Properties

Label 70.3.h.a.59.2
Level $70$
Weight $3$
Character 70.59
Analytic conductor $1.907$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,3,Mod(19,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 70.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.90736185052\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 42x^{14} + 1322x^{12} + 17616x^{10} + 175407x^{8} + 205392x^{6} + 203018x^{4} + 23226x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 59.2
Root \(-0.518845 + 0.898665i\) of defining polynomial
Character \(\chi\) \(=\) 70.59
Dual form 70.3.h.a.19.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(-0.518845 + 0.898665i) q^{3} +(1.00000 - 1.73205i) q^{4} +(1.98086 + 4.59088i) q^{5} -1.46751i q^{6} +(-6.67941 + 2.09417i) q^{7} +2.82843i q^{8} +(3.96160 + 6.86169i) q^{9} +(-5.67229 - 4.22198i) q^{10} +(-6.23704 + 10.8029i) q^{11} +(1.03769 + 1.79733i) q^{12} +0.748223 q^{13} +(6.69977 - 7.28787i) q^{14} +(-5.15342 - 0.601827i) q^{15} +(-2.00000 - 3.46410i) q^{16} +(5.77534 - 10.0032i) q^{17} +(-9.70390 - 5.60255i) q^{18} +(13.0948 - 7.56027i) q^{19} +(9.93250 + 1.15994i) q^{20} +(1.58362 - 7.08910i) q^{21} -17.6410i q^{22} +(31.4481 - 18.1566i) q^{23} +(-2.54181 - 1.46751i) q^{24} +(-17.1524 + 18.1878i) q^{25} +(-0.916382 + 0.529074i) q^{26} -17.5610 q^{27} +(-3.05220 + 13.6632i) q^{28} +50.5846 q^{29} +(6.73718 - 2.90694i) q^{30} +(-40.4989 - 23.3820i) q^{31} +(4.89898 + 2.82843i) q^{32} +(-6.47211 - 11.2100i) q^{33} +16.3351i q^{34} +(-22.8450 - 26.5161i) q^{35} +15.8464 q^{36} +(-10.1657 + 5.86915i) q^{37} +(-10.6918 + 18.5188i) q^{38} +(-0.388211 + 0.672402i) q^{39} +(-12.9850 + 5.60271i) q^{40} +12.7397i q^{41} +(3.07322 + 9.80212i) q^{42} +26.2604i q^{43} +(12.4741 + 21.6057i) q^{44} +(-23.6539 + 31.7793i) q^{45} +(-25.6773 + 44.4743i) q^{46} +(20.2244 + 35.0296i) q^{47} +4.15076 q^{48} +(40.2289 - 27.9756i) q^{49} +(8.14664 - 34.4040i) q^{50} +(5.99301 + 10.3802i) q^{51} +(0.748223 - 1.29596i) q^{52} +(22.8390 + 13.1861i) q^{53} +(21.5078 - 12.4175i) q^{54} +(-61.9494 - 7.23458i) q^{55} +(-5.92320 - 18.8922i) q^{56} +15.6904i q^{57} +(-61.9532 + 35.7687i) q^{58} +(-68.4898 - 39.5426i) q^{59} +(-6.19582 + 8.32416i) q^{60} +(45.2611 - 26.1315i) q^{61} +66.1344 q^{62} +(-40.8307 - 37.5358i) q^{63} -8.00000 q^{64} +(1.48212 + 3.43500i) q^{65} +(15.8534 + 9.15294i) q^{66} +(30.0519 + 17.3504i) q^{67} +(-11.5507 - 20.0064i) q^{68} +37.6817i q^{69} +(46.7291 + 16.3216i) q^{70} +14.6636 q^{71} +(-19.4078 + 11.2051i) q^{72} +(50.5830 - 87.6124i) q^{73} +(8.30023 - 14.3764i) q^{74} +(-7.44528 - 24.8509i) q^{75} -30.2411i q^{76} +(19.0367 - 85.2182i) q^{77} -1.09803i q^{78} +(17.8625 + 30.9387i) q^{79} +(11.9416 - 16.0437i) q^{80} +(-26.5430 + 45.9738i) q^{81} +(-9.00833 - 15.6029i) q^{82} +80.8664 q^{83} +(-10.6951 - 9.83200i) q^{84} +(57.3636 + 6.69903i) q^{85} +(-18.5689 - 32.1623i) q^{86} +(-26.2455 + 45.4586i) q^{87} +(-30.5551 - 17.6410i) q^{88} +(-117.103 + 67.6093i) q^{89} +(6.49861 - 55.6473i) q^{90} +(-4.99769 + 1.56690i) q^{91} -72.6263i q^{92} +(42.0252 - 24.2633i) q^{93} +(-49.5394 - 28.6016i) q^{94} +(60.6472 + 45.1407i) q^{95} +(-5.08362 + 2.93503i) q^{96} -91.4185 q^{97} +(-29.4884 + 62.7091i) q^{98} -98.8347 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4} - 6 q^{5} - 12 q^{9} + 24 q^{10} - 12 q^{11} + 32 q^{14} - 28 q^{15} - 32 q^{16} - 12 q^{19} - 8 q^{21} - 24 q^{24} - 42 q^{25} - 48 q^{26} - 136 q^{29} + 32 q^{30} + 84 q^{31} - 190 q^{35}+ \cdots + 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.612372 + 0.353553i
\(3\) −0.518845 + 0.898665i −0.172948 + 0.299555i −0.939449 0.342688i \(-0.888663\pi\)
0.766501 + 0.642243i \(0.221996\pi\)
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 1.98086 + 4.59088i 0.396171 + 0.918177i
\(6\) 1.46751i 0.244586i
\(7\) −6.67941 + 2.09417i −0.954201 + 0.299167i
\(8\) 2.82843i 0.353553i
\(9\) 3.96160 + 6.86169i 0.440178 + 0.762410i
\(10\) −5.67229 4.22198i −0.567229 0.422198i
\(11\) −6.23704 + 10.8029i −0.567004 + 0.982079i 0.429856 + 0.902897i \(0.358564\pi\)
−0.996860 + 0.0791820i \(0.974769\pi\)
\(12\) 1.03769 + 1.79733i 0.0864741 + 0.149778i
\(13\) 0.748223 0.0575556 0.0287778 0.999586i \(-0.490838\pi\)
0.0287778 + 0.999586i \(0.490838\pi\)
\(14\) 6.69977 7.28787i 0.478555 0.520562i
\(15\) −5.15342 0.601827i −0.343562 0.0401218i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 5.77534 10.0032i 0.339726 0.588422i −0.644655 0.764473i \(-0.722999\pi\)
0.984381 + 0.176051i \(0.0563324\pi\)
\(18\) −9.70390 5.60255i −0.539106 0.311253i
\(19\) 13.0948 7.56027i 0.689198 0.397909i −0.114113 0.993468i \(-0.536403\pi\)
0.803312 + 0.595559i \(0.203069\pi\)
\(20\) 9.93250 + 1.15994i 0.496625 + 0.0579969i
\(21\) 1.58362 7.08910i 0.0754104 0.337576i
\(22\) 17.6410i 0.801864i
\(23\) 31.4481 18.1566i 1.36731 0.789416i 0.376725 0.926325i \(-0.377050\pi\)
0.990584 + 0.136909i \(0.0437169\pi\)
\(24\) −2.54181 1.46751i −0.105909 0.0611464i
\(25\) −17.1524 + 18.1878i −0.686096 + 0.727511i
\(26\) −0.916382 + 0.529074i −0.0352455 + 0.0203490i
\(27\) −17.5610 −0.650408
\(28\) −3.05220 + 13.6632i −0.109007 + 0.487973i
\(29\) 50.5846 1.74430 0.872148 0.489243i \(-0.162727\pi\)
0.872148 + 0.489243i \(0.162727\pi\)
\(30\) 6.73718 2.90694i 0.224573 0.0968978i
\(31\) −40.4989 23.3820i −1.30642 0.754259i −0.324919 0.945742i \(-0.605337\pi\)
−0.981496 + 0.191483i \(0.938670\pi\)
\(32\) 4.89898 + 2.82843i 0.153093 + 0.0883883i
\(33\) −6.47211 11.2100i −0.196125 0.339698i
\(34\) 16.3351i 0.480445i
\(35\) −22.8450 26.5161i −0.652715 0.757603i
\(36\) 15.8464 0.440178
\(37\) −10.1657 + 5.86915i −0.274748 + 0.158626i −0.631043 0.775748i \(-0.717373\pi\)
0.356296 + 0.934373i \(0.384040\pi\)
\(38\) −10.6918 + 18.5188i −0.281364 + 0.487337i
\(39\) −0.388211 + 0.672402i −0.00995414 + 0.0172411i
\(40\) −12.9850 + 5.60271i −0.324624 + 0.140068i
\(41\) 12.7397i 0.310724i 0.987858 + 0.155362i \(0.0496545\pi\)
−0.987858 + 0.155362i \(0.950346\pi\)
\(42\) 3.07322 + 9.80212i 0.0731719 + 0.233384i
\(43\) 26.2604i 0.610706i 0.952239 + 0.305353i \(0.0987745\pi\)
−0.952239 + 0.305353i \(0.901226\pi\)
\(44\) 12.4741 + 21.6057i 0.283502 + 0.491040i
\(45\) −23.6539 + 31.7793i −0.525641 + 0.706206i
\(46\) −25.6773 + 44.4743i −0.558201 + 0.966833i
\(47\) 20.2244 + 35.0296i 0.430305 + 0.745311i 0.996899 0.0786862i \(-0.0250725\pi\)
−0.566594 + 0.823997i \(0.691739\pi\)
\(48\) 4.15076 0.0864741
\(49\) 40.2289 27.9756i 0.820998 0.570930i
\(50\) 8.14664 34.4040i 0.162933 0.688079i
\(51\) 5.99301 + 10.3802i 0.117510 + 0.203533i
\(52\) 0.748223 1.29596i 0.0143889 0.0249223i
\(53\) 22.8390 + 13.1861i 0.430924 + 0.248794i 0.699740 0.714398i \(-0.253299\pi\)
−0.268816 + 0.963191i \(0.586632\pi\)
\(54\) 21.5078 12.4175i 0.398292 0.229954i
\(55\) −61.9494 7.23458i −1.12635 0.131538i
\(56\) −5.92320 18.8922i −0.105771 0.337361i
\(57\) 15.6904i 0.275270i
\(58\) −61.9532 + 35.7687i −1.06816 + 0.616702i
\(59\) −68.4898 39.5426i −1.16084 0.670214i −0.209338 0.977843i \(-0.567131\pi\)
−0.951506 + 0.307630i \(0.900464\pi\)
\(60\) −6.19582 + 8.32416i −0.103264 + 0.138736i
\(61\) 45.2611 26.1315i 0.741985 0.428385i −0.0808056 0.996730i \(-0.525749\pi\)
0.822791 + 0.568345i \(0.192416\pi\)
\(62\) 66.1344 1.06668
\(63\) −40.8307 37.5358i −0.648106 0.595806i
\(64\) −8.00000 −0.125000
\(65\) 1.48212 + 3.43500i 0.0228019 + 0.0528462i
\(66\) 15.8534 + 9.15294i 0.240202 + 0.138681i
\(67\) 30.0519 + 17.3504i 0.448535 + 0.258962i 0.707211 0.707002i \(-0.249953\pi\)
−0.258676 + 0.965964i \(0.583286\pi\)
\(68\) −11.5507 20.0064i −0.169863 0.294211i
\(69\) 37.6817i 0.546112i
\(70\) 46.7291 + 16.3216i 0.667558 + 0.233166i
\(71\) 14.6636 0.206530 0.103265 0.994654i \(-0.467071\pi\)
0.103265 + 0.994654i \(0.467071\pi\)
\(72\) −19.4078 + 11.2051i −0.269553 + 0.155626i
\(73\) 50.5830 87.6124i 0.692918 1.20017i −0.277959 0.960593i \(-0.589658\pi\)
0.970877 0.239577i \(-0.0770086\pi\)
\(74\) 8.30023 14.3764i 0.112165 0.194276i
\(75\) −7.44528 24.8509i −0.0992703 0.331345i
\(76\) 30.2411i 0.397909i
\(77\) 19.0367 85.2182i 0.247230 1.10673i
\(78\) 1.09803i 0.0140773i
\(79\) 17.8625 + 30.9387i 0.226107 + 0.391629i 0.956651 0.291237i \(-0.0940667\pi\)
−0.730544 + 0.682866i \(0.760733\pi\)
\(80\) 11.9416 16.0437i 0.149270 0.200546i
\(81\) −26.5430 + 45.9738i −0.327691 + 0.567577i
\(82\) −9.00833 15.6029i −0.109858 0.190279i
\(83\) 80.8664 0.974293 0.487147 0.873320i \(-0.338038\pi\)
0.487147 + 0.873320i \(0.338038\pi\)
\(84\) −10.6951 9.83200i −0.127322 0.117048i
\(85\) 57.3636 + 6.69903i 0.674865 + 0.0788122i
\(86\) −18.5689 32.1623i −0.215917 0.373980i
\(87\) −26.2455 + 45.4586i −0.301673 + 0.522512i
\(88\) −30.5551 17.6410i −0.347217 0.200466i
\(89\) −117.103 + 67.6093i −1.31576 + 0.759655i −0.983044 0.183372i \(-0.941299\pi\)
−0.332717 + 0.943027i \(0.607965\pi\)
\(90\) 6.49861 55.6473i 0.0722068 0.618304i
\(91\) −4.99769 + 1.56690i −0.0549196 + 0.0172187i
\(92\) 72.6263i 0.789416i
\(93\) 42.0252 24.2633i 0.451884 0.260895i
\(94\) −49.5394 28.6016i −0.527014 0.304272i
\(95\) 60.6472 + 45.1407i 0.638391 + 0.475166i
\(96\) −5.08362 + 2.93503i −0.0529543 + 0.0305732i
\(97\) −91.4185 −0.942459 −0.471230 0.882011i \(-0.656190\pi\)
−0.471230 + 0.882011i \(0.656190\pi\)
\(98\) −29.4884 + 62.7091i −0.300902 + 0.639889i
\(99\) −98.8347 −0.998330
\(100\) 14.3497 + 47.8966i 0.143497 + 0.478966i
\(101\) 76.2197 + 44.0054i 0.754650 + 0.435698i 0.827372 0.561655i \(-0.189835\pi\)
−0.0727215 + 0.997352i \(0.523168\pi\)
\(102\) −14.6798 8.47539i −0.143920 0.0830921i
\(103\) −56.2976 97.5104i −0.546579 0.946703i −0.998506 0.0546475i \(-0.982596\pi\)
0.451927 0.892055i \(-0.350737\pi\)
\(104\) 2.11629i 0.0203490i
\(105\) 35.6821 6.77228i 0.339830 0.0644979i
\(106\) −37.2959 −0.351848
\(107\) 2.48799 1.43644i 0.0232523 0.0134247i −0.488329 0.872660i \(-0.662393\pi\)
0.511581 + 0.859235i \(0.329060\pi\)
\(108\) −17.5610 + 30.4166i −0.162602 + 0.281635i
\(109\) 42.6084 73.8000i 0.390903 0.677064i −0.601666 0.798748i \(-0.705496\pi\)
0.992569 + 0.121684i \(0.0388294\pi\)
\(110\) 80.9878 34.9443i 0.736253 0.317676i
\(111\) 12.1807i 0.109736i
\(112\) 20.6132 + 18.9498i 0.184047 + 0.169195i
\(113\) 211.525i 1.87190i 0.352132 + 0.935950i \(0.385457\pi\)
−0.352132 + 0.935950i \(0.614543\pi\)
\(114\) −11.0948 19.2168i −0.0973228 0.168568i
\(115\) 145.649 + 108.409i 1.26651 + 0.942686i
\(116\) 50.5846 87.6150i 0.436074 0.755302i
\(117\) 2.96416 + 5.13408i 0.0253347 + 0.0438810i
\(118\) 111.843 0.947825
\(119\) −17.6275 + 78.9098i −0.148130 + 0.663108i
\(120\) 1.70223 14.5761i 0.0141852 0.121467i
\(121\) −17.3014 29.9668i −0.142986 0.247660i
\(122\) −36.9555 + 64.0088i −0.302914 + 0.524663i
\(123\) −11.4487 6.60993i −0.0930791 0.0537392i
\(124\) −80.9977 + 46.7641i −0.653208 + 0.377130i
\(125\) −117.474 42.7173i −0.939795 0.341739i
\(126\) 76.5490 + 17.1001i 0.607531 + 0.135715i
\(127\) 52.2434i 0.411366i 0.978619 + 0.205683i \(0.0659415\pi\)
−0.978619 + 0.205683i \(0.934058\pi\)
\(128\) 9.79796 5.65685i 0.0765466 0.0441942i
\(129\) −23.5993 13.6250i −0.182940 0.105621i
\(130\) −4.24414 3.15899i −0.0326472 0.0242999i
\(131\) 81.3342 46.9583i 0.620872 0.358461i −0.156336 0.987704i \(-0.549968\pi\)
0.777208 + 0.629243i \(0.216635\pi\)
\(132\) −25.8884 −0.196125
\(133\) −71.6328 + 77.9207i −0.538592 + 0.585870i
\(134\) −49.0745 −0.366227
\(135\) −34.7859 80.6206i −0.257673 0.597190i
\(136\) 28.2933 + 16.3351i 0.208039 + 0.120111i
\(137\) −101.185 58.4189i −0.738573 0.426415i 0.0829771 0.996551i \(-0.473557\pi\)
−0.821550 + 0.570136i \(0.806891\pi\)
\(138\) −26.6450 46.1505i −0.193080 0.334424i
\(139\) 67.8796i 0.488342i 0.969732 + 0.244171i \(0.0785159\pi\)
−0.969732 + 0.244171i \(0.921484\pi\)
\(140\) −68.7723 + 13.0526i −0.491231 + 0.0932330i
\(141\) −41.9732 −0.297682
\(142\) −17.9592 + 10.3687i −0.126473 + 0.0730193i
\(143\) −4.66670 + 8.08296i −0.0326343 + 0.0565242i
\(144\) 15.8464 27.4468i 0.110044 0.190603i
\(145\) 100.201 + 232.228i 0.691040 + 1.60157i
\(146\) 143.070i 0.979934i
\(147\) 4.26813 + 50.6673i 0.0290349 + 0.344676i
\(148\) 23.4766i 0.158626i
\(149\) −86.0779 149.091i −0.577704 1.00061i −0.995742 0.0921836i \(-0.970615\pi\)
0.418038 0.908430i \(-0.362718\pi\)
\(150\) 26.6908 + 25.1714i 0.177939 + 0.167809i
\(151\) 55.1081 95.4500i 0.364954 0.632119i −0.623815 0.781572i \(-0.714418\pi\)
0.988769 + 0.149453i \(0.0477514\pi\)
\(152\) 21.3837 + 37.0376i 0.140682 + 0.243668i
\(153\) 91.5184 0.598159
\(154\) 36.9432 + 117.831i 0.239891 + 0.765140i
\(155\) 27.1217 232.242i 0.174979 1.49834i
\(156\) 0.776423 + 1.34480i 0.00497707 + 0.00862054i
\(157\) 102.082 176.811i 0.650201 1.12618i −0.332873 0.942972i \(-0.608018\pi\)
0.983074 0.183210i \(-0.0586488\pi\)
\(158\) −43.7539 25.2613i −0.276924 0.159882i
\(159\) −23.6997 + 13.6830i −0.149055 + 0.0860569i
\(160\) −3.28080 + 28.0934i −0.0205050 + 0.175583i
\(161\) −172.032 + 187.133i −1.06852 + 1.16231i
\(162\) 75.0748i 0.463425i
\(163\) 84.7593 48.9358i 0.519996 0.300220i −0.216937 0.976186i \(-0.569607\pi\)
0.736933 + 0.675966i \(0.236273\pi\)
\(164\) 22.0658 + 12.7397i 0.134548 + 0.0776811i
\(165\) 38.6436 51.9181i 0.234203 0.314655i
\(166\) −99.0407 + 57.1811i −0.596630 + 0.344465i
\(167\) −97.1736 −0.581878 −0.290939 0.956742i \(-0.593968\pi\)
−0.290939 + 0.956742i \(0.593968\pi\)
\(168\) 20.0510 + 4.47915i 0.119351 + 0.0266616i
\(169\) −168.440 −0.996687
\(170\) −74.9927 + 32.3576i −0.441133 + 0.190339i
\(171\) 103.752 + 59.9015i 0.606740 + 0.350301i
\(172\) 45.4843 + 26.2604i 0.264444 + 0.152677i
\(173\) −30.9286 53.5699i −0.178778 0.309652i 0.762684 0.646771i \(-0.223881\pi\)
−0.941462 + 0.337118i \(0.890548\pi\)
\(174\) 74.2336i 0.426630i
\(175\) 76.4797 157.403i 0.437027 0.899449i
\(176\) 49.8963 0.283502
\(177\) 71.0711 41.0329i 0.401532 0.231824i
\(178\) 95.6140 165.608i 0.537157 0.930383i
\(179\) 112.111 194.181i 0.626316 1.08481i −0.361968 0.932190i \(-0.617895\pi\)
0.988285 0.152622i \(-0.0487715\pi\)
\(180\) 31.3895 + 72.7490i 0.174386 + 0.404161i
\(181\) 329.246i 1.81904i −0.415659 0.909520i \(-0.636449\pi\)
0.415659 0.909520i \(-0.363551\pi\)
\(182\) 5.01292 5.45296i 0.0275435 0.0299613i
\(183\) 54.2327i 0.296354i
\(184\) 51.3545 + 88.9486i 0.279101 + 0.483416i
\(185\) −47.0813 35.0434i −0.254494 0.189424i
\(186\) −34.3135 + 59.4327i −0.184481 + 0.319530i
\(187\) 72.0421 + 124.781i 0.385252 + 0.667275i
\(188\) 80.8974 0.430305
\(189\) 117.297 36.7757i 0.620620 0.194581i
\(190\) −106.197 12.4019i −0.558930 0.0652730i
\(191\) 33.1175 + 57.3612i 0.173390 + 0.300320i 0.939603 0.342266i \(-0.111195\pi\)
−0.766213 + 0.642587i \(0.777861\pi\)
\(192\) 4.15076 7.18932i 0.0216185 0.0374444i
\(193\) −219.500 126.728i −1.13730 0.656623i −0.191543 0.981484i \(-0.561349\pi\)
−0.945762 + 0.324861i \(0.894682\pi\)
\(194\) 111.964 64.6427i 0.577136 0.333210i
\(195\) −3.85591 0.450301i −0.0197739 0.00230924i
\(196\) −8.22623 97.6541i −0.0419706 0.498235i
\(197\) 191.330i 0.971217i −0.874176 0.485608i \(-0.838598\pi\)
0.874176 0.485608i \(-0.161402\pi\)
\(198\) 121.047 69.8867i 0.611350 0.352963i
\(199\) 195.609 + 112.935i 0.982960 + 0.567512i 0.903162 0.429299i \(-0.141239\pi\)
0.0797973 + 0.996811i \(0.474573\pi\)
\(200\) −51.4428 48.5143i −0.257214 0.242572i
\(201\) −31.1845 + 18.0044i −0.155147 + 0.0895740i
\(202\) −124.466 −0.616169
\(203\) −337.875 + 105.933i −1.66441 + 0.521835i
\(204\) 23.9720 0.117510
\(205\) −58.4865 + 25.2355i −0.285300 + 0.123100i
\(206\) 137.900 + 79.6169i 0.669420 + 0.386490i
\(207\) 249.170 + 143.858i 1.20372 + 0.694967i
\(208\) −1.49645 2.59192i −0.00719445 0.0124612i
\(209\) 188.615i 0.902463i
\(210\) −38.9128 + 33.5254i −0.185299 + 0.159645i
\(211\) −186.816 −0.885386 −0.442693 0.896673i \(-0.645977\pi\)
−0.442693 + 0.896673i \(0.645977\pi\)
\(212\) 45.6779 26.3722i 0.215462 0.124397i
\(213\) −7.60814 + 13.1777i −0.0357190 + 0.0618670i
\(214\) −2.03144 + 3.51855i −0.00949270 + 0.0164418i
\(215\) −120.558 + 52.0180i −0.560736 + 0.241944i
\(216\) 49.6701i 0.229954i
\(217\) 319.474 + 71.3667i 1.47223 + 0.328879i
\(218\) 120.515i 0.552821i
\(219\) 52.4894 + 90.9144i 0.239678 + 0.415134i
\(220\) −74.4801 + 100.065i −0.338546 + 0.454841i
\(221\) 4.32124 7.48461i 0.0195531 0.0338670i
\(222\) 8.61306 + 14.9183i 0.0387976 + 0.0671994i
\(223\) 194.106 0.870431 0.435215 0.900326i \(-0.356672\pi\)
0.435215 + 0.900326i \(0.356672\pi\)
\(224\) −38.6455 8.63293i −0.172524 0.0385399i
\(225\) −192.750 45.6419i −0.856666 0.202853i
\(226\) −149.571 259.064i −0.661817 1.14630i
\(227\) −175.878 + 304.630i −0.774795 + 1.34198i 0.160115 + 0.987098i \(0.448814\pi\)
−0.934910 + 0.354886i \(0.884520\pi\)
\(228\) 27.1766 + 15.6904i 0.119196 + 0.0688176i
\(229\) 162.993 94.1041i 0.711760 0.410935i −0.0999523 0.994992i \(-0.531869\pi\)
0.811712 + 0.584057i \(0.198536\pi\)
\(230\) −255.039 29.7840i −1.10887 0.129496i
\(231\) 66.7055 + 61.3226i 0.288768 + 0.265466i
\(232\) 143.075i 0.616702i
\(233\) −272.001 + 157.040i −1.16739 + 0.673991i −0.953063 0.302772i \(-0.902088\pi\)
−0.214324 + 0.976763i \(0.568755\pi\)
\(234\) −7.26068 4.19196i −0.0310286 0.0179143i
\(235\) −120.755 + 162.236i −0.513852 + 0.690367i
\(236\) −136.980 + 79.0852i −0.580422 + 0.335107i
\(237\) −37.0714 −0.156419
\(238\) −34.2085 109.109i −0.143733 0.458441i
\(239\) 336.269 1.40699 0.703493 0.710703i \(-0.251623\pi\)
0.703493 + 0.710703i \(0.251623\pi\)
\(240\) 8.22205 + 19.0556i 0.0342586 + 0.0793985i
\(241\) −331.276 191.262i −1.37459 0.793619i −0.383086 0.923713i \(-0.625139\pi\)
−0.991502 + 0.130094i \(0.958472\pi\)
\(242\) 42.3795 + 24.4678i 0.175122 + 0.101107i
\(243\) −106.568 184.581i −0.438551 0.759593i
\(244\) 104.526i 0.428385i
\(245\) 208.120 + 129.271i 0.849471 + 0.527635i
\(246\) 18.6957 0.0759988
\(247\) 9.79781 5.65677i 0.0396672 0.0229019i
\(248\) 66.1344 114.548i 0.266671 0.461887i
\(249\) −41.9571 + 72.6718i −0.168502 + 0.291855i
\(250\) 174.082 30.7491i 0.696327 0.122996i
\(251\) 302.072i 1.20347i 0.798695 + 0.601736i \(0.205524\pi\)
−0.798695 + 0.601736i \(0.794476\pi\)
\(252\) −105.845 + 33.1850i −0.420018 + 0.131687i
\(253\) 452.973i 1.79041i
\(254\) −36.9417 63.9849i −0.145440 0.251909i
\(255\) −35.7830 + 48.0749i −0.140325 + 0.188529i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −102.339 177.257i −0.398208 0.689717i 0.595297 0.803506i \(-0.297034\pi\)
−0.993505 + 0.113789i \(0.963701\pi\)
\(258\) 38.5375 0.149370
\(259\) 55.6096 60.4911i 0.214709 0.233556i
\(260\) 7.43173 + 0.867892i 0.0285836 + 0.00333805i
\(261\) 200.396 + 347.096i 0.767800 + 1.32987i
\(262\) −66.4091 + 115.024i −0.253470 + 0.439023i
\(263\) 84.3776 + 48.7155i 0.320828 + 0.185230i 0.651761 0.758424i \(-0.274030\pi\)
−0.330934 + 0.943654i \(0.607364\pi\)
\(264\) 31.7067 18.3059i 0.120101 0.0693405i
\(265\) −15.2950 + 130.971i −0.0577171 + 0.494229i
\(266\) 32.6336 146.085i 0.122683 0.549192i
\(267\) 140.315i 0.525524i
\(268\) 60.1037 34.7009i 0.224268 0.129481i
\(269\) 83.6084 + 48.2713i 0.310812 + 0.179447i 0.647290 0.762244i \(-0.275902\pi\)
−0.336478 + 0.941691i \(0.609236\pi\)
\(270\) 99.6112 + 74.1423i 0.368930 + 0.274601i
\(271\) −72.4056 + 41.8034i −0.267179 + 0.154256i −0.627605 0.778532i \(-0.715965\pi\)
0.360426 + 0.932788i \(0.382631\pi\)
\(272\) −46.2027 −0.169863
\(273\) 1.18490 5.30423i 0.00434029 0.0194294i
\(274\) 165.234 0.603043
\(275\) −89.4998 298.733i −0.325454 1.08630i
\(276\) 65.2667 + 37.6817i 0.236473 + 0.136528i
\(277\) −334.055 192.867i −1.20598 0.696271i −0.244098 0.969750i \(-0.578492\pi\)
−0.961878 + 0.273480i \(0.911825\pi\)
\(278\) −47.9981 83.1352i −0.172655 0.299047i
\(279\) 370.521i 1.32803i
\(280\) 74.9989 64.6155i 0.267853 0.230770i
\(281\) 243.459 0.866402 0.433201 0.901297i \(-0.357384\pi\)
0.433201 + 0.901297i \(0.357384\pi\)
\(282\) 51.4064 29.6795i 0.182292 0.105247i
\(283\) 51.4153 89.0540i 0.181680 0.314678i −0.760773 0.649018i \(-0.775180\pi\)
0.942453 + 0.334340i \(0.108513\pi\)
\(284\) 14.6636 25.3981i 0.0516324 0.0894300i
\(285\) −72.0329 + 31.0805i −0.252747 + 0.109054i
\(286\) 13.1994i 0.0461518i
\(287\) −26.6791 85.0936i −0.0929585 0.296494i
\(288\) 44.8204i 0.155626i
\(289\) 77.7909 + 134.738i 0.269173 + 0.466221i
\(290\) −286.930 213.567i −0.989415 0.736438i
\(291\) 47.4320 82.1547i 0.162997 0.282318i
\(292\) −101.166 175.225i −0.346459 0.600085i
\(293\) 440.610 1.50379 0.751894 0.659284i \(-0.229141\pi\)
0.751894 + 0.659284i \(0.229141\pi\)
\(294\) −41.0546 59.0365i −0.139641 0.200804i
\(295\) 45.8670 392.757i 0.155481 1.33138i
\(296\) −16.6005 28.7528i −0.0560827 0.0971380i
\(297\) 109.529 189.709i 0.368784 0.638752i
\(298\) 210.847 + 121.733i 0.707540 + 0.408499i
\(299\) 23.5302 13.5852i 0.0786963 0.0454353i
\(300\) −50.4883 11.9553i −0.168294 0.0398510i
\(301\) −54.9936 175.404i −0.182703 0.582736i
\(302\) 155.869i 0.516123i
\(303\) −79.0923 + 45.6640i −0.261031 + 0.150706i
\(304\) −52.3791 30.2411i −0.172300 0.0994772i
\(305\) 209.622 + 156.026i 0.687286 + 0.511559i
\(306\) −112.087 + 64.7133i −0.366296 + 0.211481i
\(307\) 247.192 0.805185 0.402592 0.915379i \(-0.368109\pi\)
0.402592 + 0.915379i \(0.368109\pi\)
\(308\) −128.566 118.191i −0.417420 0.383736i
\(309\) 116.839 0.378119
\(310\) 131.003 + 303.615i 0.422589 + 0.979404i
\(311\) −369.117 213.110i −1.18687 0.685240i −0.229276 0.973361i \(-0.573636\pi\)
−0.957594 + 0.288121i \(0.906969\pi\)
\(312\) −1.90184 1.09803i −0.00609564 0.00351932i
\(313\) −66.9870 116.025i −0.214016 0.370686i 0.738952 0.673758i \(-0.235321\pi\)
−0.952968 + 0.303072i \(0.901988\pi\)
\(314\) 288.730i 0.919523i
\(315\) 91.4426 261.802i 0.290294 0.831117i
\(316\) 71.4499 0.226107
\(317\) −278.831 + 160.983i −0.879593 + 0.507833i −0.870524 0.492126i \(-0.836220\pi\)
−0.00906850 + 0.999959i \(0.502887\pi\)
\(318\) 19.3508 33.5165i 0.0608514 0.105398i
\(319\) −315.498 + 546.459i −0.989022 + 1.71304i
\(320\) −15.8469 36.7271i −0.0495214 0.114772i
\(321\) 2.98116i 0.00928711i
\(322\) 78.3721 350.834i 0.243392 1.08955i
\(323\) 174.652i 0.540720i
\(324\) 53.0859 + 91.9475i 0.163845 + 0.283789i
\(325\) −12.8338 + 13.6085i −0.0394887 + 0.0418723i
\(326\) −69.2057 + 119.868i −0.212287 + 0.367693i
\(327\) 44.2143 + 76.5814i 0.135212 + 0.234194i
\(328\) −36.0333 −0.109858
\(329\) −208.445 191.624i −0.633570 0.582443i
\(330\) −10.6168 + 90.9116i −0.0321723 + 0.275490i
\(331\) 117.402 + 203.347i 0.354690 + 0.614342i 0.987065 0.160321i \(-0.0512530\pi\)
−0.632375 + 0.774663i \(0.717920\pi\)
\(332\) 80.8664 140.065i 0.243573 0.421881i
\(333\) −80.5446 46.5025i −0.241876 0.139647i
\(334\) 119.013 68.7121i 0.356326 0.205725i
\(335\) −20.1254 + 172.333i −0.0600759 + 0.514428i
\(336\) −27.7246 + 8.69238i −0.0825136 + 0.0258702i
\(337\) 217.706i 0.646012i −0.946397 0.323006i \(-0.895307\pi\)
0.946397 0.323006i \(-0.104693\pi\)
\(338\) 206.296 119.105i 0.610344 0.352382i
\(339\) −190.090 109.748i −0.560737 0.323742i
\(340\) 68.9666 92.6576i 0.202843 0.272522i
\(341\) 505.186 291.669i 1.48148 0.855335i
\(342\) −169.427 −0.495401
\(343\) −210.120 + 271.106i −0.612594 + 0.790398i
\(344\) −74.2755 −0.215917
\(345\) −172.992 + 74.6421i −0.501427 + 0.216354i
\(346\) 75.7593 + 43.7396i 0.218957 + 0.126415i
\(347\) 161.281 + 93.1157i 0.464787 + 0.268345i 0.714055 0.700090i \(-0.246857\pi\)
−0.249268 + 0.968435i \(0.580190\pi\)
\(348\) 52.4911 + 90.9172i 0.150836 + 0.261256i
\(349\) 81.7368i 0.234203i −0.993120 0.117101i \(-0.962640\pi\)
0.993120 0.117101i \(-0.0373603\pi\)
\(350\) 17.6330 + 246.858i 0.0503800 + 0.705310i
\(351\) −13.1396 −0.0374347
\(352\) −61.1103 + 35.2820i −0.173609 + 0.100233i
\(353\) 53.9682 93.4757i 0.152884 0.264804i −0.779402 0.626524i \(-0.784477\pi\)
0.932287 + 0.361720i \(0.117810\pi\)
\(354\) −58.0293 + 100.510i −0.163925 + 0.283926i
\(355\) 29.0465 + 67.3189i 0.0818212 + 0.189631i
\(356\) 270.437i 0.759655i
\(357\) −61.7676 56.7832i −0.173018 0.159056i
\(358\) 317.097i 0.885745i
\(359\) −301.930 522.957i −0.841029 1.45671i −0.889025 0.457858i \(-0.848617\pi\)
0.0479959 0.998848i \(-0.484717\pi\)
\(360\) −89.8854 66.9032i −0.249682 0.185842i
\(361\) −66.1847 + 114.635i −0.183337 + 0.317549i
\(362\) 232.812 + 403.243i 0.643128 + 1.11393i
\(363\) 35.9069 0.0989169
\(364\) −2.28373 + 10.2232i −0.00627398 + 0.0280856i
\(365\) 502.416 + 58.6732i 1.37648 + 0.160748i
\(366\) −38.3483 66.4213i −0.104777 0.181479i
\(367\) −271.765 + 470.710i −0.740503 + 1.28259i 0.211763 + 0.977321i \(0.432080\pi\)
−0.952266 + 0.305268i \(0.901254\pi\)
\(368\) −125.792 72.6263i −0.341827 0.197354i
\(369\) −87.4159 + 50.4696i −0.236900 + 0.136774i
\(370\) 82.4421 + 9.62775i 0.222816 + 0.0260210i
\(371\) −180.165 40.2466i −0.485619 0.108481i
\(372\) 97.0531i 0.260895i
\(373\) 72.1316 41.6452i 0.193382 0.111649i −0.400183 0.916435i \(-0.631053\pi\)
0.593565 + 0.804786i \(0.297720\pi\)
\(374\) −176.466 101.883i −0.471835 0.272414i
\(375\) 99.3395 83.4065i 0.264905 0.222417i
\(376\) −99.0787 + 57.2031i −0.263507 + 0.152136i
\(377\) 37.8485 0.100394
\(378\) −117.655 + 127.983i −0.311256 + 0.338578i
\(379\) −30.4409 −0.0803189 −0.0401595 0.999193i \(-0.512787\pi\)
−0.0401595 + 0.999193i \(0.512787\pi\)
\(380\) 138.833 59.9032i 0.365351 0.157640i
\(381\) −46.9493 27.1062i −0.123227 0.0711449i
\(382\) −81.1209 46.8352i −0.212358 0.122605i
\(383\) −147.759 255.925i −0.385793 0.668213i 0.606086 0.795399i \(-0.292739\pi\)
−0.991879 + 0.127186i \(0.959405\pi\)
\(384\) 11.7401i 0.0305732i
\(385\) 428.936 81.4098i 1.11412 0.211454i
\(386\) 358.442 0.928605
\(387\) −180.191 + 104.033i −0.465609 + 0.268819i
\(388\) −91.4185 + 158.342i −0.235615 + 0.408097i
\(389\) −214.388 + 371.330i −0.551125 + 0.954577i 0.447069 + 0.894500i \(0.352468\pi\)
−0.998194 + 0.0600771i \(0.980865\pi\)
\(390\) 5.04092 2.17504i 0.0129254 0.00557702i
\(391\) 419.441i 1.07274i
\(392\) 79.1269 + 113.785i 0.201854 + 0.290267i
\(393\) 97.4563i 0.247980i
\(394\) 135.291 + 234.330i 0.343377 + 0.594746i
\(395\) −106.653 + 143.290i −0.270007 + 0.362759i
\(396\) −98.8347 + 171.187i −0.249582 + 0.432290i
\(397\) 160.392 + 277.807i 0.404009 + 0.699765i 0.994206 0.107495i \(-0.0342830\pi\)
−0.590196 + 0.807260i \(0.700950\pi\)
\(398\) −319.428 −0.802583
\(399\) −32.8584 104.803i −0.0823518 0.262663i
\(400\) 97.3091 + 23.0422i 0.243273 + 0.0576054i
\(401\) 118.854 + 205.861i 0.296394 + 0.513370i 0.975308 0.220848i \(-0.0708824\pi\)
−0.678914 + 0.734218i \(0.737549\pi\)
\(402\) 25.4620 44.1015i 0.0633384 0.109705i
\(403\) −30.3022 17.4950i −0.0751915 0.0434119i
\(404\) 152.439 88.0109i 0.377325 0.217849i
\(405\) −263.638 30.7882i −0.650958 0.0760202i
\(406\) 338.905 368.654i 0.834741 0.908015i
\(407\) 146.425i 0.359765i
\(408\) −29.3596 + 16.9508i −0.0719598 + 0.0415460i
\(409\) 171.560 + 99.0500i 0.419461 + 0.242176i 0.694847 0.719158i \(-0.255472\pi\)
−0.275386 + 0.961334i \(0.588806\pi\)
\(410\) 53.7868 72.2633i 0.131187 0.176252i
\(411\) 104.998 60.6207i 0.255470 0.147496i
\(412\) −225.191 −0.546579
\(413\) 540.280 + 120.692i 1.30818 + 0.292232i
\(414\) −406.892 −0.982831
\(415\) 160.185 + 371.248i 0.385987 + 0.894573i
\(416\) 3.66553 + 2.11629i 0.00881137 + 0.00508725i
\(417\) −61.0010 35.2189i −0.146285 0.0844579i
\(418\) −133.371 231.005i −0.319069 0.552644i
\(419\) 56.6448i 0.135190i −0.997713 0.0675952i \(-0.978467\pi\)
0.997713 0.0675952i \(-0.0215326\pi\)
\(420\) 23.9522 68.5755i 0.0570290 0.163275i
\(421\) −220.350 −0.523396 −0.261698 0.965150i \(-0.584282\pi\)
−0.261698 + 0.965150i \(0.584282\pi\)
\(422\) 228.802 132.099i 0.542186 0.313031i
\(423\) −160.242 + 277.547i −0.378822 + 0.656139i
\(424\) −37.2959 + 64.5983i −0.0879619 + 0.152355i
\(425\) 82.8745 + 276.619i 0.194999 + 0.650869i
\(426\) 21.5191i 0.0505142i
\(427\) −247.593 + 269.327i −0.579844 + 0.630743i
\(428\) 5.74577i 0.0134247i
\(429\) −4.84258 8.38760i −0.0112881 0.0195515i
\(430\) 110.871 148.956i 0.257839 0.346410i
\(431\) 136.661 236.704i 0.317079 0.549197i −0.662798 0.748798i \(-0.730631\pi\)
0.979877 + 0.199601i \(0.0639646\pi\)
\(432\) 35.1220 + 60.8332i 0.0813010 + 0.140818i
\(433\) −201.926 −0.466342 −0.233171 0.972436i \(-0.574910\pi\)
−0.233171 + 0.972436i \(0.574910\pi\)
\(434\) −441.738 + 138.496i −1.01783 + 0.319116i
\(435\) −260.684 30.4432i −0.599273 0.0699843i
\(436\) −85.2169 147.600i −0.195452 0.338532i
\(437\) 274.537 475.512i 0.628231 1.08813i
\(438\) −128.572 74.2313i −0.293544 0.169478i
\(439\) −527.183 + 304.370i −1.20087 + 0.693325i −0.960749 0.277418i \(-0.910521\pi\)
−0.240124 + 0.970742i \(0.577188\pi\)
\(440\) 20.4625 175.219i 0.0465056 0.398226i
\(441\) 351.331 + 165.210i 0.796669 + 0.374627i
\(442\) 12.2223i 0.0276523i
\(443\) 674.954 389.685i 1.52360 0.879650i 0.523988 0.851726i \(-0.324444\pi\)
0.999610 0.0279237i \(-0.00888954\pi\)
\(444\) −21.0976 12.1807i −0.0475171 0.0274340i
\(445\) −542.350 403.680i −1.21876 0.907147i
\(446\) −237.730 + 137.254i −0.533028 + 0.307744i
\(447\) 178.644 0.399652
\(448\) 53.4352 16.7533i 0.119275 0.0373959i
\(449\) −8.03323 −0.0178914 −0.00894569 0.999960i \(-0.502848\pi\)
−0.00894569 + 0.999960i \(0.502848\pi\)
\(450\) 268.343 80.3950i 0.596318 0.178656i
\(451\) −137.625 79.4580i −0.305156 0.176182i
\(452\) 366.372 + 211.525i 0.810557 + 0.467975i
\(453\) 57.1850 + 99.0474i 0.126236 + 0.218648i
\(454\) 497.459i 1.09573i
\(455\) −17.0932 19.8400i −0.0375674 0.0436043i
\(456\) −44.3792 −0.0973228
\(457\) 432.413 249.654i 0.946200 0.546289i 0.0543016 0.998525i \(-0.482707\pi\)
0.891898 + 0.452236i \(0.149373\pi\)
\(458\) −133.083 + 230.507i −0.290575 + 0.503290i
\(459\) −101.421 + 175.666i −0.220960 + 0.382715i
\(460\) 333.419 143.862i 0.724823 0.312744i
\(461\) 690.386i 1.49758i 0.662805 + 0.748792i \(0.269366\pi\)
−0.662805 + 0.748792i \(0.730634\pi\)
\(462\) −125.059 27.9366i −0.270690 0.0604689i
\(463\) 615.045i 1.32839i −0.747559 0.664195i \(-0.768774\pi\)
0.747559 0.664195i \(-0.231226\pi\)
\(464\) −101.169 175.230i −0.218037 0.377651i
\(465\) 194.636 + 144.871i 0.418572 + 0.311550i
\(466\) 222.088 384.668i 0.476584 0.825467i
\(467\) −23.9340 41.4549i −0.0512506 0.0887686i 0.839262 0.543727i \(-0.182987\pi\)
−0.890513 + 0.454959i \(0.849654\pi\)
\(468\) 11.8566 0.0253347
\(469\) −237.063 52.9570i −0.505465 0.112915i
\(470\) 33.1760 284.085i 0.0705873 0.604436i
\(471\) 105.929 + 183.474i 0.224902 + 0.389542i
\(472\) 111.843 193.718i 0.236956 0.410420i
\(473\) −283.687 163.787i −0.599762 0.346273i
\(474\) 45.4030 26.2134i 0.0957869 0.0553026i
\(475\) −87.1025 + 367.841i −0.183374 + 0.774403i
\(476\) 119.048 + 109.442i 0.250102 + 0.229919i
\(477\) 208.952i 0.438054i
\(478\) −411.844 + 237.778i −0.861599 + 0.497444i
\(479\) 116.614 + 67.3269i 0.243452 + 0.140557i 0.616762 0.787149i \(-0.288444\pi\)
−0.373310 + 0.927707i \(0.621777\pi\)
\(480\) −23.5443 17.5244i −0.0490506 0.0365092i
\(481\) −7.60619 + 4.39143i −0.0158133 + 0.00912980i
\(482\) 540.971 1.12235
\(483\) −78.9119 251.692i −0.163379 0.521101i
\(484\) −69.2054 −0.142986
\(485\) −181.087 419.692i −0.373375 0.865344i
\(486\) 261.037 + 150.710i 0.537113 + 0.310103i
\(487\) 386.964 + 223.414i 0.794588 + 0.458755i 0.841575 0.540140i \(-0.181629\pi\)
−0.0469875 + 0.998895i \(0.514962\pi\)
\(488\) 73.9110 + 128.018i 0.151457 + 0.262331i
\(489\) 101.560i 0.207690i
\(490\) −346.303 11.1602i −0.706740 0.0227758i
\(491\) −119.125 −0.242617 −0.121309 0.992615i \(-0.538709\pi\)
−0.121309 + 0.992615i \(0.538709\pi\)
\(492\) −22.8975 + 13.2199i −0.0465395 + 0.0268696i
\(493\) 292.143 506.007i 0.592582 1.02638i
\(494\) −7.99988 + 13.8562i −0.0161941 + 0.0280490i
\(495\) −195.777 453.738i −0.395510 0.916643i
\(496\) 187.056i 0.377130i
\(497\) −97.9442 + 30.7081i −0.197071 + 0.0617869i
\(498\) 118.673i 0.238298i
\(499\) −42.1210 72.9558i −0.0844109 0.146204i 0.820729 0.571318i \(-0.193568\pi\)
−0.905140 + 0.425114i \(0.860234\pi\)
\(500\) −191.463 + 160.754i −0.382926 + 0.321508i
\(501\) 50.4180 87.3265i 0.100635 0.174304i
\(502\) −213.597 369.961i −0.425492 0.736973i
\(503\) 388.428 0.772223 0.386111 0.922452i \(-0.373818\pi\)
0.386111 + 0.922452i \(0.373818\pi\)
\(504\) 106.167 115.487i 0.210649 0.229140i
\(505\) −51.0436 + 437.084i −0.101076 + 0.865513i
\(506\) −320.300 554.776i −0.633004 1.09640i
\(507\) 87.3943 151.371i 0.172375 0.298563i
\(508\) 90.4883 + 52.2434i 0.178127 + 0.102841i
\(509\) 68.8518 39.7516i 0.135269 0.0780975i −0.430838 0.902429i \(-0.641782\pi\)
0.566107 + 0.824332i \(0.308449\pi\)
\(510\) 9.83093 84.1818i 0.0192763 0.165062i
\(511\) −154.390 + 691.128i −0.302132 + 1.35250i
\(512\) 22.6274i 0.0441942i
\(513\) −229.957 + 132.766i −0.448260 + 0.258803i
\(514\) 250.680 + 144.730i 0.487703 + 0.281576i
\(515\) 336.141 451.610i 0.652701 0.876913i
\(516\) −47.1986 + 27.2501i −0.0914701 + 0.0528103i
\(517\) −504.561 −0.975939
\(518\) −25.3340 + 113.408i −0.0489073 + 0.218934i
\(519\) 64.1885 0.123677
\(520\) −9.71566 + 4.19208i −0.0186840 + 0.00806169i
\(521\) 69.7252 + 40.2559i 0.133830 + 0.0772666i 0.565420 0.824803i \(-0.308714\pi\)
−0.431590 + 0.902070i \(0.642047\pi\)
\(522\) −490.868 283.403i −0.940359 0.542917i
\(523\) 406.182 + 703.527i 0.776638 + 1.34518i 0.933869 + 0.357615i \(0.116410\pi\)
−0.157231 + 0.987562i \(0.550257\pi\)
\(524\) 187.833i 0.358461i
\(525\) 101.772 + 150.398i 0.193851 + 0.286472i
\(526\) −137.788 −0.261955
\(527\) −467.789 + 270.078i −0.887646 + 0.512483i
\(528\) −25.8884 + 44.8401i −0.0490311 + 0.0849244i
\(529\) 394.822 683.851i 0.746355 1.29272i
\(530\) −73.8778 171.221i −0.139392 0.323058i
\(531\) 626.608i 1.18005i
\(532\) 63.3299 + 201.992i 0.119041 + 0.379685i
\(533\) 9.53214i 0.0178839i
\(534\) 99.2176 + 171.850i 0.185801 + 0.321816i
\(535\) 11.5229 + 8.57669i 0.0215381 + 0.0160312i
\(536\) −49.0745 + 84.9995i −0.0915569 + 0.158581i
\(537\) 116.336 + 201.500i 0.216641 + 0.375233i
\(538\) −136.532 −0.253777
\(539\) 51.3073 + 609.073i 0.0951898 + 1.13001i
\(540\) −174.425 20.3697i −0.323009 0.0377217i
\(541\) −141.664 245.370i −0.261857 0.453549i 0.704879 0.709328i \(-0.251001\pi\)
−0.966735 + 0.255779i \(0.917668\pi\)
\(542\) 59.1190 102.397i 0.109076 0.188924i
\(543\) 295.882 + 170.828i 0.544903 + 0.314600i
\(544\) 56.5865 32.6703i 0.104019 0.0600556i
\(545\) 423.208 + 49.4231i 0.776529 + 0.0906847i
\(546\) 2.29945 + 7.33417i 0.00421146 + 0.0134326i
\(547\) 51.6110i 0.0943529i 0.998887 + 0.0471764i \(0.0150223\pi\)
−0.998887 + 0.0471764i \(0.984978\pi\)
\(548\) −202.369 + 116.838i −0.369287 + 0.213208i
\(549\) 358.613 + 207.045i 0.653211 + 0.377131i
\(550\) 320.851 + 302.586i 0.583365 + 0.550156i
\(551\) 662.393 382.433i 1.20217 0.694070i
\(552\) −106.580 −0.193080
\(553\) −184.101 169.245i −0.332914 0.306049i
\(554\) 545.510 0.984675
\(555\) 55.9202 24.1282i 0.100757 0.0434743i
\(556\) 117.571 + 67.8796i 0.211458 + 0.122086i
\(557\) −204.171 117.878i −0.366555 0.211631i 0.305397 0.952225i \(-0.401211\pi\)
−0.671953 + 0.740594i \(0.734544\pi\)
\(558\) 261.998 + 453.794i 0.469530 + 0.813251i
\(559\) 19.6486i 0.0351496i
\(560\) −46.1645 + 132.170i −0.0824366 + 0.236017i
\(561\) −149.515 −0.266514
\(562\) −298.175 + 172.151i −0.530561 + 0.306319i
\(563\) −132.816 + 230.044i −0.235907 + 0.408604i −0.959536 0.281586i \(-0.909140\pi\)
0.723629 + 0.690190i \(0.242473\pi\)
\(564\) −41.9732 + 72.6997i −0.0744205 + 0.128900i
\(565\) −971.085 + 419.000i −1.71874 + 0.741593i
\(566\) 145.425i 0.256934i
\(567\) 81.0145 362.663i 0.142883 0.639617i
\(568\) 41.4750i 0.0730193i
\(569\) 13.0381 + 22.5826i 0.0229141 + 0.0396883i 0.877255 0.480025i \(-0.159372\pi\)
−0.854341 + 0.519713i \(0.826039\pi\)
\(570\) 66.2447 89.0006i 0.116219 0.156141i
\(571\) −147.312 + 255.152i −0.257989 + 0.446851i −0.965703 0.259649i \(-0.916393\pi\)
0.707714 + 0.706499i \(0.249727\pi\)
\(572\) 9.33340 + 16.1659i 0.0163171 + 0.0282621i
\(573\) −68.7313 −0.119950
\(574\) 92.8454 + 85.3530i 0.161751 + 0.148699i
\(575\) −209.183 + 883.399i −0.363797 + 1.53635i
\(576\) −31.6928 54.8935i −0.0550222 0.0953013i
\(577\) −287.549 + 498.049i −0.498351 + 0.863170i −0.999998 0.00190285i \(-0.999394\pi\)
0.501647 + 0.865072i \(0.332728\pi\)
\(578\) −190.548 110.013i −0.329668 0.190334i
\(579\) 227.773 131.505i 0.393389 0.227124i
\(580\) 502.431 + 58.6750i 0.866261 + 0.101164i
\(581\) −540.139 + 169.348i −0.929672 + 0.291476i
\(582\) 134.158i 0.230512i
\(583\) −284.895 + 164.484i −0.488671 + 0.282134i
\(584\) 247.805 + 143.070i 0.424324 + 0.244984i
\(585\) −17.6984 + 23.7780i −0.0302536 + 0.0406461i
\(586\) −539.635 + 311.558i −0.920878 + 0.531669i
\(587\) −509.360 −0.867734 −0.433867 0.900977i \(-0.642851\pi\)
−0.433867 + 0.900977i \(0.642851\pi\)
\(588\) 92.0265 + 43.2747i 0.156508 + 0.0735964i
\(589\) −707.098 −1.20051
\(590\) 221.546 + 513.460i 0.375501 + 0.870271i
\(591\) 171.941 + 99.2704i 0.290933 + 0.167970i
\(592\) 40.6627 + 23.4766i 0.0686869 + 0.0396564i
\(593\) −107.373 185.975i −0.181067 0.313618i 0.761177 0.648544i \(-0.224622\pi\)
−0.942244 + 0.334926i \(0.891289\pi\)
\(594\) 309.794i 0.521539i
\(595\) −397.183 + 75.3833i −0.667535 + 0.126695i
\(596\) −344.312 −0.577704
\(597\) −202.981 + 117.191i −0.340002 + 0.196300i
\(598\) −19.2123 + 33.2767i −0.0321276 + 0.0556467i
\(599\) 477.250 826.621i 0.796744 1.38000i −0.124982 0.992159i \(-0.539887\pi\)
0.921726 0.387842i \(-0.126779\pi\)
\(600\) 70.2889 21.0584i 0.117148 0.0350974i
\(601\) 851.298i 1.41647i −0.705977 0.708234i \(-0.749492\pi\)
0.705977 0.708234i \(-0.250508\pi\)
\(602\) 191.382 + 175.938i 0.317911 + 0.292256i
\(603\) 274.942i 0.455957i
\(604\) −110.216 190.900i −0.182477 0.316059i
\(605\) 103.303 138.788i 0.170748 0.229402i
\(606\) 64.5786 111.853i 0.106565 0.184577i
\(607\) −525.284 909.818i −0.865377 1.49888i −0.866673 0.498877i \(-0.833746\pi\)
0.00129613 0.999999i \(-0.499587\pi\)
\(608\) 85.5347 0.140682
\(609\) 80.1066 358.599i 0.131538 0.588832i
\(610\) −367.061 42.8661i −0.601739 0.0702723i
\(611\) 15.1323 + 26.2100i 0.0247665 + 0.0428968i
\(612\) 91.5184 158.514i 0.149540 0.259011i
\(613\) 876.517 + 506.057i 1.42988 + 0.825542i 0.997111 0.0759624i \(-0.0242029\pi\)
0.432770 + 0.901504i \(0.357536\pi\)
\(614\) −302.747 + 174.791i −0.493073 + 0.284676i
\(615\) 7.66710 65.6531i 0.0124668 0.106753i
\(616\) 241.033 + 53.8439i 0.391288 + 0.0874090i
\(617\) 706.409i 1.14491i 0.819937 + 0.572454i \(0.194009\pi\)
−0.819937 + 0.572454i \(0.805991\pi\)
\(618\) −143.098 + 82.6176i −0.231550 + 0.133685i
\(619\) 681.409 + 393.412i 1.10082 + 0.635560i 0.936437 0.350836i \(-0.114103\pi\)
0.164385 + 0.986396i \(0.447436\pi\)
\(620\) −375.133 279.218i −0.605054 0.450352i
\(621\) −552.261 + 318.848i −0.889309 + 0.513443i
\(622\) 602.765 0.969076
\(623\) 640.591 696.823i 1.02824 1.11850i
\(624\) 3.10569 0.00497707
\(625\) −36.5896 623.928i −0.0585434 0.998285i
\(626\) 164.084 + 94.7339i 0.262115 + 0.151332i
\(627\) −169.502 97.8617i −0.270337 0.156079i
\(628\) −204.163 353.621i −0.325101 0.563091i
\(629\) 135.585i 0.215557i
\(630\) 73.1280 + 385.300i 0.116076 + 0.611588i
\(631\) −218.755 −0.346680 −0.173340 0.984862i \(-0.555456\pi\)
−0.173340 + 0.984862i \(0.555456\pi\)
\(632\) −87.5079 + 50.5227i −0.138462 + 0.0799410i
\(633\) 96.9287 167.885i 0.153126 0.265222i
\(634\) 227.664 394.326i 0.359092 0.621966i
\(635\) −239.843 + 103.487i −0.377706 + 0.162971i
\(636\) 54.7322i 0.0860569i
\(637\) 30.1002 20.9320i 0.0472531 0.0328603i
\(638\) 892.363i 1.39869i
\(639\) 58.0914 + 100.617i 0.0909098 + 0.157460i
\(640\) 45.3783 + 33.7759i 0.0709036 + 0.0527748i
\(641\) 304.336 527.125i 0.474783 0.822348i −0.524800 0.851225i \(-0.675860\pi\)
0.999583 + 0.0288778i \(0.00919336\pi\)
\(642\) −2.10800 3.65116i −0.00328349 0.00568717i
\(643\) −1184.38 −1.84196 −0.920978 0.389614i \(-0.872608\pi\)
−0.920978 + 0.389614i \(0.872608\pi\)
\(644\) 152.092 + 485.100i 0.236167 + 0.753261i
\(645\) 15.8042 135.331i 0.0245027 0.209815i
\(646\) 123.498 + 213.905i 0.191173 + 0.331122i
\(647\) 113.802 197.111i 0.175892 0.304653i −0.764578 0.644531i \(-0.777052\pi\)
0.940470 + 0.339878i \(0.110386\pi\)
\(648\) −130.033 75.0748i −0.200669 0.115856i
\(649\) 854.347 493.258i 1.31641 0.760027i
\(650\) 6.09550 25.7418i 0.00937769 0.0396028i
\(651\) −229.892 + 250.072i −0.353137 + 0.384135i
\(652\) 195.743i 0.300220i
\(653\) −199.761 + 115.332i −0.305912 + 0.176619i −0.645096 0.764102i \(-0.723183\pi\)
0.339183 + 0.940720i \(0.389849\pi\)
\(654\) −108.303 62.5285i −0.165600 0.0956093i
\(655\) 376.692 + 280.378i 0.575102 + 0.428058i
\(656\) 44.1316 25.4794i 0.0672738 0.0388406i
\(657\) 801.559 1.22003
\(658\) 390.790 + 87.2977i 0.593906 + 0.132671i
\(659\) 726.539 1.10249 0.551244 0.834344i \(-0.314153\pi\)
0.551244 + 0.834344i \(0.314153\pi\)
\(660\) −51.2813 118.851i −0.0776989 0.180077i
\(661\) −214.930 124.090i −0.325159 0.187731i 0.328531 0.944493i \(-0.393447\pi\)
−0.653690 + 0.756763i \(0.726780\pi\)
\(662\) −287.576 166.032i −0.434405 0.250804i
\(663\) 4.48411 + 7.76670i 0.00676336 + 0.0117145i
\(664\) 228.725i 0.344465i
\(665\) −499.619 174.508i −0.751307 0.262418i
\(666\) 131.529 0.197491
\(667\) 1590.79 918.442i 2.38499 1.37697i
\(668\) −97.1736 + 168.310i −0.145469 + 0.251960i
\(669\) −100.711 + 174.436i −0.150539 + 0.260742i
\(670\) −97.2095 225.295i −0.145089 0.336261i
\(671\) 651.933i 0.971584i
\(672\) 27.8091 30.2502i 0.0413826 0.0450152i
\(673\) 835.990i 1.24218i −0.783738 0.621092i \(-0.786689\pi\)
0.783738 0.621092i \(-0.213311\pi\)
\(674\) 153.941 + 266.634i 0.228400 + 0.395600i
\(675\) 301.214 319.396i 0.446243 0.473179i
\(676\) −168.440 + 291.747i −0.249172 + 0.431578i
\(677\) −189.063 327.468i −0.279267 0.483704i 0.691936 0.721959i \(-0.256758\pi\)
−0.971203 + 0.238255i \(0.923425\pi\)
\(678\) 310.416 0.457840
\(679\) 610.622 191.446i 0.899295 0.281953i
\(680\) −18.9477 + 162.249i −0.0278643 + 0.238601i
\(681\) −182.507 316.112i −0.267999 0.464188i
\(682\) −412.483 + 714.441i −0.604813 + 1.04757i
\(683\) −167.429 96.6649i −0.245137 0.141530i 0.372399 0.928073i \(-0.378535\pi\)
−0.617535 + 0.786543i \(0.711869\pi\)
\(684\) 207.505 119.803i 0.303370 0.175151i
\(685\) 67.7623 580.246i 0.0989231 0.847074i
\(686\) 65.6418 480.613i 0.0956878 0.700602i
\(687\) 195.302i 0.284282i
\(688\) 90.9686 52.5207i 0.132222 0.0763383i
\(689\) 17.0886 + 9.86613i 0.0248021 + 0.0143195i
\(690\) 159.092 213.742i 0.230568 0.309771i
\(691\) 501.502 289.542i 0.725763 0.419019i −0.0911074 0.995841i \(-0.529041\pi\)
0.816870 + 0.576822i \(0.195707\pi\)
\(692\) −123.714 −0.178778
\(693\) 660.157 206.976i 0.952607 0.298667i
\(694\) −263.371 −0.379497
\(695\) −311.627 + 134.460i −0.448384 + 0.193467i
\(696\) −128.576 74.2336i −0.184736 0.106657i
\(697\) 127.438 + 73.5761i 0.182837 + 0.105561i
\(698\) 57.7966 + 100.107i 0.0828032 + 0.143419i
\(699\) 325.917i 0.466262i
\(700\) −196.151 289.870i −0.280216 0.414100i
\(701\) −516.871 −0.737334 −0.368667 0.929562i \(-0.620186\pi\)
−0.368667 + 0.929562i \(0.620186\pi\)
\(702\) 16.0926 9.29107i 0.0229239 0.0132351i
\(703\) −88.7447 + 153.710i −0.126237 + 0.218649i
\(704\) 49.8963 86.4230i 0.0708755 0.122760i
\(705\) −83.1429 192.694i −0.117933 0.273325i
\(706\) 152.645i 0.216211i
\(707\) −601.257 134.313i −0.850434 0.189977i
\(708\) 164.132i 0.231824i
\(709\) −29.9375 51.8533i −0.0422250 0.0731359i 0.844141 0.536122i \(-0.180111\pi\)
−0.886366 + 0.462986i \(0.846778\pi\)
\(710\) −83.1763 61.9095i −0.117150 0.0871965i
\(711\) −141.528 + 245.134i −0.199055 + 0.344773i
\(712\) −191.228 331.216i −0.268579 0.465192i
\(713\) −1698.15 −2.38170
\(714\) 115.801 + 25.8686i 0.162187 + 0.0362305i
\(715\) −46.3520 5.41308i −0.0648279 0.00757074i
\(716\) −224.221 388.363i −0.313158 0.542406i
\(717\) −174.472 + 302.194i −0.243336 + 0.421470i
\(718\) 739.573 + 426.993i 1.03005 + 0.594698i
\(719\) −1072.53 + 619.228i −1.49170 + 0.861235i −0.999955 0.00950279i \(-0.996975\pi\)
−0.491748 + 0.870738i \(0.663642\pi\)
\(720\) 157.394 + 18.3808i 0.218603 + 0.0255289i
\(721\) 580.238 + 533.415i 0.804768 + 0.739826i
\(722\) 187.199i 0.259278i
\(723\) 343.761 198.471i 0.475465 0.274510i
\(724\) −570.271 329.246i −0.787668 0.454760i
\(725\) −867.647 + 920.020i −1.19675 + 1.26899i
\(726\) −43.9767 + 25.3900i −0.0605740 + 0.0349724i
\(727\) 387.549 0.533080 0.266540 0.963824i \(-0.414120\pi\)
0.266540 + 0.963824i \(0.414120\pi\)
\(728\) −4.43188 14.1356i −0.00608774 0.0194170i
\(729\) −256.605 −0.351995
\(730\) −656.819 + 283.402i −0.899753 + 0.388222i
\(731\) 262.687 + 151.663i 0.359353 + 0.207473i
\(732\) 93.9339 + 54.2327i 0.128325 + 0.0740884i
\(733\) 526.551 + 912.012i 0.718350 + 1.24422i 0.961653 + 0.274269i \(0.0884357\pi\)
−0.243303 + 0.969950i \(0.578231\pi\)
\(734\) 768.667i 1.04723i
\(735\) −224.153 + 119.959i −0.304970 + 0.163210i
\(736\) 205.418 0.279101
\(737\) −374.869 + 216.431i −0.508642 + 0.293665i
\(738\) 71.3748 123.625i 0.0967138 0.167513i
\(739\) −123.560 + 214.013i −0.167199 + 0.289598i −0.937434 0.348163i \(-0.886806\pi\)
0.770235 + 0.637760i \(0.220139\pi\)
\(740\) −107.778 + 46.5038i −0.145646 + 0.0628430i
\(741\) 11.7399i 0.0158434i
\(742\) 249.114 78.1038i 0.335733 0.105261i
\(743\) 189.686i 0.255298i 0.991819 + 0.127649i \(0.0407431\pi\)
−0.991819 + 0.127649i \(0.959257\pi\)
\(744\) 68.6269 + 118.865i 0.0922405 + 0.159765i
\(745\) 513.953 690.502i 0.689870 0.926849i
\(746\) −58.8952 + 102.010i −0.0789480 + 0.136742i
\(747\) 320.360 + 554.880i 0.428862 + 0.742811i
\(748\) 288.168 0.385252
\(749\) −13.6102 + 14.8049i −0.0181711 + 0.0197662i
\(750\) −62.6883 + 172.395i −0.0835844 + 0.229860i
\(751\) 400.319 + 693.373i 0.533048 + 0.923267i 0.999255 + 0.0385908i \(0.0122869\pi\)
−0.466207 + 0.884676i \(0.654380\pi\)
\(752\) 80.8974 140.118i 0.107576 0.186328i
\(753\) −271.461 156.728i −0.360506 0.208138i
\(754\) −46.3548 + 26.7630i −0.0614785 + 0.0354946i
\(755\) 547.361 + 63.9219i 0.724981 + 0.0846648i
\(756\) 53.5998 239.940i 0.0708992 0.317382i
\(757\) 809.069i 1.06878i 0.845237 + 0.534392i \(0.179459\pi\)
−0.845237 + 0.534392i \(0.820541\pi\)
\(758\) 37.2823 21.5249i 0.0491851 0.0283970i
\(759\) −407.071 235.023i −0.536325 0.309648i
\(760\) −127.677 + 171.536i −0.167996 + 0.225705i
\(761\) −213.647 + 123.349i −0.280745 + 0.162088i −0.633761 0.773529i \(-0.718490\pi\)
0.353016 + 0.935617i \(0.385156\pi\)
\(762\) 76.6680 0.100614
\(763\) −130.050 + 582.169i −0.170445 + 0.763000i
\(764\) 132.470 0.173390
\(765\) 181.285 + 420.150i 0.236974 + 0.549216i
\(766\) 361.933 + 208.962i 0.472498 + 0.272797i
\(767\) −51.2456 29.5867i −0.0668131 0.0385746i
\(768\) −8.30151 14.3786i −0.0108093 0.0187222i
\(769\) 851.221i 1.10692i 0.832876 + 0.553460i \(0.186693\pi\)
−0.832876 + 0.553460i \(0.813307\pi\)
\(770\) −467.771 + 403.009i −0.607495 + 0.523389i
\(771\) 212.393 0.275478
\(772\) −439.000 + 253.457i −0.568652 + 0.328312i
\(773\) −445.532 + 771.684i −0.576368 + 0.998298i 0.419524 + 0.907744i \(0.362197\pi\)
−0.995892 + 0.0905537i \(0.971136\pi\)
\(774\) 147.125 254.828i 0.190084 0.329235i
\(775\) 1119.92 335.526i 1.44506 0.432936i
\(776\) 258.571i 0.333210i
\(777\) 25.5084 + 81.3599i 0.0328294 + 0.104710i
\(778\) 606.380i 0.779409i
\(779\) 96.3156 + 166.823i 0.123640 + 0.214151i
\(780\) −4.63585 + 6.22833i −0.00594340 + 0.00798504i
\(781\) −91.4576 + 158.409i −0.117103 + 0.202829i
\(782\) 296.590 + 513.709i 0.379271 + 0.656916i
\(783\) −888.317 −1.13450
\(784\) −177.368 83.4059i −0.226235 0.106385i
\(785\) 1013.93 + 118.408i 1.29162 + 0.150839i
\(786\) −68.9120 119.359i −0.0876743 0.151856i
\(787\) 245.676 425.522i 0.312167 0.540689i −0.666664 0.745358i \(-0.732278\pi\)
0.978831 + 0.204669i \(0.0656118\pi\)
\(788\) −331.393 191.330i −0.420549 0.242804i
\(789\) −87.5578 + 50.5515i −0.110973 + 0.0640703i
\(790\) 29.3016 250.908i 0.0370906 0.317605i
\(791\) −442.968 1412.86i −0.560011 1.78617i
\(792\) 279.547i 0.352963i
\(793\) 33.8654 19.5522i 0.0427054 0.0246560i
\(794\) −392.878 226.828i −0.494808 0.285678i
\(795\) −109.763 81.6986i −0.138067 0.102765i
\(796\) 391.218 225.870i 0.491480 0.283756i
\(797\) 68.9206 0.0864751 0.0432375 0.999065i \(-0.486233\pi\)
0.0432375 + 0.999065i \(0.486233\pi\)
\(798\) 114.350 + 105.122i 0.143295 + 0.131732i
\(799\) 467.210 0.584744
\(800\) −135.472 + 40.5871i −0.169340 + 0.0507339i
\(801\) −927.828 535.682i −1.15834 0.668766i
\(802\) −291.132 168.085i −0.363007 0.209582i
\(803\) 630.977 + 1092.88i 0.785774 + 1.36100i
\(804\) 72.0175i 0.0895740i
\(805\) −1199.87 419.094i −1.49053 0.520614i
\(806\) 49.4833 0.0613936
\(807\) −86.7595 + 50.0906i −0.107509 + 0.0620702i
\(808\) −124.466 + 215.582i −0.154042 + 0.266809i
\(809\) 19.0763 33.0411i 0.0235801 0.0408419i −0.853995 0.520282i \(-0.825827\pi\)
0.877575 + 0.479440i \(0.159160\pi\)
\(810\) 344.660 148.713i 0.425506 0.183596i
\(811\) 763.676i 0.941648i 0.882227 + 0.470824i \(0.156043\pi\)
−0.882227 + 0.470824i \(0.843957\pi\)
\(812\) −154.394 + 691.149i −0.190141 + 0.851169i
\(813\) 86.7579i 0.106713i
\(814\) 103.538 + 179.333i 0.127196 + 0.220310i
\(815\) 392.555 + 292.185i 0.481662 + 0.358509i
\(816\) 23.9720 41.5208i 0.0293775 0.0508833i
\(817\) 198.535 + 343.873i 0.243005 + 0.420898i
\(818\) −280.156 −0.342489
\(819\) −30.5505 28.0851i −0.0373021 0.0342920i
\(820\) −14.7773 + 126.537i −0.0180211 + 0.154314i
\(821\) 204.439 + 354.099i 0.249013 + 0.431302i 0.963252 0.268599i \(-0.0865606\pi\)
−0.714240 + 0.699901i \(0.753227\pi\)
\(822\) −85.7306 + 148.490i −0.104295 + 0.180644i
\(823\) −133.113 76.8529i −0.161741 0.0933814i 0.416945 0.908932i \(-0.363101\pi\)
−0.578686 + 0.815551i \(0.696434\pi\)
\(824\) 275.801 159.234i 0.334710 0.193245i
\(825\) 314.898 + 74.5657i 0.381694 + 0.0903827i
\(826\) −747.047 + 234.219i −0.904416 + 0.283558i
\(827\) 571.706i 0.691301i −0.938363 0.345650i \(-0.887658\pi\)
0.938363 0.345650i \(-0.112342\pi\)
\(828\) 498.339 287.716i 0.601859 0.347483i
\(829\) −1099.69 634.905i −1.32652 0.765869i −0.341763 0.939786i \(-0.611024\pi\)
−0.984760 + 0.173918i \(0.944357\pi\)
\(830\) −458.697 341.416i −0.552647 0.411345i
\(831\) 346.646 200.136i 0.417143 0.240838i
\(832\) −5.98578 −0.00719445
\(833\) −47.5093 563.986i −0.0570339 0.677054i
\(834\) 99.6142 0.119442
\(835\) −192.487 446.112i −0.230523 0.534266i
\(836\) 326.690 + 188.615i 0.390778 + 0.225616i
\(837\) 711.202 + 410.612i 0.849703 + 0.490576i
\(838\) 40.0539 + 69.3754i 0.0477970 + 0.0827869i
\(839\) 732.075i 0.872556i 0.899812 + 0.436278i \(0.143704\pi\)
−0.899812 + 0.436278i \(0.856296\pi\)
\(840\) 19.1549 + 100.924i 0.0228035 + 0.120148i
\(841\) 1717.80 2.04257
\(842\) 269.872 155.811i 0.320513 0.185048i
\(843\) −126.317 + 218.788i −0.149843 + 0.259535i
\(844\) −186.816 + 323.575i −0.221346 + 0.383383i
\(845\) −333.656 773.289i −0.394859 0.915135i
\(846\) 453.232i 0.535735i
\(847\) 178.318 + 163.929i 0.210529 + 0.193540i
\(848\) 105.489i 0.124397i
\(849\) 53.3531 + 92.4103i 0.0628423 + 0.108846i
\(850\) −297.099 280.187i −0.349529 0.329632i
\(851\) −213.127 + 369.147i −0.250443 + 0.433780i
\(852\) 15.2163 + 26.3554i 0.0178595 + 0.0309335i
\(853\) 193.304 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(854\) 112.796 504.932i 0.132079 0.591255i
\(855\) −69.4820 + 594.972i −0.0812655 + 0.695873i
\(856\) 4.06287 + 7.03710i 0.00474635 + 0.00822092i
\(857\) 236.907 410.336i 0.276438 0.478805i −0.694059 0.719918i \(-0.744179\pi\)
0.970497 + 0.241113i \(0.0775126\pi\)
\(858\) 11.8619 + 6.84844i 0.0138250 + 0.00798187i
\(859\) −760.044 + 438.811i −0.884801 + 0.510840i −0.872238 0.489081i \(-0.837332\pi\)
−0.0125624 + 0.999921i \(0.503999\pi\)
\(860\) −30.4604 + 260.831i −0.0354191 + 0.303292i
\(861\) 90.3130 + 20.1748i 0.104893 + 0.0234318i
\(862\) 386.536i 0.448417i
\(863\) −782.535 + 451.797i −0.906761 + 0.523519i −0.879388 0.476106i \(-0.842048\pi\)
−0.0273737 + 0.999625i \(0.508714\pi\)
\(864\) −86.0311 49.6701i −0.0995730 0.0574885i
\(865\) 184.668 248.104i 0.213489 0.286825i
\(866\) 247.308 142.783i 0.285575 0.164877i
\(867\) −161.446 −0.186212
\(868\) 443.085 481.979i 0.510467 0.555275i
\(869\) −445.636 −0.512814
\(870\) 340.798 147.046i 0.391721 0.169018i
\(871\) 22.4855 + 12.9820i 0.0258157 + 0.0149047i
\(872\) 208.738 + 120.515i 0.239378 + 0.138205i
\(873\) −362.164 627.286i −0.414850 0.718541i
\(874\) 776.508i 0.888453i
\(875\) 874.116 + 39.3154i 0.998990 + 0.0449319i
\(876\) 209.958 0.239678
\(877\) 1129.07 651.867i 1.28742 0.743292i 0.309226 0.950988i \(-0.399930\pi\)
0.978193 + 0.207696i \(0.0665966\pi\)
\(878\) 430.443 745.550i 0.490255 0.849146i
\(879\) −228.608 + 395.961i −0.260077 + 0.450467i
\(880\) 98.8375 + 229.068i 0.112315 + 0.260305i
\(881\) 796.338i 0.903902i −0.892043 0.451951i \(-0.850728\pi\)
0.892043 0.451951i \(-0.149272\pi\)
\(882\) −547.112 + 46.0879i −0.620308 + 0.0522538i
\(883\) 1253.73i 1.41985i −0.704276 0.709927i \(-0.748728\pi\)
0.704276 0.709927i \(-0.251272\pi\)
\(884\) −8.64249 14.9692i −0.00977657 0.0169335i
\(885\) 329.159 + 244.999i 0.371931 + 0.276835i
\(886\) −551.097 + 954.529i −0.622006 + 1.07735i
\(887\) −489.613 848.034i −0.551987 0.956070i −0.998131 0.0611090i \(-0.980536\pi\)
0.446144 0.894961i \(-0.352797\pi\)
\(888\) 34.4522 0.0387976
\(889\) −109.407 348.955i −0.123067 0.392525i
\(890\) 949.686 + 110.906i 1.06706 + 0.124614i
\(891\) −331.099 573.480i −0.371604 0.643637i
\(892\) 194.106 336.202i 0.217608 0.376908i
\(893\) 529.666 + 305.803i 0.593132 + 0.342445i
\(894\) −218.794 + 126.321i −0.244736 + 0.141298i
\(895\) 1113.54 + 130.041i 1.24418 + 0.145298i
\(896\) −53.5981 + 58.3030i −0.0598194 + 0.0650703i
\(897\) 28.1943i 0.0314318i
\(898\) 9.83866 5.68035i 0.0109562 0.00632556i
\(899\) −2048.62 1182.77i −2.27877 1.31565i
\(900\) −271.804 + 288.211i −0.302004 + 0.320234i
\(901\) 263.805 152.308i 0.292792 0.169043i
\(902\) 224.741 0.249159
\(903\) 186.162 + 41.5864i 0.206160 + 0.0460536i
\(904\) −598.282 −0.661817
\(905\) 1511.53 652.190i 1.67020 0.720652i
\(906\) −140.074 80.8718i −0.154607 0.0892625i
\(907\) −1429.61 825.386i −1.57620 0.910017i −0.995383 0.0959807i \(-0.969401\pi\)
−0.580813 0.814037i \(-0.697265\pi\)
\(908\) 351.757 + 609.261i 0.387398 + 0.670992i
\(909\) 697.328i 0.767138i
\(910\) 34.9638 + 12.2122i 0.0384217 + 0.0134200i
\(911\) −736.949 −0.808945 −0.404472 0.914550i \(-0.632545\pi\)
−0.404472 + 0.914550i \(0.632545\pi\)
\(912\) 54.3532 31.3808i 0.0595978 0.0344088i
\(913\) −504.367 + 873.589i −0.552428 + 0.956833i
\(914\) −353.064 + 611.525i −0.386285 + 0.669064i
\(915\) −248.976 + 107.427i −0.272105 + 0.117407i
\(916\) 376.416i 0.410935i
\(917\) −444.926 + 483.981i −0.485197 + 0.527788i
\(918\) 286.862i 0.312485i
\(919\) −432.226 748.637i −0.470322 0.814621i 0.529102 0.848558i \(-0.322529\pi\)
−0.999424 + 0.0339368i \(0.989196\pi\)
\(920\) −306.627 + 411.957i −0.333290 + 0.447779i
\(921\) −128.254 + 222.143i −0.139255 + 0.241197i
\(922\) −488.177 845.547i −0.529476 0.917080i
\(923\) 10.9717 0.0118870
\(924\) 172.919 54.2147i 0.187142 0.0586740i
\(925\) 67.6190 285.561i 0.0731016 0.308714i
\(926\) 434.902 + 753.273i 0.469657 + 0.813470i
\(927\) 446.058 772.594i 0.481184 0.833435i
\(928\) 247.813 + 143.075i 0.267040 + 0.154175i
\(929\) 515.059 297.370i 0.554423 0.320096i −0.196481 0.980508i \(-0.562951\pi\)
0.750904 + 0.660411i \(0.229618\pi\)
\(930\) −340.818 39.8015i −0.366471 0.0427973i
\(931\) 315.285 670.475i 0.338652 0.720167i
\(932\) 628.160i 0.673991i
\(933\) 383.028 221.142i 0.410534 0.237022i
\(934\) 58.6261 + 33.8478i 0.0627689 + 0.0362396i
\(935\) −430.148 + 577.909i −0.460051 + 0.618084i
\(936\) −14.5214 + 8.38391i −0.0155143 + 0.00895717i
\(937\) −312.979 −0.334022 −0.167011 0.985955i \(-0.553412\pi\)
−0.167011 + 0.985955i \(0.553412\pi\)
\(938\) 327.788 102.770i 0.349455 0.109563i
\(939\) 139.023 0.148055
\(940\) 160.246 + 371.391i 0.170475 + 0.395096i
\(941\) 45.2375 + 26.1179i 0.0480738 + 0.0277554i 0.523844 0.851814i \(-0.324497\pi\)
−0.475770 + 0.879569i \(0.657831\pi\)
\(942\) −259.472 149.806i −0.275448 0.159030i
\(943\) 231.309 + 400.639i 0.245291 + 0.424856i
\(944\) 316.341i 0.335107i
\(945\) 401.182 + 465.650i 0.424531 + 0.492752i
\(946\) 463.260 0.489704
\(947\) −487.134 + 281.247i −0.514397 + 0.296987i −0.734639 0.678458i \(-0.762649\pi\)
0.220242 + 0.975445i \(0.429315\pi\)
\(948\) −37.0714 + 64.2095i −0.0391048 + 0.0677315i
\(949\) 37.8474 65.5536i 0.0398813 0.0690765i
\(950\) −153.425 512.103i −0.161500 0.539055i
\(951\) 334.101i 0.351315i
\(952\) −223.191 49.8581i −0.234444 0.0523719i
\(953\) 786.616i 0.825411i −0.910865 0.412705i \(-0.864584\pi\)
0.910865 0.412705i \(-0.135416\pi\)
\(954\) −147.751 255.913i −0.154876 0.268252i
\(955\) −197.737 + 265.663i −0.207055 + 0.278181i
\(956\) 336.269 582.436i 0.351746 0.609243i
\(957\) −327.389 567.054i −0.342099 0.592533i
\(958\) −190.429 −0.198778
\(959\) 798.192 + 178.306i 0.832317 + 0.185929i
\(960\) 41.2274 + 4.81462i 0.0429452 + 0.00501523i
\(961\) 612.939 + 1061.64i 0.637814 + 1.10473i
\(962\) 6.21043 10.7568i 0.00645574 0.0111817i
\(963\) 19.7129 + 11.3812i 0.0204703 + 0.0118185i
\(964\) −662.551 + 382.524i −0.687294 + 0.396809i
\(965\) 146.997 1258.73i 0.152328 1.30438i
\(966\) 274.620 + 252.459i 0.284285 + 0.261345i
\(967\) 372.034i 0.384730i 0.981323 + 0.192365i \(0.0616157\pi\)
−0.981323 + 0.192365i \(0.938384\pi\)
\(968\) 84.7590 48.9356i 0.0875609 0.0505533i
\(969\) 156.954 + 90.6175i 0.161975 + 0.0935165i
\(970\) 518.552 + 385.968i 0.534590 + 0.397905i
\(971\) −463.408 + 267.549i −0.477248 + 0.275539i −0.719269 0.694732i \(-0.755523\pi\)
0.242021 + 0.970271i \(0.422190\pi\)
\(972\) −426.272 −0.438551
\(973\) −142.151 453.395i −0.146096 0.465977i
\(974\) −631.910 −0.648778
\(975\) −5.57073 18.5940i −0.00571357 0.0190708i
\(976\) −181.044 104.526i −0.185496 0.107096i
\(977\) 696.209 + 401.956i 0.712599 + 0.411419i 0.812023 0.583626i \(-0.198367\pi\)
−0.0994238 + 0.995045i \(0.531700\pi\)
\(978\) −71.8140 124.385i −0.0734294 0.127184i
\(979\) 1686.73i 1.72291i
\(980\) 432.024 231.205i 0.440840 0.235923i
\(981\) 675.191 0.688268
\(982\) 145.898 84.2342i 0.148572 0.0857782i
\(983\) 118.542 205.321i 0.120592 0.208872i −0.799409 0.600787i \(-0.794854\pi\)
0.920001 + 0.391915i \(0.128187\pi\)
\(984\) 18.6957 32.3819i 0.0189997 0.0329084i
\(985\) 878.372 378.997i 0.891749 0.384768i
\(986\) 826.305i 0.838038i
\(987\) 280.356 87.8989i 0.284049 0.0890566i
\(988\) 22.6271i 0.0229019i
\(989\) 476.798 + 825.838i 0.482101 + 0.835024i
\(990\) 560.619 + 417.278i 0.566282 + 0.421493i
\(991\) 211.092 365.622i 0.213009 0.368942i −0.739646 0.672996i \(-0.765007\pi\)
0.952655 + 0.304054i \(0.0983403\pi\)
\(992\) −132.269 229.096i −0.133335 0.230944i
\(993\) −243.655 −0.245372
\(994\) 98.2428 106.867i 0.0988358 0.107512i
\(995\) −130.997 + 1121.73i −0.131656 + 1.12736i
\(996\) 83.9141 + 145.344i 0.0842511 + 0.145927i
\(997\) −776.469 + 1344.88i −0.778806 + 1.34893i 0.153825 + 0.988098i \(0.450841\pi\)
−0.932630 + 0.360833i \(0.882492\pi\)
\(998\) 103.175 + 59.5681i 0.103382 + 0.0596875i
\(999\) 178.519 103.068i 0.178698 0.103171i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.3.h.a.59.2 yes 16
3.2 odd 2 630.3.bc.a.199.6 16
4.3 odd 2 560.3.br.b.129.6 16
5.2 odd 4 350.3.k.e.101.3 16
5.3 odd 4 350.3.k.e.101.6 16
5.4 even 2 inner 70.3.h.a.59.7 yes 16
7.2 even 3 490.3.h.b.19.6 16
7.3 odd 6 490.3.d.a.489.3 16
7.4 even 3 490.3.d.a.489.6 16
7.5 odd 6 inner 70.3.h.a.19.7 yes 16
7.6 odd 2 490.3.h.b.129.3 16
15.14 odd 2 630.3.bc.a.199.4 16
20.19 odd 2 560.3.br.b.129.3 16
21.5 even 6 630.3.bc.a.19.4 16
28.19 even 6 560.3.br.b.369.3 16
35.4 even 6 490.3.d.a.489.11 16
35.9 even 6 490.3.h.b.19.3 16
35.12 even 12 350.3.k.e.201.3 16
35.19 odd 6 inner 70.3.h.a.19.2 16
35.24 odd 6 490.3.d.a.489.14 16
35.33 even 12 350.3.k.e.201.6 16
35.34 odd 2 490.3.h.b.129.6 16
105.89 even 6 630.3.bc.a.19.6 16
140.19 even 6 560.3.br.b.369.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.h.a.19.2 16 35.19 odd 6 inner
70.3.h.a.19.7 yes 16 7.5 odd 6 inner
70.3.h.a.59.2 yes 16 1.1 even 1 trivial
70.3.h.a.59.7 yes 16 5.4 even 2 inner
350.3.k.e.101.3 16 5.2 odd 4
350.3.k.e.101.6 16 5.3 odd 4
350.3.k.e.201.3 16 35.12 even 12
350.3.k.e.201.6 16 35.33 even 12
490.3.d.a.489.3 16 7.3 odd 6
490.3.d.a.489.6 16 7.4 even 3
490.3.d.a.489.11 16 35.4 even 6
490.3.d.a.489.14 16 35.24 odd 6
490.3.h.b.19.3 16 35.9 even 6
490.3.h.b.19.6 16 7.2 even 3
490.3.h.b.129.3 16 7.6 odd 2
490.3.h.b.129.6 16 35.34 odd 2
560.3.br.b.129.3 16 20.19 odd 2
560.3.br.b.129.6 16 4.3 odd 2
560.3.br.b.369.3 16 28.19 even 6
560.3.br.b.369.6 16 140.19 even 6
630.3.bc.a.19.4 16 21.5 even 6
630.3.bc.a.19.6 16 105.89 even 6
630.3.bc.a.199.4 16 15.14 odd 2
630.3.bc.a.199.6 16 3.2 odd 2