
−0.133416 + 0.991060i \(0.542595\pi\)
\(402\) 0 0
\(403\) −26.8328 −0.0665827
\(404\) 102.470i 0.253637i
\(405\) 0 0
\(406\) 256.174i 0.630970i
\(407\) −46.9574 18.3303i −0.115375 0.0450376i
\(408\) 0 0
\(409\) 327.902i 0.801717i −0.916140 0.400859i \(-0.868712\pi\)
0.916140 0.400859i \(-0.131288\pi\)
\(410\) −210.000 91.6515i −0.512195 0.223540i
\(411\) 0 0
\(412\) 18.3303i 0.0444910i
\(413\) 201.246 0.487279
\(414\) 0 0
\(415\) 143.108 327.902i 0.344839 0.790126i
\(416\) 140.000 0.336538
\(417\) 0 0
\(418\) −234.787 91.6515i −0.561692 0.219262i
\(419\) −722.000 −1.72315 −0.861575 0.507630i \(-0.830522\pi\)
−0.861575 + 0.507630i \(0.830522\pi\)
\(420\) 0 0
\(421\) −408.000 −0.969121 −0.484561 0.874758i \(-0.661020\pi\)
−0.484561 + 0.874758i \(0.661020\pi\)
\(422\) 389.519i 0.923031i
\(423\) 0 0
\(424\) 30.7409i 0.0725020i
\(425\) −266.092 286.915i −0.626099 0.675093i
\(426\) 0 0
\(427\) 801.951i 1.87810i
\(428\) −156.525 −0.365712
\(429\) 0 0
\(430\) −100.000 + 229.129i −0.232558 + 0.532858i
\(431\) 61.4817i 0.142649i −0.997453 0.0713245i \(-0.977277\pi\)
0.997453 0.0713245i \(-0.0227226\pi\)
\(432\) 0 0
\(433\) 247.459i 0.571499i 0.958304 + 0.285750i \(0.0922425\pi\)
−0.958304 + 0.285750i \(0.907757\pi\)
\(434\) 75.0000 0.172811
\(435\) 0 0
\(436\) 20.4939i 0.0470044i
\(437\) −281.745 −0.644724
\(438\) 0 0
\(439\) 430.372i 0.980346i 0.871625 + 0.490173i \(0.163066\pi\)
−0.871625 + 0.490173i \(0.836934\pi\)
\(440\) −261.334 260.441i −0.593942 0.591911i
\(441\) 0 0
\(442\) −313.050 −0.708257
\(443\) 302.450i 0.682731i 0.939931 + 0.341366i \(0.110889\pi\)
−0.939931 + 0.341366i \(0.889111\pi\)
\(444\) 0 0
\(445\) −74.0000 + 169.555i −0.166292 + 0.381023i
\(446\) 881.238i 1.97587i
\(447\) 0 0
\(448\) 458.394 1.02320
\(449\) −22.0000 −0.0489978 −0.0244989 0.999700i \(-0.507799\pi\)
−0.0244989 + 0.999700i \(0.507799\pi\)
\(450\) 0 0
\(451\) 210.000 + 81.9756i 0.465632 + 0.181764i
\(452\) 164.973i 0.364984i
\(453\) 0 0
\(454\) −620.000 −1.36564
\(455\) 200.000 458.258i 0.439560 1.00716i
\(456\) 0 0
\(457\) 346.591 0.758404 0.379202 0.925314i \(-0.376199\pi\)
0.379202 + 0.925314i \(0.376199\pi\)
\(458\) −652.932 −1.42562
\(459\) 0 0
\(460\) 126.000 + 54.9909i 0.273913 + 0.119545i
\(461\) 338.149i 0.733513i 0.930317 + 0.366756i \(0.119532\pi\)
−0.930317 + 0.366756i \(0.880468\pi\)
\(462\) 0 0
\(463\) 623.230i 1.34607i −0.739611 0.673035i \(-0.764990\pi\)
0.739611 0.673035i \(-0.235010\pi\)
\(464\) 194.692i 0.419595i
\(465\) 0 0
\(466\) −385.000 −0.826180
\(467\) 554.492i 1.18735i 0.804706 + 0.593674i \(0.202323\pi\)
−0.804706 + 0.593674i \(0.797677\pi\)
\(468\) 0 0
\(469\) 307.409i 0.655455i
\(470\) 657.404 + 286.915i 1.39873 + 0.610457i
\(471\) 0 0
\(472\) 120.748 0.255821
\(473\) 89.4427 229.129i 0.189097 0.484416i
\(474\) 0 0
\(475\) 187.830 174.198i 0.395431 0.366733i
\(476\) 175.000 0.367647
\(477\) 0 0
\(478\) 504.083i 1.05457i
\(479\) 40.9878i 0.0855695i −0.999084 0.0427848i \(-0.986377\pi\)
0.999084 0.0427848i \(-0.0136230\pi\)
\(480\) 0 0
\(481\) 40.9878i 0.0852137i
\(482\) 733.212i 1.52119i
\(483\) 0 0
\(484\) −89.0000 81.9756i −0.183884 0.169371i
\(485\) −546.000 238.294i −1.12577 0.491328i
\(486\) 0 0
\(487\) 339.111i 0.696326i 0.937434 + 0.348163i \(0.113194\pi\)
−0.937434 + 0.348163i \(0.886806\pi\)
\(488\) 481.170i 0.986005i
\(489\) 0 0
\(490\) −339.882 + 778.768i −0.693637 + 1.58932i
\(491\) 584.076i 1.18956i 0.803887 + 0.594782i \(0.202762\pi\)
−0.803887 + 0.594782i \(0.797238\pi\)
\(492\) 0 0
\(493\) 160.390i 0.325335i
\(494\) 204.939i 0.414856i
\(495\) 0 0
\(496\) 57.0000 0.114919
\(497\) −301.869 −0.607383
\(498\) 0 0
\(499\) −268.000 −0.537074 −0.268537 0.963269i \(-0.586540\pi\)
−0.268537 + 0.963269i \(0.586540\pi\)
\(500\) −118.000 + 41.2432i −0.236000 + 0.0824864i
\(501\) 0 0
\(502\) 630.571 1.25612
\(503\) −541.128 −1.07580 −0.537901 0.843008i \(-0.680783\pi\)
−0.537901 + 0.843008i \(0.680783\pi\)
\(504\) 0 0
\(505\) −469.574 204.939i −0.929850 0.405820i
\(506\) −630.000 245.927i −1.24506 0.486021i
\(507\) 0 0
\(508\) −31.3050 −0.0616239
\(509\) 828.000 1.62672 0.813360 0.581761i \(-0.197636\pi\)
0.813360 + 0.581761i \(0.197636\pi\)
\(510\) 0 0
\(511\) 650.000 1.27202
\(512\) 212.426 0.414895
\(513\) 0 0
\(514\) 143.457i 0.279100i
\(515\) 84.0000 + 36.6606i 0.163107 + 0.0711856i
\(516\) 0 0
\(517\) −657.404 256.624i −1.27157 0.496372i
\(518\) 114.564i 0.221167i
\(519\) 0 0
\(520\) 120.000 274.955i 0.230769 0.528759i
\(521\) −242.000 −0.464491 −0.232246 0.972657i \(-0.574607\pi\)
−0.232246 + 0.972657i \(0.574607\pi\)
\(522\) 0 0
\(523\) −143.108 −0.273630 −0.136815 0.990597i \(-0.543687\pi\)
−0.136815 + 0.990597i \(0.543687\pi\)
\(524\) 215.186i 0.410660i
\(525\) 0 0
\(526\) 445.000 0.846008
\(527\) −46.9574 −0.0891033
\(528\) 0 0
\(529\) −227.000 −0.429112
\(530\) −46.9574 20.4939i −0.0885989 0.0386677i
\(531\) 0 0
\(532\) 114.564i 0.215347i
\(533\) 183.303i 0.343908i
\(534\) 0 0
\(535\) −313.050 + 717.287i −0.585139 + 1.34072i
\(536\) 184.445i 0.344114i
\(537\) 0 0
\(538\) 362.243 0.673314
\(539\) 304.000 778.768i 0.564007 1.44484i
\(540\) 0 0
\(541\) 440.619i 0.814453i 0.913327 + 0.407226i \(0.133504\pi\)
−0.913327 + 0.407226i \(0.866496\pi\)
\(542\) 549.909i 1.01459i
\(543\) 0 0
\(544\) 245.000 0.450368
\(545\) −93.9149 40.9878i −0.172321 0.0752070i
\(546\) 0 0
\(547\) −398.020 −0.727642 −0.363821 0.931469i \(-0.618528\pi\)
−0.363821 + 0.931469i \(0.618528\pi\)
\(548\) 64.1561i 0.117073i
\(549\) 0 0
\(550\) 572.053 225.568i 1.04010 0.410123i
\(551\) −105.000 −0.190563
\(552\) 0 0
\(553\) 687.386i 1.24301i
\(554\) −130.000 −0.234657
\(555\) 0 0
\(556\) 225.433i 0.405455i
\(557\) −156.525 −0.281014 −0.140507 0.990080i \(-0.544873\pi\)
−0.140507 + 0.990080i \(0.544873\pi\)
\(558\) 0 0
\(559\) 200.000 0.357782
\(560\) −424.853 + 973.460i −0.758666 + 1.73832i
\(561\) 0 0
\(562\) 366.606i 0.652324i
\(563\) −881.011 −1.56485 −0.782425 0.622745i \(-0.786018\pi\)
−0.782425 + 0.622745i \(0.786018\pi\)
\(564\) 0 0
\(565\) 756.000 + 329.945i 1.33805 + 0.583974i
\(566\) 560.000 0.989399
\(567\) 0 0
\(568\) −181.122 −0.318876
\(569\) 143.457i 0.252122i 0.992023 + 0.126061i \(0.0402335\pi\)
−0.992023 + 0.126061i \(0.959767\pi\)
\(570\) 0 0
\(571\) 604.570i 1.05879i 0.848375 + 0.529396i \(0.177581\pi\)
−0.848375 + 0.529396i \(0.822419\pi\)
\(572\) 35.7771 91.6515i 0.0625474 0.160230i
\(573\) 0 0
\(574\) 512.348i 0.892592i
\(575\) 504.000 467.423i 0.876522 0.812909i
\(576\) 0 0
\(577\) 164.973i 0.285915i −0.989729 0.142957i \(-0.954339\pi\)
0.989729 0.142957i \(-0.0456612\pi\)
\(578\) 98.3870 0.170220
\(579\) 0 0
\(580\) 46.9574 + 20.4939i 0.0809611 + 0.0353343i
\(581\) 800.000 1.37694
\(582\) 0 0
\(583\) 46.9574 + 18.3303i 0.0805445 + 0.0314413i
\(584\) 390.000 0.667808
\(585\) 0 0
\(586\) −1000.00 −1.70648
\(587\) 875.272i 1.49109i 0.666453 + 0.745547i \(0.267812\pi\)
−0.666453 + 0.745547i \(0.732188\pi\)
\(588\) 0 0
\(589\) 30.7409i 0.0521916i
\(590\) −80.4984 + 184.445i −0.136438 + 0.312619i
\(591\) 0 0
\(592\) 87.0689i 0.147076i
\(593\) 111.803 0.188539 0.0942693 0.995547i \(-0.469949\pi\)
0.0942693 + 0.995547i \(0.469949\pi\)
\(594\) 0 0
\(595\) 350.000 801.951i 0.588235 1.34782i
\(596\) 153.704i 0.257893i
\(597\) 0 0
\(598\) 549.909i 0.919580i
\(599\) 493.000 0.823038 0.411519 0.911401i \(-0.364998\pi\)
0.411519 + 0.911401i \(0.364998\pi\)
\(600\) 0 0
\(601\) 102.470i 0.170498i −0.996360 0.0852492i \(-0.972831\pi\)
0.996360 0.0852492i \(-0.0271686\pi\)
\(602\) −559.017 −0.928600
\(603\) 0 0
\(604\) 102.470i 0.169652i
\(605\) −553.659 + 243.898i −0.915140 + 0.403137i
\(606\) 0 0
\(607\) −816.165 −1.34459 −0.672294 0.740284i \(-0.734691\pi\)
−0.672294 + 0.740284i \(0.734691\pi\)
\(608\) 160.390i 0.263800i
\(609\) 0 0
\(610\) −735.000 320.780i −1.20492 0.525869i
\(611\) 573.829i 0.939164i
\(612\) 0 0
\(613\) 881.011 1.43721 0.718606 0.695418i \(-0.244781\pi\)
0.718606 + 0.695418i \(0.244781\pi\)
\(614\) −1000.00 −1.62866
\(615\) 0 0
\(616\) 300.000 768.521i 0.487013 1.24760i
\(617\) 293.285i 0.475340i −0.971346 0.237670i \(-0.923616\pi\)
0.971346 0.237670i \(-0.0763837\pi\)
\(618\) 0 0
\(619\) 972.000 1.57027 0.785137 0.619322i \(-0.212592\pi\)
0.785137 + 0.619322i \(0.212592\pi\)
\(620\) −6.00000 + 13.7477i −0.00967742 + 0.0221738i
\(621\) 0 0
\(622\) 194.538 0.312762
\(623\) −413.673 −0.664001
\(624\) 0 0
\(625\) −47.0000 + 623.230i −0.0752000 + 0.997168i
\(626\) 655.805i 1.04761i
\(627\) 0 0
\(628\) 50.4083i 0.0802680i
\(629\) 71.7287i 0.114036i
\(630\) 0 0
\(631\) −113.000 −0.179081 −0.0895404 0.995983i \(-0.528540\pi\)
−0.0895404 + 0.995983i \(0.528540\pi\)
\(632\) 412.432i 0.652582i
\(633\) 0 0
\(634\) 112.716i 0.177786i
\(635\) −62.6099 + 143.457i −0.0985983 + 0.225917i
\(636\) 0 0
\(637\) 679.765 1.06713
\(638\) −234.787 91.6515i −0.368005 0.143654i
\(639\) 0 0
\(640\) −308.577 + 707.040i −0.482152 + 1.10475i
\(641\) −1007.00 −1.57098 −0.785491 0.618873i \(-0.787590\pi\)
−0.785491 + 0.618873i \(0.787590\pi\)
\(642\) 0 0
\(643\) 270.372i 0.420485i 0.977649 + 0.210243i \(0.0674254\pi\)
−0.977649 + 0.210243i \(0.932575\pi\)
\(644\) 307.409i 0.477342i
\(645\) 0 0
\(646\) 358.643i 0.555175i
\(647\) 18.3303i 0.0283312i −0.999900 0.0141656i \(-0.995491\pi\)
0.999900 0.0141656i \(-0.00450921\pi\)
\(648\) 0 0
\(649\) 72.0000 184.445i 0.110940 0.284199i
\(650\) 340.000 + 366.606i 0.523077 + 0.564009i
\(651\) 0 0
\(652\) 270.372i 0.414681i
\(653\) 691.969i 1.05968i 0.848099 + 0.529838i \(0.177747\pi\)
−0.848099 + 0.529838i \(0.822253\pi\)
\(654\) 0 0
\(655\) −986.106 430.372i −1.50551 0.657056i
\(656\) 389.384i 0.593573i
\(657\) 0 0
\(658\) 1603.90i 2.43754i
\(659\) 1096.42i 1.66377i 0.554949 + 0.831884i \(0.312738\pi\)
−0.554949 + 0.831884i \(0.687262\pi\)
\(660\) 0 0
\(661\) 862.000 1.30408 0.652042 0.758183i \(-0.273912\pi\)
0.652042 + 0.758183i \(0.273912\pi\)
\(662\) 308.577 0.466129
\(663\) 0 0
\(664\) 480.000 0.722892
\(665\) 525.000 + 229.129i 0.789474 + 0.344555i
\(666\) 0 0
\(667\) −281.745 −0.422406
\(668\) −297.397 −0.445205
\(669\) 0 0
\(670\) 281.745 + 122.963i 0.420514 + 0.183527i
\(671\) 735.000 + 286.915i 1.09538 + 0.427593i
\(672\) 0 0
\(673\) −713.306 −1.05989 −0.529945 0.848032i \(-0.677787\pi\)
−0.529945 + 0.848032i \(0.677787\pi\)
\(674\) −545.000 −0.808605
\(675\) 0 0
\(676\) −89.0000 −0.131657
\(677\) 31.3050 0.0462407 0.0231203 0.999733i \(-0.492640\pi\)
0.0231203 + 0.999733i \(0.492640\pi\)
\(678\) 0 0
\(679\) 1332.10i 1.96186i
\(680\) 210.000 481.170i 0.308824 0.707604i
\(681\) 0 0
\(682\) 26.8328 68.7386i 0.0393443 0.100790i
\(683\) 600.317i 0.878942i 0.898257 + 0.439471i \(0.144834\pi\)
−0.898257 + 0.439471i \(0.855166\pi\)
\(684\) 0 0
\(685\) −294.000 128.312i −0.429197 0.187317i
\(686\) −675.000 −0.983965
\(687\) 0 0
\(688\) −424.853 −0.617519
\(689\) 40.9878i 0.0594888i
\(690\) 0 0
\(691\) 872.000 1.26194 0.630970 0.775808i \(-0.282657\pi\)
0.630970 + 0.775808i \(0.282657\pi\)
\(692\) 143.108 0.206804
\(693\) 0 0
\(694\) 10.0000 0.0144092
\(695\) 1033.06 + 450.866i 1.48642 + 0.648728i
\(696\) 0 0
\(697\) 320.780i 0.460230i
\(698\) 1145.64i 1.64132i
\(699\) 0 0
\(700\) −190.066 204.939i −0.271523 0.292770i
\(701\) 870.991i 1.24250i 0.783613 + 0.621249i \(0.213374\pi\)
−0.783613 + 0.621249i \(0.786626\pi\)
\(702\) 0 0
\(703\) 46.9574 0.0667958
\(704\) 164.000 420.125i 0.232955 0.596768i
\(705\) 0 0
\(706\) 655.805i 0.928902i
\(707\) 1145.64i 1.62043i
\(708\) 0 0
\(709\) −768.000 −1.08322 −0.541608 0.840631i \(-0.682184\pi\)
−0.541608 + 0.840631i \(0.682184\pi\)
\(710\) 120.748 276.668i 0.170067 0.389673i
\(711\) 0 0
\(712\) −248.204 −0.348600
\(713\) 82.4864i 0.115689i
\(714\) 0 0
\(715\) −348.446 347.254i −0.487337 0.485670i
\(716\) −242.000 −0.337989
\(717\) 0 0
\(718\) 1420.60i 1.97855i
\(719\) 263.000 0.365786 0.182893 0.983133i \(-0.441454\pi\)
0.182893 + 0.983133i \(0.441454\pi\)
\(720\) 0 0
\(721\) 204.939i 0.284243i
\(722\) −572.433 −0.792844
\(723\) 0 0
\(724\) −258.000 −0.356354
\(725\) 187.830 174.198i 0.259075 0.240273i
\(726\) 0 0
\(727\) 293.285i 0.403418i 0.979446 + 0.201709i \(0.0646495\pi\)
−0.979446 + 0.201709i \(0.935350\pi\)
\(728\) 670.820 0.921457
\(729\) 0 0
\(730\) −260.000 + 595.735i −0.356164 + 0.816075i
\(731\) 350.000 0.478796
\(732\) 0 0
\(733\) 219.135 0.298956 0.149478 0.988765i \(-0.452241\pi\)
0.149478 + 0.988765i \(0.452241\pi\)
\(734\) 963.213i 1.31228i
\(735\) 0 0
\(736\) 430.372i 0.584744i
\(737\) −281.745 109.982i −0.382286 0.149229i
\(738\) 0 0
\(739\) 389.384i 0.526907i −0.964672 0.263453i \(-0.915138\pi\)
0.964672 0.263453i \(-0.0848615\pi\)
\(740\) −21.0000 9.16515i −0.0283784 0.0123853i
\(741\) 0 0
\(742\) 114.564i 0.154399i
\(743\) −682.001 −0.917901 −0.458951 0.888462i \(-0.651775\pi\)
−0.458951 + 0.888462i \(0.651775\pi\)
\(744\) 0 0
\(745\) 704.361 + 307.409i 0.945452 + 0.412629i
\(746\) 1220.00 1.63539
\(747\) 0 0
\(748\) 62.6099 160.390i 0.0837031 0.214425i
\(749\) −1750.00 −2.33645
\(750\) 0 0
\(751\) −1003.00 −1.33555 −0.667776 0.744362i \(-0.732754\pi\)
−0.667776 + 0.744362i \(0.732754\pi\)
\(752\) 1218.97i 1.62096i
\(753\) 0 0
\(754\) 204.939i 0.271802i
\(755\) −469.574 204.939i −0.621953 0.271442i
\(756\) 0 0
\(757\) 1218.97i 1.61026i −0.593100 0.805129i \(-0.702096\pi\)
0.593100 0.805129i \(-0.297904\pi\)
\(758\) 957.037 1.26258
\(759\) 0 0
\(760\) 315.000 + 137.477i 0.414474 + 0.180891i
\(761\) 184.445i 0.242372i 0.992630 + 0.121186i \(0.0386698\pi\)
−0.992630 + 0.121186i \(0.961330\pi\)
\(762\) 0 0
\(763\) 229.129i 0.300300i
\(764\) 278.000 0.363874
\(765\) 0 0
\(766\) 368.890i 0.481580i
\(767\) 160.997 0.209905
\(768\) 0 0
\(769\) 245.927i 0.319801i −0.987133 0.159900i \(-0.948883\pi\)
0.987133 0.159900i \(-0.0511173\pi\)
\(770\) 973.936 + 970.605i 1.26485 + 1.26053i
\(771\) 0 0
\(772\) −78.2624 −0.101376
\(773\) 279.537i 0.361626i 0.983517 + 0.180813i \(0.0578729\pi\)
−0.983517 + 0.180813i \(0.942127\pi\)
\(774\) 0 0
\(775\) 51.0000 + 54.9909i 0.0658065 + 0.0709560i
\(776\) 799.262i 1.02998i
\(777\) 0 0
\(778\) −509.823 −0.655300
\(779\) −210.000 −0.269576
\(780\) 0 0
\(781\) −108.000 + 276.668i −0.138284 + 0.354248i
\(782\) 962.341i 1.23061i
\(783\) 0 0
\(784\) −1444.00 −1.84184
\(785\) −231.000 100.817i −0.294268 0.128429i
\(786\) 0 0
\(787\) 746.847 0.948979 0.474490 0.880261i \(-0.342633\pi\)
0.474490 + 0.880261i \(0.342633\pi\)
\(788\) 196.774 0.249713
\(789\) 0 0
\(790\) 630.000 + 274.955i 0.797468 + 0.348044i
\(791\) 1844.45i 2.33180i
\(792\) 0 0
\(793\) 641.561i 0.809030i
\(794\) 1496.05i 1.88420i
\(795\) 0 0
\(796\) −53.0000 −0.0665829
\(797\) 705.717i 0.885466i −0.896653 0.442733i \(-0.854009\pi\)
0.896653 0.442733i \(-0.145991\pi\)
\(798\) 0 0
\(799\) 1004.20i 1.25682i
\(800\) −266.092 286.915i −0.332615 0.358643i
\(801\) 0 0
\(802\) 239.259 0.298328
\(803\) 232.551 595.735i 0.289603 0.741886i
\(804\) 0 0
\(805\) 1408.72 + 614.817i 1.74997 + 0.763748i
\(806\) 60.0000 0.0744417
\(807\) 0 0
\(808\) 687.386i 0.850726i
\(809\) 1209.14i 1.49461i −0.664481 0.747305i \(-0.731347\pi\)
0.664481 0.747305i \(-0.268653\pi\)
\(810\) 0 0
\(811\) 1096.42i 1.35194i 0.736929 + 0.675970i \(0.236275\pi\)
−0.736929 + 0.675970i \(0.763725\pi\)
\(812\) 114.564i 0.141089i
\(813\) 0 0
\(814\) 105.000 + 40.9878i 0.128993 + 0.0503536i
\(815\) 1239.00 + 540.744i 1.52025 + 0.663489i
\(816\) 0 0
\(817\) 229.129i 0.280451i
\(818\) 733.212i 0.896347i
\(819\) 0 0
\(820\) 93.9149 + 40.9878i 0.114530 + 0.0499851i
\(821\) 758.274i 0.923598i −0.886984 0.461799i \(-0.847204\pi\)
0.886984 0.461799i \(-0.152796\pi\)
\(822\) 0 0
\(823\) 293.285i 0.356361i 0.983998 + 0.178180i \(0.0570210\pi\)
−0.983998 + 0.178180i \(0.942979\pi\)
\(824\) 122.963i 0.149227i
\(825\) 0 0
\(826\) −450.000 −0.544794
\(827\) −594.794 −0.719219 −0.359609 0.933103i \(-0.617090\pi\)
−0.359609 + 0.933103i \(0.617090\pi\)
\(828\) 0 0
\(829\) 102.000 0.123040 0.0615199 0.998106i \(-0.480405\pi\)
0.0615199 + 0.998106i \(0.480405\pi\)
\(830\) −320.000 + 733.212i −0.385542 + 0.883388i
\(831\) 0 0
\(832\) 366.715 0.440763
\(833\) 1189.59 1.42808
\(834\) 0 0
\(835\) −594.794 + 1362.84i −0.712328 + 1.63215i
\(836\) 105.000 + 40.9878i 0.125598 + 0.0490285i
\(837\) 0 0
\(838\) 1614.44 1.92654
\(839\) 138.000 0.164482 0.0822408 0.996612i \(-0.473792\pi\)
0.0822408 + 0.996612i \(0.473792\pi\)
\(840\) 0 0
\(841\) 736.000 0.875149
\(842\) 912.316 1.08351
\(843\) 0 0
\(844\) 174.198i 0.206396i
\(845\) −178.000 + 407.849i −0.210651 + 0.482662i
\(846\) 0 0
\(847\) −995.050 916.515i −1.17479 1.08207i
\(848\) 87.0689i 0.102676i
\(849\) 0 0
\(850\) 595.000 + 641.561i 0.700000 + 0.754777i
\(851\) 126.000 0.148061
\(852\) 0 0
\(853\) −532.184 −0.623897 −0.311949 0.950099i \(-0.600982\pi\)
−0.311949 + 0.950099i \(0.600982\pi\)
\(854\) 1793.22i 2.09978i
\(855\) 0 0
\(856\) −1050.00 −1.22664
\(857\) 950.329 1.10890 0.554451 0.832216i \(-0.312928\pi\)
0.554451 + 0.832216i \(0.312928\pi\)
\(858\) 0 0
\(859\) −1068.00 −1.24331 −0.621653 0.783293i \(-0.713539\pi\)
−0.621653 + 0.783293i \(0.713539\pi\)
\(860\) 44.7214 102.470i 0.0520016 0.119151i
\(861\) 0 0
\(862\) 137.477i 0.159486i
\(863\) 73.3212i 0.0849608i 0.999097 + 0.0424804i \(0.0135260\pi\)
−0.999097 + 0.0424804i \(0.986474\pi\)
\(864\) 0 0
\(865\) 286.217 655.805i 0.330886 0.758156i
\(866\) 553.335i 0.638955i
\(867\) 0 0
\(868\) −33.5410 −0.0386417
\(869\) −630.000 245.927i −0.724971 0.283000i
\(870\) 0 0
\(871\) 245.927i 0.282350i
\(872\) 137.477i 0.157657i
\(873\) 0 0
\(874\) 630.000 0.720824
\(875\) −1319.28 + 461.113i −1.50775 + 0.526986i
\(876\) 0 0
\(877\) 169.941 0.193776 0.0968878 0.995295i \(-0.469111\pi\)
0.0968878 + 0.995295i \(0.469111\pi\)
\(878\) 962.341i 1.09606i
\(879\) 0 0
\(880\) 740.191 + 737.660i 0.841126 + 0.838250i
\(881\) 78.0000 0.0885358 0.0442679 0.999020i \(-0.485904\pi\)
0.0442679 + 0.999020i \(0.485904\pi\)
\(882\) 0 0
\(883\) 1553.49i 1.75934i 0.475589 + 0.879668i \(0.342235\pi\)
−0.475589 + 0.879668i \(0.657765\pi\)
\(884\) 140.000 0.158371
\(885\) 0 0
\(886\) 676.299i 0.763317i
\(887\) −299.633 −0.337805 −0.168903 0.985633i \(-0.554022\pi\)
−0.168903 + 0.985633i \(0.554022\pi\)
\(888\) 0 0
\(889\) −350.000 −0.393701
\(890\) 165.469 379.137i 0.185920 0.425997i
\(891\) 0 0
\(892\) 394.102i 0.441818i
\(893\) 657.404 0.736175
\(894\) 0 0
\(895\) −484.000 + 1108.98i −0.540782 + 1.23909i
\(896\) −1725.00 −1.92522
\(897\) 0 0
\(898\) 49.1935 0.0547812
\(899\) 30.7409i 0.0341945i
\(900\) 0 0
\(901\) 71.7287i 0.0796101i
\(902\) −469.574 183.303i −0.520592 0.203218i
\(903\) 0 0
\(904\) 1106.67i 1.22419i
\(905\) −516.000 + 1182.30i −0.570166 + 1.30641i
\(906\) 0 0
\(907\) 691.969i 0.762921i −0.924385 0.381460i \(-0.875421\pi\)
0.924385 0.381460i \(-0.124579\pi\)
\(908\) 277.272 0.305366
\(909\) 0 0
\(910\) −447.214 + 1024.70i −0.491444 + 1.12604i
\(911\) −1037.00 −1.13831 −0.569155 0.822230i \(-0.692729\pi\)
−0.569155 + 0.822230i \(0.692729\pi\)
\(912\) 0 0
\(913\) 286.217 733.212i 0.313490 0.803080i
\(914\) −775.000 −0.847921
\(915\) 0 0
\(916\) 292.000 0.318777
\(917\) 2405.85i 2.62361i
\(918\) 0 0
\(919\) 1782.97i 1.94012i −0.242867 0.970060i \(-0.578088\pi\)
0.242867 0.970060i \(-0.421912\pi\)
\(920\) 845.234 + 368.890i 0.918732 + 0.400968i
\(921\) 0 0
\(922\) 756.125i 0.820092i
\(923\) −241.495 −0.261642
\(924\) 0 0
\(925\) −84.0000 + 77.9038i −0.0908108 + 0.0842203i
\(926\) 1393.59i 1.50495i
\(927\) 0 0
\(928\) 160.390i 0.172834i
\(929\) 633.000 0.681378 0.340689 0.940176i \(-0.389340\pi\)
0.340689 + 0.940176i \(0.389340\pi\)
\(930\) 0 0
\(931\) 778.768i 0.836486i
\(932\) 172.177 0.184740
\(933\) 0 0
\(934\) 1239.88i 1.32750i
\(935\) −609.780 607.695i −0.652171 0.649941i
\(936\) 0 0
\(937\) −728.958 −0.777970 −0.388985 0.921244i \(-0.627174\pi\)
−0.388985 + 0.921244i \(0.627174\pi\)
\(938\) 687.386i 0.732821i
\(939\) 0 0
\(940\) −294.000 128.312i −0.312766 0.136502i
\(941\) 850.497i 0.903822i −0.892063 0.451911i \(-0.850742\pi\)
0.892063 0.451911i \(-0.149258\pi\)
\(942\) 0 0
\(943\) −563.489 −0.597549
\(944\) −342.000 −0.362288
\(945\) 0 0
\(946\) −200.000 + 512.348i −0.211416 + 0.541594i
\(947\) 911.933i 0.962970i −0.876454 0.481485i \(-0.840098\pi\)
0.876454 0.481485i \(-0.159902\pi\)
\(948\) 0 0
\(949\) 520.000 0.547945
\(950\) −420.000 + 389.519i −0.442105 + 0.410020i
\(951\) 0 0
\(952\) 1173.94 1.23313
\(953\) 1236.55 1.29753 0.648765 0.760989i \(-0.275286\pi\)
0.648765 + 0.760989i \(0.275286\pi\)
\(954\) 0 0
\(955\) 556.000 1273.96i 0.582199 1.33399i
\(956\) 225.433i 0.235808i
\(957\) 0 0
\(958\) 91.6515i 0.0956696i
\(959\) 717.287i 0.747953i
\(960\) 0 0
\(961\) −952.000 −0.990635
\(962\) 91.6515i 0.0952718i
\(963\) 0 0
\(964\) 327.902i 0.340148i
\(965\) −156.525 + 358.643i −0.162202 + 0.371651i
\(966\) 0 0
\(967\) 431.561 0.446289 0.223144 0.974785i \(-0.428368\pi\)
0.223144 + 0.974785i \(0.428368\pi\)
\(968\) −597.030 549.909i −0.616767 0.568088i
\(969\) 0 0
\(970\) 1220.89 + 532.841i 1.25865 + 0.549321i
\(971\) 1048.00 1.07930 0.539650 0.841890i \(-0.318557\pi\)
0.539650 + 0.841890i \(0.318557\pi\)
\(972\) 0 0
\(973\) 2520.42i 2.59036i
\(974\) 758.274i 0.778516i
\(975\) 0 0
\(976\) 1362.84i 1.39636i
\(977\) 247.459i 0.253285i −0.991948 0.126642i \(-0.959580\pi\)
0.991948 0.126642i \(-0.0404200\pi\)
\(978\) 0 0
\(979\) −148.000 + 379.137i −0.151175 + 0.387270i
\(980\) 152.000 348.276i 0.155102 0.355383i
\(981\) 0 0
\(982\) 1306.03i 1.32997i
\(983\) 27.4955i 0.0279710i 0.999902 + 0.0139855i \(0.00445186\pi\)
−0.999902 + 0.0139855i \(0.995548\pi\)
\(984\) 0 0
\(985\) 393.548 901.732i 0.399541 0.915464i
\(986\) 358.643i 0.363736i
\(987\) 0 0
\(988\) 91.6515i 0.0927647i
\(989\) 614.817i 0.621655i
\(990\) 0 0
\(991\) 1182.00 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(992\) −46.9574 −0.0473361
\(993\) 0 0
\(994\) 675.000 0.679074
\(995\) −106.000 + 242.877i −0.106533 + 0.244097i
\(996\) 0 0
\(997\) −1694.94 −1.70004 −0.850020 0.526751i \(-0.823410\pi\)
−0.850020 + 0.526751i \(0.823410\pi\)
\(998\) 599.266 0.600467
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.h.d.109.1 4
3.2 odd 2 55.3.d.d.54.3 yes 4
5.4 even 2 inner 495.3.h.d.109.4 4
11.10 odd 2 inner 495.3.h.d.109.3 4
12.11 even 2 880.3.i.d.769.3 4
15.2 even 4 275.3.c.e.76.3 4
15.8 even 4 275.3.c.e.76.2 4
15.14 odd 2 55.3.d.d.54.2 yes 4
33.32 even 2 55.3.d.d.54.1 4
55.54 odd 2 inner 495.3.h.d.109.2 4
60.59 even 2 880.3.i.d.769.2 4
132.131 odd 2 880.3.i.d.769.4 4
165.32 odd 4 275.3.c.e.76.1 4
165.98 odd 4 275.3.c.e.76.4 4
165.164 even 2 55.3.d.d.54.4 yes 4
660.659 odd 2 880.3.i.d.769.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.d.d.54.1 4 33.32 even 2
55.3.d.d.54.2 yes 4 15.14 odd 2
55.3.d.d.54.3 yes 4 3.2 odd 2
55.3.d.d.54.4 yes 4 165.164 even 2
275.3.c.e.76.1 4 165.32 odd 4
275.3.c.e.76.2 4 15.8 even 4
275.3.c.e.76.3 4 15.2 even 4
275.3.c.e.76.4 4 165.98 odd 4
495.3.h.d.109.1 4 1.1 even 1 trivial
495.3.h.d.109.2 4 55.54 odd 2 inner
495.3.h.d.109.3 4 11.10 odd 2 inner
495.3.h.d.109.4 4 5.4 even 2 inner
880.3.i.d.769.1 4 660.659 odd 2
880.3.i.d.769.2 4 60.59 even 2
880.3.i.d.769.3 4 12.11 even 2
880.3.i.d.769.4 4 132.131 odd 2