Properties

Label 4851.2.a.bn.1.3
Level $4851$
Weight $2$
Character 4851.1
Self dual yes
Analytic conductor $38.735$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4851,2,Mod(1,4851)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4851.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4851, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4851 = 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4851.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,4,-2,0,0,9,0,9,3,0,11,0,0,2,-3,0,11,14,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.7354300205\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.713538\) of defining polynomial
Character \(\chi\) \(=\) 4851.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49086 q^{2} +4.20440 q^{4} +2.20440 q^{5} +5.49086 q^{8} +5.49086 q^{10} +1.00000 q^{11} +3.28646 q^{13} +5.26819 q^{16} +1.49086 q^{17} +6.91794 q^{19} +9.26819 q^{20} +2.49086 q^{22} -6.49086 q^{23} -0.140614 q^{25} +8.18613 q^{26} +1.64975 q^{29} +2.35025 q^{31} +2.14061 q^{32} +3.71354 q^{34} -5.55465 q^{37} +17.2316 q^{38} +12.1041 q^{40} -11.2499 q^{41} +5.26819 q^{43} +4.20440 q^{44} -16.1679 q^{46} +1.49086 q^{47} -0.350250 q^{50} +13.8176 q^{52} -0.304735 q^{53} +2.20440 q^{55} +4.10930 q^{58} -12.6587 q^{59} +12.9817 q^{61} +5.85415 q^{62} -5.20440 q^{64} +7.24468 q^{65} -4.57292 q^{67} +6.26819 q^{68} -11.3267 q^{71} +8.56769 q^{73} -13.8359 q^{74} +29.0858 q^{76} +4.63148 q^{79} +11.6132 q^{80} -28.0220 q^{82} -1.93621 q^{83} +3.28646 q^{85} +13.1223 q^{86} +5.49086 q^{88} +3.20440 q^{89} -27.2902 q^{92} +3.71354 q^{94} +15.2499 q^{95} -1.85939 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{4} - 2 q^{5} + 9 q^{8} + 9 q^{10} + 3 q^{11} + 11 q^{13} + 2 q^{16} - 3 q^{17} + 11 q^{19} + 14 q^{20} - 12 q^{23} + 3 q^{25} + q^{26} + 9 q^{29} + 3 q^{31} + 3 q^{32} + 10 q^{34} - 4 q^{37}+ \cdots - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.49086 1.76131 0.880653 0.473761i \(-0.157104\pi\)
0.880653 + 0.473761i \(0.157104\pi\)
\(3\) 0 0
\(4\) 4.20440 2.10220
\(5\) 2.20440 0.985838 0.492919 0.870075i \(-0.335930\pi\)
0.492919 + 0.870075i \(0.335930\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 5.49086 1.94131
\(9\) 0 0
\(10\) 5.49086 1.73636
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 3.28646 0.911501 0.455750 0.890108i \(-0.349371\pi\)
0.455750 + 0.890108i \(0.349371\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 5.26819 1.31705
\(17\) 1.49086 0.361588 0.180794 0.983521i \(-0.442133\pi\)
0.180794 + 0.983521i \(0.442133\pi\)
\(18\) 0 0
\(19\) 6.91794 1.58708 0.793542 0.608515i \(-0.208235\pi\)
0.793542 + 0.608515i \(0.208235\pi\)
\(20\) 9.26819 2.07243
\(21\) 0 0
\(22\) 2.49086 0.531054
\(23\) −6.49086 −1.35344 −0.676719 0.736241i \(-0.736599\pi\)
−0.676719 + 0.736241i \(0.736599\pi\)
\(24\) 0 0
\(25\) −0.140614 −0.0281228
\(26\) 8.18613 1.60543
\(27\) 0 0
\(28\) 0 0
\(29\) 1.64975 0.306351 0.153175 0.988199i \(-0.451050\pi\)
0.153175 + 0.988199i \(0.451050\pi\)
\(30\) 0 0
\(31\) 2.35025 0.422117 0.211059 0.977473i \(-0.432309\pi\)
0.211059 + 0.977473i \(0.432309\pi\)
\(32\) 2.14061 0.378411
\(33\) 0 0
\(34\) 3.71354 0.636867
\(35\) 0 0
\(36\) 0 0
\(37\) −5.55465 −0.913179 −0.456590 0.889677i \(-0.650929\pi\)
−0.456590 + 0.889677i \(0.650929\pi\)
\(38\) 17.2316 2.79534
\(39\) 0 0
\(40\) 12.1041 1.91382
\(41\) −11.2499 −1.75694 −0.878471 0.477796i \(-0.841436\pi\)
−0.878471 + 0.477796i \(0.841436\pi\)
\(42\) 0 0
\(43\) 5.26819 0.803391 0.401696 0.915773i \(-0.368421\pi\)
0.401696 + 0.915773i \(0.368421\pi\)
\(44\) 4.20440 0.633837
\(45\) 0 0
\(46\) −16.1679 −2.38382
\(47\) 1.49086 0.217465 0.108732 0.994071i \(-0.465321\pi\)
0.108732 + 0.994071i \(0.465321\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −0.350250 −0.0495328
\(51\) 0 0
\(52\) 13.8176 1.91616
\(53\) −0.304735 −0.0418585 −0.0209293 0.999781i \(-0.506662\pi\)
−0.0209293 + 0.999781i \(0.506662\pi\)
\(54\) 0 0
\(55\) 2.20440 0.297241
\(56\) 0 0
\(57\) 0 0
\(58\) 4.10930 0.539578
\(59\) −12.6587 −1.64802 −0.824012 0.566572i \(-0.808269\pi\)
−0.824012 + 0.566572i \(0.808269\pi\)
\(60\) 0 0
\(61\) 12.9817 1.66214 0.831070 0.556168i \(-0.187729\pi\)
0.831070 + 0.556168i \(0.187729\pi\)
\(62\) 5.85415 0.743478
\(63\) 0 0
\(64\) −5.20440 −0.650550
\(65\) 7.24468 0.898592
\(66\) 0 0
\(67\) −4.57292 −0.558672 −0.279336 0.960193i \(-0.590114\pi\)
−0.279336 + 0.960193i \(0.590114\pi\)
\(68\) 6.26819 0.760130
\(69\) 0 0
\(70\) 0 0
\(71\) −11.3267 −1.34424 −0.672119 0.740444i \(-0.734615\pi\)
−0.672119 + 0.740444i \(0.734615\pi\)
\(72\) 0 0
\(73\) 8.56769 1.00277 0.501386 0.865224i \(-0.332824\pi\)
0.501386 + 0.865224i \(0.332824\pi\)
\(74\) −13.8359 −1.60839
\(75\) 0 0
\(76\) 29.0858 3.33637
\(77\) 0 0
\(78\) 0 0
\(79\) 4.63148 0.521082 0.260541 0.965463i \(-0.416099\pi\)
0.260541 + 0.965463i \(0.416099\pi\)
\(80\) 11.6132 1.29840
\(81\) 0 0
\(82\) −28.0220 −3.09451
\(83\) −1.93621 −0.212527 −0.106263 0.994338i \(-0.533889\pi\)
−0.106263 + 0.994338i \(0.533889\pi\)
\(84\) 0 0
\(85\) 3.28646 0.356467
\(86\) 13.1223 1.41502
\(87\) 0 0
\(88\) 5.49086 0.585328
\(89\) 3.20440 0.339666 0.169833 0.985473i \(-0.445677\pi\)
0.169833 + 0.985473i \(0.445677\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −27.2902 −2.84520
\(93\) 0 0
\(94\) 3.71354 0.383022
\(95\) 15.2499 1.56461
\(96\) 0 0
\(97\) −1.85939 −0.188792 −0.0943960 0.995535i \(-0.530092\pi\)
−0.0943960 + 0.995535i \(0.530092\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.591197 −0.0591197
\(101\) 6.04551 0.601551 0.300776 0.953695i \(-0.402754\pi\)
0.300776 + 0.953695i \(0.402754\pi\)
\(102\) 0 0
\(103\) 1.06379 0.104818 0.0524091 0.998626i \(-0.483310\pi\)
0.0524091 + 0.998626i \(0.483310\pi\)
\(104\) 18.0455 1.76951
\(105\) 0 0
\(106\) −0.759053 −0.0737257
\(107\) 6.33198 0.612135 0.306068 0.952010i \(-0.400987\pi\)
0.306068 + 0.952010i \(0.400987\pi\)
\(108\) 0 0
\(109\) −2.81387 −0.269520 −0.134760 0.990878i \(-0.543026\pi\)
−0.134760 + 0.990878i \(0.543026\pi\)
\(110\) 5.49086 0.523533
\(111\) 0 0
\(112\) 0 0
\(113\) 12.7538 1.19978 0.599889 0.800083i \(-0.295211\pi\)
0.599889 + 0.800083i \(0.295211\pi\)
\(114\) 0 0
\(115\) −14.3085 −1.33427
\(116\) 6.93621 0.644011
\(117\) 0 0
\(118\) −31.5311 −2.90268
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 32.3357 2.92754
\(123\) 0 0
\(124\) 9.88139 0.887375
\(125\) −11.3320 −1.01356
\(126\) 0 0
\(127\) −12.3775 −1.09832 −0.549162 0.835716i \(-0.685053\pi\)
−0.549162 + 0.835716i \(0.685053\pi\)
\(128\) −17.2447 −1.52423
\(129\) 0 0
\(130\) 18.0455 1.58270
\(131\) 0.759053 0.0663188 0.0331594 0.999450i \(-0.489443\pi\)
0.0331594 + 0.999450i \(0.489443\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −11.3905 −0.983992
\(135\) 0 0
\(136\) 8.18613 0.701955
\(137\) 5.84111 0.499040 0.249520 0.968370i \(-0.419727\pi\)
0.249520 + 0.968370i \(0.419727\pi\)
\(138\) 0 0
\(139\) 5.57292 0.472689 0.236345 0.971669i \(-0.424051\pi\)
0.236345 + 0.971669i \(0.424051\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −28.2134 −2.36761
\(143\) 3.28646 0.274828
\(144\) 0 0
\(145\) 3.63671 0.302012
\(146\) 21.3409 1.76619
\(147\) 0 0
\(148\) −23.3540 −1.91969
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) 0 0
\(151\) 14.8411 1.20775 0.603876 0.797078i \(-0.293622\pi\)
0.603876 + 0.797078i \(0.293622\pi\)
\(152\) 37.9855 3.08103
\(153\) 0 0
\(154\) 0 0
\(155\) 5.18089 0.416139
\(156\) 0 0
\(157\) −6.39053 −0.510020 −0.255010 0.966938i \(-0.582079\pi\)
−0.255010 + 0.966938i \(0.582079\pi\)
\(158\) 11.5364 0.917785
\(159\) 0 0
\(160\) 4.71877 0.373052
\(161\) 0 0
\(162\) 0 0
\(163\) 9.94518 0.778967 0.389483 0.921033i \(-0.372654\pi\)
0.389483 + 0.921033i \(0.372654\pi\)
\(164\) −47.2992 −3.69344
\(165\) 0 0
\(166\) −4.82284 −0.374325
\(167\) −1.94145 −0.150234 −0.0751168 0.997175i \(-0.523933\pi\)
−0.0751168 + 0.997175i \(0.523933\pi\)
\(168\) 0 0
\(169\) −2.19917 −0.169167
\(170\) 8.18613 0.627847
\(171\) 0 0
\(172\) 22.1496 1.68889
\(173\) 6.43231 0.489039 0.244520 0.969644i \(-0.421370\pi\)
0.244520 + 0.969644i \(0.421370\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.26819 0.397105
\(177\) 0 0
\(178\) 7.98173 0.598256
\(179\) 3.58596 0.268027 0.134014 0.990979i \(-0.457213\pi\)
0.134014 + 0.990979i \(0.457213\pi\)
\(180\) 0 0
\(181\) −12.2134 −0.907813 −0.453906 0.891049i \(-0.649970\pi\)
−0.453906 + 0.891049i \(0.649970\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −35.6404 −2.62745
\(185\) −12.2447 −0.900247
\(186\) 0 0
\(187\) 1.49086 0.109023
\(188\) 6.26819 0.457155
\(189\) 0 0
\(190\) 37.9855 2.75576
\(191\) −12.1093 −0.876198 −0.438099 0.898927i \(-0.644348\pi\)
−0.438099 + 0.898927i \(0.644348\pi\)
\(192\) 0 0
\(193\) −11.9399 −0.859456 −0.429728 0.902958i \(-0.641391\pi\)
−0.429728 + 0.902958i \(0.641391\pi\)
\(194\) −4.63148 −0.332521
\(195\) 0 0
\(196\) 0 0
\(197\) −12.1626 −0.866551 −0.433275 0.901262i \(-0.642642\pi\)
−0.433275 + 0.901262i \(0.642642\pi\)
\(198\) 0 0
\(199\) −1.90490 −0.135035 −0.0675174 0.997718i \(-0.521508\pi\)
−0.0675174 + 0.997718i \(0.521508\pi\)
\(200\) −0.772091 −0.0545951
\(201\) 0 0
\(202\) 15.0586 1.05952
\(203\) 0 0
\(204\) 0 0
\(205\) −24.7993 −1.73206
\(206\) 2.64975 0.184617
\(207\) 0 0
\(208\) 17.3137 1.20049
\(209\) 6.91794 0.478524
\(210\) 0 0
\(211\) −16.2447 −1.11833 −0.559165 0.829056i \(-0.688878\pi\)
−0.559165 + 0.829056i \(0.688878\pi\)
\(212\) −1.28123 −0.0879951
\(213\) 0 0
\(214\) 15.7721 1.07816
\(215\) 11.6132 0.792014
\(216\) 0 0
\(217\) 0 0
\(218\) −7.00897 −0.474707
\(219\) 0 0
\(220\) 9.26819 0.624861
\(221\) 4.89967 0.329587
\(222\) 0 0
\(223\) −3.03655 −0.203342 −0.101671 0.994818i \(-0.532419\pi\)
−0.101671 + 0.994818i \(0.532419\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 31.7680 2.11318
\(227\) 18.4491 1.22451 0.612254 0.790661i \(-0.290263\pi\)
0.612254 + 0.790661i \(0.290263\pi\)
\(228\) 0 0
\(229\) 25.4998 1.68508 0.842538 0.538637i \(-0.181060\pi\)
0.842538 + 0.538637i \(0.181060\pi\)
\(230\) −35.6404 −2.35006
\(231\) 0 0
\(232\) 9.05855 0.594723
\(233\) −3.81761 −0.250100 −0.125050 0.992150i \(-0.539909\pi\)
−0.125050 + 0.992150i \(0.539909\pi\)
\(234\) 0 0
\(235\) 3.28646 0.214385
\(236\) −53.2223 −3.46448
\(237\) 0 0
\(238\) 0 0
\(239\) −13.0037 −0.841142 −0.420571 0.907260i \(-0.638170\pi\)
−0.420571 + 0.907260i \(0.638170\pi\)
\(240\) 0 0
\(241\) 0.450583 0.0290246 0.0145123 0.999895i \(-0.495380\pi\)
0.0145123 + 0.999895i \(0.495380\pi\)
\(242\) 2.49086 0.160119
\(243\) 0 0
\(244\) 54.5804 3.49415
\(245\) 0 0
\(246\) 0 0
\(247\) 22.7355 1.44663
\(248\) 12.9049 0.819462
\(249\) 0 0
\(250\) −28.2264 −1.78519
\(251\) 1.11861 0.0706058 0.0353029 0.999377i \(-0.488760\pi\)
0.0353029 + 0.999377i \(0.488760\pi\)
\(252\) 0 0
\(253\) −6.49086 −0.408077
\(254\) −30.8306 −1.93449
\(255\) 0 0
\(256\) −32.5453 −2.03408
\(257\) −22.8396 −1.42470 −0.712348 0.701826i \(-0.752368\pi\)
−0.712348 + 0.701826i \(0.752368\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 30.4596 1.88902
\(261\) 0 0
\(262\) 1.89070 0.116808
\(263\) 9.19136 0.566764 0.283382 0.959007i \(-0.408544\pi\)
0.283382 + 0.959007i \(0.408544\pi\)
\(264\) 0 0
\(265\) −0.671758 −0.0412658
\(266\) 0 0
\(267\) 0 0
\(268\) −19.2264 −1.17444
\(269\) −15.6132 −0.951954 −0.475977 0.879458i \(-0.657905\pi\)
−0.475977 + 0.879458i \(0.657905\pi\)
\(270\) 0 0
\(271\) −27.7445 −1.68536 −0.842680 0.538415i \(-0.819023\pi\)
−0.842680 + 0.538415i \(0.819023\pi\)
\(272\) 7.85415 0.476228
\(273\) 0 0
\(274\) 14.5494 0.878962
\(275\) −0.140614 −0.00847933
\(276\) 0 0
\(277\) 14.8124 0.889989 0.444995 0.895533i \(-0.353206\pi\)
0.444995 + 0.895533i \(0.353206\pi\)
\(278\) 13.8814 0.832551
\(279\) 0 0
\(280\) 0 0
\(281\) −15.2227 −0.908109 −0.454054 0.890974i \(-0.650023\pi\)
−0.454054 + 0.890974i \(0.650023\pi\)
\(282\) 0 0
\(283\) −21.7173 −1.29096 −0.645479 0.763778i \(-0.723342\pi\)
−0.645479 + 0.763778i \(0.723342\pi\)
\(284\) −47.6222 −2.82586
\(285\) 0 0
\(286\) 8.18613 0.484056
\(287\) 0 0
\(288\) 0 0
\(289\) −14.7773 −0.869254
\(290\) 9.05855 0.531937
\(291\) 0 0
\(292\) 36.0220 2.10803
\(293\) 11.1276 0.650080 0.325040 0.945700i \(-0.394622\pi\)
0.325040 + 0.945700i \(0.394622\pi\)
\(294\) 0 0
\(295\) −27.9049 −1.62469
\(296\) −30.4998 −1.77277
\(297\) 0 0
\(298\) 2.49086 0.144292
\(299\) −21.3320 −1.23366
\(300\) 0 0
\(301\) 0 0
\(302\) 36.9672 2.12722
\(303\) 0 0
\(304\) 36.4450 2.09026
\(305\) 28.6169 1.63860
\(306\) 0 0
\(307\) −24.9855 −1.42600 −0.712998 0.701166i \(-0.752663\pi\)
−0.712998 + 0.701166i \(0.752663\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 12.9049 0.732949
\(311\) 34.7408 1.96997 0.984984 0.172643i \(-0.0552307\pi\)
0.984984 + 0.172643i \(0.0552307\pi\)
\(312\) 0 0
\(313\) −23.7095 −1.34014 −0.670069 0.742299i \(-0.733736\pi\)
−0.670069 + 0.742299i \(0.733736\pi\)
\(314\) −15.9179 −0.898301
\(315\) 0 0
\(316\) 19.4726 1.09542
\(317\) −19.6770 −1.10517 −0.552585 0.833457i \(-0.686359\pi\)
−0.552585 + 0.833457i \(0.686359\pi\)
\(318\) 0 0
\(319\) 1.64975 0.0923683
\(320\) −11.4726 −0.641337
\(321\) 0 0
\(322\) 0 0
\(323\) 10.3137 0.573870
\(324\) 0 0
\(325\) −0.462122 −0.0256339
\(326\) 24.7721 1.37200
\(327\) 0 0
\(328\) −61.7718 −3.41077
\(329\) 0 0
\(330\) 0 0
\(331\) −28.1899 −1.54946 −0.774728 0.632295i \(-0.782113\pi\)
−0.774728 + 0.632295i \(0.782113\pi\)
\(332\) −8.14061 −0.446774
\(333\) 0 0
\(334\) −4.83588 −0.264608
\(335\) −10.0806 −0.550760
\(336\) 0 0
\(337\) 21.7460 1.18458 0.592290 0.805725i \(-0.298224\pi\)
0.592290 + 0.805725i \(0.298224\pi\)
\(338\) −5.47783 −0.297954
\(339\) 0 0
\(340\) 13.8176 0.749365
\(341\) 2.35025 0.127273
\(342\) 0 0
\(343\) 0 0
\(344\) 28.9269 1.55963
\(345\) 0 0
\(346\) 16.0220 0.861348
\(347\) 3.94145 0.211588 0.105794 0.994388i \(-0.466262\pi\)
0.105794 + 0.994388i \(0.466262\pi\)
\(348\) 0 0
\(349\) 14.1093 0.755254 0.377627 0.925958i \(-0.376740\pi\)
0.377627 + 0.925958i \(0.376740\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.14061 0.114095
\(353\) −4.96869 −0.264457 −0.132228 0.991219i \(-0.542213\pi\)
−0.132228 + 0.991219i \(0.542213\pi\)
\(354\) 0 0
\(355\) −24.9687 −1.32520
\(356\) 13.4726 0.714046
\(357\) 0 0
\(358\) 8.93214 0.472078
\(359\) 4.07159 0.214890 0.107445 0.994211i \(-0.465733\pi\)
0.107445 + 0.994211i \(0.465733\pi\)
\(360\) 0 0
\(361\) 28.8579 1.51884
\(362\) −30.4218 −1.59894
\(363\) 0 0
\(364\) 0 0
\(365\) 18.8866 0.988571
\(366\) 0 0
\(367\) 18.0220 0.940741 0.470371 0.882469i \(-0.344120\pi\)
0.470371 + 0.882469i \(0.344120\pi\)
\(368\) −34.1951 −1.78254
\(369\) 0 0
\(370\) −30.4998 −1.58561
\(371\) 0 0
\(372\) 0 0
\(373\) 28.9164 1.49724 0.748618 0.663001i \(-0.230718\pi\)
0.748618 + 0.663001i \(0.230718\pi\)
\(374\) 3.71354 0.192022
\(375\) 0 0
\(376\) 8.18613 0.422167
\(377\) 5.42184 0.279239
\(378\) 0 0
\(379\) 4.30847 0.221311 0.110656 0.993859i \(-0.464705\pi\)
0.110656 + 0.993859i \(0.464705\pi\)
\(380\) 64.1168 3.28912
\(381\) 0 0
\(382\) −30.1626 −1.54325
\(383\) −12.3488 −0.630992 −0.315496 0.948927i \(-0.602171\pi\)
−0.315496 + 0.948927i \(0.602171\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −29.7408 −1.51377
\(387\) 0 0
\(388\) −7.81761 −0.396879
\(389\) −29.4230 −1.49181 −0.745903 0.666055i \(-0.767982\pi\)
−0.745903 + 0.666055i \(0.767982\pi\)
\(390\) 0 0
\(391\) −9.67699 −0.489387
\(392\) 0 0
\(393\) 0 0
\(394\) −30.2954 −1.52626
\(395\) 10.2096 0.513703
\(396\) 0 0
\(397\) 17.2995 0.868237 0.434119 0.900856i \(-0.357060\pi\)
0.434119 + 0.900856i \(0.357060\pi\)
\(398\) −4.74485 −0.237838
\(399\) 0 0
\(400\) −0.740780 −0.0370390
\(401\) 24.9504 1.24596 0.622982 0.782236i \(-0.285921\pi\)
0.622982 + 0.782236i \(0.285921\pi\)
\(402\) 0 0
\(403\) 7.72401 0.384760
\(404\) 25.4178 1.26458
\(405\) 0 0
\(406\) 0 0
\(407\) −5.55465 −0.275334
\(408\) 0 0
\(409\) 38.5584 1.90659 0.953295 0.302042i \(-0.0976682\pi\)
0.953295 + 0.302042i \(0.0976682\pi\)
\(410\) −61.7718 −3.05069
\(411\) 0 0
\(412\) 4.47259 0.220349
\(413\) 0 0
\(414\) 0 0
\(415\) −4.26819 −0.209517
\(416\) 7.03505 0.344922
\(417\) 0 0
\(418\) 17.2316 0.842827
\(419\) 0.908970 0.0444061 0.0222030 0.999753i \(-0.492932\pi\)
0.0222030 + 0.999753i \(0.492932\pi\)
\(420\) 0 0
\(421\) 15.5532 0.758014 0.379007 0.925394i \(-0.376266\pi\)
0.379007 + 0.925394i \(0.376266\pi\)
\(422\) −40.4633 −1.96972
\(423\) 0 0
\(424\) −1.67326 −0.0812606
\(425\) −0.209636 −0.0101688
\(426\) 0 0
\(427\) 0 0
\(428\) 26.6222 1.28683
\(429\) 0 0
\(430\) 28.9269 1.39498
\(431\) −3.53638 −0.170341 −0.0851707 0.996366i \(-0.527144\pi\)
−0.0851707 + 0.996366i \(0.527144\pi\)
\(432\) 0 0
\(433\) −17.6457 −0.847997 −0.423999 0.905663i \(-0.639374\pi\)
−0.423999 + 0.905663i \(0.639374\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −11.8306 −0.566585
\(437\) −44.9034 −2.14802
\(438\) 0 0
\(439\) −15.0272 −0.717211 −0.358606 0.933489i \(-0.616748\pi\)
−0.358606 + 0.933489i \(0.616748\pi\)
\(440\) 12.1041 0.577039
\(441\) 0 0
\(442\) 12.2044 0.580504
\(443\) −13.2227 −0.628228 −0.314114 0.949385i \(-0.601707\pi\)
−0.314114 + 0.949385i \(0.601707\pi\)
\(444\) 0 0
\(445\) 7.06379 0.334856
\(446\) −7.56362 −0.358148
\(447\) 0 0
\(448\) 0 0
\(449\) 9.90864 0.467617 0.233809 0.972283i \(-0.424881\pi\)
0.233809 + 0.972283i \(0.424881\pi\)
\(450\) 0 0
\(451\) −11.2499 −0.529738
\(452\) 53.6222 2.52217
\(453\) 0 0
\(454\) 45.9542 2.15674
\(455\) 0 0
\(456\) 0 0
\(457\) 10.3450 0.483919 0.241960 0.970286i \(-0.422210\pi\)
0.241960 + 0.970286i \(0.422210\pi\)
\(458\) 63.5166 2.96794
\(459\) 0 0
\(460\) −60.1586 −2.80491
\(461\) −15.3372 −0.714325 −0.357163 0.934042i \(-0.616256\pi\)
−0.357163 + 0.934042i \(0.616256\pi\)
\(462\) 0 0
\(463\) −25.1313 −1.16795 −0.583976 0.811771i \(-0.698504\pi\)
−0.583976 + 0.811771i \(0.698504\pi\)
\(464\) 8.69120 0.403479
\(465\) 0 0
\(466\) −9.50914 −0.440502
\(467\) −0.746015 −0.0345214 −0.0172607 0.999851i \(-0.505495\pi\)
−0.0172607 + 0.999851i \(0.505495\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 8.18613 0.377598
\(471\) 0 0
\(472\) −69.5073 −3.19933
\(473\) 5.26819 0.242232
\(474\) 0 0
\(475\) −0.972758 −0.0446332
\(476\) 0 0
\(477\) 0 0
\(478\) −32.3905 −1.48151
\(479\) −20.1130 −0.918988 −0.459494 0.888181i \(-0.651969\pi\)
−0.459494 + 0.888181i \(0.651969\pi\)
\(480\) 0 0
\(481\) −18.2552 −0.832363
\(482\) 1.12234 0.0511212
\(483\) 0 0
\(484\) 4.20440 0.191109
\(485\) −4.09883 −0.186118
\(486\) 0 0
\(487\) −4.24992 −0.192582 −0.0962911 0.995353i \(-0.530698\pi\)
−0.0962911 + 0.995353i \(0.530698\pi\)
\(488\) 71.2809 3.22673
\(489\) 0 0
\(490\) 0 0
\(491\) −30.3279 −1.36868 −0.684340 0.729163i \(-0.739909\pi\)
−0.684340 + 0.729163i \(0.739909\pi\)
\(492\) 0 0
\(493\) 2.45955 0.110773
\(494\) 56.6311 2.54796
\(495\) 0 0
\(496\) 12.3816 0.555948
\(497\) 0 0
\(498\) 0 0
\(499\) 14.4413 0.646480 0.323240 0.946317i \(-0.395228\pi\)
0.323240 + 0.946317i \(0.395228\pi\)
\(500\) −47.6442 −2.13071
\(501\) 0 0
\(502\) 2.78630 0.124358
\(503\) −2.95822 −0.131901 −0.0659503 0.997823i \(-0.521008\pi\)
−0.0659503 + 0.997823i \(0.521008\pi\)
\(504\) 0 0
\(505\) 13.3267 0.593032
\(506\) −16.1679 −0.718749
\(507\) 0 0
\(508\) −52.0399 −2.30890
\(509\) −24.9907 −1.10769 −0.553847 0.832619i \(-0.686841\pi\)
−0.553847 + 0.832619i \(0.686841\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −46.5767 −2.05842
\(513\) 0 0
\(514\) −56.8904 −2.50933
\(515\) 2.34502 0.103334
\(516\) 0 0
\(517\) 1.49086 0.0655681
\(518\) 0 0
\(519\) 0 0
\(520\) 39.7796 1.74445
\(521\) 28.8631 1.26452 0.632258 0.774758i \(-0.282128\pi\)
0.632258 + 0.774758i \(0.282128\pi\)
\(522\) 0 0
\(523\) −0.472591 −0.0206650 −0.0103325 0.999947i \(-0.503289\pi\)
−0.0103325 + 0.999947i \(0.503289\pi\)
\(524\) 3.19136 0.139415
\(525\) 0 0
\(526\) 22.8944 0.998245
\(527\) 3.50390 0.152632
\(528\) 0 0
\(529\) 19.1313 0.831796
\(530\) −1.67326 −0.0726817
\(531\) 0 0
\(532\) 0 0
\(533\) −36.9724 −1.60145
\(534\) 0 0
\(535\) 13.9582 0.603466
\(536\) −25.1093 −1.08456
\(537\) 0 0
\(538\) −38.8904 −1.67668
\(539\) 0 0
\(540\) 0 0
\(541\) 15.4596 0.664658 0.332329 0.943164i \(-0.392166\pi\)
0.332329 + 0.943164i \(0.392166\pi\)
\(542\) −69.1078 −2.96843
\(543\) 0 0
\(544\) 3.19136 0.136829
\(545\) −6.20290 −0.265703
\(546\) 0 0
\(547\) −35.0440 −1.49837 −0.749187 0.662359i \(-0.769556\pi\)
−0.749187 + 0.662359i \(0.769556\pi\)
\(548\) 24.5584 1.04908
\(549\) 0 0
\(550\) −0.350250 −0.0149347
\(551\) 11.4129 0.486205
\(552\) 0 0
\(553\) 0 0
\(554\) 36.8956 1.56754
\(555\) 0 0
\(556\) 23.4308 0.993688
\(557\) −10.5326 −0.446282 −0.223141 0.974786i \(-0.571631\pi\)
−0.223141 + 0.974786i \(0.571631\pi\)
\(558\) 0 0
\(559\) 17.3137 0.732292
\(560\) 0 0
\(561\) 0 0
\(562\) −37.9176 −1.59946
\(563\) −30.7147 −1.29447 −0.647235 0.762290i \(-0.724075\pi\)
−0.647235 + 0.762290i \(0.724075\pi\)
\(564\) 0 0
\(565\) 28.1145 1.18279
\(566\) −54.0948 −2.27377
\(567\) 0 0
\(568\) −62.1936 −2.60959
\(569\) 30.7721 1.29003 0.645017 0.764169i \(-0.276850\pi\)
0.645017 + 0.764169i \(0.276850\pi\)
\(570\) 0 0
\(571\) −7.51694 −0.314574 −0.157287 0.987553i \(-0.550275\pi\)
−0.157287 + 0.987553i \(0.550275\pi\)
\(572\) 13.8176 0.577743
\(573\) 0 0
\(574\) 0 0
\(575\) 0.912705 0.0380624
\(576\) 0 0
\(577\) −27.6184 −1.14977 −0.574885 0.818234i \(-0.694953\pi\)
−0.574885 + 0.818234i \(0.694953\pi\)
\(578\) −36.8083 −1.53102
\(579\) 0 0
\(580\) 15.2902 0.634891
\(581\) 0 0
\(582\) 0 0
\(583\) −0.304735 −0.0126208
\(584\) 47.0440 1.94670
\(585\) 0 0
\(586\) 27.7173 1.14499
\(587\) −29.9582 −1.23651 −0.618254 0.785978i \(-0.712160\pi\)
−0.618254 + 0.785978i \(0.712160\pi\)
\(588\) 0 0
\(589\) 16.2589 0.669936
\(590\) −69.5073 −2.86157
\(591\) 0 0
\(592\) −29.2630 −1.20270
\(593\) 12.6680 0.520213 0.260107 0.965580i \(-0.416242\pi\)
0.260107 + 0.965580i \(0.416242\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.20440 0.172219
\(597\) 0 0
\(598\) −53.1350 −2.17285
\(599\) −1.29427 −0.0528823 −0.0264411 0.999650i \(-0.508417\pi\)
−0.0264411 + 0.999650i \(0.508417\pi\)
\(600\) 0 0
\(601\) 41.0220 1.67332 0.836661 0.547721i \(-0.184504\pi\)
0.836661 + 0.547721i \(0.184504\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 62.3980 2.53894
\(605\) 2.20440 0.0896217
\(606\) 0 0
\(607\) 21.1768 0.859541 0.429770 0.902938i \(-0.358594\pi\)
0.429770 + 0.902938i \(0.358594\pi\)
\(608\) 14.8086 0.600570
\(609\) 0 0
\(610\) 71.2809 2.88608
\(611\) 4.89967 0.198219
\(612\) 0 0
\(613\) 6.76312 0.273160 0.136580 0.990629i \(-0.456389\pi\)
0.136580 + 0.990629i \(0.456389\pi\)
\(614\) −62.2354 −2.51162
\(615\) 0 0
\(616\) 0 0
\(617\) 41.0728 1.65353 0.826763 0.562550i \(-0.190180\pi\)
0.826763 + 0.562550i \(0.190180\pi\)
\(618\) 0 0
\(619\) 30.4267 1.22295 0.611477 0.791262i \(-0.290576\pi\)
0.611477 + 0.791262i \(0.290576\pi\)
\(620\) 21.7826 0.874809
\(621\) 0 0
\(622\) 86.5345 3.46972
\(623\) 0 0
\(624\) 0 0
\(625\) −24.2772 −0.971086
\(626\) −59.0571 −2.36039
\(627\) 0 0
\(628\) −26.8684 −1.07216
\(629\) −8.28123 −0.330194
\(630\) 0 0
\(631\) 12.3670 0.492323 0.246162 0.969229i \(-0.420831\pi\)
0.246162 + 0.969229i \(0.420831\pi\)
\(632\) 25.4308 1.01158
\(633\) 0 0
\(634\) −49.0127 −1.94654
\(635\) −27.2850 −1.08277
\(636\) 0 0
\(637\) 0 0
\(638\) 4.10930 0.162689
\(639\) 0 0
\(640\) −38.0142 −1.50264
\(641\) 47.1313 1.86157 0.930787 0.365561i \(-0.119123\pi\)
0.930787 + 0.365561i \(0.119123\pi\)
\(642\) 0 0
\(643\) −1.87242 −0.0738412 −0.0369206 0.999318i \(-0.511755\pi\)
−0.0369206 + 0.999318i \(0.511755\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 25.6900 1.01076
\(647\) −1.83588 −0.0721758 −0.0360879 0.999349i \(-0.511490\pi\)
−0.0360879 + 0.999349i \(0.511490\pi\)
\(648\) 0 0
\(649\) −12.6587 −0.496898
\(650\) −1.15108 −0.0451492
\(651\) 0 0
\(652\) 41.8135 1.63754
\(653\) 18.1772 0.711327 0.355664 0.934614i \(-0.384255\pi\)
0.355664 + 0.934614i \(0.384255\pi\)
\(654\) 0 0
\(655\) 1.67326 0.0653796
\(656\) −59.2667 −2.31398
\(657\) 0 0
\(658\) 0 0
\(659\) 16.8997 0.658318 0.329159 0.944275i \(-0.393235\pi\)
0.329159 + 0.944275i \(0.393235\pi\)
\(660\) 0 0
\(661\) 45.3032 1.76209 0.881046 0.473031i \(-0.156840\pi\)
0.881046 + 0.473031i \(0.156840\pi\)
\(662\) −70.2171 −2.72907
\(663\) 0 0
\(664\) −10.6315 −0.412581
\(665\) 0 0
\(666\) 0 0
\(667\) −10.7083 −0.414627
\(668\) −8.16262 −0.315821
\(669\) 0 0
\(670\) −25.1093 −0.970057
\(671\) 12.9817 0.501154
\(672\) 0 0
\(673\) 39.5076 1.52291 0.761454 0.648219i \(-0.224486\pi\)
0.761454 + 0.648219i \(0.224486\pi\)
\(674\) 54.1664 2.08641
\(675\) 0 0
\(676\) −9.24618 −0.355622
\(677\) −34.1339 −1.31187 −0.655936 0.754817i \(-0.727726\pi\)
−0.655936 + 0.754817i \(0.727726\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 18.0455 0.692014
\(681\) 0 0
\(682\) 5.85415 0.224167
\(683\) −23.7863 −0.910157 −0.455079 0.890451i \(-0.650389\pi\)
−0.455079 + 0.890451i \(0.650389\pi\)
\(684\) 0 0
\(685\) 12.8762 0.491973
\(686\) 0 0
\(687\) 0 0
\(688\) 27.7538 1.05810
\(689\) −1.00150 −0.0381541
\(690\) 0 0
\(691\) 20.5625 0.782233 0.391116 0.920341i \(-0.372089\pi\)
0.391116 + 0.920341i \(0.372089\pi\)
\(692\) 27.0440 1.02806
\(693\) 0 0
\(694\) 9.81761 0.372671
\(695\) 12.2850 0.465995
\(696\) 0 0
\(697\) −16.7721 −0.635288
\(698\) 35.1443 1.33023
\(699\) 0 0
\(700\) 0 0
\(701\) 23.9907 0.906116 0.453058 0.891481i \(-0.350333\pi\)
0.453058 + 0.891481i \(0.350333\pi\)
\(702\) 0 0
\(703\) −38.4267 −1.44929
\(704\) −5.20440 −0.196148
\(705\) 0 0
\(706\) −12.3763 −0.465789
\(707\) 0 0
\(708\) 0 0
\(709\) −51.7117 −1.94207 −0.971037 0.238930i \(-0.923204\pi\)
−0.971037 + 0.238930i \(0.923204\pi\)
\(710\) −62.1936 −2.33408
\(711\) 0 0
\(712\) 17.5949 0.659398
\(713\) −15.2552 −0.571310
\(714\) 0 0
\(715\) 7.24468 0.270936
\(716\) 15.0768 0.563447
\(717\) 0 0
\(718\) 10.1418 0.378488
\(719\) 25.7851 0.961623 0.480812 0.876824i \(-0.340342\pi\)
0.480812 + 0.876824i \(0.340342\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 71.8811 2.67514
\(723\) 0 0
\(724\) −51.3499 −1.90840
\(725\) −0.231978 −0.00861543
\(726\) 0 0
\(727\) −32.7330 −1.21400 −0.606999 0.794702i \(-0.707627\pi\)
−0.606999 + 0.794702i \(0.707627\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 47.0440 1.74118
\(731\) 7.85415 0.290496
\(732\) 0 0
\(733\) 9.28273 0.342865 0.171433 0.985196i \(-0.445160\pi\)
0.171433 + 0.985196i \(0.445160\pi\)
\(734\) 44.8904 1.65693
\(735\) 0 0
\(736\) −13.8944 −0.512156
\(737\) −4.57292 −0.168446
\(738\) 0 0
\(739\) −50.0933 −1.84271 −0.921355 0.388722i \(-0.872917\pi\)
−0.921355 + 0.388722i \(0.872917\pi\)
\(740\) −51.4816 −1.89250
\(741\) 0 0
\(742\) 0 0
\(743\) −13.1679 −0.483082 −0.241541 0.970391i \(-0.577653\pi\)
−0.241541 + 0.970391i \(0.577653\pi\)
\(744\) 0 0
\(745\) 2.20440 0.0807630
\(746\) 72.0269 2.63709
\(747\) 0 0
\(748\) 6.26819 0.229188
\(749\) 0 0
\(750\) 0 0
\(751\) 41.3137 1.50756 0.753779 0.657128i \(-0.228229\pi\)
0.753779 + 0.657128i \(0.228229\pi\)
\(752\) 7.85415 0.286411
\(753\) 0 0
\(754\) 13.5051 0.491826
\(755\) 32.7158 1.19065
\(756\) 0 0
\(757\) −45.5114 −1.65414 −0.827069 0.562100i \(-0.809994\pi\)
−0.827069 + 0.562100i \(0.809994\pi\)
\(758\) 10.7318 0.389797
\(759\) 0 0
\(760\) 83.7352 3.03740
\(761\) 31.2719 1.13361 0.566803 0.823853i \(-0.308180\pi\)
0.566803 + 0.823853i \(0.308180\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −50.9124 −1.84194
\(765\) 0 0
\(766\) −30.7591 −1.11137
\(767\) −41.6024 −1.50218
\(768\) 0 0
\(769\) −42.0467 −1.51624 −0.758121 0.652114i \(-0.773882\pi\)
−0.758121 + 0.652114i \(0.773882\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −50.2003 −1.80675
\(773\) 7.64452 0.274954 0.137477 0.990505i \(-0.456101\pi\)
0.137477 + 0.990505i \(0.456101\pi\)
\(774\) 0 0
\(775\) −0.330478 −0.0118711
\(776\) −10.2096 −0.366505
\(777\) 0 0
\(778\) −73.2887 −2.62753
\(779\) −77.8262 −2.78841
\(780\) 0 0
\(781\) −11.3267 −0.405303
\(782\) −24.1041 −0.861960
\(783\) 0 0
\(784\) 0 0
\(785\) −14.0873 −0.502797
\(786\) 0 0
\(787\) 27.9034 0.994649 0.497324 0.867565i \(-0.334316\pi\)
0.497324 + 0.867565i \(0.334316\pi\)
\(788\) −51.1365 −1.82166
\(789\) 0 0
\(790\) 25.4308 0.904788
\(791\) 0 0
\(792\) 0 0
\(793\) 42.6640 1.51504
\(794\) 43.0907 1.52923
\(795\) 0 0
\(796\) −8.00897 −0.283870
\(797\) 10.0560 0.356201 0.178101 0.984012i \(-0.443005\pi\)
0.178101 + 0.984012i \(0.443005\pi\)
\(798\) 0 0
\(799\) 2.22267 0.0786326
\(800\) −0.301000 −0.0106420
\(801\) 0 0
\(802\) 62.1481 2.19453
\(803\) 8.56769 0.302347
\(804\) 0 0
\(805\) 0 0
\(806\) 19.2394 0.677681
\(807\) 0 0
\(808\) 33.1951 1.16780
\(809\) −38.5726 −1.35614 −0.678070 0.734997i \(-0.737183\pi\)
−0.678070 + 0.734997i \(0.737183\pi\)
\(810\) 0 0
\(811\) −12.3760 −0.434580 −0.217290 0.976107i \(-0.569722\pi\)
−0.217290 + 0.976107i \(0.569722\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −13.8359 −0.484947
\(815\) 21.9232 0.767935
\(816\) 0 0
\(817\) 36.4450 1.27505
\(818\) 96.0437 3.35809
\(819\) 0 0
\(820\) −104.266 −3.64114
\(821\) −29.7381 −1.03787 −0.518934 0.854814i \(-0.673671\pi\)
−0.518934 + 0.854814i \(0.673671\pi\)
\(822\) 0 0
\(823\) 40.7770 1.42140 0.710698 0.703497i \(-0.248379\pi\)
0.710698 + 0.703497i \(0.248379\pi\)
\(824\) 5.84111 0.203485
\(825\) 0 0
\(826\) 0 0
\(827\) 18.8411 0.655170 0.327585 0.944822i \(-0.393765\pi\)
0.327585 + 0.944822i \(0.393765\pi\)
\(828\) 0 0
\(829\) 31.1406 1.08156 0.540779 0.841165i \(-0.318129\pi\)
0.540779 + 0.841165i \(0.318129\pi\)
\(830\) −10.6315 −0.369024
\(831\) 0 0
\(832\) −17.1041 −0.592977
\(833\) 0 0
\(834\) 0 0
\(835\) −4.27973 −0.148106
\(836\) 29.0858 1.00595
\(837\) 0 0
\(838\) 2.26412 0.0782127
\(839\) 10.2589 0.354176 0.177088 0.984195i \(-0.443332\pi\)
0.177088 + 0.984195i \(0.443332\pi\)
\(840\) 0 0
\(841\) −26.2783 −0.906149
\(842\) 38.7408 1.33510
\(843\) 0 0
\(844\) −68.2992 −2.35095
\(845\) −4.84785 −0.166771
\(846\) 0 0
\(847\) 0 0
\(848\) −1.60540 −0.0551297
\(849\) 0 0
\(850\) −0.522175 −0.0179104
\(851\) 36.0545 1.23593
\(852\) 0 0
\(853\) −3.04435 −0.104237 −0.0521183 0.998641i \(-0.516597\pi\)
−0.0521183 + 0.998641i \(0.516597\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 34.7680 1.18835
\(857\) 49.5532 1.69270 0.846352 0.532624i \(-0.178794\pi\)
0.846352 + 0.532624i \(0.178794\pi\)
\(858\) 0 0
\(859\) −36.8747 −1.25815 −0.629074 0.777346i \(-0.716566\pi\)
−0.629074 + 0.777346i \(0.716566\pi\)
\(860\) 48.8266 1.66497
\(861\) 0 0
\(862\) −8.80864 −0.300023
\(863\) 46.4230 1.58026 0.790129 0.612941i \(-0.210014\pi\)
0.790129 + 0.612941i \(0.210014\pi\)
\(864\) 0 0
\(865\) 14.1794 0.482114
\(866\) −43.9530 −1.49358
\(867\) 0 0
\(868\) 0 0
\(869\) 4.63148 0.157112
\(870\) 0 0
\(871\) −15.0287 −0.509229
\(872\) −15.4506 −0.523223
\(873\) 0 0
\(874\) −111.848 −3.78332
\(875\) 0 0
\(876\) 0 0
\(877\) 39.0310 1.31798 0.658991 0.752151i \(-0.270983\pi\)
0.658991 + 0.752151i \(0.270983\pi\)
\(878\) −37.4308 −1.26323
\(879\) 0 0
\(880\) 11.6132 0.391481
\(881\) −44.0049 −1.48256 −0.741281 0.671194i \(-0.765782\pi\)
−0.741281 + 0.671194i \(0.765782\pi\)
\(882\) 0 0
\(883\) −23.3596 −0.786112 −0.393056 0.919515i \(-0.628582\pi\)
−0.393056 + 0.919515i \(0.628582\pi\)
\(884\) 20.6002 0.692859
\(885\) 0 0
\(886\) −32.9359 −1.10650
\(887\) 41.9176 1.40746 0.703728 0.710470i \(-0.251517\pi\)
0.703728 + 0.710470i \(0.251517\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 17.5949 0.589783
\(891\) 0 0
\(892\) −12.7669 −0.427466
\(893\) 10.3137 0.345135
\(894\) 0 0
\(895\) 7.90490 0.264232
\(896\) 0 0
\(897\) 0 0
\(898\) 24.6811 0.823618
\(899\) 3.87733 0.129316
\(900\) 0 0
\(901\) −0.454318 −0.0151355
\(902\) −28.0220 −0.933031
\(903\) 0 0
\(904\) 70.0295 2.32915
\(905\) −26.9232 −0.894957
\(906\) 0 0
\(907\) −20.5181 −0.681293 −0.340646 0.940192i \(-0.610646\pi\)
−0.340646 + 0.940192i \(0.610646\pi\)
\(908\) 77.5674 2.57416
\(909\) 0 0
\(910\) 0 0
\(911\) −27.6755 −0.916930 −0.458465 0.888712i \(-0.651601\pi\)
−0.458465 + 0.888712i \(0.651601\pi\)
\(912\) 0 0
\(913\) −1.93621 −0.0640793
\(914\) 25.7680 0.852330
\(915\) 0 0
\(916\) 107.212 3.54237
\(917\) 0 0
\(918\) 0 0
\(919\) 0.963454 0.0317814 0.0158907 0.999874i \(-0.494942\pi\)
0.0158907 + 0.999874i \(0.494942\pi\)
\(920\) −78.5659 −2.59024
\(921\) 0 0
\(922\) −38.2029 −1.25815
\(923\) −37.2249 −1.22527
\(924\) 0 0
\(925\) 0.781061 0.0256811
\(926\) −62.5987 −2.05712
\(927\) 0 0
\(928\) 3.53148 0.115926
\(929\) 26.3320 0.863924 0.431962 0.901892i \(-0.357821\pi\)
0.431962 + 0.901892i \(0.357821\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −16.0507 −0.525760
\(933\) 0 0
\(934\) −1.85822 −0.0608028
\(935\) 3.28646 0.107479
\(936\) 0 0
\(937\) 21.3865 0.698665 0.349333 0.936999i \(-0.386408\pi\)
0.349333 + 0.936999i \(0.386408\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 13.8176 0.450681
\(941\) 14.8228 0.483211 0.241605 0.970375i \(-0.422326\pi\)
0.241605 + 0.970375i \(0.422326\pi\)
\(942\) 0 0
\(943\) 73.0217 2.37791
\(944\) −66.6885 −2.17053
\(945\) 0 0
\(946\) 13.1223 0.426644
\(947\) −31.7120 −1.03050 −0.515251 0.857039i \(-0.672301\pi\)
−0.515251 + 0.857039i \(0.672301\pi\)
\(948\) 0 0
\(949\) 28.1574 0.914027
\(950\) −2.42301 −0.0786127
\(951\) 0 0
\(952\) 0 0
\(953\) −49.9620 −1.61843 −0.809213 0.587515i \(-0.800106\pi\)
−0.809213 + 0.587515i \(0.800106\pi\)
\(954\) 0 0
\(955\) −26.6938 −0.863790
\(956\) −54.6729 −1.76825
\(957\) 0 0
\(958\) −50.0988 −1.61862
\(959\) 0 0
\(960\) 0 0
\(961\) −25.4763 −0.821817
\(962\) −45.4711 −1.46605
\(963\) 0 0
\(964\) 1.89443 0.0610156
\(965\) −26.3204 −0.847285
\(966\) 0 0
\(967\) −52.4581 −1.68694 −0.843469 0.537178i \(-0.819490\pi\)
−0.843469 + 0.537178i \(0.819490\pi\)
\(968\) 5.49086 0.176483
\(969\) 0 0
\(970\) −10.2096 −0.327812
\(971\) 30.8266 0.989272 0.494636 0.869100i \(-0.335301\pi\)
0.494636 + 0.869100i \(0.335301\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −10.5860 −0.339196
\(975\) 0 0
\(976\) 68.3902 2.18912
\(977\) −24.7355 −0.791360 −0.395680 0.918388i \(-0.629491\pi\)
−0.395680 + 0.918388i \(0.629491\pi\)
\(978\) 0 0
\(979\) 3.20440 0.102413
\(980\) 0 0
\(981\) 0 0
\(982\) −75.5427 −2.41066
\(983\) 12.2238 0.389880 0.194940 0.980815i \(-0.437549\pi\)
0.194940 + 0.980815i \(0.437549\pi\)
\(984\) 0 0
\(985\) −26.8113 −0.854279
\(986\) 6.12641 0.195105
\(987\) 0 0
\(988\) 95.5894 3.04110
\(989\) −34.1951 −1.08734
\(990\) 0 0
\(991\) 4.60017 0.146129 0.0730645 0.997327i \(-0.476722\pi\)
0.0730645 + 0.997327i \(0.476722\pi\)
\(992\) 5.03098 0.159734
\(993\) 0 0
\(994\) 0 0
\(995\) −4.19917 −0.133123
\(996\) 0 0
\(997\) 34.4763 1.09188 0.545938 0.837826i \(-0.316173\pi\)
0.545938 + 0.837826i \(0.316173\pi\)
\(998\) 35.9713 1.13865
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4851.2.a.bn.1.3 3
3.2 odd 2 539.2.a.i.1.1 3
7.3 odd 6 693.2.i.g.100.1 6
7.5 odd 6 693.2.i.g.298.1 6
7.6 odd 2 4851.2.a.bo.1.3 3
12.11 even 2 8624.2.a.ck.1.2 3
21.2 odd 6 539.2.e.l.67.3 6
21.5 even 6 77.2.e.b.67.3 yes 6
21.11 odd 6 539.2.e.l.177.3 6
21.17 even 6 77.2.e.b.23.3 6
21.20 even 2 539.2.a.h.1.1 3
33.32 even 2 5929.2.a.w.1.3 3
84.47 odd 6 1232.2.q.k.529.2 6
84.59 odd 6 1232.2.q.k.177.2 6
84.83 odd 2 8624.2.a.cl.1.2 3
231.5 even 30 847.2.n.e.487.1 24
231.17 odd 30 847.2.n.d.366.1 24
231.26 even 30 847.2.n.e.753.1 24
231.38 even 30 847.2.n.e.366.3 24
231.47 even 30 847.2.n.e.130.3 24
231.59 even 30 847.2.n.e.632.3 24
231.68 odd 30 847.2.n.d.81.1 24
231.80 even 30 847.2.n.e.9.1 24
231.101 odd 30 847.2.n.d.807.3 24
231.131 odd 6 847.2.e.d.606.1 6
231.152 even 30 847.2.n.e.81.3 24
231.164 odd 6 847.2.e.d.485.1 6
231.173 odd 30 847.2.n.d.130.1 24
231.185 even 30 847.2.n.e.807.1 24
231.194 odd 30 847.2.n.d.753.3 24
231.206 odd 30 847.2.n.d.9.3 24
231.215 odd 30 847.2.n.d.487.3 24
231.227 odd 30 847.2.n.d.632.1 24
231.230 odd 2 5929.2.a.v.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.b.23.3 6 21.17 even 6
77.2.e.b.67.3 yes 6 21.5 even 6
539.2.a.h.1.1 3 21.20 even 2
539.2.a.i.1.1 3 3.2 odd 2
539.2.e.l.67.3 6 21.2 odd 6
539.2.e.l.177.3 6 21.11 odd 6
693.2.i.g.100.1 6 7.3 odd 6
693.2.i.g.298.1 6 7.5 odd 6
847.2.e.d.485.1 6 231.164 odd 6
847.2.e.d.606.1 6 231.131 odd 6
847.2.n.d.9.3 24 231.206 odd 30
847.2.n.d.81.1 24 231.68 odd 30
847.2.n.d.130.1 24 231.173 odd 30
847.2.n.d.366.1 24 231.17 odd 30
847.2.n.d.487.3 24 231.215 odd 30
847.2.n.d.632.1 24 231.227 odd 30
847.2.n.d.753.3 24 231.194 odd 30
847.2.n.d.807.3 24 231.101 odd 30
847.2.n.e.9.1 24 231.80 even 30
847.2.n.e.81.3 24 231.152 even 30
847.2.n.e.130.3 24 231.47 even 30
847.2.n.e.366.3 24 231.38 even 30
847.2.n.e.487.1 24 231.5 even 30
847.2.n.e.632.3 24 231.59 even 30
847.2.n.e.753.1 24 231.26 even 30
847.2.n.e.807.1 24 231.185 even 30
1232.2.q.k.177.2 6 84.59 odd 6
1232.2.q.k.529.2 6 84.47 odd 6
4851.2.a.bn.1.3 3 1.1 even 1 trivial
4851.2.a.bo.1.3 3 7.6 odd 2
5929.2.a.v.1.3 3 231.230 odd 2
5929.2.a.w.1.3 3 33.32 even 2
8624.2.a.ck.1.2 3 12.11 even 2
8624.2.a.cl.1.2 3 84.83 odd 2