Properties

Label 495.3.h.d
Level $495$
Weight $3$
Character orbit 495.h
Analytic conductor $13.488$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(109,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.109"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{5}, \sqrt{-21})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 41x^{2} - 40x + 505 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + q^{4} + ( - \beta_1 + 2) q^{5} - 5 \beta_{2} q^{7} - 3 \beta_{2} q^{8} + (\beta_{3} + 2 \beta_{2}) q^{10} + ( - \beta_{3} + 4) q^{11} - 4 \beta_{2} q^{13} - 25 q^{14} - 19 q^{16}+ \cdots + 76 \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 8 q^{5} + 16 q^{11} - 100 q^{14} - 76 q^{16} + 8 q^{20} - 68 q^{25} - 80 q^{26} - 12 q^{31} - 140 q^{34} + 16 q^{44} + 304 q^{49} + 32 q^{55} + 300 q^{56} + 72 q^{59} + 164 q^{64} - 200 q^{70}+ \cdots + 400 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} + 41x^{2} - 40x + 505 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} - 125\nu + 62 ) / 89 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{3} + 6\nu^{2} - 72\nu + 35 ) / 89 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu + 20 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{3} + \beta_{2} - 2\beta _1 - 39 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{3} - 61\beta_{2} + 33\beta _1 - 59 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
−0.618034 4.58258i
−0.618034 + 4.58258i
1.61803 4.58258i
1.61803 + 4.58258i
−2.23607 0 1.00000 2.00000 4.58258i 0 11.1803 6.70820 0 −4.47214 + 10.2470i
109.2 −2.23607 0 1.00000 2.00000 + 4.58258i 0 11.1803 6.70820 0 −4.47214 10.2470i
109.3 2.23607 0 1.00000 2.00000 4.58258i 0 −11.1803 −6.70820 0 4.47214 10.2470i
109.4 2.23607 0 1.00000 2.00000 + 4.58258i 0 −11.1803 −6.70820 0 4.47214 + 10.2470i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.b odd 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 495.3.h.d 4
3.b odd 2 1 55.3.d.d 4
5.b even 2 1 inner 495.3.h.d 4
11.b odd 2 1 inner 495.3.h.d 4
12.b even 2 1 880.3.i.d 4
15.d odd 2 1 55.3.d.d 4
15.e even 4 2 275.3.c.e 4
33.d even 2 1 55.3.d.d 4
55.d odd 2 1 inner 495.3.h.d 4
60.h even 2 1 880.3.i.d 4
132.d odd 2 1 880.3.i.d 4
165.d even 2 1 55.3.d.d 4
165.l odd 4 2 275.3.c.e 4
660.g odd 2 1 880.3.i.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.d.d 4 3.b odd 2 1
55.3.d.d 4 15.d odd 2 1
55.3.d.d 4 33.d even 2 1
55.3.d.d 4 165.d even 2 1
275.3.c.e 4 15.e even 4 2
275.3.c.e 4 165.l odd 4 2
495.3.h.d 4 1.a even 1 1 trivial
495.3.h.d 4 5.b even 2 1 inner
495.3.h.d 4 11.b odd 2 1 inner
495.3.h.d 4 55.d odd 2 1 inner
880.3.i.d 4 12.b even 2 1
880.3.i.d 4 60.h even 2 1
880.3.i.d 4 132.d odd 2 1
880.3.i.d 4 660.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(495, [\chi])\):

\( T_{2}^{2} - 5 \) Copy content Toggle raw display
\( T_{7}^{2} - 125 \) Copy content Toggle raw display
\( T_{89} + 37 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 4 T + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 125)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 8 T + 121)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 80)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 245)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 105)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 756)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 105)^{2} \) Copy content Toggle raw display
$31$ \( (T + 3)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 21)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 420)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 500)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 4116)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 21)^{2} \) Copy content Toggle raw display
$59$ \( (T - 18)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 5145)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 756)^{2} \) Copy content Toggle raw display
$71$ \( (T + 27)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 3380)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 3780)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 5120)^{2} \) Copy content Toggle raw display
$89$ \( (T + 37)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 14196)^{2} \) Copy content Toggle raw display
show more
show less