Properties

Label 490.3.d.a.489.6
Level $490$
Weight $3$
Character 490.489
Analytic conductor $13.352$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,3,Mod(489,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.489"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 490.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3515329537\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 42x^{14} + 1322x^{12} + 17616x^{10} + 175407x^{8} + 205392x^{6} + 203018x^{4} + 23226x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 489.6
Root \(-0.518845 + 0.898665i\) of defining polynomial
Character \(\chi\) \(=\) 490.489
Dual form 490.3.d.a.489.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +1.03769 q^{3} -2.00000 q^{4} +(-4.96625 - 0.579969i) q^{5} -1.46751i q^{6} +2.82843i q^{8} -7.92320 q^{9} +(-0.820200 + 7.02334i) q^{10} +12.4741 q^{11} -2.07538 q^{12} +0.748223 q^{13} +(-5.15342 - 0.601827i) q^{15} +4.00000 q^{16} -11.5507 q^{17} +11.2051i q^{18} +15.1205i q^{19} +(9.93250 + 1.15994i) q^{20} -17.6410i q^{22} +36.3131i q^{23} +2.93503i q^{24} +(24.3273 + 5.76054i) q^{25} -1.05815i q^{26} -17.5610 q^{27} +50.5846 q^{29} +(-0.851113 + 7.28804i) q^{30} +46.7641i q^{31} -5.65685i q^{32} +12.9442 q^{33} +16.3351i q^{34} +15.8464 q^{36} -11.7383i q^{37} +21.3837 q^{38} +0.776423 q^{39} +(1.64040 - 14.0467i) q^{40} +12.7397i q^{41} +26.2604i q^{43} -24.9482 q^{44} +(39.3486 + 4.59521i) q^{45} +51.3545 q^{46} -40.4487 q^{47} +4.15076 q^{48} +(8.14664 - 34.4040i) q^{50} -11.9860 q^{51} -1.49645 q^{52} -26.3722i q^{53} +24.8350i q^{54} +(-61.9494 - 7.23458i) q^{55} +15.6904i q^{57} -71.5374i q^{58} +79.0852i q^{59} +(10.3068 + 1.20365i) q^{60} +52.2630i q^{61} +66.1344 q^{62} -8.00000 q^{64} +(-3.71586 - 0.433946i) q^{65} -18.3059i q^{66} -34.7009i q^{67} +23.1014 q^{68} +37.6817i q^{69} +14.6636 q^{71} -22.4102i q^{72} -101.166 q^{73} -16.6005 q^{74} +(25.2441 + 5.97765i) q^{75} -30.2411i q^{76} -1.09803i q^{78} -35.7249 q^{79} +(-19.8650 - 2.31988i) q^{80} +53.0859 q^{81} +18.0167 q^{82} +80.8664 q^{83} +(57.3636 + 6.69903i) q^{85} +37.1378 q^{86} +52.4911 q^{87} +35.2820i q^{88} -135.219i q^{89} +(6.49861 - 55.6473i) q^{90} -72.6263i q^{92} +48.5266i q^{93} +57.2031i q^{94} +(8.76944 - 75.0924i) q^{95} -5.87006i q^{96} -91.4185 q^{97} -98.8347 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} + 24 q^{9} + 24 q^{11} - 28 q^{15} + 64 q^{16} + 84 q^{25} - 136 q^{29} - 64 q^{30} - 48 q^{36} - 624 q^{39} - 48 q^{44} + 136 q^{46} - 96 q^{50} + 152 q^{51} + 56 q^{60} - 128 q^{64} + 208 q^{65}+ \cdots + 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 1.03769 0.345896 0.172948 0.984931i \(-0.444671\pi\)
0.172948 + 0.984931i \(0.444671\pi\)
\(4\) −2.00000 −0.500000
\(5\) −4.96625 0.579969i −0.993250 0.115994i
\(6\) 1.46751i 0.244586i
\(7\) 0 0
\(8\) 2.82843i 0.353553i
\(9\) −7.92320 −0.880356
\(10\) −0.820200 + 7.02334i −0.0820200 + 0.702334i
\(11\) 12.4741 1.13401 0.567004 0.823715i \(-0.308103\pi\)
0.567004 + 0.823715i \(0.308103\pi\)
\(12\) −2.07538 −0.172948
\(13\) 0.748223 0.0575556 0.0287778 0.999586i \(-0.490838\pi\)
0.0287778 + 0.999586i \(0.490838\pi\)
\(14\) 0 0
\(15\) −5.15342 0.601827i −0.343562 0.0401218i
\(16\) 4.00000 0.250000
\(17\) −11.5507 −0.679452 −0.339726 0.940525i \(-0.610334\pi\)
−0.339726 + 0.940525i \(0.610334\pi\)
\(18\) 11.2051i 0.622505i
\(19\) 15.1205i 0.795818i 0.917425 + 0.397909i \(0.130264\pi\)
−0.917425 + 0.397909i \(0.869736\pi\)
\(20\) 9.93250 + 1.15994i 0.496625 + 0.0579969i
\(21\) 0 0
\(22\) 17.6410i 0.801864i
\(23\) 36.3131i 1.57883i 0.613859 + 0.789416i \(0.289616\pi\)
−0.613859 + 0.789416i \(0.710384\pi\)
\(24\) 2.93503i 0.122293i
\(25\) 24.3273 + 5.76054i 0.973091 + 0.230422i
\(26\) 1.05815i 0.0406980i
\(27\) −17.5610 −0.650408
\(28\) 0 0
\(29\) 50.5846 1.74430 0.872148 0.489243i \(-0.162727\pi\)
0.872148 + 0.489243i \(0.162727\pi\)
\(30\) −0.851113 + 7.28804i −0.0283704 + 0.242935i
\(31\) 46.7641i 1.50852i 0.656577 + 0.754259i \(0.272004\pi\)
−0.656577 + 0.754259i \(0.727996\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 12.9442 0.392249
\(34\) 16.3351i 0.480445i
\(35\) 0 0
\(36\) 15.8464 0.440178
\(37\) 11.7383i 0.317251i −0.987339 0.158626i \(-0.949294\pi\)
0.987339 0.158626i \(-0.0507063\pi\)
\(38\) 21.3837 0.562728
\(39\) 0.776423 0.0199083
\(40\) 1.64040 14.0467i 0.0410100 0.351167i
\(41\) 12.7397i 0.310724i 0.987858 + 0.155362i \(0.0496545\pi\)
−0.987858 + 0.155362i \(0.950346\pi\)
\(42\) 0 0
\(43\) 26.2604i 0.610706i 0.952239 + 0.305353i \(0.0987745\pi\)
−0.952239 + 0.305353i \(0.901226\pi\)
\(44\) −24.9482 −0.567004
\(45\) 39.3486 + 4.59521i 0.874413 + 0.102116i
\(46\) 51.3545 1.11640
\(47\) −40.4487 −0.860611 −0.430305 0.902683i \(-0.641594\pi\)
−0.430305 + 0.902683i \(0.641594\pi\)
\(48\) 4.15076 0.0864741
\(49\) 0 0
\(50\) 8.14664 34.4040i 0.162933 0.688079i
\(51\) −11.9860 −0.235020
\(52\) −1.49645 −0.0287778
\(53\) 26.3722i 0.497588i −0.968556 0.248794i \(-0.919966\pi\)
0.968556 0.248794i \(-0.0800342\pi\)
\(54\) 24.8350i 0.459908i
\(55\) −61.9494 7.23458i −1.12635 0.131538i
\(56\) 0 0
\(57\) 15.6904i 0.275270i
\(58\) 71.5374i 1.23340i
\(59\) 79.0852i 1.34043i 0.742168 + 0.670214i \(0.233798\pi\)
−0.742168 + 0.670214i \(0.766202\pi\)
\(60\) 10.3068 + 1.20365i 0.171781 + 0.0200609i
\(61\) 52.2630i 0.856770i 0.903596 + 0.428385i \(0.140917\pi\)
−0.903596 + 0.428385i \(0.859083\pi\)
\(62\) 66.1344 1.06668
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) −3.71586 0.433946i −0.0571671 0.00667609i
\(66\) 18.3059i 0.277362i
\(67\) 34.7009i 0.517924i −0.965888 0.258962i \(-0.916620\pi\)
0.965888 0.258962i \(-0.0833804\pi\)
\(68\) 23.1014 0.339726
\(69\) 37.6817i 0.546112i
\(70\) 0 0
\(71\) 14.6636 0.206530 0.103265 0.994654i \(-0.467071\pi\)
0.103265 + 0.994654i \(0.467071\pi\)
\(72\) 22.4102i 0.311253i
\(73\) −101.166 −1.38584 −0.692918 0.721016i \(-0.743675\pi\)
−0.692918 + 0.721016i \(0.743675\pi\)
\(74\) −16.6005 −0.224331
\(75\) 25.2441 + 5.97765i 0.336589 + 0.0797020i
\(76\) 30.2411i 0.397909i
\(77\) 0 0
\(78\) 1.09803i 0.0140773i
\(79\) −35.7249 −0.452214 −0.226107 0.974102i \(-0.572600\pi\)
−0.226107 + 0.974102i \(0.572600\pi\)
\(80\) −19.8650 2.31988i −0.248312 0.0289984i
\(81\) 53.0859 0.655382
\(82\) 18.0167 0.219715
\(83\) 80.8664 0.974293 0.487147 0.873320i \(-0.338038\pi\)
0.487147 + 0.873320i \(0.338038\pi\)
\(84\) 0 0
\(85\) 57.3636 + 6.69903i 0.674865 + 0.0788122i
\(86\) 37.1378 0.431835
\(87\) 52.4911 0.603345
\(88\) 35.2820i 0.400932i
\(89\) 135.219i 1.51931i −0.650326 0.759655i \(-0.725368\pi\)
0.650326 0.759655i \(-0.274632\pi\)
\(90\) 6.49861 55.6473i 0.0722068 0.618304i
\(91\) 0 0
\(92\) 72.6263i 0.789416i
\(93\) 48.5266i 0.521791i
\(94\) 57.2031i 0.608544i
\(95\) 8.76944 75.0924i 0.0923099 0.790446i
\(96\) 5.87006i 0.0611464i
\(97\) −91.4185 −0.942459 −0.471230 0.882011i \(-0.656190\pi\)
−0.471230 + 0.882011i \(0.656190\pi\)
\(98\) 0 0
\(99\) −98.8347 −0.998330
\(100\) −48.6545 11.5211i −0.486545 0.115211i
\(101\) 88.0109i 0.871395i −0.900093 0.435698i \(-0.856502\pi\)
0.900093 0.435698i \(-0.143498\pi\)
\(102\) 16.9508i 0.166184i
\(103\) 112.595 1.09316 0.546579 0.837408i \(-0.315930\pi\)
0.546579 + 0.837408i \(0.315930\pi\)
\(104\) 2.11629i 0.0203490i
\(105\) 0 0
\(106\) −37.2959 −0.351848
\(107\) 2.87289i 0.0268494i 0.999910 + 0.0134247i \(0.00427334\pi\)
−0.999910 + 0.0134247i \(0.995727\pi\)
\(108\) 35.1220 0.325204
\(109\) −85.2169 −0.781806 −0.390903 0.920432i \(-0.627837\pi\)
−0.390903 + 0.920432i \(0.627837\pi\)
\(110\) −10.2312 + 87.6097i −0.0930113 + 0.796452i
\(111\) 12.1807i 0.109736i
\(112\) 0 0
\(113\) 211.525i 1.87190i 0.352132 + 0.935950i \(0.385457\pi\)
−0.352132 + 0.935950i \(0.614543\pi\)
\(114\) 22.1896 0.194646
\(115\) 21.0605 180.340i 0.183135 1.56817i
\(116\) −101.169 −0.872148
\(117\) −5.92832 −0.0506694
\(118\) 111.843 0.947825
\(119\) 0 0
\(120\) 1.70223 14.5761i 0.0141852 0.121467i
\(121\) 34.6027 0.285973
\(122\) 73.9110 0.605828
\(123\) 13.2199i 0.107478i
\(124\) 93.5281i 0.754259i
\(125\) −117.474 42.7173i −0.939795 0.341739i
\(126\) 0 0
\(127\) 52.2434i 0.411366i 0.978619 + 0.205683i \(0.0659415\pi\)
−0.978619 + 0.205683i \(0.934058\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 27.2501i 0.211241i
\(130\) −0.613693 + 5.25502i −0.00472071 + 0.0404233i
\(131\) 93.9167i 0.716921i 0.933545 + 0.358461i \(0.116698\pi\)
−0.933545 + 0.358461i \(0.883302\pi\)
\(132\) −25.8884 −0.196125
\(133\) 0 0
\(134\) −49.0745 −0.366227
\(135\) 87.2124 + 10.1848i 0.646018 + 0.0754433i
\(136\) 32.6703i 0.240222i
\(137\) 116.838i 0.852831i 0.904527 + 0.426415i \(0.140224\pi\)
−0.904527 + 0.426415i \(0.859776\pi\)
\(138\) 53.2900 0.386160
\(139\) 67.8796i 0.488342i 0.969732 + 0.244171i \(0.0785159\pi\)
−0.969732 + 0.244171i \(0.921484\pi\)
\(140\) 0 0
\(141\) −41.9732 −0.297682
\(142\) 20.7375i 0.146039i
\(143\) 9.33340 0.0652685
\(144\) −31.6928 −0.220089
\(145\) −251.216 29.3375i −1.73252 0.202327i
\(146\) 143.070i 0.979934i
\(147\) 0 0
\(148\) 23.4766i 0.158626i
\(149\) 172.156 1.15541 0.577704 0.816246i \(-0.303949\pi\)
0.577704 + 0.816246i \(0.303949\pi\)
\(150\) 8.45367 35.7006i 0.0563578 0.238004i
\(151\) −110.216 −0.729908 −0.364954 0.931026i \(-0.618915\pi\)
−0.364954 + 0.931026i \(0.618915\pi\)
\(152\) −42.7673 −0.281364
\(153\) 91.5184 0.598159
\(154\) 0 0
\(155\) 27.1217 232.242i 0.174979 1.49834i
\(156\) −1.55285 −0.00995414
\(157\) −204.163 −1.30040 −0.650201 0.759762i \(-0.725315\pi\)
−0.650201 + 0.759762i \(0.725315\pi\)
\(158\) 50.5227i 0.319764i
\(159\) 27.3661i 0.172114i
\(160\) −3.28080 + 28.0934i −0.0205050 + 0.175583i
\(161\) 0 0
\(162\) 75.0748i 0.463425i
\(163\) 97.8716i 0.600439i 0.953870 + 0.300220i \(0.0970600\pi\)
−0.953870 + 0.300220i \(0.902940\pi\)
\(164\) 25.4794i 0.155362i
\(165\) −64.2842 7.50724i −0.389601 0.0454985i
\(166\) 114.362i 0.688929i
\(167\) −97.1736 −0.581878 −0.290939 0.956742i \(-0.593968\pi\)
−0.290939 + 0.956742i \(0.593968\pi\)
\(168\) 0 0
\(169\) −168.440 −0.996687
\(170\) 9.47387 81.1243i 0.0557286 0.477202i
\(171\) 119.803i 0.700603i
\(172\) 52.5207i 0.305353i
\(173\) 61.8572 0.357556 0.178778 0.983889i \(-0.442786\pi\)
0.178778 + 0.983889i \(0.442786\pi\)
\(174\) 74.2336i 0.426630i
\(175\) 0 0
\(176\) 49.8963 0.283502
\(177\) 82.0659i 0.463649i
\(178\) −191.228 −1.07431
\(179\) −224.221 −1.25263 −0.626316 0.779569i \(-0.715438\pi\)
−0.626316 + 0.779569i \(0.715438\pi\)
\(180\) −78.6972 9.19042i −0.437207 0.0510579i
\(181\) 329.246i 1.81904i −0.415659 0.909520i \(-0.636449\pi\)
0.415659 0.909520i \(-0.363551\pi\)
\(182\) 0 0
\(183\) 54.2327i 0.296354i
\(184\) −102.709 −0.558201
\(185\) −6.80785 + 58.2953i −0.0367992 + 0.315110i
\(186\) 68.6269 0.368962
\(187\) −144.084 −0.770503
\(188\) 80.8974 0.430305
\(189\) 0 0
\(190\) −106.197 12.4019i −0.558930 0.0652730i
\(191\) −66.2350 −0.346780 −0.173390 0.984853i \(-0.555472\pi\)
−0.173390 + 0.984853i \(0.555472\pi\)
\(192\) −8.30151 −0.0432370
\(193\) 253.457i 1.31325i 0.754219 + 0.656623i \(0.228016\pi\)
−0.754219 + 0.656623i \(0.771984\pi\)
\(194\) 129.285i 0.666419i
\(195\) −3.85591 0.450301i −0.0197739 0.00230924i
\(196\) 0 0
\(197\) 191.330i 0.971217i −0.874176 0.485608i \(-0.838598\pi\)
0.874176 0.485608i \(-0.161402\pi\)
\(198\) 139.773i 0.705926i
\(199\) 225.870i 1.13502i −0.823365 0.567512i \(-0.807906\pi\)
0.823365 0.567512i \(-0.192094\pi\)
\(200\) −16.2933 + 68.8079i −0.0814664 + 0.344040i
\(201\) 36.0087i 0.179148i
\(202\) −124.466 −0.616169
\(203\) 0 0
\(204\) 23.9720 0.117510
\(205\) 7.38863 63.2685i 0.0360421 0.308627i
\(206\) 159.234i 0.772979i
\(207\) 287.716i 1.38993i
\(208\) 2.99289 0.0143889
\(209\) 188.615i 0.902463i
\(210\) 0 0
\(211\) −186.816 −0.885386 −0.442693 0.896673i \(-0.645977\pi\)
−0.442693 + 0.896673i \(0.645977\pi\)
\(212\) 52.7443i 0.248794i
\(213\) 15.2163 0.0714379
\(214\) 4.06287 0.0189854
\(215\) 15.2302 130.416i 0.0708381 0.606584i
\(216\) 49.6701i 0.229954i
\(217\) 0 0
\(218\) 120.515i 0.552821i
\(219\) −104.979 −0.479356
\(220\) 123.899 + 14.4692i 0.563176 + 0.0657689i
\(221\) −8.64249 −0.0391063
\(222\) −17.2261 −0.0775951
\(223\) 194.106 0.870431 0.435215 0.900326i \(-0.356672\pi\)
0.435215 + 0.900326i \(0.356672\pi\)
\(224\) 0 0
\(225\) −192.750 45.6419i −0.856666 0.202853i
\(226\) 299.141 1.32363
\(227\) 351.757 1.54959 0.774795 0.632212i \(-0.217853\pi\)
0.774795 + 0.632212i \(0.217853\pi\)
\(228\) 31.3808i 0.137635i
\(229\) 188.208i 0.821870i 0.911665 + 0.410935i \(0.134798\pi\)
−0.911665 + 0.410935i \(0.865202\pi\)
\(230\) −255.039 29.7840i −1.10887 0.129496i
\(231\) 0 0
\(232\) 143.075i 0.616702i
\(233\) 314.080i 1.34798i −0.738740 0.673991i \(-0.764579\pi\)
0.738740 0.673991i \(-0.235421\pi\)
\(234\) 8.38391i 0.0358287i
\(235\) 200.878 + 23.4590i 0.854802 + 0.0998255i
\(236\) 158.170i 0.670214i
\(237\) −37.0714 −0.156419
\(238\) 0 0
\(239\) 336.269 1.40699 0.703493 0.710703i \(-0.251623\pi\)
0.703493 + 0.710703i \(0.251623\pi\)
\(240\) −20.6137 2.40731i −0.0858904 0.0100305i
\(241\) 382.524i 1.58724i 0.608416 + 0.793619i \(0.291805\pi\)
−0.608416 + 0.793619i \(0.708195\pi\)
\(242\) 48.9356i 0.202213i
\(243\) 213.136 0.877102
\(244\) 104.526i 0.428385i
\(245\) 0 0
\(246\) 18.6957 0.0759988
\(247\) 11.3135i 0.0458038i
\(248\) −132.269 −0.533342
\(249\) 83.9141 0.337005
\(250\) −60.4115 + 166.134i −0.241646 + 0.664535i
\(251\) 302.072i 1.20347i 0.798695 + 0.601736i \(0.205524\pi\)
−0.798695 + 0.601736i \(0.794476\pi\)
\(252\) 0 0
\(253\) 452.973i 1.79041i
\(254\) 73.8834 0.290879
\(255\) 59.5255 + 6.95152i 0.233433 + 0.0272608i
\(256\) 16.0000 0.0625000
\(257\) 204.679 0.796416 0.398208 0.917295i \(-0.369632\pi\)
0.398208 + 0.917295i \(0.369632\pi\)
\(258\) 38.5375 0.149370
\(259\) 0 0
\(260\) 7.43173 + 0.867892i 0.0285836 + 0.00333805i
\(261\) −400.792 −1.53560
\(262\) 132.818 0.506940
\(263\) 97.4309i 0.370460i −0.982695 0.185230i \(-0.940697\pi\)
0.982695 0.185230i \(-0.0593030\pi\)
\(264\) 36.6118i 0.138681i
\(265\) −15.2950 + 130.971i −0.0577171 + 0.494229i
\(266\) 0 0
\(267\) 140.315i 0.525524i
\(268\) 69.4018i 0.258962i
\(269\) 96.5427i 0.358895i −0.983768 0.179447i \(-0.942569\pi\)
0.983768 0.179447i \(-0.0574309\pi\)
\(270\) 14.4035 123.337i 0.0533465 0.456804i
\(271\) 83.6068i 0.308512i −0.988031 0.154256i \(-0.950702\pi\)
0.988031 0.154256i \(-0.0492981\pi\)
\(272\) −46.2027 −0.169863
\(273\) 0 0
\(274\) 165.234 0.603043
\(275\) 303.460 + 71.8575i 1.10349 + 0.261300i
\(276\) 75.3635i 0.273056i
\(277\) 385.734i 1.39254i 0.717779 + 0.696271i \(0.245159\pi\)
−0.717779 + 0.696271i \(0.754841\pi\)
\(278\) 95.9962 0.345310
\(279\) 370.521i 1.32803i
\(280\) 0 0
\(281\) 243.459 0.866402 0.433201 0.901297i \(-0.357384\pi\)
0.433201 + 0.901297i \(0.357384\pi\)
\(282\) 59.3590i 0.210493i
\(283\) −102.831 −0.363359 −0.181680 0.983358i \(-0.558153\pi\)
−0.181680 + 0.983358i \(0.558153\pi\)
\(284\) −29.3272 −0.103265
\(285\) 9.09995 77.9225i 0.0319297 0.273412i
\(286\) 13.1994i 0.0461518i
\(287\) 0 0
\(288\) 44.8204i 0.155626i
\(289\) −155.582 −0.538345
\(290\) −41.4895 + 355.272i −0.143067 + 1.22508i
\(291\) −94.8640 −0.325993
\(292\) 202.332 0.692918
\(293\) 440.610 1.50379 0.751894 0.659284i \(-0.229141\pi\)
0.751894 + 0.659284i \(0.229141\pi\)
\(294\) 0 0
\(295\) 45.8670 392.757i 0.155481 1.33138i
\(296\) 33.2009 0.112165
\(297\) −219.058 −0.737568
\(298\) 243.465i 0.816997i
\(299\) 27.1703i 0.0908706i
\(300\) −50.4883 11.9553i −0.168294 0.0398510i
\(301\) 0 0
\(302\) 155.869i 0.516123i
\(303\) 91.3279i 0.301412i
\(304\) 60.4821i 0.198954i
\(305\) 30.3109 259.551i 0.0993800 0.850987i
\(306\) 129.427i 0.422962i
\(307\) 247.192 0.805185 0.402592 0.915379i \(-0.368109\pi\)
0.402592 + 0.915379i \(0.368109\pi\)
\(308\) 0 0
\(309\) 116.839 0.378119
\(310\) −328.440 38.3559i −1.05948 0.123729i
\(311\) 426.219i 1.37048i 0.728317 + 0.685240i \(0.240303\pi\)
−0.728317 + 0.685240i \(0.759697\pi\)
\(312\) 2.19606i 0.00703864i
\(313\) 133.974 0.428032 0.214016 0.976830i \(-0.431346\pi\)
0.214016 + 0.976830i \(0.431346\pi\)
\(314\) 288.730i 0.919523i
\(315\) 0 0
\(316\) 71.4499 0.226107
\(317\) 321.966i 1.01567i −0.861456 0.507833i \(-0.830447\pi\)
0.861456 0.507833i \(-0.169553\pi\)
\(318\) −38.7015 −0.121703
\(319\) 630.996 1.97804
\(320\) 39.7300 + 4.63975i 0.124156 + 0.0144992i
\(321\) 2.98116i 0.00928711i
\(322\) 0 0
\(323\) 174.652i 0.540720i
\(324\) −106.172 −0.327691
\(325\) 18.2022 + 4.31017i 0.0560069 + 0.0132621i
\(326\) 138.411 0.424575
\(327\) −88.4286 −0.270424
\(328\) −36.0333 −0.109858
\(329\) 0 0
\(330\) −10.6168 + 90.9116i −0.0321723 + 0.275490i
\(331\) −234.805 −0.709381 −0.354690 0.934984i \(-0.615414\pi\)
−0.354690 + 0.934984i \(0.615414\pi\)
\(332\) −161.733 −0.487147
\(333\) 93.0049i 0.279294i
\(334\) 137.424i 0.411450i
\(335\) −20.1254 + 172.333i −0.0600759 + 0.514428i
\(336\) 0 0
\(337\) 217.706i 0.646012i −0.946397 0.323006i \(-0.895307\pi\)
0.946397 0.323006i \(-0.104693\pi\)
\(338\) 238.210i 0.704764i
\(339\) 219.497i 0.647484i
\(340\) −114.727 13.3981i −0.337433 0.0394061i
\(341\) 583.339i 1.71067i
\(342\) −169.427 −0.495401
\(343\) 0 0
\(344\) −74.2755 −0.215917
\(345\) 21.8542 187.137i 0.0633456 0.542426i
\(346\) 87.4793i 0.252830i
\(347\) 186.231i 0.536690i −0.963323 0.268345i \(-0.913523\pi\)
0.963323 0.268345i \(-0.0864767\pi\)
\(348\) −104.982 −0.301673
\(349\) 81.7368i 0.234203i −0.993120 0.117101i \(-0.962640\pi\)
0.993120 0.117101i \(-0.0373603\pi\)
\(350\) 0 0
\(351\) −13.1396 −0.0374347
\(352\) 70.5641i 0.200466i
\(353\) −107.936 −0.305769 −0.152884 0.988244i \(-0.548856\pi\)
−0.152884 + 0.988244i \(0.548856\pi\)
\(354\) 116.059 0.327849
\(355\) −72.8232 8.50444i −0.205136 0.0239562i
\(356\) 270.437i 0.759655i
\(357\) 0 0
\(358\) 317.097i 0.885745i
\(359\) 603.859 1.68206 0.841029 0.540989i \(-0.181950\pi\)
0.841029 + 0.540989i \(0.181950\pi\)
\(360\) −12.9972 + 111.295i −0.0361034 + 0.309152i
\(361\) 132.369 0.366674
\(362\) −465.625 −1.28626
\(363\) 35.9069 0.0989169
\(364\) 0 0
\(365\) 502.416 + 58.6732i 1.37648 + 0.160748i
\(366\) 76.6967 0.209554
\(367\) 543.529 1.48101 0.740503 0.672053i \(-0.234587\pi\)
0.740503 + 0.672053i \(0.234587\pi\)
\(368\) 145.253i 0.394708i
\(369\) 100.939i 0.273548i
\(370\) 82.4421 + 9.62775i 0.222816 + 0.0260210i
\(371\) 0 0
\(372\) 97.0531i 0.260895i
\(373\) 83.2904i 0.223299i 0.993748 + 0.111649i \(0.0356134\pi\)
−0.993748 + 0.111649i \(0.964387\pi\)
\(374\) 203.766i 0.544828i
\(375\) −121.902 44.3273i −0.325072 0.118206i
\(376\) 114.406i 0.304272i
\(377\) 37.8485 0.100394
\(378\) 0 0
\(379\) −30.4409 −0.0803189 −0.0401595 0.999193i \(-0.512787\pi\)
−0.0401595 + 0.999193i \(0.512787\pi\)
\(380\) −17.5389 + 150.185i −0.0461549 + 0.395223i
\(381\) 54.2124i 0.142290i
\(382\) 93.6704i 0.245210i
\(383\) 295.517 0.771586 0.385793 0.922585i \(-0.373928\pi\)
0.385793 + 0.922585i \(0.373928\pi\)
\(384\) 11.7401i 0.0305732i
\(385\) 0 0
\(386\) 358.442 0.928605
\(387\) 208.066i 0.537639i
\(388\) 182.837 0.471230
\(389\) 428.775 1.10225 0.551125 0.834423i \(-0.314199\pi\)
0.551125 + 0.834423i \(0.314199\pi\)
\(390\) −0.636822 + 5.45308i −0.00163288 + 0.0139823i
\(391\) 419.441i 1.07274i
\(392\) 0 0
\(393\) 97.4563i 0.247980i
\(394\) −270.581 −0.686754
\(395\) 177.419 + 20.7194i 0.449162 + 0.0524541i
\(396\) 197.669 0.499165
\(397\) −320.783 −0.808019 −0.404009 0.914755i \(-0.632384\pi\)
−0.404009 + 0.914755i \(0.632384\pi\)
\(398\) −319.428 −0.802583
\(399\) 0 0
\(400\) 97.3091 + 23.0422i 0.243273 + 0.0576054i
\(401\) −237.708 −0.592789 −0.296394 0.955066i \(-0.595784\pi\)
−0.296394 + 0.955066i \(0.595784\pi\)
\(402\) −50.9240 −0.126677
\(403\) 34.9900i 0.0868237i
\(404\) 176.022i 0.435698i
\(405\) −263.638 30.7882i −0.650958 0.0760202i
\(406\) 0 0
\(407\) 146.425i 0.359765i
\(408\) 33.9016i 0.0830921i
\(409\) 198.100i 0.484352i −0.970232 0.242176i \(-0.922139\pi\)
0.970232 0.242176i \(-0.0778612\pi\)
\(410\) −89.4752 10.4491i −0.218232 0.0254856i
\(411\) 121.241i 0.294991i
\(412\) −225.191 −0.546579
\(413\) 0 0
\(414\) −406.892 −0.982831
\(415\) −401.603 46.9000i −0.967717 0.113012i
\(416\) 4.23259i 0.0101745i
\(417\) 70.4379i 0.168916i
\(418\) 266.742 0.638138
\(419\) 56.6448i 0.135190i −0.997713 0.0675952i \(-0.978467\pi\)
0.997713 0.0675952i \(-0.0215326\pi\)
\(420\) 0 0
\(421\) −220.350 −0.523396 −0.261698 0.965150i \(-0.584282\pi\)
−0.261698 + 0.965150i \(0.584282\pi\)
\(422\) 264.198i 0.626062i
\(423\) 320.483 0.757644
\(424\) 74.5917 0.175924
\(425\) −280.997 66.5382i −0.661168 0.156560i
\(426\) 21.5191i 0.0505142i
\(427\) 0 0
\(428\) 5.74577i 0.0134247i
\(429\) 9.68516 0.0225761
\(430\) −184.435 21.5388i −0.428920 0.0500901i
\(431\) −273.322 −0.634158 −0.317079 0.948399i \(-0.602702\pi\)
−0.317079 + 0.948399i \(0.602702\pi\)
\(432\) −70.2441 −0.162602
\(433\) −201.926 −0.466342 −0.233171 0.972436i \(-0.574910\pi\)
−0.233171 + 0.972436i \(0.574910\pi\)
\(434\) 0 0
\(435\) −260.684 30.4432i −0.599273 0.0699843i
\(436\) 170.434 0.390903
\(437\) −549.074 −1.25646
\(438\) 148.463i 0.338956i
\(439\) 608.739i 1.38665i −0.720625 0.693325i \(-0.756145\pi\)
0.720625 0.693325i \(-0.243855\pi\)
\(440\) 20.4625 175.219i 0.0465056 0.398226i
\(441\) 0 0
\(442\) 12.2223i 0.0276523i
\(443\) 779.369i 1.75930i 0.475622 + 0.879650i \(0.342223\pi\)
−0.475622 + 0.879650i \(0.657777\pi\)
\(444\) 24.3614i 0.0548681i
\(445\) −78.4226 + 671.529i −0.176230 + 1.50905i
\(446\) 274.507i 0.615487i
\(447\) 178.644 0.399652
\(448\) 0 0
\(449\) −8.03323 −0.0178914 −0.00894569 0.999960i \(-0.502848\pi\)
−0.00894569 + 0.999960i \(0.502848\pi\)
\(450\) −64.5474 + 272.589i −0.143439 + 0.605754i
\(451\) 158.916i 0.352364i
\(452\) 423.049i 0.935950i
\(453\) −114.370 −0.252473
\(454\) 497.459i 1.09573i
\(455\) 0 0
\(456\) −44.3792 −0.0973228
\(457\) 499.308i 1.09258i 0.837597 + 0.546289i \(0.183960\pi\)
−0.837597 + 0.546289i \(0.816040\pi\)
\(458\) 266.167 0.581150
\(459\) 202.842 0.441921
\(460\) −42.1210 + 360.680i −0.0915673 + 0.784087i
\(461\) 690.386i 1.49758i 0.662805 + 0.748792i \(0.269366\pi\)
−0.662805 + 0.748792i \(0.730634\pi\)
\(462\) 0 0
\(463\) 615.045i 1.32839i −0.747559 0.664195i \(-0.768774\pi\)
0.747559 0.664195i \(-0.231226\pi\)
\(464\) 202.338 0.436074
\(465\) 28.1439 240.995i 0.0605245 0.518269i
\(466\) −444.176 −0.953167
\(467\) 47.8680 0.102501 0.0512506 0.998686i \(-0.483679\pi\)
0.0512506 + 0.998686i \(0.483679\pi\)
\(468\) 11.8566 0.0253347
\(469\) 0 0
\(470\) 33.1760 284.085i 0.0705873 0.604436i
\(471\) −211.858 −0.449805
\(472\) −223.687 −0.473913
\(473\) 327.574i 0.692545i
\(474\) 52.4268i 0.110605i
\(475\) −87.1025 + 367.841i −0.183374 + 0.774403i
\(476\) 0 0
\(477\) 208.952i 0.438054i
\(478\) 475.557i 0.994889i
\(479\) 134.654i 0.281114i −0.990073 0.140557i \(-0.955111\pi\)
0.990073 0.140557i \(-0.0448894\pi\)
\(480\) −3.40445 + 29.1522i −0.00709260 + 0.0607337i
\(481\) 8.78287i 0.0182596i
\(482\) 540.971 1.12235
\(483\) 0 0
\(484\) −69.2054 −0.142986
\(485\) 454.007 + 53.0199i 0.936098 + 0.109319i
\(486\) 301.420i 0.620205i
\(487\) 446.828i 0.917511i −0.888563 0.458755i \(-0.848295\pi\)
0.888563 0.458755i \(-0.151705\pi\)
\(488\) −147.822 −0.302914
\(489\) 101.560i 0.207690i
\(490\) 0 0
\(491\) −119.125 −0.242617 −0.121309 0.992615i \(-0.538709\pi\)
−0.121309 + 0.992615i \(0.538709\pi\)
\(492\) 26.4397i 0.0537392i
\(493\) −584.286 −1.18516
\(494\) 15.9998 0.0323882
\(495\) 490.838 + 57.3210i 0.991591 + 0.115800i
\(496\) 187.056i 0.377130i
\(497\) 0 0
\(498\) 118.673i 0.238298i
\(499\) 84.2421 0.168822 0.0844109 0.996431i \(-0.473099\pi\)
0.0844109 + 0.996431i \(0.473099\pi\)
\(500\) 234.949 + 85.4347i 0.469897 + 0.170869i
\(501\) −100.836 −0.201269
\(502\) 427.194 0.850984
\(503\) 388.428 0.772223 0.386111 0.922452i \(-0.373818\pi\)
0.386111 + 0.922452i \(0.373818\pi\)
\(504\) 0 0
\(505\) −51.0436 + 437.084i −0.101076 + 0.865513i
\(506\) 640.600 1.26601
\(507\) −174.789 −0.344751
\(508\) 104.487i 0.205683i
\(509\) 79.5033i 0.156195i 0.996946 + 0.0780975i \(0.0248845\pi\)
−0.996946 + 0.0780975i \(0.975115\pi\)
\(510\) 9.83093 84.1818i 0.0192763 0.165062i
\(511\) 0 0
\(512\) 22.6274i 0.0441942i
\(513\) 265.532i 0.517606i
\(514\) 289.460i 0.563151i
\(515\) −559.176 65.3018i −1.08578 0.126800i
\(516\) 54.5002i 0.105621i
\(517\) −504.561 −0.975939
\(518\) 0 0
\(519\) 64.1885 0.123677
\(520\) 1.22739 10.5100i 0.00236036 0.0202116i
\(521\) 80.5118i 0.154533i −0.997010 0.0772666i \(-0.975381\pi\)
0.997010 0.0772666i \(-0.0246192\pi\)
\(522\) 566.805i 1.08583i
\(523\) −812.363 −1.55328 −0.776638 0.629947i \(-0.783077\pi\)
−0.776638 + 0.629947i \(0.783077\pi\)
\(524\) 187.833i 0.358461i
\(525\) 0 0
\(526\) −137.788 −0.261955
\(527\) 540.157i 1.02497i
\(528\) 51.7769 0.0980623
\(529\) −789.643 −1.49271
\(530\) 185.221 + 21.6304i 0.349473 + 0.0408122i
\(531\) 626.608i 1.18005i
\(532\) 0 0
\(533\) 9.53214i 0.0178839i
\(534\) −198.435 −0.371601
\(535\) 1.66618 14.2675i 0.00311436 0.0266682i
\(536\) 98.1489 0.183114
\(537\) −232.672 −0.433281
\(538\) −136.532 −0.253777
\(539\) 0 0
\(540\) −174.425 20.3697i −0.323009 0.0377217i
\(541\) 283.329 0.523713 0.261857 0.965107i \(-0.415665\pi\)
0.261857 + 0.965107i \(0.415665\pi\)
\(542\) −118.238 −0.218151
\(543\) 341.655i 0.629200i
\(544\) 65.3405i 0.120111i
\(545\) 423.208 + 49.4231i 0.776529 + 0.0906847i
\(546\) 0 0
\(547\) 51.6110i 0.0943529i 0.998887 + 0.0471764i \(0.0150223\pi\)
−0.998887 + 0.0471764i \(0.984978\pi\)
\(548\) 233.676i 0.426415i
\(549\) 414.090i 0.754263i
\(550\) 101.622 429.158i 0.184767 0.780287i
\(551\) 764.866i 1.38814i
\(552\) −106.580 −0.193080
\(553\) 0 0
\(554\) 545.510 0.984675
\(555\) −7.06443 + 60.4924i −0.0127287 + 0.108995i
\(556\) 135.759i 0.244171i
\(557\) 235.757i 0.423262i 0.977350 + 0.211631i \(0.0678774\pi\)
−0.977350 + 0.211631i \(0.932123\pi\)
\(558\) −523.996 −0.939061
\(559\) 19.6486i 0.0351496i
\(560\) 0 0
\(561\) −149.515 −0.266514
\(562\) 344.303i 0.612639i
\(563\) 265.632 0.471815 0.235907 0.971776i \(-0.424194\pi\)
0.235907 + 0.971776i \(0.424194\pi\)
\(564\) 83.9464 0.148841
\(565\) 122.678 1050.48i 0.217129 1.85926i
\(566\) 145.425i 0.256934i
\(567\) 0 0
\(568\) 41.4750i 0.0730193i
\(569\) −26.0762 −0.0458281 −0.0229141 0.999737i \(-0.507294\pi\)
−0.0229141 + 0.999737i \(0.507294\pi\)
\(570\) −110.199 12.8693i −0.193332 0.0225777i
\(571\) 294.624 0.515979 0.257989 0.966148i \(-0.416940\pi\)
0.257989 + 0.966148i \(0.416940\pi\)
\(572\) −18.6668 −0.0326343
\(573\) −68.7313 −0.119950
\(574\) 0 0
\(575\) −209.183 + 883.399i −0.363797 + 1.53635i
\(576\) 63.3856 0.110044
\(577\) 575.097 0.996702 0.498351 0.866975i \(-0.333939\pi\)
0.498351 + 0.866975i \(0.333939\pi\)
\(578\) 220.026i 0.380668i
\(579\) 263.009i 0.454247i
\(580\) 502.431 + 58.6750i 0.866261 + 0.101164i
\(581\) 0 0
\(582\) 134.158i 0.230512i
\(583\) 328.968i 0.564268i
\(584\) 286.141i 0.489967i
\(585\) 29.4415 + 3.43824i 0.0503274 + 0.00587734i
\(586\) 623.116i 1.06334i
\(587\) −509.360 −0.867734 −0.433867 0.900977i \(-0.642851\pi\)
−0.433867 + 0.900977i \(0.642851\pi\)
\(588\) 0 0
\(589\) −707.098 −1.20051
\(590\) −555.442 64.8657i −0.941427 0.109942i
\(591\) 198.541i 0.335940i
\(592\) 46.9532i 0.0793128i
\(593\) 214.746 0.362135 0.181067 0.983471i \(-0.442045\pi\)
0.181067 + 0.983471i \(0.442045\pi\)
\(594\) 309.794i 0.521539i
\(595\) 0 0
\(596\) −344.312 −0.577704
\(597\) 234.383i 0.392601i
\(598\) 38.4246 0.0642552
\(599\) −954.499 −1.59349 −0.796744 0.604317i \(-0.793446\pi\)
−0.796744 + 0.604317i \(0.793446\pi\)
\(600\) −16.9073 + 71.4012i −0.0281789 + 0.119002i
\(601\) 851.298i 1.41647i −0.705977 0.708234i \(-0.749492\pi\)
0.705977 0.708234i \(-0.250508\pi\)
\(602\) 0 0
\(603\) 274.942i 0.455957i
\(604\) 220.432 0.364954
\(605\) −171.846 20.0685i −0.284042 0.0331711i
\(606\) −129.157 −0.213131
\(607\) 1050.57 1.73075 0.865377 0.501122i \(-0.167079\pi\)
0.865377 + 0.501122i \(0.167079\pi\)
\(608\) 85.5347 0.140682
\(609\) 0 0
\(610\) −367.061 42.8661i −0.601739 0.0702723i
\(611\) −30.2647 −0.0495330
\(612\) −183.037 −0.299080
\(613\) 1012.11i 1.65108i −0.564341 0.825542i \(-0.690870\pi\)
0.564341 0.825542i \(-0.309130\pi\)
\(614\) 349.582i 0.569352i
\(615\) 7.66710 65.6531i 0.0124668 0.106753i
\(616\) 0 0
\(617\) 706.409i 1.14491i 0.819937 + 0.572454i \(0.194009\pi\)
−0.819937 + 0.572454i \(0.805991\pi\)
\(618\) 165.235i 0.267371i
\(619\) 786.823i 1.27112i −0.772051 0.635560i \(-0.780769\pi\)
0.772051 0.635560i \(-0.219231\pi\)
\(620\) −54.2434 + 464.484i −0.0874894 + 0.749168i
\(621\) 637.696i 1.02689i
\(622\) 602.765 0.969076
\(623\) 0 0
\(624\) 3.10569 0.00497707
\(625\) 558.632 + 280.276i 0.893812 + 0.448442i
\(626\) 189.468i 0.302664i
\(627\) 195.723i 0.312159i
\(628\) 408.326 0.650201
\(629\) 135.585i 0.215557i
\(630\) 0 0
\(631\) −218.755 −0.346680 −0.173340 0.984862i \(-0.555456\pi\)
−0.173340 + 0.984862i \(0.555456\pi\)
\(632\) 101.045i 0.159882i
\(633\) −193.857 −0.306252
\(634\) −455.329 −0.718184
\(635\) 30.2996 259.454i 0.0477158 0.408589i
\(636\) 54.7322i 0.0860569i
\(637\) 0 0
\(638\) 892.363i 1.39869i
\(639\) −116.183 −0.181820
\(640\) 6.56160 56.1867i 0.0102525 0.0877917i
\(641\) −608.671 −0.949565 −0.474783 0.880103i \(-0.657473\pi\)
−0.474783 + 0.880103i \(0.657473\pi\)
\(642\) 4.21600 0.00656698
\(643\) −1184.38 −1.84196 −0.920978 0.389614i \(-0.872608\pi\)
−0.920978 + 0.389614i \(0.872608\pi\)
\(644\) 0 0
\(645\) 15.8042 135.331i 0.0245027 0.209815i
\(646\) −246.996 −0.382347
\(647\) −227.604 −0.351784 −0.175892 0.984410i \(-0.556281\pi\)
−0.175892 + 0.984410i \(0.556281\pi\)
\(648\) 150.150i 0.231712i
\(649\) 986.515i 1.52005i
\(650\) 6.09550 25.7418i 0.00937769 0.0396028i
\(651\) 0 0
\(652\) 195.743i 0.300220i
\(653\) 230.664i 0.353237i −0.984279 0.176619i \(-0.943484\pi\)
0.984279 0.176619i \(-0.0565159\pi\)
\(654\) 125.057i 0.191219i
\(655\) 54.4688 466.414i 0.0831584 0.712082i
\(656\) 50.9588i 0.0776811i
\(657\) 801.559 1.22003
\(658\) 0 0
\(659\) 726.539 1.10249 0.551244 0.834344i \(-0.314153\pi\)
0.551244 + 0.834344i \(0.314153\pi\)
\(660\) 128.568 + 15.0145i 0.194801 + 0.0227492i
\(661\) 248.180i 0.375461i 0.982221 + 0.187731i \(0.0601132\pi\)
−0.982221 + 0.187731i \(0.939887\pi\)
\(662\) 332.064i 0.501608i
\(663\) −8.96821 −0.0135267
\(664\) 228.725i 0.344465i
\(665\) 0 0
\(666\) 131.529 0.197491
\(667\) 1836.88i 2.75395i
\(668\) 194.347 0.290939
\(669\) 201.422 0.301079
\(670\) 243.716 + 28.4617i 0.363755 + 0.0424801i
\(671\) 651.933i 0.971584i
\(672\) 0 0
\(673\) 835.990i 1.24218i −0.783738 0.621092i \(-0.786689\pi\)
0.783738 0.621092i \(-0.213311\pi\)
\(674\) −307.883 −0.456799
\(675\) −427.212 101.161i −0.632906 0.149868i
\(676\) 336.880 0.498344
\(677\) 378.127 0.558533 0.279267 0.960214i \(-0.409909\pi\)
0.279267 + 0.960214i \(0.409909\pi\)
\(678\) 310.416 0.457840
\(679\) 0 0
\(680\) −18.9477 + 162.249i −0.0278643 + 0.238601i
\(681\) 365.014 0.535998
\(682\) 824.966 1.20963
\(683\) 193.330i 0.283060i 0.989934 + 0.141530i \(0.0452021\pi\)
−0.989934 + 0.141530i \(0.954798\pi\)
\(684\) 239.606i 0.350301i
\(685\) 67.7623 580.246i 0.0989231 0.847074i
\(686\) 0 0
\(687\) 195.302i 0.284282i
\(688\) 105.041i 0.152677i
\(689\) 19.7323i 0.0286390i
\(690\) −264.652 30.9066i −0.383553 0.0447921i
\(691\) 579.085i 0.838039i 0.907977 + 0.419019i \(0.137626\pi\)
−0.907977 + 0.419019i \(0.862374\pi\)
\(692\) −123.714 −0.178778
\(693\) 0 0
\(694\) −263.371 −0.379497
\(695\) 39.3680 337.107i 0.0566447 0.485046i
\(696\) 148.467i 0.213315i
\(697\) 147.152i 0.211122i
\(698\) −115.593 −0.165606
\(699\) 325.917i 0.466262i
\(700\) 0 0
\(701\) −516.871 −0.737334 −0.368667 0.929562i \(-0.620186\pi\)
−0.368667 + 0.929562i \(0.620186\pi\)
\(702\) 18.5821i 0.0264703i
\(703\) 177.489 0.252474
\(704\) −99.7927 −0.141751
\(705\) 208.449 + 24.3431i 0.295673 + 0.0345293i
\(706\) 152.645i 0.216211i
\(707\) 0 0
\(708\) 164.132i 0.231824i
\(709\) 59.8751 0.0844500 0.0422250 0.999108i \(-0.486555\pi\)
0.0422250 + 0.999108i \(0.486555\pi\)
\(710\) −12.0271 + 102.988i −0.0169396 + 0.145053i
\(711\) 283.056 0.398109
\(712\) 382.456 0.537157
\(713\) −1698.15 −2.38170
\(714\) 0 0
\(715\) −46.3520 5.41308i −0.0648279 0.00757074i
\(716\) 448.443 0.626316
\(717\) 348.943 0.486671
\(718\) 853.986i 1.18940i
\(719\) 1238.46i 1.72247i −0.508207 0.861235i \(-0.669692\pi\)
0.508207 0.861235i \(-0.330308\pi\)
\(720\) 157.394 + 18.3808i 0.218603 + 0.0255289i
\(721\) 0 0
\(722\) 187.199i 0.259278i
\(723\) 396.941i 0.549020i
\(724\) 658.493i 0.909520i
\(725\) 1230.58 + 291.394i 1.69736 + 0.401923i
\(726\) 50.7800i 0.0699448i
\(727\) 387.549 0.533080 0.266540 0.963824i \(-0.414120\pi\)
0.266540 + 0.963824i \(0.414120\pi\)
\(728\) 0 0
\(729\) −256.605 −0.351995
\(730\) 82.9764 710.523i 0.113666 0.973320i
\(731\) 303.325i 0.414945i
\(732\) 108.465i 0.148177i
\(733\) −1053.10 −1.43670 −0.718350 0.695682i \(-0.755102\pi\)
−0.718350 + 0.695682i \(0.755102\pi\)
\(734\) 768.667i 1.04723i
\(735\) 0 0
\(736\) 205.418 0.279101
\(737\) 432.862i 0.587329i
\(738\) −142.750 −0.193428
\(739\) 247.121 0.334399 0.167199 0.985923i \(-0.446528\pi\)
0.167199 + 0.985923i \(0.446528\pi\)
\(740\) 13.6157 116.591i 0.0183996 0.157555i
\(741\) 11.7399i 0.0158434i
\(742\) 0 0
\(743\) 189.686i 0.255298i 0.991819 + 0.127649i \(0.0407431\pi\)
−0.991819 + 0.127649i \(0.959257\pi\)
\(744\) −137.254 −0.184481
\(745\) −854.969 99.8451i −1.14761 0.134020i
\(746\) 117.790 0.157896
\(747\) −640.720 −0.857725
\(748\) 288.168 0.385252
\(749\) 0 0
\(750\) −62.6883 + 172.395i −0.0835844 + 0.229860i
\(751\) −800.638 −1.06610 −0.533048 0.846085i \(-0.678954\pi\)
−0.533048 + 0.846085i \(0.678954\pi\)
\(752\) −161.795 −0.215153
\(753\) 313.456i 0.416277i
\(754\) 53.5259i 0.0709893i
\(755\) 547.361 + 63.9219i 0.724981 + 0.0846648i
\(756\) 0 0
\(757\) 809.069i 1.06878i 0.845237 + 0.534392i \(0.179459\pi\)
−0.845237 + 0.534392i \(0.820541\pi\)
\(758\) 43.0499i 0.0567941i
\(759\) 470.045i 0.619295i
\(760\) 212.393 + 24.8037i 0.279465 + 0.0326365i
\(761\) 246.698i 0.324176i −0.986776 0.162088i \(-0.948177\pi\)
0.986776 0.162088i \(-0.0518229\pi\)
\(762\) 76.6680 0.100614
\(763\) 0 0
\(764\) 132.470 0.173390
\(765\) −454.503 53.0778i −0.594122 0.0693827i
\(766\) 417.925i 0.545593i
\(767\) 59.1734i 0.0771491i
\(768\) 16.6030 0.0216185
\(769\) 851.221i 1.10692i 0.832876 + 0.553460i \(0.186693\pi\)
−0.832876 + 0.553460i \(0.813307\pi\)
\(770\) 0 0
\(771\) 212.393 0.275478
\(772\) 506.913i 0.656623i
\(773\) 891.064 1.15274 0.576368 0.817191i \(-0.304470\pi\)
0.576368 + 0.817191i \(0.304470\pi\)
\(774\) −294.250 −0.380168
\(775\) −269.386 + 1137.64i −0.347595 + 1.46793i
\(776\) 258.571i 0.333210i
\(777\) 0 0
\(778\) 606.380i 0.779409i
\(779\) −192.631 −0.247280
\(780\) 7.71182 + 0.900602i 0.00988695 + 0.00115462i
\(781\) 182.915 0.234206
\(782\) −593.180 −0.758542
\(783\) −888.317 −1.13450
\(784\) 0 0
\(785\) 1013.93 + 118.408i 1.29162 + 0.150839i
\(786\) 137.824 0.175349
\(787\) −491.351 −0.624334 −0.312167 0.950027i \(-0.601055\pi\)
−0.312167 + 0.950027i \(0.601055\pi\)
\(788\) 382.659i 0.485608i
\(789\) 101.103i 0.128141i
\(790\) 29.3016 250.908i 0.0370906 0.317605i
\(791\) 0 0
\(792\) 279.547i 0.352963i
\(793\) 39.1044i 0.0493120i
\(794\) 453.656i 0.571355i
\(795\) −15.8715 + 135.907i −0.0199641 + 0.170952i
\(796\) 451.740i 0.567512i
\(797\) 68.9206 0.0864751 0.0432375 0.999065i \(-0.486233\pi\)
0.0432375 + 0.999065i \(0.486233\pi\)
\(798\) 0 0
\(799\) 467.210 0.584744
\(800\) 32.5865 137.616i 0.0407332 0.172020i
\(801\) 1071.36i 1.33753i
\(802\) 336.170i 0.419165i
\(803\) −1261.95 −1.57155
\(804\) 72.0175i 0.0895740i
\(805\) 0 0
\(806\) 49.4833 0.0613936
\(807\) 100.181i 0.124140i
\(808\) 248.932 0.308085
\(809\) −38.1526 −0.0471602 −0.0235801 0.999722i \(-0.507506\pi\)
−0.0235801 + 0.999722i \(0.507506\pi\)
\(810\) −43.5411 + 372.840i −0.0537544 + 0.460297i
\(811\) 763.676i 0.941648i 0.882227 + 0.470824i \(0.156043\pi\)
−0.882227 + 0.470824i \(0.843957\pi\)
\(812\) 0 0
\(813\) 86.7579i 0.106713i
\(814\) −207.076 −0.254393
\(815\) 56.7625 486.055i 0.0696472 0.596386i
\(816\) −47.9441 −0.0587550
\(817\) −397.071 −0.486011
\(818\) −280.156 −0.342489
\(819\) 0 0
\(820\) −14.7773 + 126.537i −0.0180211 + 0.154314i
\(821\) −408.879 −0.498025 −0.249013 0.968500i \(-0.580106\pi\)
−0.249013 + 0.968500i \(0.580106\pi\)
\(822\) 171.461 0.208590
\(823\) 153.706i 0.186763i 0.995630 + 0.0933814i \(0.0297676\pi\)
−0.995630 + 0.0933814i \(0.970232\pi\)
\(824\) 318.468i 0.386490i
\(825\) 314.898 + 74.5657i 0.381694 + 0.0903827i
\(826\) 0 0
\(827\) 571.706i 0.691301i −0.938363 0.345650i \(-0.887658\pi\)
0.938363 0.345650i \(-0.112342\pi\)
\(828\) 575.432i 0.694967i
\(829\) 1269.81i 1.53174i 0.642997 + 0.765869i \(0.277691\pi\)
−0.642997 + 0.765869i \(0.722309\pi\)
\(830\) −66.3266 + 567.952i −0.0799115 + 0.684279i
\(831\) 400.272i 0.481675i
\(832\) −5.98578 −0.00719445
\(833\) 0 0
\(834\) 99.6142 0.119442
\(835\) 482.588 + 56.3576i 0.577950 + 0.0674942i
\(836\) 377.230i 0.451232i
\(837\) 821.225i 0.981153i
\(838\) −80.1078 −0.0955940
\(839\) 732.075i 0.872556i 0.899812 + 0.436278i \(0.143704\pi\)
−0.899812 + 0.436278i \(0.856296\pi\)
\(840\) 0 0
\(841\) 1717.80 2.04257
\(842\) 311.621i 0.370097i
\(843\) 252.635 0.299685
\(844\) 373.633 0.442693
\(845\) 836.516 + 97.6901i 0.989960 + 0.115610i
\(846\) 453.232i 0.535735i
\(847\) 0 0
\(848\) 105.489i 0.124397i
\(849\) −106.706 −0.125685
\(850\) −94.0992 + 397.389i −0.110705 + 0.467517i
\(851\) 426.254 0.500887
\(852\) −30.4325 −0.0357190
\(853\) 193.304 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(854\) 0 0
\(855\) −69.4820 + 594.972i −0.0812655 + 0.695873i
\(856\) −8.12575 −0.00949270
\(857\) −473.815 −0.552876 −0.276438 0.961032i \(-0.589154\pi\)
−0.276438 + 0.961032i \(0.589154\pi\)
\(858\) 13.6969i 0.0159637i
\(859\) 877.623i 1.02168i −0.859676 0.510840i \(-0.829334\pi\)
0.859676 0.510840i \(-0.170666\pi\)
\(860\) −30.4604 + 260.831i −0.0354191 + 0.303292i
\(861\) 0 0
\(862\) 386.536i 0.448417i
\(863\) 903.594i 1.04704i −0.852014 0.523519i \(-0.824619\pi\)
0.852014 0.523519i \(-0.175381\pi\)
\(864\) 99.3401i 0.114977i
\(865\) −307.198 35.8752i −0.355142 0.0414743i
\(866\) 285.567i 0.329754i
\(867\) −161.446 −0.186212
\(868\) 0 0
\(869\) −445.636 −0.512814
\(870\) −43.0532 + 368.662i −0.0494864 + 0.423750i
\(871\) 25.9640i 0.0298094i
\(872\) 241.030i 0.276410i
\(873\) 724.328 0.829699
\(874\) 776.508i 0.888453i
\(875\) 0 0
\(876\) 209.958 0.239678
\(877\) 1303.73i 1.48658i 0.668967 + 0.743292i \(0.266737\pi\)
−0.668967 + 0.743292i \(0.733263\pi\)
\(878\) −860.887 −0.980509
\(879\) 457.216 0.520155
\(880\) −247.798 28.9383i −0.281588 0.0328845i
\(881\) 796.338i 0.903902i −0.892043 0.451951i \(-0.850728\pi\)
0.892043 0.451951i \(-0.149272\pi\)
\(882\) 0 0
\(883\) 1253.73i 1.41985i −0.704276 0.709927i \(-0.748728\pi\)
0.704276 0.709927i \(-0.251272\pi\)
\(884\) 17.2850 0.0195531
\(885\) 47.5956 407.560i 0.0537804 0.460519i
\(886\) 1102.19 1.24401
\(887\) 979.226 1.10397 0.551987 0.833852i \(-0.313870\pi\)
0.551987 + 0.833852i \(0.313870\pi\)
\(888\) 34.4522 0.0387976
\(889\) 0 0
\(890\) 949.686 + 110.906i 1.06706 + 0.124614i
\(891\) 662.198 0.743208
\(892\) −388.212 −0.435215
\(893\) 611.606i 0.684889i
\(894\) 252.641i 0.282596i
\(895\) 1113.54 + 130.041i 1.24418 + 0.145298i
\(896\) 0 0
\(897\) 28.1943i 0.0314318i
\(898\) 11.3607i 0.0126511i
\(899\) 2365.54i 2.63130i
\(900\) 385.500 + 91.2839i 0.428333 + 0.101427i
\(901\) 304.616i 0.338087i
\(902\) 224.741 0.249159
\(903\) 0 0
\(904\) −598.282 −0.661817
\(905\) −190.953 + 1635.12i −0.210997 + 1.80676i
\(906\) 161.744i 0.178525i
\(907\) 1650.77i 1.82003i 0.414570 + 0.910017i \(0.363932\pi\)
−0.414570 + 0.910017i \(0.636068\pi\)
\(908\) −703.514 −0.774795
\(909\) 697.328i 0.767138i
\(910\) 0 0
\(911\) −736.949 −0.808945 −0.404472 0.914550i \(-0.632545\pi\)
−0.404472 + 0.914550i \(0.632545\pi\)
\(912\) 62.7617i 0.0688176i
\(913\) 1008.73 1.10486
\(914\) 706.128 0.772569
\(915\) 31.4533 269.333i 0.0343752 0.294353i
\(916\) 376.416i 0.410935i
\(917\) 0 0
\(918\) 286.862i 0.312485i
\(919\) 864.452 0.940644 0.470322 0.882495i \(-0.344138\pi\)
0.470322 + 0.882495i \(0.344138\pi\)
\(920\) 510.079 + 59.5680i 0.554433 + 0.0647479i
\(921\) 256.508 0.278510
\(922\) 976.354 1.05895
\(923\) 10.9717 0.0118870
\(924\) 0 0
\(925\) 67.6190 285.561i 0.0731016 0.308714i
\(926\) −869.805 −0.939314
\(927\) −892.115 −0.962368
\(928\) 286.150i 0.308351i
\(929\) 594.739i 0.640193i 0.947385 + 0.320096i \(0.103715\pi\)
−0.947385 + 0.320096i \(0.896285\pi\)
\(930\) −340.818 39.8015i −0.366471 0.0427973i
\(931\) 0 0
\(932\) 628.160i 0.673991i
\(933\) 442.283i 0.474044i
\(934\) 67.6956i 0.0724793i
\(935\) 715.558 + 83.5643i 0.765302 + 0.0893736i
\(936\) 16.7678i 0.0179143i
\(937\) −312.979 −0.334022 −0.167011 0.985955i \(-0.553412\pi\)
−0.167011 + 0.985955i \(0.553412\pi\)
\(938\) 0 0
\(939\) 139.023 0.148055
\(940\) −401.757 46.9180i −0.427401 0.0499128i
\(941\) 52.2357i 0.0555109i −0.999615 0.0277554i \(-0.991164\pi\)
0.999615 0.0277554i \(-0.00883596\pi\)
\(942\) 299.612i 0.318060i
\(943\) −462.618 −0.490582
\(944\) 316.341i 0.335107i
\(945\) 0 0
\(946\) 463.260 0.489704
\(947\) 562.494i 0.593975i −0.954881 0.296987i \(-0.904018\pi\)
0.954881 0.296987i \(-0.0959820\pi\)
\(948\) 74.1427 0.0782097
\(949\) −75.6948 −0.0797627
\(950\) 520.206 + 123.181i 0.547586 + 0.129665i
\(951\) 334.101i 0.351315i
\(952\) 0 0
\(953\) 786.616i 0.825411i −0.910865 0.412705i \(-0.864584\pi\)
0.910865 0.412705i \(-0.135416\pi\)
\(954\) 295.503 0.309751
\(955\) 328.939 + 38.4142i 0.344439 + 0.0402243i
\(956\) −672.539 −0.703493
\(957\) 654.778 0.684198
\(958\) −190.429 −0.198778
\(959\) 0 0
\(960\) 41.2274 + 4.81462i 0.0429452 + 0.00501523i
\(961\) −1225.88 −1.27563
\(962\) −12.4209 −0.0129115
\(963\) 22.7625i 0.0236370i
\(964\) 765.048i 0.793619i
\(965\) 146.997 1258.73i 0.152328 1.30438i
\(966\) 0 0
\(967\) 372.034i 0.384730i 0.981323 + 0.192365i \(0.0616157\pi\)
−0.981323 + 0.192365i \(0.938384\pi\)
\(968\) 97.8712i 0.101107i
\(969\) 181.235i 0.187033i
\(970\) 74.9815 642.063i 0.0773005 0.661921i
\(971\) 535.098i 0.551079i −0.961290 0.275539i \(-0.911144\pi\)
0.961290 0.275539i \(-0.0888565\pi\)
\(972\) −426.272 −0.438551
\(973\) 0 0
\(974\) −631.910 −0.648778
\(975\) 18.8883 + 4.47262i 0.0193726 + 0.00458730i
\(976\) 209.052i 0.214193i
\(977\) 803.913i 0.822838i −0.911446 0.411419i \(-0.865033\pi\)
0.911446 0.411419i \(-0.134967\pi\)
\(978\) 143.628 0.146859
\(979\) 1686.73i 1.72291i
\(980\) 0 0
\(981\) 675.191 0.688268
\(982\) 168.468i 0.171556i
\(983\) −237.085 −0.241185 −0.120592 0.992702i \(-0.538479\pi\)
−0.120592 + 0.992702i \(0.538479\pi\)
\(984\) −37.3914 −0.0379994
\(985\) −110.965 + 950.191i −0.112655 + 0.964661i
\(986\) 826.305i 0.838038i
\(987\) 0 0
\(988\) 22.6271i 0.0229019i
\(989\) −953.596 −0.964202
\(990\) 81.0642 694.149i 0.0818830 0.701161i
\(991\) −422.184 −0.426018 −0.213009 0.977050i \(-0.568326\pi\)
−0.213009 + 0.977050i \(0.568326\pi\)
\(992\) 264.538 0.266671
\(993\) −243.655 −0.245372
\(994\) 0 0
\(995\) −130.997 + 1121.73i −0.131656 + 1.12736i
\(996\) −167.828 −0.168502
\(997\) 1552.94 1.55761 0.778806 0.627265i \(-0.215826\pi\)
0.778806 + 0.627265i \(0.215826\pi\)
\(998\) 119.136i 0.119375i
\(999\) 206.137i 0.206343i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.3.d.a.489.6 16
5.4 even 2 inner 490.3.d.a.489.11 16
7.2 even 3 70.3.h.a.59.2 yes 16
7.3 odd 6 70.3.h.a.19.7 yes 16
7.4 even 3 490.3.h.b.19.6 16
7.5 odd 6 490.3.h.b.129.3 16
7.6 odd 2 inner 490.3.d.a.489.3 16
21.2 odd 6 630.3.bc.a.199.6 16
21.17 even 6 630.3.bc.a.19.4 16
28.3 even 6 560.3.br.b.369.3 16
28.23 odd 6 560.3.br.b.129.6 16
35.2 odd 12 350.3.k.e.101.3 16
35.3 even 12 350.3.k.e.201.6 16
35.4 even 6 490.3.h.b.19.3 16
35.9 even 6 70.3.h.a.59.7 yes 16
35.17 even 12 350.3.k.e.201.3 16
35.19 odd 6 490.3.h.b.129.6 16
35.23 odd 12 350.3.k.e.101.6 16
35.24 odd 6 70.3.h.a.19.2 16
35.34 odd 2 inner 490.3.d.a.489.14 16
105.44 odd 6 630.3.bc.a.199.4 16
105.59 even 6 630.3.bc.a.19.6 16
140.59 even 6 560.3.br.b.369.6 16
140.79 odd 6 560.3.br.b.129.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.h.a.19.2 16 35.24 odd 6
70.3.h.a.19.7 yes 16 7.3 odd 6
70.3.h.a.59.2 yes 16 7.2 even 3
70.3.h.a.59.7 yes 16 35.9 even 6
350.3.k.e.101.3 16 35.2 odd 12
350.3.k.e.101.6 16 35.23 odd 12
350.3.k.e.201.3 16 35.17 even 12
350.3.k.e.201.6 16 35.3 even 12
490.3.d.a.489.3 16 7.6 odd 2 inner
490.3.d.a.489.6 16 1.1 even 1 trivial
490.3.d.a.489.11 16 5.4 even 2 inner
490.3.d.a.489.14 16 35.34 odd 2 inner
490.3.h.b.19.3 16 35.4 even 6
490.3.h.b.19.6 16 7.4 even 3
490.3.h.b.129.3 16 7.5 odd 6
490.3.h.b.129.6 16 35.19 odd 6
560.3.br.b.129.3 16 140.79 odd 6
560.3.br.b.129.6 16 28.23 odd 6
560.3.br.b.369.3 16 28.3 even 6
560.3.br.b.369.6 16 140.59 even 6
630.3.bc.a.19.4 16 21.17 even 6
630.3.bc.a.19.6 16 105.59 even 6
630.3.bc.a.199.4 16 105.44 odd 6
630.3.bc.a.199.6 16 21.2 odd 6