gp: [N,k,chi] = [490,4,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-2,3,4,-5,-6,0,-8,-18,10,-17]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 490 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(490)) S 4 n e w ( Γ 0 ( 4 9 0 ) ) :
T 3 − 3 T_{3} - 3 T 3 − 3
T3 - 3
T 11 + 17 T_{11} + 17 T 1 1 + 1 7
T11 + 17
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T − 3 T - 3 T − 3
T - 3
5 5 5
T + 5 T + 5 T + 5
T + 5
7 7 7
T T T
T
11 11 1 1
T + 17 T + 17 T + 1 7
T + 17
13 13 1 3
T − 81 T - 81 T − 8 1
T - 81
17 17 1 7
T − 91 T - 91 T − 9 1
T - 91
19 19 1 9
T + 102 T + 102 T + 1 0 2
T + 102
23 23 2 3
T + 90 T + 90 T + 9 0
T + 90
29 29 2 9
T + 129 T + 129 T + 1 2 9
T + 129
31 31 3 1
T + 116 T + 116 T + 1 1 6
T + 116
37 37 3 7
T − 314 T - 314 T − 3 1 4
T - 314
41 41 4 1
T − 124 T - 124 T − 1 2 4
T - 124
43 43 4 3
T + 434 T + 434 T + 4 3 4
T + 434
47 47 4 7
T + 497 T + 497 T + 4 9 7
T + 497
53 53 5 3
T + 584 T + 584 T + 5 8 4
T + 584
59 59 5 9
T − 332 T - 332 T − 3 3 2
T - 332
61 61 6 1
T + 220 T + 220 T + 2 2 0
T + 220
67 67 6 7
T − 384 T - 384 T − 3 8 4
T - 384
71 71 7 1
T + 664 T + 664 T + 6 6 4
T + 664
73 73 7 3
T + 230 T + 230 T + 2 3 0
T + 230
79 79 7 9
T − 361 T - 361 T − 3 6 1
T - 361
83 83 8 3
T + 1172 T + 1172 T + 1 1 7 2
T + 1172
89 89 8 9
T + 40 T + 40 T + 4 0
T + 40
97 97 9 7
T − 175 T - 175 T − 1 7 5
T - 175
show more
show less