Properties

Label 880.3.i.d.769.1
Level $880$
Weight $3$
Character 880.769
Analytic conductor $23.978$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,3,Mod(769,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.769"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 880.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.9782632637\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{5}, \sqrt{-21})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 41x^{2} - 40x + 505 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.1
Root \(-0.618034 + 4.58258i\) of defining polynomial
Character \(\chi\) \(=\) 880.769
Dual form 880.3.i.d.769.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.58258i q^{3} +(-2.00000 - 4.58258i) q^{5} -11.1803 q^{7} -12.0000 q^{9} +(4.00000 + 10.2470i) q^{11} +8.94427 q^{13} +(-21.0000 + 9.16515i) q^{15} -15.6525 q^{17} +10.2470i q^{19} +51.2348i q^{21} -27.4955i q^{23} +(-17.0000 + 18.3303i) q^{25} +13.7477i q^{27} +10.2470i q^{29} +3.00000 q^{31} +(46.9574 - 18.3303i) q^{33} +(22.3607 + 51.2348i) q^{35} +4.58258i q^{37} -40.9878i q^{39} +20.4939i q^{41} -22.3607 q^{43} +(24.0000 + 54.9909i) q^{45} +64.1561i q^{47} +76.0000 q^{49} +71.7287i q^{51} +4.58258i q^{53} +(38.9574 - 38.8242i) q^{55} +46.9574 q^{57} +18.0000 q^{59} -71.7287i q^{61} +134.164 q^{63} +(-17.8885 - 40.9878i) q^{65} -27.4955i q^{67} -126.000 q^{69} -27.0000 q^{71} +58.1378 q^{73} +(84.0000 + 77.9038i) q^{75} +(-44.7214 - 114.564i) q^{77} -61.4817i q^{79} -45.0000 q^{81} +71.5542 q^{83} +(31.3050 + 71.7287i) q^{85} +46.9574 q^{87} +37.0000 q^{89} -100.000 q^{91} -13.7477i q^{93} +(46.9574 - 20.4939i) q^{95} +119.147i q^{97} +(-48.0000 - 122.963i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} - 48 q^{9} + 16 q^{11} - 84 q^{15} - 68 q^{25} + 12 q^{31} + 96 q^{45} + 304 q^{49} - 32 q^{55} + 72 q^{59} - 504 q^{69} - 108 q^{71} + 336 q^{75} - 180 q^{81} + 148 q^{89} - 400 q^{91} - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.58258i 1.52753i −0.645497 0.763763i \(-0.723350\pi\)
0.645497 0.763763i \(-0.276650\pi\)
\(4\) 0 0
\(5\) −2.00000 4.58258i −0.400000 0.916515i
\(6\) 0 0
\(7\) −11.1803 −1.59719 −0.798596 0.601868i \(-0.794423\pi\)
−0.798596 + 0.601868i \(0.794423\pi\)
\(8\) 0 0
\(9\) −12.0000 −1.33333
\(10\) 0 0
\(11\) 4.00000 + 10.2470i 0.363636 + 0.931541i
\(12\) 0 0
\(13\) 8.94427 0.688021 0.344010 0.938966i \(-0.388214\pi\)
0.344010 + 0.938966i \(0.388214\pi\)
\(14\) 0 0
\(15\) −21.0000 + 9.16515i −1.40000 + 0.611010i
\(16\) 0 0
\(17\) −15.6525 −0.920734 −0.460367 0.887729i \(-0.652282\pi\)
−0.460367 + 0.887729i \(0.652282\pi\)
\(18\) 0 0
\(19\) 10.2470i 0.539313i 0.962957 + 0.269657i \(0.0869102\pi\)
−0.962957 + 0.269657i \(0.913090\pi\)
\(20\) 0 0
\(21\) 51.2348i 2.43975i
\(22\) 0 0
\(23\) 27.4955i 1.19545i −0.801700 0.597727i \(-0.796071\pi\)
0.801700 0.597727i \(-0.203929\pi\)
\(24\) 0 0
\(25\) −17.0000 + 18.3303i −0.680000 + 0.733212i
\(26\) 0 0
\(27\) 13.7477i 0.509175i
\(28\) 0 0
\(29\) 10.2470i 0.353343i 0.984270 + 0.176672i \(0.0565330\pi\)
−0.984270 + 0.176672i \(0.943467\pi\)
\(30\) 0 0
\(31\) 3.00000 0.0967742 0.0483871 0.998829i \(-0.484592\pi\)
0.0483871 + 0.998829i \(0.484592\pi\)
\(32\) 0 0
\(33\) 46.9574 18.3303i 1.42295 0.555464i
\(34\) 0 0
\(35\) 22.3607 + 51.2348i 0.638877 + 1.46385i
\(36\) 0 0
\(37\) 4.58258i 0.123853i 0.998081 + 0.0619267i \(0.0197245\pi\)
−0.998081 + 0.0619267i \(0.980275\pi\)
\(38\) 0 0
\(39\) 40.9878i 1.05097i
\(40\) 0 0
\(41\) 20.4939i 0.499851i 0.968265 + 0.249926i \(0.0804062\pi\)
−0.968265 + 0.249926i \(0.919594\pi\)
\(42\) 0 0
\(43\) −22.3607 −0.520016 −0.260008 0.965606i \(-0.583725\pi\)
−0.260008 + 0.965606i \(0.583725\pi\)
\(44\) 0 0
\(45\) 24.0000 + 54.9909i 0.533333 + 1.22202i
\(46\) 0 0
\(47\) 64.1561i 1.36502i 0.730875 + 0.682511i \(0.239112\pi\)
−0.730875 + 0.682511i \(0.760888\pi\)
\(48\) 0 0
\(49\) 76.0000 1.55102
\(50\) 0 0
\(51\) 71.7287i 1.40644i
\(52\) 0 0
\(53\) 4.58258i 0.0864637i 0.999065 + 0.0432318i \(0.0137654\pi\)
−0.999065 + 0.0432318i \(0.986235\pi\)
\(54\) 0 0
\(55\) 38.9574 38.8242i 0.708317 0.705895i
\(56\) 0 0
\(57\) 46.9574 0.823815
\(58\) 0 0
\(59\) 18.0000 0.305085 0.152542 0.988297i \(-0.451254\pi\)
0.152542 + 0.988297i \(0.451254\pi\)
\(60\) 0 0
\(61\) 71.7287i 1.17588i −0.808905 0.587940i \(-0.799939\pi\)
0.808905 0.587940i \(-0.200061\pi\)
\(62\) 0 0
\(63\) 134.164 2.12959
\(64\) 0 0
\(65\) −17.8885 40.9878i −0.275208 0.630582i
\(66\) 0 0
\(67\) 27.4955i 0.410380i −0.978722 0.205190i \(-0.934219\pi\)
0.978722 0.205190i \(-0.0657812\pi\)
\(68\) 0 0
\(69\) −126.000 −1.82609
\(70\) 0 0
\(71\) −27.0000 −0.380282 −0.190141 0.981757i \(-0.560894\pi\)
−0.190141 + 0.981757i \(0.560894\pi\)
\(72\) 0 0
\(73\) 58.1378 0.796408 0.398204 0.917297i \(-0.369634\pi\)
0.398204 + 0.917297i \(0.369634\pi\)
\(74\) 0 0
\(75\) 84.0000 + 77.9038i 1.12000 + 1.03872i
\(76\) 0 0
\(77\) −44.7214 114.564i −0.580797 1.48785i
\(78\) 0 0
\(79\) 61.4817i 0.778249i −0.921185 0.389125i \(-0.872778\pi\)
0.921185 0.389125i \(-0.127222\pi\)
\(80\) 0 0
\(81\) −45.0000 −0.555556
\(82\) 0 0
\(83\) 71.5542 0.862098 0.431049 0.902328i \(-0.358144\pi\)
0.431049 + 0.902328i \(0.358144\pi\)
\(84\) 0 0
\(85\) 31.3050 + 71.7287i 0.368294 + 0.843867i
\(86\) 0 0
\(87\) 46.9574 0.539741
\(88\) 0 0
\(89\) 37.0000 0.415730 0.207865 0.978157i \(-0.433348\pi\)
0.207865 + 0.978157i \(0.433348\pi\)
\(90\) 0 0
\(91\) −100.000 −1.09890
\(92\) 0 0
\(93\) 13.7477i 0.147825i
\(94\) 0 0
\(95\) 46.9574 20.4939i 0.494289 0.215725i
\(96\) 0 0
\(97\) 119.147i 1.22832i 0.789182 + 0.614160i \(0.210505\pi\)
−0.789182 + 0.614160i \(0.789495\pi\)
\(98\) 0 0
\(99\) −48.0000 122.963i −0.484848 1.24205i
\(100\) 0 0
\(101\) 102.470i 1.01455i −0.861784 0.507275i \(-0.830653\pi\)
0.861784 0.507275i \(-0.169347\pi\)
\(102\) 0 0
\(103\) 18.3303i 0.177964i 0.996033 + 0.0889821i \(0.0283614\pi\)
−0.996033 + 0.0889821i \(0.971639\pi\)
\(104\) 0 0
\(105\) 234.787 102.470i 2.23607 0.975900i
\(106\) 0 0
\(107\) −156.525 −1.46285 −0.731424 0.681923i \(-0.761144\pi\)
−0.731424 + 0.681923i \(0.761144\pi\)
\(108\) 0 0
\(109\) 20.4939i 0.188017i 0.995571 + 0.0940087i \(0.0299682\pi\)
−0.995571 + 0.0940087i \(0.970032\pi\)
\(110\) 0 0
\(111\) 21.0000 0.189189
\(112\) 0 0
\(113\) 164.973i 1.45994i 0.683482 + 0.729968i \(0.260465\pi\)
−0.683482 + 0.729968i \(0.739535\pi\)
\(114\) 0 0
\(115\) −126.000 + 54.9909i −1.09565 + 0.478182i
\(116\) 0 0
\(117\) −107.331 −0.917361
\(118\) 0 0
\(119\) 175.000 1.47059
\(120\) 0 0
\(121\) −89.0000 + 81.9756i −0.735537 + 0.677484i
\(122\) 0 0
\(123\) 93.9149 0.763535
\(124\) 0 0
\(125\) 118.000 + 41.2432i 0.944000 + 0.329945i
\(126\) 0 0
\(127\) 31.3050 0.246496 0.123248 0.992376i \(-0.460669\pi\)
0.123248 + 0.992376i \(0.460669\pi\)
\(128\) 0 0
\(129\) 102.470i 0.794337i
\(130\) 0 0
\(131\) 215.186i 1.64264i 0.570467 + 0.821320i \(0.306762\pi\)
−0.570467 + 0.821320i \(0.693238\pi\)
\(132\) 0 0
\(133\) 114.564i 0.861386i
\(134\) 0 0
\(135\) 63.0000 27.4955i 0.466667 0.203670i
\(136\) 0 0
\(137\) 64.1561i 0.468292i −0.972201 0.234146i \(-0.924771\pi\)
0.972201 0.234146i \(-0.0752294\pi\)
\(138\) 0 0
\(139\) 225.433i 1.62182i 0.585171 + 0.810910i \(0.301027\pi\)
−0.585171 + 0.810910i \(0.698973\pi\)
\(140\) 0 0
\(141\) 294.000 2.08511
\(142\) 0 0
\(143\) 35.7771 + 91.6515i 0.250189 + 0.640920i
\(144\) 0 0
\(145\) 46.9574 20.4939i 0.323844 0.141337i
\(146\) 0 0
\(147\) 348.276i 2.36922i
\(148\) 0 0
\(149\) 153.704i 1.03157i 0.856717 + 0.515786i \(0.172500\pi\)
−0.856717 + 0.515786i \(0.827500\pi\)
\(150\) 0 0
\(151\) 102.470i 0.678606i −0.940677 0.339303i \(-0.889809\pi\)
0.940677 0.339303i \(-0.110191\pi\)
\(152\) 0 0
\(153\) 187.830 1.22765
\(154\) 0 0
\(155\) −6.00000 13.7477i −0.0387097 0.0886950i
\(156\) 0 0
\(157\) 50.4083i 0.321072i 0.987030 + 0.160536i \(0.0513223\pi\)
−0.987030 + 0.160536i \(0.948678\pi\)
\(158\) 0 0
\(159\) 21.0000 0.132075
\(160\) 0 0
\(161\) 307.409i 1.90937i
\(162\) 0 0
\(163\) 270.372i 1.65872i 0.558712 + 0.829362i \(0.311296\pi\)
−0.558712 + 0.829362i \(0.688704\pi\)
\(164\) 0 0
\(165\) −177.915 178.525i −1.07827 1.08197i
\(166\) 0 0
\(167\) −297.397 −1.78082 −0.890410 0.455159i \(-0.849583\pi\)
−0.890410 + 0.455159i \(0.849583\pi\)
\(168\) 0 0
\(169\) −89.0000 −0.526627
\(170\) 0 0
\(171\) 122.963i 0.719084i
\(172\) 0 0
\(173\) −143.108 −0.827216 −0.413608 0.910455i \(-0.635732\pi\)
−0.413608 + 0.910455i \(0.635732\pi\)
\(174\) 0 0
\(175\) 190.066 204.939i 1.08609 1.17108i
\(176\) 0 0
\(177\) 82.4864i 0.466025i
\(178\) 0 0
\(179\) −242.000 −1.35196 −0.675978 0.736922i \(-0.736278\pi\)
−0.675978 + 0.736922i \(0.736278\pi\)
\(180\) 0 0
\(181\) −258.000 −1.42541 −0.712707 0.701462i \(-0.752531\pi\)
−0.712707 + 0.701462i \(0.752531\pi\)
\(182\) 0 0
\(183\) −328.702 −1.79619
\(184\) 0 0
\(185\) 21.0000 9.16515i 0.113514 0.0495414i
\(186\) 0 0
\(187\) −62.6099 160.390i −0.334812 0.857701i
\(188\) 0 0
\(189\) 153.704i 0.813250i
\(190\) 0 0
\(191\) 278.000 1.45550 0.727749 0.685844i \(-0.240567\pi\)
0.727749 + 0.685844i \(0.240567\pi\)
\(192\) 0 0
\(193\) −78.2624 −0.405505 −0.202752 0.979230i \(-0.564989\pi\)
−0.202752 + 0.979230i \(0.564989\pi\)
\(194\) 0 0
\(195\) −187.830 + 81.9756i −0.963229 + 0.420388i
\(196\) 0 0
\(197\) −196.774 −0.998853 −0.499426 0.866356i \(-0.666456\pi\)
−0.499426 + 0.866356i \(0.666456\pi\)
\(198\) 0 0
\(199\) 53.0000 0.266332 0.133166 0.991094i \(-0.457486\pi\)
0.133166 + 0.991094i \(0.457486\pi\)
\(200\) 0 0
\(201\) −126.000 −0.626866
\(202\) 0 0
\(203\) 114.564i 0.564357i
\(204\) 0 0
\(205\) 93.9149 40.9878i 0.458121 0.199941i
\(206\) 0 0
\(207\) 329.945i 1.59394i
\(208\) 0 0
\(209\) −105.000 + 40.9878i −0.502392 + 0.196114i
\(210\) 0 0
\(211\) 174.198i 0.825584i 0.910825 + 0.412792i \(0.135446\pi\)
−0.910825 + 0.412792i \(0.864554\pi\)
\(212\) 0 0
\(213\) 123.730i 0.580890i
\(214\) 0 0
\(215\) 44.7214 + 102.470i 0.208006 + 0.476602i
\(216\) 0 0
\(217\) −33.5410 −0.154567
\(218\) 0 0
\(219\) 266.421i 1.21653i
\(220\) 0 0
\(221\) −140.000 −0.633484
\(222\) 0 0
\(223\) 394.102i 1.76727i −0.468175 0.883636i \(-0.655088\pi\)
0.468175 0.883636i \(-0.344912\pi\)
\(224\) 0 0
\(225\) 204.000 219.964i 0.906667 0.977616i
\(226\) 0 0
\(227\) 277.272 1.22146 0.610732 0.791837i \(-0.290875\pi\)
0.610732 + 0.791837i \(0.290875\pi\)
\(228\) 0 0
\(229\) 292.000 1.27511 0.637555 0.770405i \(-0.279946\pi\)
0.637555 + 0.770405i \(0.279946\pi\)
\(230\) 0 0
\(231\) −525.000 + 204.939i −2.27273 + 0.887182i
\(232\) 0 0
\(233\) −172.177 −0.738958 −0.369479 0.929239i \(-0.620464\pi\)
−0.369479 + 0.929239i \(0.620464\pi\)
\(234\) 0 0
\(235\) 294.000 128.312i 1.25106 0.546009i
\(236\) 0 0
\(237\) −281.745 −1.18880
\(238\) 0 0
\(239\) 225.433i 0.943234i 0.881804 + 0.471617i \(0.156329\pi\)
−0.881804 + 0.471617i \(0.843671\pi\)
\(240\) 0 0
\(241\) 327.902i 1.36059i 0.732938 + 0.680295i \(0.238149\pi\)
−0.732938 + 0.680295i \(0.761851\pi\)
\(242\) 0 0
\(243\) 329.945i 1.35780i
\(244\) 0 0
\(245\) −152.000 348.276i −0.620408 1.42153i
\(246\) 0 0
\(247\) 91.6515i 0.371059i
\(248\) 0 0
\(249\) 327.902i 1.31688i
\(250\) 0 0
\(251\) −282.000 −1.12351 −0.561753 0.827305i \(-0.689873\pi\)
−0.561753 + 0.827305i \(0.689873\pi\)
\(252\) 0 0
\(253\) 281.745 109.982i 1.11361 0.434711i
\(254\) 0 0
\(255\) 328.702 143.457i 1.28903 0.562578i
\(256\) 0 0
\(257\) 64.1561i 0.249634i −0.992180 0.124817i \(-0.960166\pi\)
0.992180 0.124817i \(-0.0398345\pi\)
\(258\) 0 0
\(259\) 51.2348i 0.197818i
\(260\) 0 0
\(261\) 122.963i 0.471124i
\(262\) 0 0
\(263\) −199.010 −0.756692 −0.378346 0.925664i \(-0.623507\pi\)
−0.378346 + 0.925664i \(0.623507\pi\)
\(264\) 0 0
\(265\) 21.0000 9.16515i 0.0792453 0.0345855i
\(266\) 0 0
\(267\) 169.555i 0.635039i
\(268\) 0 0
\(269\) 162.000 0.602230 0.301115 0.953588i \(-0.402641\pi\)
0.301115 + 0.953588i \(0.402641\pi\)
\(270\) 0 0
\(271\) 245.927i 0.907479i 0.891134 + 0.453740i \(0.149910\pi\)
−0.891134 + 0.453740i \(0.850090\pi\)
\(272\) 0 0
\(273\) 458.258i 1.67860i
\(274\) 0 0
\(275\) −255.830 100.877i −0.930290 0.366825i
\(276\) 0 0
\(277\) 58.1378 0.209884 0.104942 0.994478i \(-0.466534\pi\)
0.104942 + 0.994478i \(0.466534\pi\)
\(278\) 0 0
\(279\) −36.0000 −0.129032
\(280\) 0 0
\(281\) 163.951i 0.583456i −0.956501 0.291728i \(-0.905770\pi\)
0.956501 0.291728i \(-0.0942303\pi\)
\(282\) 0 0
\(283\) 250.440 0.884946 0.442473 0.896782i \(-0.354101\pi\)
0.442473 + 0.896782i \(0.354101\pi\)
\(284\) 0 0
\(285\) −93.9149 215.186i −0.329526 0.755038i
\(286\) 0 0
\(287\) 229.129i 0.798358i
\(288\) 0 0
\(289\) −44.0000 −0.152249
\(290\) 0 0
\(291\) 546.000 1.87629
\(292\) 0 0
\(293\) −447.214 −1.52633 −0.763163 0.646206i \(-0.776355\pi\)
−0.763163 + 0.646206i \(0.776355\pi\)
\(294\) 0 0
\(295\) −36.0000 82.4864i −0.122034 0.279615i
\(296\) 0 0
\(297\) −140.872 + 54.9909i −0.474317 + 0.185155i
\(298\) 0 0
\(299\) 245.927i 0.822498i
\(300\) 0 0
\(301\) 250.000 0.830565
\(302\) 0 0
\(303\) −469.574 −1.54975
\(304\) 0 0
\(305\) −328.702 + 143.457i −1.07771 + 0.470352i
\(306\) 0 0
\(307\) −447.214 −1.45672 −0.728361 0.685194i \(-0.759718\pi\)
−0.728361 + 0.685194i \(0.759718\pi\)
\(308\) 0 0
\(309\) 84.0000 0.271845
\(310\) 0 0
\(311\) −87.0000 −0.279743 −0.139871 0.990170i \(-0.544669\pi\)
−0.139871 + 0.990170i \(0.544669\pi\)
\(312\) 0 0
\(313\) 293.285i 0.937012i −0.883460 0.468506i \(-0.844792\pi\)
0.883460 0.468506i \(-0.155208\pi\)
\(314\) 0 0
\(315\) −268.328 614.817i −0.851835 1.95180i
\(316\) 0 0
\(317\) 50.4083i 0.159017i 0.996834 + 0.0795084i \(0.0253351\pi\)
−0.996834 + 0.0795084i \(0.974665\pi\)
\(318\) 0 0
\(319\) −105.000 + 40.9878i −0.329154 + 0.128488i
\(320\) 0 0
\(321\) 717.287i 2.23454i
\(322\) 0 0
\(323\) 160.390i 0.496564i
\(324\) 0 0
\(325\) −152.053 + 163.951i −0.467854 + 0.504465i
\(326\) 0 0
\(327\) 93.9149 0.287201
\(328\) 0 0
\(329\) 717.287i 2.18020i
\(330\) 0 0
\(331\) 138.000 0.416918 0.208459 0.978031i \(-0.433155\pi\)
0.208459 + 0.978031i \(0.433155\pi\)
\(332\) 0 0
\(333\) 54.9909i 0.165138i
\(334\) 0 0
\(335\) −126.000 + 54.9909i −0.376119 + 0.164152i
\(336\) 0 0
\(337\) 243.731 0.723239 0.361619 0.932326i \(-0.382224\pi\)
0.361619 + 0.932326i \(0.382224\pi\)
\(338\) 0 0
\(339\) 756.000 2.23009
\(340\) 0 0
\(341\) 12.0000 + 30.7409i 0.0351906 + 0.0901491i
\(342\) 0 0
\(343\) −301.869 −0.880085
\(344\) 0 0
\(345\) 252.000 + 577.405i 0.730435 + 1.67364i
\(346\) 0 0
\(347\) −4.47214 −0.0128880 −0.00644400 0.999979i \(-0.502051\pi\)
−0.00644400 + 0.999979i \(0.502051\pi\)
\(348\) 0 0
\(349\) 512.348i 1.46804i −0.679125 0.734022i \(-0.737641\pi\)
0.679125 0.734022i \(-0.262359\pi\)
\(350\) 0 0
\(351\) 122.963i 0.350323i
\(352\) 0 0
\(353\) 293.285i 0.830835i −0.909631 0.415418i \(-0.863635\pi\)
0.909631 0.415418i \(-0.136365\pi\)
\(354\) 0 0
\(355\) 54.0000 + 123.730i 0.152113 + 0.348534i
\(356\) 0 0
\(357\) 801.951i 2.24636i
\(358\) 0 0
\(359\) 635.311i 1.76967i −0.465906 0.884834i \(-0.654272\pi\)
0.465906 0.884834i \(-0.345728\pi\)
\(360\) 0 0
\(361\) 256.000 0.709141
\(362\) 0 0
\(363\) 375.659 + 407.849i 1.03487 + 1.12355i
\(364\) 0 0
\(365\) −116.276 266.421i −0.318563 0.729920i
\(366\) 0 0
\(367\) 430.762i 1.17374i 0.809682 + 0.586869i \(0.199640\pi\)
−0.809682 + 0.586869i \(0.800360\pi\)
\(368\) 0 0
\(369\) 245.927i 0.666468i
\(370\) 0 0
\(371\) 51.2348i 0.138099i
\(372\) 0 0
\(373\) −545.601 −1.46274 −0.731368 0.681983i \(-0.761118\pi\)
−0.731368 + 0.681983i \(0.761118\pi\)
\(374\) 0 0
\(375\) 189.000 540.744i 0.504000 1.44198i
\(376\) 0 0
\(377\) 91.6515i 0.243107i
\(378\) 0 0
\(379\) 428.000 1.12929 0.564644 0.825335i \(-0.309014\pi\)
0.564644 + 0.825335i \(0.309014\pi\)
\(380\) 0 0
\(381\) 143.457i 0.376528i
\(382\) 0 0
\(383\) 164.973i 0.430738i −0.976533 0.215369i \(-0.930905\pi\)
0.976533 0.215369i \(-0.0690955\pi\)
\(384\) 0 0
\(385\) −435.557 + 434.068i −1.13132 + 1.12745i
\(386\) 0 0
\(387\) 268.328 0.693354
\(388\) 0 0
\(389\) −228.000 −0.586118 −0.293059 0.956094i \(-0.594673\pi\)
−0.293059 + 0.956094i \(0.594673\pi\)
\(390\) 0 0
\(391\) 430.372i 1.10070i
\(392\) 0 0
\(393\) 986.106 2.50918
\(394\) 0 0
\(395\) −281.745 + 122.963i −0.713277 + 0.311300i
\(396\) 0 0
\(397\) 669.056i 1.68528i 0.538478 + 0.842640i \(0.319000\pi\)
−0.538478 + 0.842640i \(0.681000\pi\)
\(398\) 0 0
\(399\) −525.000 −1.31579
\(400\) 0 0
\(401\) 107.000 0.266833 0.133416 0.991060i \(-0.457405\pi\)
0.133416 + 0.991060i \(0.457405\pi\)
\(402\) 0 0
\(403\) 26.8328 0.0665827
\(404\) 0 0
\(405\) 90.0000 + 206.216i 0.222222 + 0.509175i
\(406\) 0 0
\(407\) −46.9574 + 18.3303i −0.115375 + 0.0450376i
\(408\) 0 0
\(409\) 327.902i 0.801717i 0.916140 + 0.400859i \(0.131288\pi\)
−0.916140 + 0.400859i \(0.868712\pi\)
\(410\) 0 0
\(411\) −294.000 −0.715328
\(412\) 0 0
\(413\) −201.246 −0.487279
\(414\) 0 0
\(415\) −143.108 327.902i −0.344839 0.790126i
\(416\) 0 0
\(417\) 1033.06 2.47737
\(418\) 0 0
\(419\) −722.000 −1.72315 −0.861575 0.507630i \(-0.830522\pi\)
−0.861575 + 0.507630i \(0.830522\pi\)
\(420\) 0 0
\(421\) −408.000 −0.969121 −0.484561 0.874758i \(-0.661020\pi\)
−0.484561 + 0.874758i \(0.661020\pi\)
\(422\) 0 0
\(423\) 769.873i 1.82003i
\(424\) 0 0
\(425\) 266.092 286.915i 0.626099 0.675093i
\(426\) 0 0
\(427\) 801.951i 1.87810i
\(428\) 0 0
\(429\) 420.000 163.951i 0.979021 0.382171i
\(430\) 0 0
\(431\) 61.4817i 0.142649i 0.997453 + 0.0713245i \(0.0227226\pi\)
−0.997453 + 0.0713245i \(0.977277\pi\)
\(432\) 0 0
\(433\) 247.459i 0.571499i −0.958304 0.285750i \(-0.907757\pi\)
0.958304 0.285750i \(-0.0922425\pi\)
\(434\) 0 0
\(435\) −93.9149 215.186i −0.215896 0.494680i
\(436\) 0 0
\(437\) 281.745 0.644724
\(438\) 0 0
\(439\) 430.372i 0.980346i 0.871625 + 0.490173i \(0.163066\pi\)
−0.871625 + 0.490173i \(0.836934\pi\)
\(440\) 0 0
\(441\) −912.000 −2.06803
\(442\) 0 0
\(443\) 302.450i 0.682731i −0.939931 0.341366i \(-0.889111\pi\)
0.939931 0.341366i \(-0.110889\pi\)
\(444\) 0 0
\(445\) −74.0000 169.555i −0.166292 0.381023i
\(446\) 0 0
\(447\) 704.361 1.57575
\(448\) 0 0
\(449\) 22.0000 0.0489978 0.0244989 0.999700i \(-0.492201\pi\)
0.0244989 + 0.999700i \(0.492201\pi\)
\(450\) 0 0
\(451\) −210.000 + 81.9756i −0.465632 + 0.181764i
\(452\) 0 0
\(453\) −469.574 −1.03659
\(454\) 0 0
\(455\) 200.000 + 458.258i 0.439560 + 1.00716i
\(456\) 0 0
\(457\) 346.591 0.758404 0.379202 0.925314i \(-0.376199\pi\)
0.379202 + 0.925314i \(0.376199\pi\)
\(458\) 0 0
\(459\) 215.186i 0.468815i
\(460\) 0 0
\(461\) 338.149i 0.733513i 0.930317 + 0.366756i \(0.119532\pi\)
−0.930317 + 0.366756i \(0.880468\pi\)
\(462\) 0 0
\(463\) 623.230i 1.34607i −0.739611 0.673035i \(-0.764990\pi\)
0.739611 0.673035i \(-0.235010\pi\)
\(464\) 0 0
\(465\) −63.0000 + 27.4955i −0.135484 + 0.0591300i
\(466\) 0 0
\(467\) 554.492i 1.18735i −0.804706 0.593674i \(-0.797677\pi\)
0.804706 0.593674i \(-0.202323\pi\)
\(468\) 0 0
\(469\) 307.409i 0.655455i
\(470\) 0 0
\(471\) 231.000 0.490446
\(472\) 0 0
\(473\) −89.4427 229.129i −0.189097 0.484416i
\(474\) 0 0
\(475\) −187.830 174.198i −0.395431 0.366733i
\(476\) 0 0
\(477\) 54.9909i 0.115285i
\(478\) 0 0
\(479\) 40.9878i 0.0855695i 0.999084 + 0.0427848i \(0.0136230\pi\)
−0.999084 + 0.0427848i \(0.986377\pi\)
\(480\) 0 0
\(481\) 40.9878i 0.0852137i
\(482\) 0 0
\(483\) 1408.72 2.91661
\(484\) 0 0
\(485\) 546.000 238.294i 1.12577 0.491328i
\(486\) 0 0
\(487\) 339.111i 0.696326i 0.937434 + 0.348163i \(0.113194\pi\)
−0.937434 + 0.348163i \(0.886806\pi\)
\(488\) 0 0
\(489\) 1239.00 2.53374
\(490\) 0 0
\(491\) 584.076i 1.18956i −0.803887 0.594782i \(-0.797238\pi\)
0.803887 0.594782i \(-0.202762\pi\)
\(492\) 0 0
\(493\) 160.390i 0.325335i
\(494\) 0 0
\(495\) −467.489 + 465.890i −0.944422 + 0.941193i
\(496\) 0 0
\(497\) 301.869 0.607383
\(498\) 0 0
\(499\) 268.000 0.537074 0.268537 0.963269i \(-0.413460\pi\)
0.268537 + 0.963269i \(0.413460\pi\)
\(500\) 0 0
\(501\) 1362.84i 2.72025i
\(502\) 0 0
\(503\) −541.128 −1.07580 −0.537901 0.843008i \(-0.680783\pi\)
−0.537901 + 0.843008i \(0.680783\pi\)
\(504\) 0 0
\(505\) −469.574 + 204.939i −0.929850 + 0.405820i
\(506\) 0 0
\(507\) 407.849i 0.804436i
\(508\) 0 0
\(509\) −828.000 −1.62672 −0.813360 0.581761i \(-0.802364\pi\)
−0.813360 + 0.581761i \(0.802364\pi\)
\(510\) 0 0
\(511\) −650.000 −1.27202
\(512\) 0 0
\(513\) −140.872 −0.274605
\(514\) 0 0
\(515\) 84.0000 36.6606i 0.163107 0.0711856i
\(516\) 0 0
\(517\) −657.404 + 256.624i −1.27157 + 0.496372i
\(518\) 0 0
\(519\) 655.805i 1.26359i
\(520\) 0 0
\(521\) 242.000 0.464491 0.232246 0.972657i \(-0.425393\pi\)
0.232246 + 0.972657i \(0.425393\pi\)
\(522\) 0 0
\(523\) 143.108 0.273630 0.136815 0.990597i \(-0.456313\pi\)
0.136815 + 0.990597i \(0.456313\pi\)
\(524\) 0 0
\(525\) −939.149 870.991i −1.78885 1.65903i
\(526\) 0 0
\(527\) −46.9574 −0.0891033
\(528\) 0 0
\(529\) −227.000 −0.429112
\(530\) 0 0
\(531\) −216.000 −0.406780
\(532\) 0 0
\(533\) 183.303i 0.343908i
\(534\) 0 0
\(535\) 313.050 + 717.287i 0.585139 + 1.34072i
\(536\) 0 0
\(537\) 1108.98i 2.06515i
\(538\) 0 0
\(539\) 304.000 + 778.768i 0.564007 + 1.44484i
\(540\) 0 0
\(541\) 440.619i 0.814453i −0.913327 0.407226i \(-0.866496\pi\)
0.913327 0.407226i \(-0.133504\pi\)
\(542\) 0 0
\(543\) 1182.30i 2.17736i
\(544\) 0 0
\(545\) 93.9149 40.9878i 0.172321 0.0752070i
\(546\) 0 0
\(547\) 398.020 0.727642 0.363821 0.931469i \(-0.381472\pi\)
0.363821 + 0.931469i \(0.381472\pi\)
\(548\) 0 0
\(549\) 860.744i 1.56784i
\(550\) 0 0
\(551\) −105.000 −0.190563
\(552\) 0 0
\(553\) 687.386i 1.24301i
\(554\) 0 0
\(555\) −42.0000 96.2341i −0.0756757 0.173395i
\(556\) 0 0
\(557\) 156.525 0.281014 0.140507 0.990080i \(-0.455127\pi\)
0.140507 + 0.990080i \(0.455127\pi\)
\(558\) 0 0
\(559\) −200.000 −0.357782
\(560\) 0 0
\(561\) −735.000 + 286.915i −1.31016 + 0.511434i
\(562\) 0 0
\(563\) −881.011 −1.56485 −0.782425 0.622745i \(-0.786018\pi\)
−0.782425 + 0.622745i \(0.786018\pi\)
\(564\) 0 0
\(565\) 756.000 329.945i 1.33805 0.583974i
\(566\) 0 0
\(567\) 503.115 0.887329
\(568\) 0 0
\(569\) 143.457i 0.252122i 0.992023 + 0.126061i \(0.0402335\pi\)
−0.992023 + 0.126061i \(0.959767\pi\)
\(570\) 0 0
\(571\) 604.570i 1.05879i 0.848375 + 0.529396i \(0.177581\pi\)
−0.848375 + 0.529396i \(0.822419\pi\)
\(572\) 0 0
\(573\) 1273.96i 2.22331i
\(574\) 0 0
\(575\) 504.000 + 467.423i 0.876522 + 0.812909i
\(576\) 0 0
\(577\) 164.973i 0.285915i 0.989729 + 0.142957i \(0.0456612\pi\)
−0.989729 + 0.142957i \(0.954339\pi\)
\(578\) 0 0
\(579\) 358.643i 0.619418i
\(580\) 0 0
\(581\) −800.000 −1.37694
\(582\) 0 0
\(583\) −46.9574 + 18.3303i −0.0805445 + 0.0314413i
\(584\) 0 0
\(585\) 214.663 + 491.854i 0.366944 + 0.840775i
\(586\) 0 0
\(587\) 875.272i 1.49109i −0.666453 0.745547i \(-0.732188\pi\)
0.666453 0.745547i \(-0.267812\pi\)
\(588\) 0 0
\(589\) 30.7409i 0.0521916i
\(590\) 0 0
\(591\) 901.732i 1.52577i
\(592\) 0 0
\(593\) −111.803 −0.188539 −0.0942693 0.995547i \(-0.530051\pi\)
−0.0942693 + 0.995547i \(0.530051\pi\)
\(594\) 0 0
\(595\) −350.000 801.951i −0.588235 1.34782i
\(596\) 0 0
\(597\) 242.877i 0.406828i
\(598\) 0 0
\(599\) 493.000 0.823038 0.411519 0.911401i \(-0.364998\pi\)
0.411519 + 0.911401i \(0.364998\pi\)
\(600\) 0 0
\(601\) 102.470i 0.170498i 0.996360 + 0.0852492i \(0.0271686\pi\)
−0.996360 + 0.0852492i \(0.972831\pi\)
\(602\) 0 0
\(603\) 329.945i 0.547173i
\(604\) 0 0
\(605\) 553.659 + 243.898i 0.915140 + 0.403137i
\(606\) 0 0
\(607\) 816.165 1.34459 0.672294 0.740284i \(-0.265309\pi\)
0.672294 + 0.740284i \(0.265309\pi\)
\(608\) 0 0
\(609\) −525.000 −0.862069
\(610\) 0 0
\(611\) 573.829i 0.939164i
\(612\) 0 0
\(613\) 881.011 1.43721 0.718606 0.695418i \(-0.244781\pi\)
0.718606 + 0.695418i \(0.244781\pi\)
\(614\) 0 0
\(615\) −187.830 430.372i −0.305414 0.699792i
\(616\) 0 0
\(617\) 293.285i 0.475340i −0.971346 0.237670i \(-0.923616\pi\)
0.971346 0.237670i \(-0.0763837\pi\)
\(618\) 0 0
\(619\) −972.000 −1.57027 −0.785137 0.619322i \(-0.787408\pi\)
−0.785137 + 0.619322i \(0.787408\pi\)
\(620\) 0 0
\(621\) 378.000 0.608696
\(622\) 0 0
\(623\) −413.673 −0.664001
\(624\) 0 0
\(625\) −47.0000 623.230i −0.0752000 0.997168i
\(626\) 0 0
\(627\) 187.830 + 481.170i 0.299569 + 0.767417i
\(628\) 0 0
\(629\) 71.7287i 0.114036i
\(630\) 0 0
\(631\) 113.000 0.179081 0.0895404 0.995983i \(-0.471460\pi\)
0.0895404 + 0.995983i \(0.471460\pi\)
\(632\) 0 0
\(633\) 798.276 1.26110
\(634\) 0 0
\(635\) −62.6099 143.457i −0.0985983 0.225917i
\(636\) 0 0
\(637\) 679.765 1.06713
\(638\) 0 0
\(639\) 324.000 0.507042
\(640\) 0 0
\(641\) 1007.00 1.57098 0.785491 0.618873i \(-0.212410\pi\)
0.785491 + 0.618873i \(0.212410\pi\)
\(642\) 0 0
\(643\) 270.372i 0.420485i 0.977649 + 0.210243i \(0.0674254\pi\)
−0.977649 + 0.210243i \(0.932575\pi\)
\(644\) 0 0
\(645\) 469.574 204.939i 0.728022 0.317735i
\(646\) 0 0
\(647\) 18.3303i 0.0283312i 0.999900 + 0.0141656i \(0.00450921\pi\)
−0.999900 + 0.0141656i \(0.995491\pi\)
\(648\) 0 0
\(649\) 72.0000 + 184.445i 0.110940 + 0.284199i
\(650\) 0 0
\(651\) 153.704i 0.236105i
\(652\) 0 0
\(653\) 691.969i 1.05968i 0.848099 + 0.529838i \(0.177747\pi\)
−0.848099 + 0.529838i \(0.822253\pi\)
\(654\) 0 0
\(655\) 986.106 430.372i 1.50551 0.657056i
\(656\) 0 0
\(657\) −697.653 −1.06188
\(658\) 0 0
\(659\) 1096.42i 1.66377i −0.554949 0.831884i \(-0.687262\pi\)
0.554949 0.831884i \(-0.312738\pi\)
\(660\) 0 0
\(661\) 862.000 1.30408 0.652042 0.758183i \(-0.273912\pi\)
0.652042 + 0.758183i \(0.273912\pi\)
\(662\) 0 0
\(663\) 641.561i 0.967663i
\(664\) 0 0
\(665\) −525.000 + 229.129i −0.789474 + 0.344555i
\(666\) 0 0
\(667\) 281.745 0.422406
\(668\) 0 0
\(669\) −1806.00 −2.69955
\(670\) 0 0
\(671\) 735.000 286.915i 1.09538 0.427593i
\(672\) 0 0
\(673\) −713.306 −1.05989 −0.529945 0.848032i \(-0.677787\pi\)
−0.529945 + 0.848032i \(0.677787\pi\)
\(674\) 0 0
\(675\) −252.000 233.711i −0.373333 0.346239i
\(676\) 0 0
\(677\) −31.3050 −0.0462407 −0.0231203 0.999733i \(-0.507360\pi\)
−0.0231203 + 0.999733i \(0.507360\pi\)
\(678\) 0 0
\(679\) 1332.10i 1.96186i
\(680\) 0 0
\(681\) 1270.62i 1.86582i
\(682\) 0 0
\(683\) 600.317i 0.878942i −0.898257 0.439471i \(-0.855166\pi\)
0.898257 0.439471i \(-0.144834\pi\)
\(684\) 0 0
\(685\) −294.000 + 128.312i −0.429197 + 0.187317i
\(686\) 0 0
\(687\) 1338.11i 1.94776i
\(688\) 0 0
\(689\) 40.9878i 0.0594888i
\(690\) 0 0
\(691\) −872.000 −1.26194 −0.630970 0.775808i \(-0.717343\pi\)
−0.630970 + 0.775808i \(0.717343\pi\)
\(692\) 0 0
\(693\) 536.656 + 1374.77i 0.774396 + 1.98380i
\(694\) 0 0
\(695\) 1033.06 450.866i 1.48642 0.648728i
\(696\) 0 0
\(697\) 320.780i 0.460230i
\(698\) 0 0
\(699\) 789.015i 1.12878i
\(700\) 0 0
\(701\) 870.991i 1.24250i 0.783613 + 0.621249i \(0.213374\pi\)
−0.783613 + 0.621249i \(0.786626\pi\)
\(702\) 0 0
\(703\) −46.9574 −0.0667958
\(704\) 0 0
\(705\) −588.000 1347.28i −0.834043 1.91103i
\(706\) 0 0
\(707\) 1145.64i 1.62043i
\(708\) 0 0
\(709\) −768.000 −1.08322 −0.541608 0.840631i \(-0.682184\pi\)
−0.541608 + 0.840631i \(0.682184\pi\)
\(710\) 0 0
\(711\) 737.780i 1.03767i
\(712\) 0 0
\(713\) 82.4864i 0.115689i
\(714\) 0 0
\(715\) 348.446 347.254i 0.487337 0.485670i
\(716\) 0 0
\(717\) 1033.06 1.44081
\(718\) 0 0
\(719\) 263.000 0.365786 0.182893 0.983133i \(-0.441454\pi\)
0.182893 + 0.983133i \(0.441454\pi\)
\(720\) 0 0
\(721\) 204.939i 0.284243i
\(722\) 0 0
\(723\) 1502.64 2.07834
\(724\) 0 0
\(725\) −187.830 174.198i −0.259075 0.240273i
\(726\) 0 0
\(727\) 293.285i 0.403418i 0.979446 + 0.201709i \(0.0646495\pi\)
−0.979446 + 0.201709i \(0.935350\pi\)
\(728\) 0 0
\(729\) 1107.00 1.51852
\(730\) 0 0
\(731\) 350.000 0.478796
\(732\) 0 0
\(733\) 219.135 0.298956 0.149478 0.988765i \(-0.452241\pi\)
0.149478 + 0.988765i \(0.452241\pi\)
\(734\) 0 0
\(735\) −1596.00 + 696.552i −2.17143 + 0.947689i
\(736\) 0 0
\(737\) 281.745 109.982i 0.382286 0.149229i
\(738\) 0 0
\(739\) 389.384i 0.526907i −0.964672 0.263453i \(-0.915138\pi\)
0.964672 0.263453i \(-0.0848615\pi\)
\(740\) 0 0
\(741\) 420.000 0.566802
\(742\) 0 0
\(743\) −682.001 −0.917901 −0.458951 0.888462i \(-0.651775\pi\)
−0.458951 + 0.888462i \(0.651775\pi\)
\(744\) 0 0
\(745\) 704.361 307.409i 0.945452 0.412629i
\(746\) 0 0
\(747\) −858.650 −1.14946
\(748\) 0 0
\(749\) 1750.00 2.33645
\(750\) 0 0
\(751\) 1003.00 1.33555 0.667776 0.744362i \(-0.267246\pi\)
0.667776 + 0.744362i \(0.267246\pi\)
\(752\) 0 0
\(753\) 1292.29i 1.71618i
\(754\) 0 0
\(755\) −469.574 + 204.939i −0.621953 + 0.271442i
\(756\) 0 0
\(757\) 1218.97i 1.61026i 0.593100 + 0.805129i \(0.297904\pi\)
−0.593100 + 0.805129i \(0.702096\pi\)
\(758\) 0 0
\(759\) −504.000 1291.12i −0.664032 1.70107i
\(760\) 0 0
\(761\) 184.445i 0.242372i 0.992630 + 0.121186i \(0.0386698\pi\)
−0.992630 + 0.121186i \(0.961330\pi\)
\(762\) 0 0
\(763\) 229.129i 0.300300i
\(764\) 0 0
\(765\) −375.659 860.744i −0.491058 1.12516i
\(766\) 0 0
\(767\) 160.997 0.209905
\(768\) 0 0
\(769\) 245.927i 0.319801i 0.987133 + 0.159900i \(0.0511173\pi\)
−0.987133 + 0.159900i \(0.948883\pi\)
\(770\) 0 0
\(771\) −294.000 −0.381323
\(772\) 0 0
\(773\) 279.537i 0.361626i 0.983517 + 0.180813i \(0.0578729\pi\)
−0.983517 + 0.180813i \(0.942127\pi\)
\(774\) 0 0
\(775\) −51.0000 + 54.9909i −0.0658065 + 0.0709560i
\(776\) 0 0
\(777\) −234.787 −0.302171
\(778\) 0 0
\(779\) −210.000 −0.269576
\(780\) 0 0
\(781\) −108.000 276.668i −0.138284 0.354248i
\(782\) 0 0
\(783\) −140.872 −0.179914
\(784\) 0 0
\(785\) 231.000 100.817i 0.294268 0.128429i
\(786\) 0 0
\(787\) −746.847 −0.948979 −0.474490 0.880261i \(-0.657367\pi\)
−0.474490 + 0.880261i \(0.657367\pi\)
\(788\) 0 0
\(789\) 911.979i 1.15587i
\(790\) 0 0
\(791\) 1844.45i 2.33180i
\(792\) 0 0
\(793\) 641.561i 0.809030i
\(794\) 0 0
\(795\) −42.0000 96.2341i −0.0528302 0.121049i
\(796\) 0 0
\(797\) 705.717i 0.885466i −0.896653 0.442733i \(-0.854009\pi\)
0.896653 0.442733i \(-0.145991\pi\)
\(798\) 0 0
\(799\) 1004.20i 1.25682i
\(800\) 0 0
\(801\) −444.000 −0.554307
\(802\) 0 0
\(803\) 232.551 + 595.735i 0.289603 + 0.741886i
\(804\) 0 0
\(805\) 1408.72 614.817i 1.74997 0.763748i
\(806\) 0 0
\(807\) 742.377i 0.919922i
\(808\) 0 0
\(809\) 1209.14i 1.49461i −0.664481 0.747305i \(-0.731347\pi\)
0.664481 0.747305i \(-0.268653\pi\)
\(810\) 0 0
\(811\) 1096.42i 1.35194i 0.736929 + 0.675970i \(0.236275\pi\)
−0.736929 + 0.675970i \(0.763725\pi\)
\(812\) 0 0
\(813\) 1126.98 1.38620
\(814\) 0 0
\(815\) 1239.00 540.744i 1.52025 0.663489i
\(816\) 0 0
\(817\) 229.129i 0.280451i
\(818\) 0 0
\(819\) 1200.00 1.46520
\(820\) 0 0
\(821\) 758.274i 0.923598i −0.886984 0.461799i \(-0.847204\pi\)
0.886984 0.461799i \(-0.152796\pi\)
\(822\) 0 0
\(823\) 293.285i 0.356361i 0.983998 + 0.178180i \(0.0570210\pi\)
−0.983998 + 0.178180i \(0.942979\pi\)
\(824\) 0 0
\(825\) −462.276 + 1172.36i −0.560335 + 1.42104i
\(826\) 0 0
\(827\) −594.794 −0.719219 −0.359609 0.933103i \(-0.617090\pi\)
−0.359609 + 0.933103i \(0.617090\pi\)
\(828\) 0 0
\(829\) 102.000 0.123040 0.0615199 0.998106i \(-0.480405\pi\)
0.0615199 + 0.998106i \(0.480405\pi\)
\(830\) 0 0
\(831\) 266.421i 0.320603i
\(832\) 0 0
\(833\) −1189.59 −1.42808
\(834\) 0 0
\(835\) 594.794 + 1362.84i 0.712328 + 1.63215i
\(836\) 0 0
\(837\) 41.2432i 0.0492750i
\(838\) 0 0
\(839\) 138.000 0.164482 0.0822408 0.996612i \(-0.473792\pi\)
0.0822408 + 0.996612i \(0.473792\pi\)
\(840\) 0 0
\(841\) 736.000 0.875149
\(842\) 0 0
\(843\) −751.319 −0.891244
\(844\) 0 0
\(845\) 178.000 + 407.849i 0.210651 + 0.482662i
\(846\) 0 0
\(847\) 995.050 916.515i 1.17479 1.08207i
\(848\) 0 0
\(849\) 1147.66i 1.35178i
\(850\) 0 0
\(851\) 126.000 0.148061
\(852\) 0 0
\(853\) −532.184 −0.623897 −0.311949 0.950099i \(-0.600982\pi\)
−0.311949 + 0.950099i \(0.600982\pi\)
\(854\) 0 0
\(855\) −563.489 + 245.927i −0.659052 + 0.287634i
\(856\) 0 0
\(857\) −950.329 −1.10890 −0.554451 0.832216i \(-0.687072\pi\)
−0.554451 + 0.832216i \(0.687072\pi\)
\(858\) 0 0
\(859\) 1068.00 1.24331 0.621653 0.783293i \(-0.286461\pi\)
0.621653 + 0.783293i \(0.286461\pi\)
\(860\) 0 0
\(861\) −1050.00 −1.21951
\(862\) 0 0
\(863\) 73.3212i 0.0849608i −0.999097 0.0424804i \(-0.986474\pi\)
0.999097 0.0424804i \(-0.0135260\pi\)
\(864\) 0 0
\(865\) 286.217 + 655.805i 0.330886 + 0.758156i
\(866\) 0 0
\(867\) 201.633i 0.232564i
\(868\) 0 0
\(869\) 630.000 245.927i 0.724971 0.283000i
\(870\) 0 0
\(871\) 245.927i 0.282350i
\(872\) 0 0
\(873\) 1429.76i 1.63776i
\(874\) 0 0
\(875\) −1319.28 461.113i −1.50775 0.526986i
\(876\) 0 0
\(877\) 169.941 0.193776 0.0968878 0.995295i \(-0.469111\pi\)
0.0968878 + 0.995295i \(0.469111\pi\)
\(878\) 0 0
\(879\) 2049.39i 2.33150i
\(880\) 0 0
\(881\) −78.0000 −0.0885358 −0.0442679 0.999020i \(-0.514096\pi\)
−0.0442679 + 0.999020i \(0.514096\pi\)
\(882\) 0 0
\(883\) 1553.49i 1.75934i 0.475589 + 0.879668i \(0.342235\pi\)
−0.475589 + 0.879668i \(0.657765\pi\)
\(884\) 0 0
\(885\) −378.000 + 164.973i −0.427119 + 0.186410i
\(886\) 0 0
\(887\) −299.633 −0.337805 −0.168903 0.985633i \(-0.554022\pi\)
−0.168903 + 0.985633i \(0.554022\pi\)
\(888\) 0 0
\(889\) −350.000 −0.393701
\(890\) 0 0
\(891\) −180.000 461.113i −0.202020 0.517523i
\(892\) 0 0
\(893\) −657.404 −0.736175
\(894\) 0 0
\(895\) 484.000 + 1108.98i 0.540782 + 1.23909i
\(896\) 0 0
\(897\) −1126.98 −1.25639
\(898\) 0 0
\(899\) 30.7409i 0.0341945i
\(900\) 0 0
\(901\) 71.7287i 0.0796101i
\(902\) 0 0
\(903\) 1145.64i 1.26871i
\(904\) 0 0
\(905\) 516.000 + 1182.30i 0.570166 + 1.30641i
\(906\) 0 0
\(907\) 691.969i 0.762921i −0.924385 0.381460i \(-0.875421\pi\)
0.924385 0.381460i \(-0.124579\pi\)
\(908\) 0 0
\(909\) 1229.63i 1.35273i
\(910\) 0 0
\(911\) −1037.00 −1.13831 −0.569155 0.822230i \(-0.692729\pi\)
−0.569155 + 0.822230i \(0.692729\pi\)
\(912\) 0 0
\(913\) 286.217 + 733.212i 0.313490 + 0.803080i
\(914\) 0 0
\(915\) 657.404 + 1506.30i 0.718474 + 1.64623i
\(916\) 0 0
\(917\) 2405.85i 2.62361i
\(918\) 0 0
\(919\) 1782.97i 1.94012i −0.242867 0.970060i \(-0.578088\pi\)
0.242867 0.970060i \(-0.421912\pi\)
\(920\) 0 0
\(921\) 2049.39i 2.22518i
\(922\) 0 0
\(923\) −241.495 −0.261642
\(924\) 0 0
\(925\) −84.0000 77.9038i −0.0908108 0.0842203i
\(926\) 0 0
\(927\) 219.964i 0.237285i
\(928\) 0 0
\(929\) −633.000 −0.681378 −0.340689 0.940176i \(-0.610660\pi\)
−0.340689 + 0.940176i \(0.610660\pi\)
\(930\) 0 0
\(931\) 778.768i 0.836486i
\(932\) 0 0
\(933\) 398.684i 0.427314i
\(934\) 0 0
\(935\) −609.780 + 607.695i −0.652171 + 0.649941i
\(936\) 0 0
\(937\) −728.958 −0.777970 −0.388985 0.921244i \(-0.627174\pi\)
−0.388985 + 0.921244i \(0.627174\pi\)
\(938\) 0 0
\(939\) −1344.00 −1.43131
\(940\) 0 0
\(941\) 850.497i 0.903822i −0.892063 0.451911i \(-0.850742\pi\)
0.892063 0.451911i \(-0.149258\pi\)
\(942\) 0 0
\(943\) 563.489 0.597549
\(944\) 0 0
\(945\) −704.361 + 307.409i −0.745356 + 0.325300i
\(946\) 0 0
\(947\) 911.933i 0.962970i 0.876454 + 0.481485i \(0.159902\pi\)
−0.876454 + 0.481485i \(0.840098\pi\)
\(948\) 0 0
\(949\) 520.000 0.547945
\(950\) 0 0
\(951\) 231.000 0.242902
\(952\) 0 0
\(953\) −1236.55 −1.29753 −0.648765 0.760989i \(-0.724714\pi\)
−0.648765 + 0.760989i \(0.724714\pi\)
\(954\) 0 0
\(955\) −556.000 1273.96i −0.582199 1.33399i
\(956\) 0 0
\(957\) 187.830 + 481.170i 0.196269 + 0.502790i
\(958\) 0 0
\(959\) 717.287i 0.747953i
\(960\) 0 0
\(961\) −952.000 −0.990635
\(962\) 0 0
\(963\) 1878.30 1.95046
\(964\) 0 0
\(965\) 156.525 + 358.643i 0.162202 + 0.371651i
\(966\) 0 0
\(967\) −431.561 −0.446289 −0.223144 0.974785i \(-0.571632\pi\)
−0.223144 + 0.974785i \(0.571632\pi\)
\(968\) 0 0
\(969\) −735.000 −0.758514
\(970\) 0 0
\(971\) 1048.00 1.07930 0.539650 0.841890i \(-0.318557\pi\)
0.539650 + 0.841890i \(0.318557\pi\)
\(972\) 0 0
\(973\) 2520.42i 2.59036i
\(974\) 0 0
\(975\) 751.319 + 696.793i 0.770583 + 0.714659i
\(976\) 0 0
\(977\) 247.459i 0.253285i −0.991948 0.126642i \(-0.959580\pi\)
0.991948 0.126642i \(-0.0404200\pi\)
\(978\) 0 0
\(979\) 148.000 + 379.137i 0.151175 + 0.387270i
\(980\) 0 0
\(981\) 245.927i 0.250690i
\(982\) 0 0
\(983\) 27.4955i 0.0279710i −0.999902 0.0139855i \(-0.995548\pi\)
0.999902 0.0139855i \(-0.00445186\pi\)
\(984\) 0 0
\(985\) 393.548 + 901.732i 0.399541 + 0.915464i
\(986\) 0 0
\(987\) −3287.02 −3.33031
\(988\) 0 0
\(989\) 614.817i 0.621655i
\(990\) 0 0
\(991\) −1182.00 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(992\) 0 0
\(993\) 632.395i 0.636853i
\(994\) 0 0
\(995\) −106.000 242.877i −0.106533 0.244097i
\(996\) 0 0
\(997\) −1694.94 −1.70004 −0.850020 0.526751i \(-0.823410\pi\)
−0.850020 + 0.526751i \(0.823410\pi\)
\(998\) 0 0
\(999\) −63.0000 −0.0630631
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.3.i.d.769.1 4
4.3 odd 2 55.3.d.d.54.4 yes 4
5.4 even 2 inner 880.3.i.d.769.4 4
11.10 odd 2 inner 880.3.i.d.769.2 4
12.11 even 2 495.3.h.d.109.2 4
20.3 even 4 275.3.c.e.76.1 4
20.7 even 4 275.3.c.e.76.4 4
20.19 odd 2 55.3.d.d.54.1 4
44.43 even 2 55.3.d.d.54.2 yes 4
55.54 odd 2 inner 880.3.i.d.769.3 4
60.59 even 2 495.3.h.d.109.3 4
132.131 odd 2 495.3.h.d.109.4 4
220.43 odd 4 275.3.c.e.76.3 4
220.87 odd 4 275.3.c.e.76.2 4
220.219 even 2 55.3.d.d.54.3 yes 4
660.659 odd 2 495.3.h.d.109.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.d.d.54.1 4 20.19 odd 2
55.3.d.d.54.2 yes 4 44.43 even 2
55.3.d.d.54.3 yes 4 220.219 even 2
55.3.d.d.54.4 yes 4 4.3 odd 2
275.3.c.e.76.1 4 20.3 even 4
275.3.c.e.76.2 4 220.87 odd 4
275.3.c.e.76.3 4 220.43 odd 4
275.3.c.e.76.4 4 20.7 even 4
495.3.h.d.109.1 4 660.659 odd 2
495.3.h.d.109.2 4 12.11 even 2
495.3.h.d.109.3 4 60.59 even 2
495.3.h.d.109.4 4 132.131 odd 2
880.3.i.d.769.1 4 1.1 even 1 trivial
880.3.i.d.769.2 4 11.10 odd 2 inner
880.3.i.d.769.3 4 55.54 odd 2 inner
880.3.i.d.769.4 4 5.4 even 2 inner