Properties

Label 350.3.k.e.101.6
Level $350$
Weight $3$
Character 350.101
Analytic conductor $9.537$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,3,Mod(101,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.101"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 42x^{14} + 1322x^{12} - 17616x^{10} + 175407x^{8} - 205392x^{6} + 203018x^{4} - 23226x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.6
Root \(-0.898665 - 0.518845i\) of defining polynomial
Character \(\chi\) \(=\) 350.101
Dual form 350.3.k.e.201.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-0.898665 - 0.518845i) q^{3} +(-1.00000 + 1.73205i) q^{4} -1.46751i q^{6} +(2.09417 + 6.67941i) q^{7} -2.82843 q^{8} +(-3.96160 - 6.86169i) q^{9} +(-6.23704 + 10.8029i) q^{11} +(1.79733 - 1.03769i) q^{12} +0.748223i q^{13} +(-6.69977 + 7.28787i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(-10.0032 - 5.77534i) q^{17} +(5.60255 - 9.70390i) q^{18} +(-13.0948 + 7.56027i) q^{19} +(1.58362 - 7.08910i) q^{21} -17.6410 q^{22} +(18.1566 + 31.4481i) q^{23} +(2.54181 + 1.46751i) q^{24} +(-0.916382 + 0.529074i) q^{26} +17.5610i q^{27} +(-13.6632 - 3.05220i) q^{28} -50.5846 q^{29} +(-40.4989 - 23.3820i) q^{31} +(2.82843 - 4.89898i) q^{32} +(11.2100 - 6.47211i) q^{33} -16.3351i q^{34} +15.8464 q^{36} +(5.86915 + 10.1657i) q^{37} +(-18.5188 - 10.6918i) q^{38} +(0.388211 - 0.672402i) q^{39} +12.7397i q^{41} +(9.80212 - 3.07322i) q^{42} -26.2604 q^{43} +(-12.4741 - 21.6057i) q^{44} +(-25.6773 + 44.4743i) q^{46} +(35.0296 - 20.2244i) q^{47} +4.15076i q^{48} +(-40.2289 + 27.9756i) q^{49} +(5.99301 + 10.3802i) q^{51} +(-1.29596 - 0.748223i) q^{52} +(-13.1861 + 22.8390i) q^{53} +(-21.5078 + 12.4175i) q^{54} +(-5.92320 - 18.8922i) q^{56} +15.6904 q^{57} +(-35.7687 - 61.9532i) q^{58} +(68.4898 + 39.5426i) q^{59} +(45.2611 - 26.1315i) q^{61} -66.1344i q^{62} +(37.5358 - 40.8307i) q^{63} +8.00000 q^{64} +(15.8534 + 9.15294i) q^{66} +(17.3504 - 30.0519i) q^{67} +(20.0064 - 11.5507i) q^{68} -37.6817i q^{69} +14.6636 q^{71} +(11.2051 + 19.4078i) q^{72} +(87.6124 + 50.5830i) q^{73} +(-8.30023 + 14.3764i) q^{74} -30.2411i q^{76} +(-85.2182 - 19.0367i) q^{77} +1.09803 q^{78} +(-17.8625 - 30.9387i) q^{79} +(-26.5430 + 45.9738i) q^{81} +(-15.6029 + 9.00833i) q^{82} +80.8664i q^{83} +(10.6951 + 9.83200i) q^{84} +(-18.5689 - 32.1623i) q^{86} +(45.4586 + 26.2455i) q^{87} +(17.6410 - 30.5551i) q^{88} +(117.103 - 67.6093i) q^{89} +(-4.99769 + 1.56690i) q^{91} -72.6263 q^{92} +(24.2633 + 42.0252i) q^{93} +(49.5394 + 28.6016i) q^{94} +(-5.08362 + 2.93503i) q^{96} +91.4185i q^{97} +(-62.7091 - 29.4884i) q^{98} +98.8347 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 12 q^{9} - 12 q^{11} - 32 q^{14} - 32 q^{16} + 12 q^{19} - 8 q^{21} + 24 q^{24} - 48 q^{26} + 136 q^{29} + 84 q^{31} - 48 q^{36} - 312 q^{39} - 24 q^{44} - 68 q^{46} - 296 q^{49} - 76 q^{51}+ \cdots - 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) −0.898665 0.518845i −0.299555 0.172948i 0.342688 0.939449i \(-0.388663\pi\)
−0.642243 + 0.766501i \(0.721996\pi\)
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.46751i 0.244586i
\(7\) 2.09417 + 6.67941i 0.299167 + 0.954201i
\(8\) −2.82843 −0.353553
\(9\) −3.96160 6.86169i −0.440178 0.762410i
\(10\) 0 0
\(11\) −6.23704 + 10.8029i −0.567004 + 0.982079i 0.429856 + 0.902897i \(0.358564\pi\)
−0.996860 + 0.0791820i \(0.974769\pi\)
\(12\) 1.79733 1.03769i 0.149778 0.0864741i
\(13\) 0.748223i 0.0575556i 0.999586 + 0.0287778i \(0.00916153\pi\)
−0.999586 + 0.0287778i \(0.990838\pi\)
\(14\) −6.69977 + 7.28787i −0.478555 + 0.520562i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −10.0032 5.77534i −0.588422 0.339726i 0.176051 0.984381i \(-0.443668\pi\)
−0.764473 + 0.644655i \(0.777001\pi\)
\(18\) 5.60255 9.70390i 0.311253 0.539106i
\(19\) −13.0948 + 7.56027i −0.689198 + 0.397909i −0.803312 0.595559i \(-0.796931\pi\)
0.114113 + 0.993468i \(0.463597\pi\)
\(20\) 0 0
\(21\) 1.58362 7.08910i 0.0754104 0.337576i
\(22\) −17.6410 −0.801864
\(23\) 18.1566 + 31.4481i 0.789416 + 1.36731i 0.926325 + 0.376725i \(0.122950\pi\)
−0.136909 + 0.990584i \(0.543717\pi\)
\(24\) 2.54181 + 1.46751i 0.105909 + 0.0611464i
\(25\) 0 0
\(26\) −0.916382 + 0.529074i −0.0352455 + 0.0203490i
\(27\) 17.5610i 0.650408i
\(28\) −13.6632 3.05220i −0.487973 0.109007i
\(29\) −50.5846 −1.74430 −0.872148 0.489243i \(-0.837273\pi\)
−0.872148 + 0.489243i \(0.837273\pi\)
\(30\) 0 0
\(31\) −40.4989 23.3820i −1.30642 0.754259i −0.324919 0.945742i \(-0.605337\pi\)
−0.981496 + 0.191483i \(0.938670\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) 11.2100 6.47211i 0.339698 0.196125i
\(34\) 16.3351i 0.480445i
\(35\) 0 0
\(36\) 15.8464 0.440178
\(37\) 5.86915 + 10.1657i 0.158626 + 0.274748i 0.934373 0.356296i \(-0.115960\pi\)
−0.775748 + 0.631043i \(0.782627\pi\)
\(38\) −18.5188 10.6918i −0.487337 0.281364i
\(39\) 0.388211 0.672402i 0.00995414 0.0172411i
\(40\) 0 0
\(41\) 12.7397i 0.310724i 0.987858 + 0.155362i \(0.0496545\pi\)
−0.987858 + 0.155362i \(0.950346\pi\)
\(42\) 9.80212 3.07322i 0.233384 0.0731719i
\(43\) −26.2604 −0.610706 −0.305353 0.952239i \(-0.598774\pi\)
−0.305353 + 0.952239i \(0.598774\pi\)
\(44\) −12.4741 21.6057i −0.283502 0.491040i
\(45\) 0 0
\(46\) −25.6773 + 44.4743i −0.558201 + 0.966833i
\(47\) 35.0296 20.2244i 0.745311 0.430305i −0.0786862 0.996899i \(-0.525073\pi\)
0.823997 + 0.566594i \(0.191739\pi\)
\(48\) 4.15076i 0.0864741i
\(49\) −40.2289 + 27.9756i −0.820998 + 0.570930i
\(50\) 0 0
\(51\) 5.99301 + 10.3802i 0.117510 + 0.203533i
\(52\) −1.29596 0.748223i −0.0249223 0.0143889i
\(53\) −13.1861 + 22.8390i −0.248794 + 0.430924i −0.963191 0.268816i \(-0.913368\pi\)
0.714398 + 0.699740i \(0.246701\pi\)
\(54\) −21.5078 + 12.4175i −0.398292 + 0.229954i
\(55\) 0 0
\(56\) −5.92320 18.8922i −0.105771 0.337361i
\(57\) 15.6904 0.275270
\(58\) −35.7687 61.9532i −0.616702 1.06816i
\(59\) 68.4898 + 39.5426i 1.16084 + 0.670214i 0.951506 0.307630i \(-0.0995358\pi\)
0.209338 + 0.977843i \(0.432869\pi\)
\(60\) 0 0
\(61\) 45.2611 26.1315i 0.741985 0.428385i −0.0808056 0.996730i \(-0.525749\pi\)
0.822791 + 0.568345i \(0.192416\pi\)
\(62\) 66.1344i 1.06668i
\(63\) 37.5358 40.8307i 0.595806 0.648106i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 15.8534 + 9.15294i 0.240202 + 0.138681i
\(67\) 17.3504 30.0519i 0.258962 0.448535i −0.707002 0.707211i \(-0.749953\pi\)
0.965964 + 0.258676i \(0.0832863\pi\)
\(68\) 20.0064 11.5507i 0.294211 0.169863i
\(69\) 37.6817i 0.546112i
\(70\) 0 0
\(71\) 14.6636 0.206530 0.103265 0.994654i \(-0.467071\pi\)
0.103265 + 0.994654i \(0.467071\pi\)
\(72\) 11.2051 + 19.4078i 0.155626 + 0.269553i
\(73\) 87.6124 + 50.5830i 1.20017 + 0.692918i 0.960593 0.277959i \(-0.0896581\pi\)
0.239577 + 0.970877i \(0.422991\pi\)
\(74\) −8.30023 + 14.3764i −0.112165 + 0.194276i
\(75\) 0 0
\(76\) 30.2411i 0.397909i
\(77\) −85.2182 19.0367i −1.10673 0.247230i
\(78\) 1.09803 0.0140773
\(79\) −17.8625 30.9387i −0.226107 0.391629i 0.730544 0.682866i \(-0.239267\pi\)
−0.956651 + 0.291237i \(0.905933\pi\)
\(80\) 0 0
\(81\) −26.5430 + 45.9738i −0.327691 + 0.567577i
\(82\) −15.6029 + 9.00833i −0.190279 + 0.109858i
\(83\) 80.8664i 0.974293i 0.873320 + 0.487147i \(0.161962\pi\)
−0.873320 + 0.487147i \(0.838038\pi\)
\(84\) 10.6951 + 9.83200i 0.127322 + 0.117048i
\(85\) 0 0
\(86\) −18.5689 32.1623i −0.215917 0.373980i
\(87\) 45.4586 + 26.2455i 0.522512 + 0.301673i
\(88\) 17.6410 30.5551i 0.200466 0.347217i
\(89\) 117.103 67.6093i 1.31576 0.759655i 0.332717 0.943027i \(-0.392035\pi\)
0.983044 + 0.183372i \(0.0587012\pi\)
\(90\) 0 0
\(91\) −4.99769 + 1.56690i −0.0549196 + 0.0172187i
\(92\) −72.6263 −0.789416
\(93\) 24.2633 + 42.0252i 0.260895 + 0.451884i
\(94\) 49.5394 + 28.6016i 0.527014 + 0.304272i
\(95\) 0 0
\(96\) −5.08362 + 2.93503i −0.0529543 + 0.0305732i
\(97\) 91.4185i 0.942459i 0.882011 + 0.471230i \(0.156190\pi\)
−0.882011 + 0.471230i \(0.843810\pi\)
\(98\) −62.7091 29.4884i −0.639889 0.300902i
\(99\) 98.8347 0.998330
\(100\) 0 0
\(101\) 76.2197 + 44.0054i 0.754650 + 0.435698i 0.827372 0.561655i \(-0.189835\pi\)
−0.0727215 + 0.997352i \(0.523168\pi\)
\(102\) −8.47539 + 14.6798i −0.0830921 + 0.143920i
\(103\) 97.5104 56.2976i 0.946703 0.546579i 0.0546475 0.998506i \(-0.482596\pi\)
0.892055 + 0.451927i \(0.149263\pi\)
\(104\) 2.11629i 0.0203490i
\(105\) 0 0
\(106\) −37.2959 −0.351848
\(107\) −1.43644 2.48799i −0.0134247 0.0232523i 0.859235 0.511581i \(-0.170940\pi\)
−0.872660 + 0.488329i \(0.837607\pi\)
\(108\) −30.4166 17.5610i −0.281635 0.162602i
\(109\) −42.6084 + 73.8000i −0.390903 + 0.677064i −0.992569 0.121684i \(-0.961171\pi\)
0.601666 + 0.798748i \(0.294504\pi\)
\(110\) 0 0
\(111\) 12.1807i 0.109736i
\(112\) 18.9498 20.6132i 0.169195 0.184047i
\(113\) −211.525 −1.87190 −0.935950 0.352132i \(-0.885457\pi\)
−0.935950 + 0.352132i \(0.885457\pi\)
\(114\) 11.0948 + 19.2168i 0.0973228 + 0.168568i
\(115\) 0 0
\(116\) 50.5846 87.6150i 0.436074 0.755302i
\(117\) 5.13408 2.96416i 0.0438810 0.0253347i
\(118\) 111.843i 0.947825i
\(119\) 17.6275 78.9098i 0.148130 0.663108i
\(120\) 0 0
\(121\) −17.3014 29.9668i −0.142986 0.247660i
\(122\) 64.0088 + 36.9555i 0.524663 + 0.302914i
\(123\) 6.60993 11.4487i 0.0537392 0.0930791i
\(124\) 80.9977 46.7641i 0.653208 0.377130i
\(125\) 0 0
\(126\) 76.5490 + 17.1001i 0.607531 + 0.135715i
\(127\) 52.2434 0.411366 0.205683 0.978619i \(-0.434058\pi\)
0.205683 + 0.978619i \(0.434058\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) 23.5993 + 13.6250i 0.182940 + 0.105621i
\(130\) 0 0
\(131\) 81.3342 46.9583i 0.620872 0.358461i −0.156336 0.987704i \(-0.549968\pi\)
0.777208 + 0.629243i \(0.216635\pi\)
\(132\) 25.8884i 0.196125i
\(133\) −77.9207 71.6328i −0.585870 0.538592i
\(134\) 49.0745 0.366227
\(135\) 0 0
\(136\) 28.2933 + 16.3351i 0.208039 + 0.120111i
\(137\) −58.4189 + 101.185i −0.426415 + 0.738573i −0.996551 0.0829771i \(-0.973557\pi\)
0.570136 + 0.821550i \(0.306891\pi\)
\(138\) 46.1505 26.6450i 0.334424 0.193080i
\(139\) 67.8796i 0.488342i −0.969732 0.244171i \(-0.921484\pi\)
0.969732 0.244171i \(-0.0785159\pi\)
\(140\) 0 0
\(141\) −41.9732 −0.297682
\(142\) 10.3687 + 17.9592i 0.0730193 + 0.126473i
\(143\) −8.08296 4.66670i −0.0565242 0.0326343i
\(144\) −15.8464 + 27.4468i −0.110044 + 0.190603i
\(145\) 0 0
\(146\) 143.070i 0.979934i
\(147\) 50.6673 4.26813i 0.344676 0.0290349i
\(148\) −23.4766 −0.158626
\(149\) 86.0779 + 149.091i 0.577704 + 1.00061i 0.995742 + 0.0921836i \(0.0293847\pi\)
−0.418038 + 0.908430i \(0.637282\pi\)
\(150\) 0 0
\(151\) 55.1081 95.4500i 0.364954 0.632119i −0.623815 0.781572i \(-0.714418\pi\)
0.988769 + 0.149453i \(0.0477514\pi\)
\(152\) 37.0376 21.3837i 0.243668 0.140682i
\(153\) 91.5184i 0.598159i
\(154\) −36.9432 117.831i −0.239891 0.765140i
\(155\) 0 0
\(156\) 0.776423 + 1.34480i 0.00497707 + 0.00862054i
\(157\) −176.811 102.082i −1.12618 0.650201i −0.183210 0.983074i \(-0.558649\pi\)
−0.942972 + 0.332873i \(0.891982\pi\)
\(158\) 25.2613 43.7539i 0.159882 0.276924i
\(159\) 23.6997 13.6830i 0.149055 0.0860569i
\(160\) 0 0
\(161\) −172.032 + 187.133i −1.06852 + 1.16231i
\(162\) −75.0748 −0.463425
\(163\) 48.9358 + 84.7593i 0.300220 + 0.519996i 0.976186 0.216937i \(-0.0696067\pi\)
−0.675966 + 0.736933i \(0.736273\pi\)
\(164\) −22.0658 12.7397i −0.134548 0.0776811i
\(165\) 0 0
\(166\) −99.0407 + 57.1811i −0.596630 + 0.344465i
\(167\) 97.1736i 0.581878i 0.956742 + 0.290939i \(0.0939676\pi\)
−0.956742 + 0.290939i \(0.906032\pi\)
\(168\) −4.47915 + 20.0510i −0.0266616 + 0.119351i
\(169\) 168.440 0.996687
\(170\) 0 0
\(171\) 103.752 + 59.9015i 0.606740 + 0.350301i
\(172\) 26.2604 45.4843i 0.152677 0.264444i
\(173\) 53.5699 30.9286i 0.309652 0.178778i −0.337118 0.941462i \(-0.609452\pi\)
0.646771 + 0.762684i \(0.276119\pi\)
\(174\) 74.2336i 0.426630i
\(175\) 0 0
\(176\) 49.8963 0.283502
\(177\) −41.0329 71.0711i −0.231824 0.401532i
\(178\) 165.608 + 95.6140i 0.930383 + 0.537157i
\(179\) −112.111 + 194.181i −0.626316 + 1.08481i 0.361968 + 0.932190i \(0.382105\pi\)
−0.988285 + 0.152622i \(0.951228\pi\)
\(180\) 0 0
\(181\) 329.246i 1.81904i −0.415659 0.909520i \(-0.636449\pi\)
0.415659 0.909520i \(-0.363551\pi\)
\(182\) −5.45296 5.01292i −0.0299613 0.0275435i
\(183\) −54.2327 −0.296354
\(184\) −51.3545 88.9486i −0.279101 0.483416i
\(185\) 0 0
\(186\) −34.3135 + 59.4327i −0.184481 + 0.319530i
\(187\) 124.781 72.0421i 0.667275 0.385252i
\(188\) 80.8974i 0.430305i
\(189\) −117.297 + 36.7757i −0.620620 + 0.194581i
\(190\) 0 0
\(191\) 33.1175 + 57.3612i 0.173390 + 0.300320i 0.939603 0.342266i \(-0.111195\pi\)
−0.766213 + 0.642587i \(0.777861\pi\)
\(192\) −7.18932 4.15076i −0.0374444 0.0216185i
\(193\) 126.728 219.500i 0.656623 1.13730i −0.324861 0.945762i \(-0.605318\pi\)
0.981484 0.191543i \(-0.0613491\pi\)
\(194\) −111.964 + 64.6427i −0.577136 + 0.333210i
\(195\) 0 0
\(196\) −8.22623 97.6541i −0.0419706 0.498235i
\(197\) −191.330 −0.971217 −0.485608 0.874176i \(-0.661402\pi\)
−0.485608 + 0.874176i \(0.661402\pi\)
\(198\) 69.8867 + 121.047i 0.352963 + 0.611350i
\(199\) −195.609 112.935i −0.982960 0.567512i −0.0797973 0.996811i \(-0.525427\pi\)
−0.903162 + 0.429299i \(0.858761\pi\)
\(200\) 0 0
\(201\) −31.1845 + 18.0044i −0.155147 + 0.0895740i
\(202\) 124.466i 0.616169i
\(203\) −105.933 337.875i −0.521835 1.66441i
\(204\) −23.9720 −0.117510
\(205\) 0 0
\(206\) 137.900 + 79.6169i 0.669420 + 0.386490i
\(207\) 143.858 249.170i 0.694967 1.20372i
\(208\) 2.59192 1.49645i 0.0124612 0.00719445i
\(209\) 188.615i 0.902463i
\(210\) 0 0
\(211\) −186.816 −0.885386 −0.442693 0.896673i \(-0.645977\pi\)
−0.442693 + 0.896673i \(0.645977\pi\)
\(212\) −26.3722 45.6779i −0.124397 0.215462i
\(213\) −13.1777 7.60814i −0.0618670 0.0357190i
\(214\) 2.03144 3.51855i 0.00949270 0.0164418i
\(215\) 0 0
\(216\) 49.6701i 0.229954i
\(217\) 71.3667 319.474i 0.328879 1.47223i
\(218\) −120.515 −0.552821
\(219\) −52.4894 90.9144i −0.239678 0.415134i
\(220\) 0 0
\(221\) 4.32124 7.48461i 0.0195531 0.0338670i
\(222\) 14.9183 8.61306i 0.0671994 0.0387976i
\(223\) 194.106i 0.870431i 0.900326 + 0.435215i \(0.143328\pi\)
−0.900326 + 0.435215i \(0.856672\pi\)
\(224\) 38.6455 + 8.63293i 0.172524 + 0.0385399i
\(225\) 0 0
\(226\) −149.571 259.064i −0.661817 1.14630i
\(227\) 304.630 + 175.878i 1.34198 + 0.774795i 0.987098 0.160115i \(-0.0511864\pi\)
0.354886 + 0.934910i \(0.384520\pi\)
\(228\) −15.6904 + 27.1766i −0.0688176 + 0.119196i
\(229\) −162.993 + 94.1041i −0.711760 + 0.410935i −0.811712 0.584057i \(-0.801464\pi\)
0.0999523 + 0.994992i \(0.468131\pi\)
\(230\) 0 0
\(231\) 66.7055 + 61.3226i 0.288768 + 0.265466i
\(232\) 143.075 0.616702
\(233\) −157.040 272.001i −0.673991 1.16739i −0.976763 0.214324i \(-0.931245\pi\)
0.302772 0.953063i \(-0.402088\pi\)
\(234\) 7.26068 + 4.19196i 0.0310286 + 0.0179143i
\(235\) 0 0
\(236\) −136.980 + 79.0852i −0.580422 + 0.335107i
\(237\) 37.0714i 0.156419i
\(238\) 109.109 34.2085i 0.458441 0.143733i
\(239\) −336.269 −1.40699 −0.703493 0.710703i \(-0.748377\pi\)
−0.703493 + 0.710703i \(0.748377\pi\)
\(240\) 0 0
\(241\) −331.276 191.262i −1.37459 0.793619i −0.383086 0.923713i \(-0.625139\pi\)
−0.991502 + 0.130094i \(0.958472\pi\)
\(242\) 24.4678 42.3795i 0.101107 0.175122i
\(243\) 184.581 106.568i 0.759593 0.438551i
\(244\) 104.526i 0.428385i
\(245\) 0 0
\(246\) 18.6957 0.0759988
\(247\) −5.65677 9.79781i −0.0229019 0.0396672i
\(248\) 114.548 + 66.1344i 0.461887 + 0.266671i
\(249\) 41.9571 72.6718i 0.168502 0.291855i
\(250\) 0 0
\(251\) 302.072i 1.20347i 0.798695 + 0.601736i \(0.205524\pi\)
−0.798695 + 0.601736i \(0.794476\pi\)
\(252\) 33.1850 + 105.845i 0.131687 + 0.420018i
\(253\) −452.973 −1.79041
\(254\) 36.9417 + 63.9849i 0.145440 + 0.251909i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −177.257 + 102.339i −0.689717 + 0.398208i −0.803506 0.595297i \(-0.797034\pi\)
0.113789 + 0.993505i \(0.463701\pi\)
\(258\) 38.5375i 0.149370i
\(259\) −55.6096 + 60.4911i −0.214709 + 0.233556i
\(260\) 0 0
\(261\) 200.396 + 347.096i 0.767800 + 1.32987i
\(262\) 115.024 + 66.4091i 0.439023 + 0.253470i
\(263\) −48.7155 + 84.3776i −0.185230 + 0.320828i −0.943654 0.330934i \(-0.892636\pi\)
0.758424 + 0.651761i \(0.225970\pi\)
\(264\) −31.7067 + 18.3059i −0.120101 + 0.0693405i
\(265\) 0 0
\(266\) 32.6336 146.085i 0.122683 0.549192i
\(267\) −140.315 −0.525524
\(268\) 34.7009 + 60.1037i 0.129481 + 0.224268i
\(269\) −83.6084 48.2713i −0.310812 0.179447i 0.336478 0.941691i \(-0.390764\pi\)
−0.647290 + 0.762244i \(0.724098\pi\)
\(270\) 0 0
\(271\) −72.4056 + 41.8034i −0.267179 + 0.154256i −0.627605 0.778532i \(-0.715965\pi\)
0.360426 + 0.932788i \(0.382631\pi\)
\(272\) 46.2027i 0.169863i
\(273\) 5.30423 + 1.18490i 0.0194294 + 0.00434029i
\(274\) −165.234 −0.603043
\(275\) 0 0
\(276\) 65.2667 + 37.6817i 0.236473 + 0.136528i
\(277\) −192.867 + 334.055i −0.696271 + 1.20598i 0.273480 + 0.961878i \(0.411825\pi\)
−0.969750 + 0.244098i \(0.921508\pi\)
\(278\) 83.1352 47.9981i 0.299047 0.172655i
\(279\) 370.521i 1.32803i
\(280\) 0 0
\(281\) 243.459 0.866402 0.433201 0.901297i \(-0.357384\pi\)
0.433201 + 0.901297i \(0.357384\pi\)
\(282\) −29.6795 51.4064i −0.105247 0.182292i
\(283\) 89.0540 + 51.4153i 0.314678 + 0.181680i 0.649018 0.760773i \(-0.275180\pi\)
−0.334340 + 0.942453i \(0.608513\pi\)
\(284\) −14.6636 + 25.3981i −0.0516324 + 0.0894300i
\(285\) 0 0
\(286\) 13.1994i 0.0461518i
\(287\) −85.0936 + 26.6791i −0.296494 + 0.0929585i
\(288\) −44.8204 −0.155626
\(289\) −77.7909 134.738i −0.269173 0.466221i
\(290\) 0 0
\(291\) 47.4320 82.1547i 0.162997 0.282318i
\(292\) −175.225 + 101.166i −0.600085 + 0.346459i
\(293\) 440.610i 1.50379i 0.659284 + 0.751894i \(0.270859\pi\)
−0.659284 + 0.751894i \(0.729141\pi\)
\(294\) 41.0546 + 59.0365i 0.139641 + 0.200804i
\(295\) 0 0
\(296\) −16.6005 28.7528i −0.0560827 0.0971380i
\(297\) −189.709 109.529i −0.638752 0.368784i
\(298\) −121.733 + 210.847i −0.408499 + 0.707540i
\(299\) −23.5302 + 13.5852i −0.0786963 + 0.0454353i
\(300\) 0 0
\(301\) −54.9936 175.404i −0.182703 0.582736i
\(302\) 155.869 0.516123
\(303\) −45.6640 79.0923i −0.150706 0.261031i
\(304\) 52.3791 + 30.2411i 0.172300 + 0.0994772i
\(305\) 0 0
\(306\) −112.087 + 64.7133i −0.366296 + 0.211481i
\(307\) 247.192i 0.805185i −0.915379 0.402592i \(-0.868109\pi\)
0.915379 0.402592i \(-0.131891\pi\)
\(308\) 118.191 128.566i 0.383736 0.417420i
\(309\) −116.839 −0.378119
\(310\) 0 0
\(311\) −369.117 213.110i −1.18687 0.685240i −0.229276 0.973361i \(-0.573636\pi\)
−0.957594 + 0.288121i \(0.906969\pi\)
\(312\) −1.09803 + 1.90184i −0.00351932 + 0.00609564i
\(313\) 116.025 66.9870i 0.370686 0.214016i −0.303072 0.952968i \(-0.598012\pi\)
0.673758 + 0.738952i \(0.264679\pi\)
\(314\) 288.730i 0.919523i
\(315\) 0 0
\(316\) 71.4499 0.226107
\(317\) 160.983 + 278.831i 0.507833 + 0.879593i 0.999959 + 0.00906850i \(0.00288663\pi\)
−0.492126 + 0.870524i \(0.663780\pi\)
\(318\) 33.5165 + 19.3508i 0.105398 + 0.0608514i
\(319\) 315.498 546.459i 0.989022 1.71304i
\(320\) 0 0
\(321\) 2.98116i 0.00928711i
\(322\) −350.834 78.3721i −1.08955 0.243392i
\(323\) 174.652 0.540720
\(324\) −53.0859 91.9475i −0.163845 0.283789i
\(325\) 0 0
\(326\) −69.2057 + 119.868i −0.212287 + 0.367693i
\(327\) 76.5814 44.2143i 0.234194 0.135212i
\(328\) 36.0333i 0.109858i
\(329\) 208.445 + 191.624i 0.633570 + 0.582443i
\(330\) 0 0
\(331\) 117.402 + 203.347i 0.354690 + 0.614342i 0.987065 0.160321i \(-0.0512530\pi\)
−0.632375 + 0.774663i \(0.717920\pi\)
\(332\) −140.065 80.8664i −0.421881 0.243573i
\(333\) 46.5025 80.5446i 0.139647 0.241876i
\(334\) −119.013 + 68.7121i −0.356326 + 0.205725i
\(335\) 0 0
\(336\) −27.7246 + 8.69238i −0.0825136 + 0.0258702i
\(337\) −217.706 −0.646012 −0.323006 0.946397i \(-0.604693\pi\)
−0.323006 + 0.946397i \(0.604693\pi\)
\(338\) 119.105 + 206.296i 0.352382 + 0.610344i
\(339\) 190.090 + 109.748i 0.560737 + 0.323742i
\(340\) 0 0
\(341\) 505.186 291.669i 1.48148 0.855335i
\(342\) 169.427i 0.495401i
\(343\) −271.106 210.120i −0.790398 0.612594i
\(344\) 74.2755 0.215917
\(345\) 0 0
\(346\) 75.7593 + 43.7396i 0.218957 + 0.126415i
\(347\) 93.1157 161.281i 0.268345 0.464787i −0.700090 0.714055i \(-0.746857\pi\)
0.968435 + 0.249268i \(0.0801899\pi\)
\(348\) −90.9172 + 52.4911i −0.261256 + 0.150836i
\(349\) 81.7368i 0.234203i 0.993120 + 0.117101i \(0.0373603\pi\)
−0.993120 + 0.117101i \(0.962640\pi\)
\(350\) 0 0
\(351\) −13.1396 −0.0374347
\(352\) 35.2820 + 61.1103i 0.100233 + 0.173609i
\(353\) 93.4757 + 53.9682i 0.264804 + 0.152884i 0.626524 0.779402i \(-0.284477\pi\)
−0.361720 + 0.932287i \(0.617810\pi\)
\(354\) 58.0293 100.510i 0.163925 0.283926i
\(355\) 0 0
\(356\) 270.437i 0.759655i
\(357\) −56.7832 + 61.7676i −0.159056 + 0.173018i
\(358\) −317.097 −0.885745
\(359\) 301.930 + 522.957i 0.841029 + 1.45671i 0.889025 + 0.457858i \(0.151383\pi\)
−0.0479959 + 0.998848i \(0.515283\pi\)
\(360\) 0 0
\(361\) −66.1847 + 114.635i −0.183337 + 0.317549i
\(362\) 403.243 232.812i 1.11393 0.643128i
\(363\) 35.9069i 0.0989169i
\(364\) 2.28373 10.2232i 0.00627398 0.0280856i
\(365\) 0 0
\(366\) −38.3483 66.4213i −0.104777 0.181479i
\(367\) 470.710 + 271.765i 1.28259 + 0.740503i 0.977321 0.211763i \(-0.0679205\pi\)
0.305268 + 0.952266i \(0.401254\pi\)
\(368\) 72.6263 125.792i 0.197354 0.341827i
\(369\) 87.4159 50.4696i 0.236900 0.136774i
\(370\) 0 0
\(371\) −180.165 40.2466i −0.485619 0.108481i
\(372\) −97.0531 −0.260895
\(373\) 41.6452 + 72.1316i 0.111649 + 0.193382i 0.916435 0.400183i \(-0.131053\pi\)
−0.804786 + 0.593565i \(0.797720\pi\)
\(374\) 176.466 + 101.883i 0.471835 + 0.272414i
\(375\) 0 0
\(376\) −99.0787 + 57.2031i −0.263507 + 0.152136i
\(377\) 37.8485i 0.100394i
\(378\) −127.983 117.655i −0.338578 0.311256i
\(379\) 30.4409 0.0803189 0.0401595 0.999193i \(-0.487213\pi\)
0.0401595 + 0.999193i \(0.487213\pi\)
\(380\) 0 0
\(381\) −46.9493 27.1062i −0.123227 0.0711449i
\(382\) −46.8352 + 81.1209i −0.122605 + 0.212358i
\(383\) 255.925 147.759i 0.668213 0.385793i −0.127186 0.991879i \(-0.540595\pi\)
0.795399 + 0.606086i \(0.207261\pi\)
\(384\) 11.7401i 0.0305732i
\(385\) 0 0
\(386\) 358.442 0.928605
\(387\) 104.033 + 180.191i 0.268819 + 0.465609i
\(388\) −158.342 91.4185i −0.408097 0.235615i
\(389\) 214.388 371.330i 0.551125 0.954577i −0.447069 0.894500i \(-0.647532\pi\)
0.998194 0.0600771i \(-0.0191347\pi\)
\(390\) 0 0
\(391\) 419.441i 1.07274i
\(392\) 113.785 79.1269i 0.290267 0.201854i
\(393\) −97.4563 −0.247980
\(394\) −135.291 234.330i −0.343377 0.594746i
\(395\) 0 0
\(396\) −98.8347 + 171.187i −0.249582 + 0.432290i
\(397\) 277.807 160.392i 0.699765 0.404009i −0.107495 0.994206i \(-0.534283\pi\)
0.807260 + 0.590196i \(0.200950\pi\)
\(398\) 319.428i 0.802583i
\(399\) 32.8584 + 104.803i 0.0823518 + 0.262663i
\(400\) 0 0
\(401\) 118.854 + 205.861i 0.296394 + 0.513370i 0.975308 0.220848i \(-0.0708824\pi\)
−0.678914 + 0.734218i \(0.737549\pi\)
\(402\) −44.1015 25.4620i −0.109705 0.0633384i
\(403\) 17.4950 30.3022i 0.0434119 0.0751915i
\(404\) −152.439 + 88.0109i −0.377325 + 0.217849i
\(405\) 0 0
\(406\) 338.905 368.654i 0.834741 0.908015i
\(407\) −146.425 −0.359765
\(408\) −16.9508 29.3596i −0.0415460 0.0719598i
\(409\) −171.560 99.0500i −0.419461 0.242176i 0.275386 0.961334i \(-0.411194\pi\)
−0.694847 + 0.719158i \(0.744528\pi\)
\(410\) 0 0
\(411\) 104.998 60.6207i 0.255470 0.147496i
\(412\) 225.191i 0.546579i
\(413\) −120.692 + 540.280i −0.292232 + 1.30818i
\(414\) 406.892 0.982831
\(415\) 0 0
\(416\) 3.66553 + 2.11629i 0.00881137 + 0.00508725i
\(417\) −35.2189 + 61.0010i −0.0844579 + 0.146285i
\(418\) 231.005 133.371i 0.552644 0.319069i
\(419\) 56.6448i 0.135190i 0.997713 + 0.0675952i \(0.0215326\pi\)
−0.997713 + 0.0675952i \(0.978467\pi\)
\(420\) 0 0
\(421\) −220.350 −0.523396 −0.261698 0.965150i \(-0.584282\pi\)
−0.261698 + 0.965150i \(0.584282\pi\)
\(422\) −132.099 228.802i −0.313031 0.542186i
\(423\) −277.547 160.242i −0.656139 0.378822i
\(424\) 37.2959 64.5983i 0.0879619 0.152355i
\(425\) 0 0
\(426\) 21.5191i 0.0505142i
\(427\) 269.327 + 247.593i 0.630743 + 0.579844i
\(428\) 5.74577 0.0134247
\(429\) 4.84258 + 8.38760i 0.0112881 + 0.0195515i
\(430\) 0 0
\(431\) 136.661 236.704i 0.317079 0.549197i −0.662798 0.748798i \(-0.730631\pi\)
0.979877 + 0.199601i \(0.0639646\pi\)
\(432\) 60.8332 35.1220i 0.140818 0.0813010i
\(433\) 201.926i 0.466342i −0.972436 0.233171i \(-0.925090\pi\)
0.972436 0.233171i \(-0.0749102\pi\)
\(434\) 441.738 138.496i 1.01783 0.319116i
\(435\) 0 0
\(436\) −85.2169 147.600i −0.195452 0.338532i
\(437\) −475.512 274.537i −1.08813 0.628231i
\(438\) 74.2313 128.572i 0.169478 0.293544i
\(439\) 527.183 304.370i 1.20087 0.693325i 0.240124 0.970742i \(-0.422812\pi\)
0.960749 + 0.277418i \(0.0894786\pi\)
\(440\) 0 0
\(441\) 351.331 + 165.210i 0.796669 + 0.374627i
\(442\) 12.2223 0.0276523
\(443\) 389.685 + 674.954i 0.879650 + 1.52360i 0.851726 + 0.523988i \(0.175556\pi\)
0.0279237 + 0.999610i \(0.491110\pi\)
\(444\) 21.0976 + 12.1807i 0.0475171 + 0.0274340i
\(445\) 0 0
\(446\) −237.730 + 137.254i −0.533028 + 0.307744i
\(447\) 178.644i 0.399652i
\(448\) 16.7533 + 53.4352i 0.0373959 + 0.119275i
\(449\) 8.03323 0.0178914 0.00894569 0.999960i \(-0.497152\pi\)
0.00894569 + 0.999960i \(0.497152\pi\)
\(450\) 0 0
\(451\) −137.625 79.4580i −0.305156 0.176182i
\(452\) 211.525 366.372i 0.467975 0.810557i
\(453\) −99.0474 + 57.1850i −0.218648 + 0.126236i
\(454\) 497.459i 1.09573i
\(455\) 0 0
\(456\) −44.3792 −0.0973228
\(457\) −249.654 432.413i −0.546289 0.946200i −0.998525 0.0543016i \(-0.982707\pi\)
0.452236 0.891898i \(-0.350627\pi\)
\(458\) −230.507 133.083i −0.503290 0.290575i
\(459\) 101.421 175.666i 0.220960 0.382715i
\(460\) 0 0
\(461\) 690.386i 1.49758i 0.662805 + 0.748792i \(0.269366\pi\)
−0.662805 + 0.748792i \(0.730634\pi\)
\(462\) −27.9366 + 125.059i −0.0604689 + 0.270690i
\(463\) 615.045 1.32839 0.664195 0.747559i \(-0.268774\pi\)
0.664195 + 0.747559i \(0.268774\pi\)
\(464\) 101.169 + 175.230i 0.218037 + 0.377651i
\(465\) 0 0
\(466\) 222.088 384.668i 0.476584 0.825467i
\(467\) −41.4549 + 23.9340i −0.0887686 + 0.0512506i −0.543727 0.839262i \(-0.682987\pi\)
0.454959 + 0.890513i \(0.349654\pi\)
\(468\) 11.8566i 0.0253347i
\(469\) 237.063 + 52.9570i 0.505465 + 0.112915i
\(470\) 0 0
\(471\) 105.929 + 183.474i 0.224902 + 0.389542i
\(472\) −193.718 111.843i −0.410420 0.236956i
\(473\) 163.787 283.687i 0.346273 0.599762i
\(474\) −45.4030 + 26.2134i −0.0957869 + 0.0553026i
\(475\) 0 0
\(476\) 119.048 + 109.442i 0.250102 + 0.229919i
\(477\) 208.952 0.438054
\(478\) −237.778 411.844i −0.497444 0.861599i
\(479\) −116.614 67.3269i −0.243452 0.140557i 0.373310 0.927707i \(-0.378223\pi\)
−0.616762 + 0.787149i \(0.711556\pi\)
\(480\) 0 0
\(481\) −7.60619 + 4.39143i −0.0158133 + 0.00912980i
\(482\) 540.971i 1.12235i
\(483\) 251.692 78.9119i 0.521101 0.163379i
\(484\) 69.2054 0.142986
\(485\) 0 0
\(486\) 261.037 + 150.710i 0.537113 + 0.310103i
\(487\) 223.414 386.964i 0.458755 0.794588i −0.540140 0.841575i \(-0.681629\pi\)
0.998895 + 0.0469875i \(0.0149621\pi\)
\(488\) −128.018 + 73.9110i −0.262331 + 0.151457i
\(489\) 101.560i 0.207690i
\(490\) 0 0
\(491\) −119.125 −0.242617 −0.121309 0.992615i \(-0.538709\pi\)
−0.121309 + 0.992615i \(0.538709\pi\)
\(492\) 13.2199 + 22.8975i 0.0268696 + 0.0465395i
\(493\) 506.007 + 292.143i 1.02638 + 0.592582i
\(494\) 7.99988 13.8562i 0.0161941 0.0280490i
\(495\) 0 0
\(496\) 187.056i 0.377130i
\(497\) 30.7081 + 97.9442i 0.0617869 + 0.197071i
\(498\) 118.673 0.238298
\(499\) 42.1210 + 72.9558i 0.0844109 + 0.146204i 0.905140 0.425114i \(-0.139766\pi\)
−0.820729 + 0.571318i \(0.806432\pi\)
\(500\) 0 0
\(501\) 50.4180 87.3265i 0.100635 0.174304i
\(502\) −369.961 + 213.597i −0.736973 + 0.425492i
\(503\) 388.428i 0.772223i 0.922452 + 0.386111i \(0.126182\pi\)
−0.922452 + 0.386111i \(0.873818\pi\)
\(504\) −106.167 + 115.487i −0.210649 + 0.229140i
\(505\) 0 0
\(506\) −320.300 554.776i −0.633004 1.09640i
\(507\) −151.371 87.3943i −0.298563 0.172375i
\(508\) −52.2434 + 90.4883i −0.102841 + 0.178127i
\(509\) −68.8518 + 39.7516i −0.135269 + 0.0780975i −0.566107 0.824332i \(-0.691551\pi\)
0.430838 + 0.902429i \(0.358218\pi\)
\(510\) 0 0
\(511\) −154.390 + 691.128i −0.302132 + 1.35250i
\(512\) −22.6274 −0.0441942
\(513\) −132.766 229.957i −0.258803 0.448260i
\(514\) −250.680 144.730i −0.487703 0.281576i
\(515\) 0 0
\(516\) −47.1986 + 27.2501i −0.0914701 + 0.0528103i
\(517\) 504.561i 0.975939i
\(518\) −113.408 25.3340i −0.218934 0.0489073i
\(519\) −64.1885 −0.123677
\(520\) 0 0
\(521\) 69.7252 + 40.2559i 0.133830 + 0.0772666i 0.565420 0.824803i \(-0.308714\pi\)
−0.431590 + 0.902070i \(0.642047\pi\)
\(522\) −283.403 + 490.868i −0.542917 + 0.940359i
\(523\) −703.527 + 406.182i −1.34518 + 0.776638i −0.987562 0.157231i \(-0.949743\pi\)
−0.357615 + 0.933869i \(0.616410\pi\)
\(524\) 187.833i 0.358461i
\(525\) 0 0
\(526\) −137.788 −0.261955
\(527\) 270.078 + 467.789i 0.512483 + 0.887646i
\(528\) −44.8401 25.8884i −0.0849244 0.0490311i
\(529\) −394.822 + 683.851i −0.746355 + 1.29272i
\(530\) 0 0
\(531\) 626.608i 1.18005i
\(532\) 201.992 63.3299i 0.379685 0.119041i
\(533\) −9.53214 −0.0178839
\(534\) −99.2176 171.850i −0.185801 0.321816i
\(535\) 0 0
\(536\) −49.0745 + 84.9995i −0.0915569 + 0.158581i
\(537\) 201.500 116.336i 0.375233 0.216641i
\(538\) 136.532i 0.253777i
\(539\) −51.3073 609.073i −0.0951898 1.13001i
\(540\) 0 0
\(541\) −141.664 245.370i −0.261857 0.453549i 0.704879 0.709328i \(-0.251001\pi\)
−0.966735 + 0.255779i \(0.917668\pi\)
\(542\) −102.397 59.1190i −0.188924 0.109076i
\(543\) −170.828 + 295.882i −0.314600 + 0.544903i
\(544\) −56.5865 + 32.6703i −0.104019 + 0.0600556i
\(545\) 0 0
\(546\) 2.29945 + 7.33417i 0.00421146 + 0.0134326i
\(547\) 51.6110 0.0943529 0.0471764 0.998887i \(-0.484978\pi\)
0.0471764 + 0.998887i \(0.484978\pi\)
\(548\) −116.838 202.369i −0.213208 0.369287i
\(549\) −358.613 207.045i −0.653211 0.377131i
\(550\) 0 0
\(551\) 662.393 382.433i 1.20217 0.694070i
\(552\) 106.580i 0.193080i
\(553\) 169.245 184.101i 0.306049 0.332914i
\(554\) −545.510 −0.984675
\(555\) 0 0
\(556\) 117.571 + 67.8796i 0.211458 + 0.122086i
\(557\) −117.878 + 204.171i −0.211631 + 0.366555i −0.952225 0.305397i \(-0.901211\pi\)
0.740594 + 0.671953i \(0.234544\pi\)
\(558\) −453.794 + 261.998i −0.813251 + 0.469530i
\(559\) 19.6486i 0.0351496i
\(560\) 0 0
\(561\) −149.515 −0.266514
\(562\) 172.151 + 298.175i 0.306319 + 0.530561i
\(563\) −230.044 132.816i −0.408604 0.235907i 0.281586 0.959536i \(-0.409140\pi\)
−0.690190 + 0.723629i \(0.742473\pi\)
\(564\) 41.9732 72.6997i 0.0744205 0.128900i
\(565\) 0 0
\(566\) 145.425i 0.256934i
\(567\) −362.663 81.0145i −0.639617 0.142883i
\(568\) −41.4750 −0.0730193
\(569\) −13.0381 22.5826i −0.0229141 0.0396883i 0.854341 0.519713i \(-0.173961\pi\)
−0.877255 + 0.480025i \(0.840628\pi\)
\(570\) 0 0
\(571\) −147.312 + 255.152i −0.257989 + 0.446851i −0.965703 0.259649i \(-0.916393\pi\)
0.707714 + 0.706499i \(0.249727\pi\)
\(572\) 16.1659 9.33340i 0.0282621 0.0163171i
\(573\) 68.7313i 0.119950i
\(574\) −92.8454 85.3530i −0.161751 0.148699i
\(575\) 0 0
\(576\) −31.6928 54.8935i −0.0550222 0.0953013i
\(577\) 498.049 + 287.549i 0.863170 + 0.498351i 0.865072 0.501647i \(-0.167272\pi\)
−0.00190285 + 0.999998i \(0.500606\pi\)
\(578\) 110.013 190.548i 0.190334 0.329668i
\(579\) −227.773 + 131.505i −0.393389 + 0.227124i
\(580\) 0 0
\(581\) −540.139 + 169.348i −0.929672 + 0.291476i
\(582\) 134.158 0.230512
\(583\) −164.484 284.895i −0.282134 0.488671i
\(584\) −247.805 143.070i −0.424324 0.244984i
\(585\) 0 0
\(586\) −539.635 + 311.558i −0.920878 + 0.531669i
\(587\) 509.360i 0.867734i 0.900977 + 0.433867i \(0.142851\pi\)
−0.900977 + 0.433867i \(0.857149\pi\)
\(588\) −43.2747 + 92.0265i −0.0735964 + 0.156508i
\(589\) 707.098 1.20051
\(590\) 0 0
\(591\) 171.941 + 99.2704i 0.290933 + 0.167970i
\(592\) 23.4766 40.6627i 0.0396564 0.0686869i
\(593\) 185.975 107.373i 0.313618 0.181067i −0.334926 0.942244i \(-0.608711\pi\)
0.648544 + 0.761177i \(0.275378\pi\)
\(594\) 309.794i 0.521539i
\(595\) 0 0
\(596\) −344.312 −0.577704
\(597\) 117.191 + 202.981i 0.196300 + 0.340002i
\(598\) −33.2767 19.2123i −0.0556467 0.0321276i
\(599\) −477.250 + 826.621i −0.796744 + 1.38000i 0.124982 + 0.992159i \(0.460113\pi\)
−0.921726 + 0.387842i \(0.873221\pi\)
\(600\) 0 0
\(601\) 851.298i 1.41647i −0.705977 0.708234i \(-0.749492\pi\)
0.705977 0.708234i \(-0.250508\pi\)
\(602\) 175.938 191.382i 0.292256 0.317911i
\(603\) −274.942 −0.455957
\(604\) 110.216 + 190.900i 0.182477 + 0.316059i
\(605\) 0 0
\(606\) 64.5786 111.853i 0.106565 0.184577i
\(607\) −909.818 + 525.284i −1.49888 + 0.865377i −0.999999 0.00129613i \(-0.999587\pi\)
−0.498877 + 0.866673i \(0.666254\pi\)
\(608\) 85.5347i 0.140682i
\(609\) −80.1066 + 358.599i −0.131538 + 0.588832i
\(610\) 0 0
\(611\) 15.1323 + 26.2100i 0.0247665 + 0.0428968i
\(612\) −158.514 91.5184i −0.259011 0.149540i
\(613\) −506.057 + 876.517i −0.825542 + 1.42988i 0.0759624 + 0.997111i \(0.475797\pi\)
−0.901504 + 0.432770i \(0.857536\pi\)
\(614\) 302.747 174.791i 0.493073 0.284676i
\(615\) 0 0
\(616\) 241.033 + 53.8439i 0.391288 + 0.0874090i
\(617\) 706.409 1.14491 0.572454 0.819937i \(-0.305991\pi\)
0.572454 + 0.819937i \(0.305991\pi\)
\(618\) −82.6176 143.098i −0.133685 0.231550i
\(619\) −681.409 393.412i −1.10082 0.635560i −0.164385 0.986396i \(-0.552564\pi\)
−0.936437 + 0.350836i \(0.885897\pi\)
\(620\) 0 0
\(621\) −552.261 + 318.848i −0.889309 + 0.513443i
\(622\) 602.765i 0.969076i
\(623\) 696.823 + 640.591i 1.11850 + 1.02824i
\(624\) −3.10569 −0.00497707
\(625\) 0 0
\(626\) 164.084 + 94.7339i 0.262115 + 0.151332i
\(627\) −97.8617 + 169.502i −0.156079 + 0.270337i
\(628\) 353.621 204.163i 0.563091 0.325101i
\(629\) 135.585i 0.215557i
\(630\) 0 0
\(631\) −218.755 −0.346680 −0.173340 0.984862i \(-0.555456\pi\)
−0.173340 + 0.984862i \(0.555456\pi\)
\(632\) 50.5227 + 87.5079i 0.0799410 + 0.138462i
\(633\) 167.885 + 96.9287i 0.265222 + 0.153126i
\(634\) −227.664 + 394.326i −0.359092 + 0.621966i
\(635\) 0 0
\(636\) 54.7322i 0.0860569i
\(637\) −20.9320 30.1002i −0.0328603 0.0472531i
\(638\) 892.363 1.39869
\(639\) −58.0914 100.617i −0.0909098 0.157460i
\(640\) 0 0
\(641\) 304.336 527.125i 0.474783 0.822348i −0.524800 0.851225i \(-0.675860\pi\)
0.999583 + 0.0288778i \(0.00919336\pi\)
\(642\) −3.65116 + 2.10800i −0.00568717 + 0.00328349i
\(643\) 1184.38i 1.84196i −0.389614 0.920978i \(-0.627392\pi\)
0.389614 0.920978i \(-0.372608\pi\)
\(644\) −152.092 485.100i −0.236167 0.753261i
\(645\) 0 0
\(646\) 123.498 + 213.905i 0.191173 + 0.331122i
\(647\) −197.111 113.802i −0.304653 0.175892i 0.339878 0.940470i \(-0.389614\pi\)
−0.644531 + 0.764578i \(0.722948\pi\)
\(648\) 75.0748 130.033i 0.115856 0.200669i
\(649\) −854.347 + 493.258i −1.31641 + 0.760027i
\(650\) 0 0
\(651\) −229.892 + 250.072i −0.353137 + 0.384135i
\(652\) −195.743 −0.300220
\(653\) −115.332 199.761i −0.176619 0.305912i 0.764102 0.645096i \(-0.223183\pi\)
−0.940720 + 0.339183i \(0.889849\pi\)
\(654\) 108.303 + 62.5285i 0.165600 + 0.0956093i
\(655\) 0 0
\(656\) 44.1316 25.4794i 0.0672738 0.0388406i
\(657\) 801.559i 1.22003i
\(658\) −87.2977 + 390.790i −0.132671 + 0.593906i
\(659\) −726.539 −1.10249 −0.551244 0.834344i \(-0.685847\pi\)
−0.551244 + 0.834344i \(0.685847\pi\)
\(660\) 0 0
\(661\) −214.930 124.090i −0.325159 0.187731i 0.328531 0.944493i \(-0.393447\pi\)
−0.653690 + 0.756763i \(0.726780\pi\)
\(662\) −166.032 + 287.576i −0.250804 + 0.434405i
\(663\) −7.76670 + 4.48411i −0.0117145 + 0.00676336i
\(664\) 228.725i 0.344465i
\(665\) 0 0
\(666\) 131.529 0.197491
\(667\) −918.442 1590.79i −1.37697 2.38499i
\(668\) −168.310 97.1736i −0.251960 0.145469i
\(669\) 100.711 174.436i 0.150539 0.260742i
\(670\) 0 0
\(671\) 651.933i 0.971584i
\(672\) −30.2502 27.8091i −0.0450152 0.0413826i
\(673\) 835.990 1.24218 0.621092 0.783738i \(-0.286689\pi\)
0.621092 + 0.783738i \(0.286689\pi\)
\(674\) −153.941 266.634i −0.228400 0.395600i
\(675\) 0 0
\(676\) −168.440 + 291.747i −0.249172 + 0.431578i
\(677\) −327.468 + 189.063i −0.483704 + 0.279267i −0.721959 0.691936i \(-0.756758\pi\)
0.238255 + 0.971203i \(0.423425\pi\)
\(678\) 310.416i 0.457840i
\(679\) −610.622 + 191.446i −0.899295 + 0.281953i
\(680\) 0 0
\(681\) −182.507 316.112i −0.267999 0.464188i
\(682\) 714.441 + 412.483i 1.04757 + 0.604813i
\(683\) 96.6649 167.429i 0.141530 0.245137i −0.786543 0.617535i \(-0.788131\pi\)
0.928073 + 0.372399i \(0.121465\pi\)
\(684\) −207.505 + 119.803i −0.303370 + 0.175151i
\(685\) 0 0
\(686\) 65.6418 480.613i 0.0956878 0.700602i
\(687\) 195.302 0.284282
\(688\) 52.5207 + 90.9686i 0.0763383 + 0.132222i
\(689\) −17.0886 9.86613i −0.0248021 0.0143195i
\(690\) 0 0
\(691\) 501.502 289.542i 0.725763 0.419019i −0.0911074 0.995841i \(-0.529041\pi\)
0.816870 + 0.576822i \(0.195707\pi\)
\(692\) 123.714i 0.178778i
\(693\) 206.976 + 660.157i 0.298667 + 0.952607i
\(694\) 263.371 0.379497
\(695\) 0 0
\(696\) −128.576 74.2336i −0.184736 0.106657i
\(697\) 73.5761 127.438i 0.105561 0.182837i
\(698\) −100.107 + 57.7966i −0.143419 + 0.0828032i
\(699\) 325.917i 0.466262i
\(700\) 0 0
\(701\) −516.871 −0.737334 −0.368667 0.929562i \(-0.620186\pi\)
−0.368667 + 0.929562i \(0.620186\pi\)
\(702\) −9.29107 16.0926i −0.0132351 0.0229239i
\(703\) −153.710 88.7447i −0.218649 0.126237i
\(704\) −49.8963 + 86.4230i −0.0708755 + 0.122760i
\(705\) 0 0
\(706\) 152.645i 0.216211i
\(707\) −134.313 + 601.257i −0.189977 + 0.850434i
\(708\) 164.132 0.231824
\(709\) 29.9375 + 51.8533i 0.0422250 + 0.0731359i 0.886366 0.462986i \(-0.153222\pi\)
−0.844141 + 0.536122i \(0.819889\pi\)
\(710\) 0 0
\(711\) −141.528 + 245.134i −0.199055 + 0.344773i
\(712\) −331.216 + 191.228i −0.465192 + 0.268579i
\(713\) 1698.15i 2.38170i
\(714\) −115.801 25.8686i −0.162187 0.0362305i
\(715\) 0 0
\(716\) −224.221 388.363i −0.313158 0.542406i
\(717\) 302.194 + 174.472i 0.421470 + 0.243336i
\(718\) −426.993 + 739.573i −0.594698 + 1.03005i
\(719\) 1072.53 619.228i 1.49170 0.861235i 0.491748 0.870738i \(-0.336358\pi\)
0.999955 + 0.00950279i \(0.00302488\pi\)
\(720\) 0 0
\(721\) 580.238 + 533.415i 0.804768 + 0.739826i
\(722\) −187.199 −0.259278
\(723\) 198.471 + 343.761i 0.274510 + 0.475465i
\(724\) 570.271 + 329.246i 0.787668 + 0.454760i
\(725\) 0 0
\(726\) −43.9767 + 25.3900i −0.0605740 + 0.0349724i
\(727\) 387.549i 0.533080i −0.963824 0.266540i \(-0.914120\pi\)
0.963824 0.266540i \(-0.0858805\pi\)
\(728\) 14.1356 4.43188i 0.0194170 0.00608774i
\(729\) 256.605 0.351995
\(730\) 0 0
\(731\) 262.687 + 151.663i 0.359353 + 0.207473i
\(732\) 54.2327 93.9339i 0.0740884 0.128325i
\(733\) −912.012 + 526.551i −1.24422 + 0.718350i −0.969950 0.243303i \(-0.921769\pi\)
−0.274269 + 0.961653i \(0.588436\pi\)
\(734\) 768.667i 1.04723i
\(735\) 0 0
\(736\) 205.418 0.279101
\(737\) 216.431 + 374.869i 0.293665 + 0.508642i
\(738\) 123.625 + 71.3748i 0.167513 + 0.0967138i
\(739\) 123.560 214.013i 0.167199 0.289598i −0.770235 0.637760i \(-0.779861\pi\)
0.937434 + 0.348163i \(0.113194\pi\)
\(740\) 0 0
\(741\) 11.7399i 0.0158434i
\(742\) −78.1038 249.114i −0.105261 0.335733i
\(743\) −189.686 −0.255298 −0.127649 0.991819i \(-0.540743\pi\)
−0.127649 + 0.991819i \(0.540743\pi\)
\(744\) −68.6269 118.865i −0.0922405 0.159765i
\(745\) 0 0
\(746\) −58.8952 + 102.010i −0.0789480 + 0.136742i
\(747\) 554.880 320.360i 0.742811 0.428862i
\(748\) 288.168i 0.385252i
\(749\) 13.6102 14.8049i 0.0181711 0.0197662i
\(750\) 0 0
\(751\) 400.319 + 693.373i 0.533048 + 0.923267i 0.999255 + 0.0385908i \(0.0122869\pi\)
−0.466207 + 0.884676i \(0.654380\pi\)
\(752\) −140.118 80.8974i −0.186328 0.107576i
\(753\) 156.728 271.461i 0.208138 0.360506i
\(754\) 46.3548 26.7630i 0.0614785 0.0354946i
\(755\) 0 0
\(756\) 53.5998 239.940i 0.0708992 0.317382i
\(757\) 809.069 1.06878 0.534392 0.845237i \(-0.320541\pi\)
0.534392 + 0.845237i \(0.320541\pi\)
\(758\) 21.5249 + 37.2823i 0.0283970 + 0.0491851i
\(759\) 407.071 + 235.023i 0.536325 + 0.309648i
\(760\) 0 0
\(761\) −213.647 + 123.349i −0.280745 + 0.162088i −0.633761 0.773529i \(-0.718490\pi\)
0.353016 + 0.935617i \(0.385156\pi\)
\(762\) 76.6680i 0.100614i
\(763\) −582.169 130.050i −0.763000 0.170445i
\(764\) −132.470 −0.173390
\(765\) 0 0
\(766\) 361.933 + 208.962i 0.472498 + 0.272797i
\(767\) −29.5867 + 51.2456i −0.0385746 + 0.0668131i
\(768\) 14.3786 8.30151i 0.0187222 0.0108093i
\(769\) 851.221i 1.10692i −0.832876 0.553460i \(-0.813307\pi\)
0.832876 0.553460i \(-0.186693\pi\)
\(770\) 0 0
\(771\) 212.393 0.275478
\(772\) 253.457 + 439.000i 0.328312 + 0.568652i
\(773\) −771.684 445.532i −0.998298 0.576368i −0.0905537 0.995892i \(-0.528864\pi\)
−0.907744 + 0.419524i \(0.862197\pi\)
\(774\) −147.125 + 254.828i −0.190084 + 0.329235i
\(775\) 0 0
\(776\) 258.571i 0.333210i
\(777\) 81.3599 25.5084i 0.104710 0.0328294i
\(778\) 606.380 0.779409
\(779\) −96.3156 166.823i −0.123640 0.214151i
\(780\) 0 0
\(781\) −91.4576 + 158.409i −0.117103 + 0.202829i
\(782\) 513.709 296.590i 0.656916 0.379271i
\(783\) 888.317i 1.13450i
\(784\) 177.368 + 83.4059i 0.226235 + 0.106385i
\(785\) 0 0
\(786\) −68.9120 119.359i −0.0876743 0.151856i
\(787\) −425.522 245.676i −0.540689 0.312167i 0.204669 0.978831i \(-0.434388\pi\)
−0.745358 + 0.666664i \(0.767722\pi\)
\(788\) 191.330 331.393i 0.242804 0.420549i
\(789\) 87.5578 50.5515i 0.110973 0.0640703i
\(790\) 0 0
\(791\) −442.968 1412.86i −0.560011 1.78617i
\(792\) −279.547 −0.352963
\(793\) 19.5522 + 33.8654i 0.0246560 + 0.0427054i
\(794\) 392.878 + 226.828i 0.494808 + 0.285678i
\(795\) 0 0
\(796\) 391.218 225.870i 0.491480 0.283756i
\(797\) 68.9206i 0.0864751i −0.999065 0.0432375i \(-0.986233\pi\)
0.999065 0.0432375i \(-0.0137672\pi\)
\(798\) −105.122 + 114.350i −0.131732 + 0.143295i
\(799\) −467.210 −0.584744
\(800\) 0 0
\(801\) −927.828 535.682i −1.15834 0.668766i
\(802\) −168.085 + 291.132i −0.209582 + 0.363007i
\(803\) −1092.88 + 630.977i −1.36100 + 0.785774i
\(804\) 72.0175i 0.0895740i
\(805\) 0 0
\(806\) 49.4833 0.0613936
\(807\) 50.0906 + 86.7595i 0.0620702 + 0.107509i
\(808\) −215.582 124.466i −0.266809 0.154042i
\(809\) −19.0763 + 33.0411i −0.0235801 + 0.0408419i −0.877575 0.479440i \(-0.840840\pi\)
0.853995 + 0.520282i \(0.174173\pi\)
\(810\) 0 0
\(811\) 763.676i 0.941648i 0.882227 + 0.470824i \(0.156043\pi\)
−0.882227 + 0.470824i \(0.843957\pi\)
\(812\) 691.149 + 154.394i 0.851169 + 0.190141i
\(813\) 86.7579 0.106713
\(814\) −103.538 179.333i −0.127196 0.220310i
\(815\) 0 0
\(816\) 23.9720 41.5208i 0.0293775 0.0508833i
\(817\) 343.873 198.535i 0.420898 0.243005i
\(818\) 280.156i 0.342489i
\(819\) 30.5505 + 28.0851i 0.0373021 + 0.0342920i
\(820\) 0 0
\(821\) 204.439 + 354.099i 0.249013 + 0.431302i 0.963252 0.268599i \(-0.0865606\pi\)
−0.714240 + 0.699901i \(0.753227\pi\)
\(822\) 148.490 + 85.7306i 0.180644 + 0.104295i
\(823\) 76.8529 133.113i 0.0933814 0.161741i −0.815551 0.578686i \(-0.803566\pi\)
0.908932 + 0.416945i \(0.136899\pi\)
\(824\) −275.801 + 159.234i −0.334710 + 0.193245i
\(825\) 0 0
\(826\) −747.047 + 234.219i −0.904416 + 0.283558i
\(827\) −571.706 −0.691301 −0.345650 0.938363i \(-0.612342\pi\)
−0.345650 + 0.938363i \(0.612342\pi\)
\(828\) 287.716 + 498.339i 0.347483 + 0.601859i
\(829\) 1099.69 + 634.905i 1.32652 + 0.765869i 0.984760 0.173918i \(-0.0556426\pi\)
0.341763 + 0.939786i \(0.388976\pi\)
\(830\) 0 0
\(831\) 346.646 200.136i 0.417143 0.240838i
\(832\) 5.98578i 0.00719445i
\(833\) 563.986 47.5093i 0.677054 0.0570339i
\(834\) −99.6142 −0.119442
\(835\) 0 0
\(836\) 326.690 + 188.615i 0.390778 + 0.225616i
\(837\) 410.612 711.202i 0.490576 0.849703i
\(838\) −69.3754 + 40.0539i −0.0827869 + 0.0477970i
\(839\) 732.075i 0.872556i −0.899812 0.436278i \(-0.856296\pi\)
0.899812 0.436278i \(-0.143704\pi\)
\(840\) 0 0
\(841\) 1717.80 2.04257
\(842\) −155.811 269.872i −0.185048 0.320513i
\(843\) −218.788 126.317i −0.259535 0.149843i
\(844\) 186.816 323.575i 0.221346 0.383383i
\(845\) 0 0
\(846\) 453.232i 0.535735i
\(847\) 163.929 178.318i 0.193540 0.210529i
\(848\) 105.489 0.124397
\(849\) −53.3531 92.4103i −0.0628423 0.108846i
\(850\) 0 0
\(851\) −213.127 + 369.147i −0.250443 + 0.433780i
\(852\) 26.3554 15.2163i 0.0309335 0.0178595i
\(853\) 193.304i 0.226617i 0.993560 + 0.113308i \(0.0361448\pi\)
−0.993560 + 0.113308i \(0.963855\pi\)
\(854\) −112.796 + 504.932i −0.132079 + 0.591255i
\(855\) 0 0
\(856\) 4.06287 + 7.03710i 0.00474635 + 0.00822092i
\(857\) −410.336 236.907i −0.478805 0.276438i 0.241113 0.970497i \(-0.422487\pi\)
−0.719918 + 0.694059i \(0.755821\pi\)
\(858\) −6.84844 + 11.8619i −0.00798187 + 0.0138250i
\(859\) 760.044 438.811i 0.884801 0.510840i 0.0125624 0.999921i \(-0.496001\pi\)
0.872238 + 0.489081i \(0.162668\pi\)
\(860\) 0 0
\(861\) 90.3130 + 20.1748i 0.104893 + 0.0234318i
\(862\) 386.536 0.448417
\(863\) −451.797 782.535i −0.523519 0.906761i −0.999625 0.0273737i \(-0.991286\pi\)
0.476106 0.879388i \(-0.342048\pi\)
\(864\) 86.0311 + 49.6701i 0.0995730 + 0.0574885i
\(865\) 0 0
\(866\) 247.308 142.783i 0.285575 0.164877i
\(867\) 161.446i 0.186212i
\(868\) 481.979 + 443.085i 0.555275 + 0.510467i
\(869\) 445.636 0.512814
\(870\) 0 0
\(871\) 22.4855 + 12.9820i 0.0258157 + 0.0149047i
\(872\) 120.515 208.738i 0.138205 0.239378i
\(873\) 627.286 362.164i 0.718541 0.414850i
\(874\) 776.508i 0.888453i
\(875\) 0 0
\(876\) 209.958 0.239678
\(877\) −651.867 1129.07i −0.743292 1.28742i −0.950988 0.309226i \(-0.899930\pi\)
0.207696 0.978193i \(-0.433403\pi\)
\(878\) 745.550 + 430.443i 0.849146 + 0.490255i
\(879\) 228.608 395.961i 0.260077 0.450467i
\(880\) 0 0
\(881\) 796.338i 0.903902i −0.892043 0.451951i \(-0.850728\pi\)
0.892043 0.451951i \(-0.149272\pi\)
\(882\) 46.0879 + 547.112i 0.0522538 + 0.620308i
\(883\) 1253.73 1.41985 0.709927 0.704276i \(-0.248728\pi\)
0.709927 + 0.704276i \(0.248728\pi\)
\(884\) 8.64249 + 14.9692i 0.00977657 + 0.0169335i
\(885\) 0 0
\(886\) −551.097 + 954.529i −0.622006 + 1.07735i
\(887\) −848.034 + 489.613i −0.956070 + 0.551987i −0.894961 0.446144i \(-0.852797\pi\)
−0.0611090 + 0.998131i \(0.519464\pi\)
\(888\) 34.4522i 0.0387976i
\(889\) 109.407 + 348.955i 0.123067 + 0.392525i
\(890\) 0 0
\(891\) −331.099 573.480i −0.371604 0.643637i
\(892\) −336.202 194.106i −0.376908 0.217608i
\(893\) −305.803 + 529.666i −0.342445 + 0.593132i
\(894\) 218.794 126.321i 0.244736 0.141298i
\(895\) 0 0
\(896\) −53.5981 + 58.3030i −0.0598194 + 0.0650703i
\(897\) 28.1943 0.0314318
\(898\) 5.68035 + 9.83866i 0.00632556 + 0.0109562i
\(899\) 2048.62 + 1182.77i 2.27877 + 1.31565i
\(900\) 0 0
\(901\) 263.805 152.308i 0.292792 0.169043i
\(902\) 224.741i 0.249159i
\(903\) −41.5864 + 186.162i −0.0460536 + 0.206160i
\(904\) 598.282 0.661817
\(905\) 0 0
\(906\) −140.074 80.8718i −0.154607 0.0892625i
\(907\) −825.386 + 1429.61i −0.910017 + 1.57620i −0.0959807 + 0.995383i \(0.530599\pi\)
−0.814037 + 0.580813i \(0.802735\pi\)
\(908\) −609.261 + 351.757i −0.670992 + 0.387398i
\(909\) 697.328i 0.767138i
\(910\) 0 0
\(911\) −736.949 −0.808945 −0.404472 0.914550i \(-0.632545\pi\)
−0.404472 + 0.914550i \(0.632545\pi\)
\(912\) −31.3808 54.3532i −0.0344088 0.0595978i
\(913\) −873.589 504.367i −0.956833 0.552428i
\(914\) 353.064 611.525i 0.386285 0.669064i
\(915\) 0 0
\(916\) 376.416i 0.410935i
\(917\) 483.981 + 444.926i 0.527788 + 0.485197i
\(918\) 286.862 0.312485
\(919\) 432.226 + 748.637i 0.470322 + 0.814621i 0.999424 0.0339368i \(-0.0108045\pi\)
−0.529102 + 0.848558i \(0.677471\pi\)
\(920\) 0 0
\(921\) −128.254 + 222.143i −0.139255 + 0.241197i
\(922\) −845.547 + 488.177i −0.917080 + 0.529476i
\(923\) 10.9717i 0.0118870i
\(924\) −172.919 + 54.2147i −0.187142 + 0.0586740i
\(925\) 0 0
\(926\) 434.902 + 753.273i 0.469657 + 0.813470i
\(927\) −772.594 446.058i −0.833435 0.481184i
\(928\) −143.075 + 247.813i −0.154175 + 0.267040i
\(929\) −515.059 + 297.370i −0.554423 + 0.320096i −0.750904 0.660411i \(-0.770382\pi\)
0.196481 + 0.980508i \(0.437049\pi\)
\(930\) 0 0
\(931\) 315.285 670.475i 0.338652 0.720167i
\(932\) 628.160 0.673991
\(933\) 221.142 + 383.028i 0.237022 + 0.410534i
\(934\) −58.6261 33.8478i −0.0627689 0.0362396i
\(935\) 0 0
\(936\) −14.5214 + 8.38391i −0.0155143 + 0.00895717i
\(937\) 312.979i 0.334022i 0.985955 + 0.167011i \(0.0534116\pi\)
−0.985955 + 0.167011i \(0.946588\pi\)
\(938\) 102.770 + 327.788i 0.109563 + 0.349455i
\(939\) −139.023 −0.148055
\(940\) 0 0
\(941\) 45.2375 + 26.1179i 0.0480738 + 0.0277554i 0.523844 0.851814i \(-0.324497\pi\)
−0.475770 + 0.879569i \(0.657831\pi\)
\(942\) −149.806 + 259.472i −0.159030 + 0.275448i
\(943\) −400.639 + 231.309i −0.424856 + 0.245291i
\(944\) 316.341i 0.335107i
\(945\) 0 0
\(946\) 463.260 0.489704
\(947\) 281.247 + 487.134i 0.296987 + 0.514397i 0.975445 0.220242i \(-0.0706847\pi\)
−0.678458 + 0.734639i \(0.737351\pi\)
\(948\) −64.2095 37.0714i −0.0677315 0.0391048i
\(949\) −37.8474 + 65.5536i −0.0398813 + 0.0690765i
\(950\) 0 0
\(951\) 334.101i 0.351315i
\(952\) −49.8581 + 223.191i −0.0523719 + 0.234444i
\(953\) 786.616 0.825411 0.412705 0.910865i \(-0.364584\pi\)
0.412705 + 0.910865i \(0.364584\pi\)
\(954\) 147.751 + 255.913i 0.154876 + 0.268252i
\(955\) 0 0
\(956\) 336.269 582.436i 0.351746 0.609243i
\(957\) −567.054 + 327.389i −0.592533 + 0.342099i
\(958\) 190.429i 0.198778i
\(959\) −798.192 178.306i −0.832317 0.185929i
\(960\) 0 0
\(961\) 612.939 + 1061.64i 0.637814 + 1.10473i
\(962\) −10.7568 6.21043i −0.0111817 0.00645574i
\(963\) −11.3812 + 19.7129i −0.0118185 + 0.0204703i
\(964\) 662.551 382.524i 0.687294 0.396809i
\(965\) 0 0
\(966\) 274.620 + 252.459i 0.284285 + 0.261345i
\(967\) 372.034 0.384730 0.192365 0.981323i \(-0.438384\pi\)
0.192365 + 0.981323i \(0.438384\pi\)
\(968\) 48.9356 + 84.7590i 0.0505533 + 0.0875609i
\(969\) −156.954 90.6175i −0.161975 0.0935165i
\(970\) 0 0
\(971\) −463.408 + 267.549i −0.477248 + 0.275539i −0.719269 0.694732i \(-0.755523\pi\)
0.242021 + 0.970271i \(0.422190\pi\)
\(972\) 426.272i 0.438551i
\(973\) 453.395 142.151i 0.465977 0.146096i
\(974\) 631.910 0.648778
\(975\) 0 0
\(976\) −181.044 104.526i −0.185496 0.107096i
\(977\) 401.956 696.209i 0.411419 0.712599i −0.583626 0.812023i \(-0.698367\pi\)
0.995045 + 0.0994238i \(0.0316999\pi\)
\(978\) 124.385 71.8140i 0.127184 0.0734294i
\(979\) 1686.73i 1.72291i
\(980\) 0 0
\(981\) 675.191 0.688268
\(982\) −84.2342 145.898i −0.0857782 0.148572i
\(983\) 205.321 + 118.542i 0.208872 + 0.120592i 0.600787 0.799409i \(-0.294854\pi\)
−0.391915 + 0.920001i \(0.628187\pi\)
\(984\) −18.6957 + 32.3819i −0.0189997 + 0.0329084i
\(985\) 0 0
\(986\) 826.305i 0.838038i
\(987\) −87.8989 280.356i −0.0890566 0.284049i
\(988\) 22.6271 0.0229019
\(989\) −476.798 825.838i −0.482101 0.835024i
\(990\) 0 0
\(991\) 211.092 365.622i 0.213009 0.368942i −0.739646 0.672996i \(-0.765007\pi\)
0.952655 + 0.304054i \(0.0983403\pi\)
\(992\) −229.096 + 132.269i −0.230944 + 0.133335i
\(993\) 243.655i 0.245372i
\(994\) −98.2428 + 106.867i −0.0988358 + 0.107512i
\(995\) 0 0
\(996\) 83.9141 + 145.344i 0.0842511 + 0.145927i
\(997\) 1344.88 + 776.469i 1.34893 + 0.778806i 0.988098 0.153825i \(-0.0491591\pi\)
0.360833 + 0.932630i \(0.382492\pi\)
\(998\) −59.5681 + 103.175i −0.0596875 + 0.103382i
\(999\) −178.519 + 103.068i −0.178698 + 0.103171i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.k.e.101.6 16
5.2 odd 4 70.3.h.a.59.2 yes 16
5.3 odd 4 70.3.h.a.59.7 yes 16
5.4 even 2 inner 350.3.k.e.101.3 16
7.5 odd 6 inner 350.3.k.e.201.6 16
15.2 even 4 630.3.bc.a.199.6 16
15.8 even 4 630.3.bc.a.199.4 16
20.3 even 4 560.3.br.b.129.3 16
20.7 even 4 560.3.br.b.129.6 16
35.2 odd 12 490.3.h.b.19.6 16
35.3 even 12 490.3.d.a.489.14 16
35.12 even 12 70.3.h.a.19.7 yes 16
35.13 even 4 490.3.h.b.129.6 16
35.17 even 12 490.3.d.a.489.3 16
35.18 odd 12 490.3.d.a.489.11 16
35.19 odd 6 inner 350.3.k.e.201.3 16
35.23 odd 12 490.3.h.b.19.3 16
35.27 even 4 490.3.h.b.129.3 16
35.32 odd 12 490.3.d.a.489.6 16
35.33 even 12 70.3.h.a.19.2 16
105.47 odd 12 630.3.bc.a.19.4 16
105.68 odd 12 630.3.bc.a.19.6 16
140.47 odd 12 560.3.br.b.369.3 16
140.103 odd 12 560.3.br.b.369.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.h.a.19.2 16 35.33 even 12
70.3.h.a.19.7 yes 16 35.12 even 12
70.3.h.a.59.2 yes 16 5.2 odd 4
70.3.h.a.59.7 yes 16 5.3 odd 4
350.3.k.e.101.3 16 5.4 even 2 inner
350.3.k.e.101.6 16 1.1 even 1 trivial
350.3.k.e.201.3 16 35.19 odd 6 inner
350.3.k.e.201.6 16 7.5 odd 6 inner
490.3.d.a.489.3 16 35.17 even 12
490.3.d.a.489.6 16 35.32 odd 12
490.3.d.a.489.11 16 35.18 odd 12
490.3.d.a.489.14 16 35.3 even 12
490.3.h.b.19.3 16 35.23 odd 12
490.3.h.b.19.6 16 35.2 odd 12
490.3.h.b.129.3 16 35.27 even 4
490.3.h.b.129.6 16 35.13 even 4
560.3.br.b.129.3 16 20.3 even 4
560.3.br.b.129.6 16 20.7 even 4
560.3.br.b.369.3 16 140.47 odd 12
560.3.br.b.369.6 16 140.103 odd 12
630.3.bc.a.19.4 16 105.47 odd 12
630.3.bc.a.19.6 16 105.68 odd 12
630.3.bc.a.199.4 16 15.8 even 4
630.3.bc.a.199.6 16 15.2 even 4