Properties

Label 847.2.e.d.485.1
Level $847$
Weight $2$
Character 847.485
Analytic conductor $6.763$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,2,Mod(485,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.485"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,1,-4,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1783323.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 485.1
Root \(0.356769 + 0.617942i\) of defining polynomial
Character \(\chi\) \(=\) 847.485
Dual form 847.2.e.d.606.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24543 + 2.15715i) q^{2} +(0.356769 + 0.617942i) q^{3} +(-2.10220 - 3.64112i) q^{4} +(-1.10220 + 1.90907i) q^{5} -1.77733 q^{6} +(1.10220 - 2.40523i) q^{7} +5.49086 q^{8} +(1.24543 - 2.15715i) q^{9} +(-2.74543 - 4.75523i) q^{10} +(1.50000 - 2.59808i) q^{12} +3.28646 q^{13} +(3.81574 + 5.37317i) q^{14} -1.57292 q^{15} +(-2.63409 + 4.56239i) q^{16} +(0.745432 + 1.29113i) q^{17} +(3.10220 + 5.37317i) q^{18} +(-3.45897 + 5.99111i) q^{19} +9.26819 q^{20} +(1.87953 - 0.177017i) q^{21} +(-3.24543 + 5.62125i) q^{23} +(1.95897 + 3.39304i) q^{24} +(0.0703069 + 0.121775i) q^{25} +(-4.09306 + 7.08940i) q^{26} +3.91794 q^{27} +(-11.0748 + 1.04304i) q^{28} +1.64975 q^{29} +(1.95897 - 3.39304i) q^{30} +(1.17512 + 2.03538i) q^{31} +(-1.07031 - 1.85383i) q^{32} -3.71354 q^{34} +(3.37691 + 4.75523i) q^{35} -10.4726 q^{36} +(2.77733 - 4.81047i) q^{37} +(-8.61582 - 14.9230i) q^{38} +(1.17251 + 2.03084i) q^{39} +(-6.05203 + 10.4824i) q^{40} +11.2499 q^{41} +(-1.95897 + 4.27489i) q^{42} -5.26819 q^{43} +(2.74543 + 4.75523i) q^{45} +(-8.08393 - 14.0018i) q^{46} +(-0.745432 + 1.29113i) q^{47} -3.75905 q^{48} +(-4.57031 - 5.30210i) q^{49} -0.350250 q^{50} +(-0.531894 + 0.921267i) q^{51} +(-6.90880 - 11.9664i) q^{52} +(-0.152367 - 0.263908i) q^{53} +(-4.87953 + 8.45159i) q^{54} +(6.05203 - 13.2068i) q^{56} -4.93621 q^{57} +(-2.05465 + 3.55876i) q^{58} +(6.32936 + 10.9628i) q^{59} +(3.30660 + 5.72720i) q^{60} +(-6.49086 + 11.2425i) q^{61} -5.85415 q^{62} +(-3.81574 - 5.37317i) q^{63} -5.20440 q^{64} +(-3.62234 + 6.27408i) q^{65} +(2.28646 + 3.96027i) q^{67} +(3.13409 - 5.42841i) q^{68} -4.63148 q^{69} +(-14.4635 + 1.36219i) q^{70} +11.3267 q^{71} +(6.83850 - 11.8446i) q^{72} +(-4.28384 - 7.41984i) q^{73} +(6.91794 + 11.9822i) q^{74} +(-0.0501666 + 0.0868912i) q^{75} +29.0858 q^{76} -5.84111 q^{78} +(2.31574 - 4.01098i) q^{79} +(-5.80660 - 10.0573i) q^{80} +(-2.33850 - 4.05039i) q^{81} +(-14.0110 + 24.2678i) q^{82} +1.93621 q^{83} +(-4.59568 - 6.47145i) q^{84} -3.28646 q^{85} +(6.56117 - 11.3643i) q^{86} +(0.588580 + 1.01945i) q^{87} +(-1.60220 + 2.77509i) q^{89} -13.6770 q^{90} +(3.62234 - 7.90471i) q^{91} +27.2902 q^{92} +(-0.838496 + 1.45232i) q^{93} +(-1.85677 - 3.21602i) q^{94} +(-7.62496 - 13.2068i) q^{95} +(0.763705 - 1.32278i) q^{96} +1.85939 q^{97} +(17.1294 - 3.25544i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} - 4 q^{4} + 2 q^{5} + 2 q^{6} - 2 q^{7} + 18 q^{8} - 9 q^{10} + 9 q^{12} + 22 q^{13} + 12 q^{14} - 14 q^{15} - 2 q^{16} - 3 q^{17} + 10 q^{18} - 11 q^{19} + 28 q^{20} - 10 q^{21} - 12 q^{23}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24543 + 2.15715i −0.880653 + 1.52534i −0.0300373 + 0.999549i \(0.509563\pi\)
−0.850616 + 0.525787i \(0.823771\pi\)
\(3\) 0.356769 + 0.617942i 0.205981 + 0.356769i 0.950445 0.310894i \(-0.100628\pi\)
−0.744464 + 0.667663i \(0.767295\pi\)
\(4\) −2.10220 3.64112i −1.05110 1.82056i
\(5\) −1.10220 + 1.90907i −0.492919 + 0.853761i −0.999967 0.00815703i \(-0.997404\pi\)
0.507048 + 0.861918i \(0.330737\pi\)
\(6\) −1.77733 −0.725590
\(7\) 1.10220 2.40523i 0.416593 0.909093i
\(8\) 5.49086 1.94131
\(9\) 1.24543 2.15715i 0.415144 0.719050i
\(10\) −2.74543 4.75523i −0.868182 1.50373i
\(11\) 0 0
\(12\) 1.50000 2.59808i 0.433013 0.750000i
\(13\) 3.28646 0.911501 0.455750 0.890108i \(-0.349371\pi\)
0.455750 + 0.890108i \(0.349371\pi\)
\(14\) 3.81574 + 5.37317i 1.01980 + 1.43604i
\(15\) −1.57292 −0.406127
\(16\) −2.63409 + 4.56239i −0.658524 + 1.14060i
\(17\) 0.745432 + 1.29113i 0.180794 + 0.313144i 0.942151 0.335189i \(-0.108800\pi\)
−0.761357 + 0.648333i \(0.775467\pi\)
\(18\) 3.10220 + 5.37317i 0.731196 + 1.26647i
\(19\) −3.45897 + 5.99111i −0.793542 + 1.37446i 0.130219 + 0.991485i \(0.458432\pi\)
−0.923761 + 0.382970i \(0.874901\pi\)
\(20\) 9.26819 2.07243
\(21\) 1.87953 0.177017i 0.410146 0.0386283i
\(22\) 0 0
\(23\) −3.24543 + 5.62125i −0.676719 + 1.17211i 0.299244 + 0.954177i \(0.403266\pi\)
−0.975963 + 0.217936i \(0.930068\pi\)
\(24\) 1.95897 + 3.39304i 0.399873 + 0.692600i
\(25\) 0.0703069 + 0.121775i 0.0140614 + 0.0243550i
\(26\) −4.09306 + 7.08940i −0.802716 + 1.39034i
\(27\) 3.91794 0.754008
\(28\) −11.0748 + 1.04304i −2.09294 + 0.197116i
\(29\) 1.64975 0.306351 0.153175 0.988199i \(-0.451050\pi\)
0.153175 + 0.988199i \(0.451050\pi\)
\(30\) 1.95897 3.39304i 0.357657 0.619481i
\(31\) 1.17512 + 2.03538i 0.211059 + 0.365564i 0.952046 0.305955i \(-0.0989756\pi\)
−0.740987 + 0.671519i \(0.765642\pi\)
\(32\) −1.07031 1.85383i −0.189205 0.327713i
\(33\) 0 0
\(34\) −3.71354 −0.636867
\(35\) 3.37691 + 4.75523i 0.570802 + 0.803780i
\(36\) −10.4726 −1.74543
\(37\) 2.77733 4.81047i 0.456590 0.790836i −0.542189 0.840257i \(-0.682404\pi\)
0.998778 + 0.0494206i \(0.0157375\pi\)
\(38\) −8.61582 14.9230i −1.39767 2.42084i
\(39\) 1.17251 + 2.03084i 0.187751 + 0.325195i
\(40\) −6.05203 + 10.4824i −0.956911 + 1.65742i
\(41\) 11.2499 1.75694 0.878471 0.477796i \(-0.158564\pi\)
0.878471 + 0.477796i \(0.158564\pi\)
\(42\) −1.95897 + 4.27489i −0.302276 + 0.659629i
\(43\) −5.26819 −0.803391 −0.401696 0.915773i \(-0.631579\pi\)
−0.401696 + 0.915773i \(0.631579\pi\)
\(44\) 0 0
\(45\) 2.74543 + 4.75523i 0.409265 + 0.708867i
\(46\) −8.08393 14.0018i −1.19191 2.06445i
\(47\) −0.745432 + 1.29113i −0.108732 + 0.188330i −0.915257 0.402871i \(-0.868012\pi\)
0.806525 + 0.591201i \(0.201346\pi\)
\(48\) −3.75905 −0.542573
\(49\) −4.57031 5.30210i −0.652901 0.757443i
\(50\) −0.350250 −0.0495328
\(51\) −0.531894 + 0.921267i −0.0744800 + 0.129003i
\(52\) −6.90880 11.9664i −0.958079 1.65944i
\(53\) −0.152367 0.263908i −0.0209293 0.0362506i 0.855371 0.518016i \(-0.173329\pi\)
−0.876300 + 0.481765i \(0.839996\pi\)
\(54\) −4.87953 + 8.45159i −0.664019 + 1.15012i
\(55\) 0 0
\(56\) 6.05203 13.2068i 0.808737 1.76483i
\(57\) −4.93621 −0.653817
\(58\) −2.05465 + 3.55876i −0.269789 + 0.467288i
\(59\) 6.32936 + 10.9628i 0.824012 + 1.42723i 0.902672 + 0.430330i \(0.141603\pi\)
−0.0786592 + 0.996902i \(0.525064\pi\)
\(60\) 3.30660 + 5.72720i 0.426881 + 0.739379i
\(61\) −6.49086 + 11.2425i −0.831070 + 1.43946i 0.0661206 + 0.997812i \(0.478938\pi\)
−0.897191 + 0.441644i \(0.854396\pi\)
\(62\) −5.85415 −0.743478
\(63\) −3.81574 5.37317i −0.480738 0.676956i
\(64\) −5.20440 −0.650550
\(65\) −3.62234 + 6.27408i −0.449296 + 0.778204i
\(66\) 0 0
\(67\) 2.28646 + 3.96027i 0.279336 + 0.483824i 0.971220 0.238185i \(-0.0765524\pi\)
−0.691884 + 0.722009i \(0.743219\pi\)
\(68\) 3.13409 5.42841i 0.380065 0.658292i
\(69\) −4.63148 −0.557564
\(70\) −14.4635 + 1.36219i −1.72871 + 0.162813i
\(71\) 11.3267 1.34424 0.672119 0.740444i \(-0.265385\pi\)
0.672119 + 0.740444i \(0.265385\pi\)
\(72\) 6.83850 11.8446i 0.805925 1.39590i
\(73\) −4.28384 7.41984i −0.501386 0.868426i −0.999999 0.00160129i \(-0.999490\pi\)
0.498613 0.866825i \(-0.333843\pi\)
\(74\) 6.91794 + 11.9822i 0.804194 + 1.39291i
\(75\) −0.0501666 + 0.0868912i −0.00579274 + 0.0100333i
\(76\) 29.0858 3.33637
\(77\) 0 0
\(78\) −5.84111 −0.661376
\(79\) 2.31574 4.01098i 0.260541 0.451270i −0.705845 0.708366i \(-0.749432\pi\)
0.966386 + 0.257096i \(0.0827658\pi\)
\(80\) −5.80660 10.0573i −0.649198 1.12444i
\(81\) −2.33850 4.05039i −0.259833 0.450044i
\(82\) −14.0110 + 24.2678i −1.54726 + 2.67993i
\(83\) 1.93621 0.212527 0.106263 0.994338i \(-0.466111\pi\)
0.106263 + 0.994338i \(0.466111\pi\)
\(84\) −4.59568 6.47145i −0.501430 0.706093i
\(85\) −3.28646 −0.356467
\(86\) 6.56117 11.3643i 0.707509 1.22544i
\(87\) 0.588580 + 1.01945i 0.0631024 + 0.109297i
\(88\) 0 0
\(89\) −1.60220 + 2.77509i −0.169833 + 0.294159i −0.938361 0.345657i \(-0.887656\pi\)
0.768528 + 0.639816i \(0.220989\pi\)
\(90\) −13.6770 −1.44168
\(91\) 3.62234 7.90471i 0.379725 0.828639i
\(92\) 27.2902 2.84520
\(93\) −0.838496 + 1.45232i −0.0869480 + 0.150598i
\(94\) −1.85677 3.21602i −0.191511 0.331707i
\(95\) −7.62496 13.2068i −0.782304 1.35499i
\(96\) 0.763705 1.32278i 0.0779453 0.135005i
\(97\) 1.85939 0.188792 0.0943960 0.995535i \(-0.469908\pi\)
0.0943960 + 0.995535i \(0.469908\pi\)
\(98\) 17.1294 3.25544i 1.73034 0.328849i
\(99\) 0 0
\(100\) 0.295598 0.511992i 0.0295598 0.0511992i
\(101\) 3.02276 + 5.23557i 0.300776 + 0.520959i 0.976312 0.216368i \(-0.0694211\pi\)
−0.675536 + 0.737327i \(0.736088\pi\)
\(102\) −1.32488 2.29475i −0.131182 0.227214i
\(103\) 0.531894 0.921267i 0.0524091 0.0907752i −0.838631 0.544700i \(-0.816643\pi\)
0.891040 + 0.453925i \(0.149977\pi\)
\(104\) 18.0455 1.76951
\(105\) −1.73368 + 3.78325i −0.169190 + 0.369208i
\(106\) 0.759053 0.0737257
\(107\) −3.16599 + 5.48365i −0.306068 + 0.530125i −0.977498 0.210943i \(-0.932347\pi\)
0.671431 + 0.741067i \(0.265680\pi\)
\(108\) −8.23630 14.2657i −0.792538 1.37272i
\(109\) −1.40694 2.43688i −0.134760 0.233411i 0.790746 0.612145i \(-0.209693\pi\)
−0.925506 + 0.378734i \(0.876360\pi\)
\(110\) 0 0
\(111\) 3.96345 0.376194
\(112\) 8.07031 + 11.3643i 0.762572 + 1.07382i
\(113\) −12.7538 −1.19978 −0.599889 0.800083i \(-0.704789\pi\)
−0.599889 + 0.800083i \(0.704789\pi\)
\(114\) 6.14772 10.6482i 0.575786 0.997291i
\(115\) −7.15423 12.3915i −0.667136 1.15551i
\(116\) −3.46811 6.00694i −0.322006 0.557730i
\(117\) 4.09306 7.08940i 0.378404 0.655415i
\(118\) −31.5311 −2.90268
\(119\) 3.92708 0.369859i 0.359994 0.0339049i
\(120\) −8.63671 −0.788420
\(121\) 0 0
\(122\) −16.1679 28.0035i −1.46377 2.53532i
\(123\) 4.01362 + 6.95180i 0.361896 + 0.626822i
\(124\) 4.94070 8.55754i 0.443688 0.768490i
\(125\) −11.3320 −1.01356
\(126\) 16.3430 1.53921i 1.45595 0.137124i
\(127\) 12.3775 1.09832 0.549162 0.835716i \(-0.314947\pi\)
0.549162 + 0.835716i \(0.314947\pi\)
\(128\) 8.62234 14.9343i 0.762114 1.32002i
\(129\) −1.87953 3.25544i −0.165483 0.286625i
\(130\) −9.02276 15.6279i −0.791348 1.37066i
\(131\) 0.379526 0.657359i 0.0331594 0.0574337i −0.848969 0.528442i \(-0.822776\pi\)
0.882129 + 0.471008i \(0.156110\pi\)
\(132\) 0 0
\(133\) 10.5975 + 14.9230i 0.918924 + 1.29399i
\(134\) −11.3905 −0.983992
\(135\) −4.31836 + 7.47961i −0.371665 + 0.643742i
\(136\) 4.09306 + 7.08940i 0.350977 + 0.607911i
\(137\) 2.92056 + 5.05855i 0.249520 + 0.432181i 0.963393 0.268094i \(-0.0863938\pi\)
−0.713873 + 0.700275i \(0.753060\pi\)
\(138\) 5.76819 9.99080i 0.491021 0.850473i
\(139\) 5.57292 0.472689 0.236345 0.971669i \(-0.424051\pi\)
0.236345 + 0.971669i \(0.424051\pi\)
\(140\) 10.2154 22.2922i 0.863359 1.88403i
\(141\) −1.06379 −0.0895871
\(142\) −14.1067 + 24.4335i −1.18381 + 2.05041i
\(143\) 0 0
\(144\) 6.56117 + 11.3643i 0.546764 + 0.947023i
\(145\) −1.81836 + 3.14948i −0.151006 + 0.261550i
\(146\) 21.3409 1.76619
\(147\) 1.64585 4.71581i 0.135747 0.388953i
\(148\) −23.3540 −1.91969
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) −0.124958 0.216434i −0.0102028 0.0176718i
\(151\) 7.42056 + 12.8528i 0.603876 + 1.04594i 0.992228 + 0.124433i \(0.0397113\pi\)
−0.388352 + 0.921511i \(0.626955\pi\)
\(152\) −18.9927 + 32.8964i −1.54051 + 2.66825i
\(153\) 3.71354 0.300222
\(154\) 0 0
\(155\) −5.18089 −0.416139
\(156\) 4.92969 8.53848i 0.394691 0.683625i
\(157\) −3.19527 5.53436i −0.255010 0.441690i 0.709888 0.704314i \(-0.248745\pi\)
−0.964898 + 0.262624i \(0.915412\pi\)
\(158\) 5.76819 + 9.99080i 0.458893 + 0.794825i
\(159\) 0.108720 0.188308i 0.00862205 0.0149338i
\(160\) 4.71877 0.373052
\(161\) 9.94331 + 14.0018i 0.783643 + 1.10349i
\(162\) 11.6498 0.915291
\(163\) −4.97259 + 8.61278i −0.389483 + 0.674605i −0.992380 0.123214i \(-0.960680\pi\)
0.602897 + 0.797819i \(0.294013\pi\)
\(164\) −23.6496 40.9623i −1.84672 3.19862i
\(165\) 0 0
\(166\) −2.41142 + 4.17670i −0.187163 + 0.324175i
\(167\) 1.94145 0.150234 0.0751168 0.997175i \(-0.476067\pi\)
0.0751168 + 0.997175i \(0.476067\pi\)
\(168\) 10.3202 0.971976i 0.796223 0.0749896i
\(169\) −2.19917 −0.169167
\(170\) 4.09306 7.08940i 0.313924 0.543732i
\(171\) 8.61582 + 14.9230i 0.658868 + 1.14119i
\(172\) 11.0748 + 19.1821i 0.844445 + 1.46262i
\(173\) 3.21616 5.57054i 0.244520 0.423521i −0.717477 0.696582i \(-0.754703\pi\)
0.961996 + 0.273062i \(0.0880364\pi\)
\(174\) −2.93214 −0.222285
\(175\) 0.370390 0.0348840i 0.0279989 0.00263698i
\(176\) 0 0
\(177\) −4.51624 + 7.82235i −0.339461 + 0.587964i
\(178\) −3.99086 6.91238i −0.299128 0.518105i
\(179\) 1.79298 + 3.10553i 0.134014 + 0.232119i 0.925220 0.379430i \(-0.123880\pi\)
−0.791207 + 0.611549i \(0.790547\pi\)
\(180\) 11.5429 19.9929i 0.860357 1.49018i
\(181\) 12.2134 0.907813 0.453906 0.891049i \(-0.350030\pi\)
0.453906 + 0.891049i \(0.350030\pi\)
\(182\) 12.5403 + 17.6587i 0.929547 + 1.30895i
\(183\) −9.26295 −0.684737
\(184\) −17.8202 + 30.8655i −1.31372 + 2.27544i
\(185\) 6.12234 + 10.6042i 0.450123 + 0.779637i
\(186\) −2.08858 3.61753i −0.153142 0.265250i
\(187\) 0 0
\(188\) 6.26819 0.457155
\(189\) 4.31836 9.42356i 0.314114 0.685463i
\(190\) 37.9855 2.75576
\(191\) −6.05465 + 10.4870i −0.438099 + 0.758810i −0.997543 0.0700583i \(-0.977681\pi\)
0.559444 + 0.828868i \(0.311015\pi\)
\(192\) −1.85677 3.21602i −0.134001 0.232096i
\(193\) −5.96997 10.3403i −0.429728 0.744311i 0.567121 0.823635i \(-0.308057\pi\)
−0.996849 + 0.0793237i \(0.974724\pi\)
\(194\) −2.31574 + 4.01098i −0.166260 + 0.287971i
\(195\) −5.16936 −0.370185
\(196\) −9.69788 + 27.7871i −0.692706 + 1.98479i
\(197\) −12.1626 −0.866551 −0.433275 0.901262i \(-0.642642\pi\)
−0.433275 + 0.901262i \(0.642642\pi\)
\(198\) 0 0
\(199\) −0.952451 1.64969i −0.0675174 0.116944i 0.830290 0.557331i \(-0.188174\pi\)
−0.897808 + 0.440387i \(0.854841\pi\)
\(200\) 0.386046 + 0.668651i 0.0272975 + 0.0472807i
\(201\) −1.63148 + 2.82580i −0.115076 + 0.199317i
\(202\) −15.0586 −1.05952
\(203\) 1.81836 3.96804i 0.127624 0.278502i
\(204\) 4.47259 0.313144
\(205\) −12.3997 + 21.4769i −0.866030 + 1.50001i
\(206\) 1.32488 + 2.29475i 0.0923084 + 0.159883i
\(207\) 8.08393 + 14.0018i 0.561872 + 0.973191i
\(208\) −8.65685 + 14.9941i −0.600245 + 1.03965i
\(209\) 0 0
\(210\) −6.00187 8.45159i −0.414168 0.583215i
\(211\) 16.2447 1.11833 0.559165 0.829056i \(-0.311122\pi\)
0.559165 + 0.829056i \(0.311122\pi\)
\(212\) −0.640614 + 1.10958i −0.0439975 + 0.0762060i
\(213\) 4.04103 + 6.99927i 0.276887 + 0.479582i
\(214\) −7.88605 13.6590i −0.539079 0.933712i
\(215\) 5.80660 10.0573i 0.396007 0.685904i
\(216\) 21.5129 1.46377
\(217\) 6.19078 0.583058i 0.420258 0.0395806i
\(218\) 7.00897 0.474707
\(219\) 3.05669 5.29434i 0.206552 0.357758i
\(220\) 0 0
\(221\) 2.44983 + 4.24324i 0.164794 + 0.285431i
\(222\) −4.93621 + 8.54977i −0.331297 + 0.573823i
\(223\) 3.03655 0.203342 0.101671 0.994818i \(-0.467581\pi\)
0.101671 + 0.994818i \(0.467581\pi\)
\(224\) −5.63858 + 0.531051i −0.376743 + 0.0354823i
\(225\) 0.350250 0.0233500
\(226\) 15.8840 27.5119i 1.05659 1.83007i
\(227\) 9.22454 + 15.9774i 0.612254 + 1.06046i 0.990860 + 0.134897i \(0.0430705\pi\)
−0.378605 + 0.925558i \(0.623596\pi\)
\(228\) 10.3769 + 17.9733i 0.687228 + 1.19031i
\(229\) 12.7499 22.0835i 0.842538 1.45932i −0.0452039 0.998978i \(-0.514394\pi\)
0.887742 0.460341i \(-0.152273\pi\)
\(230\) 35.6404 2.35006
\(231\) 0 0
\(232\) 9.05855 0.594723
\(233\) 1.90880 3.30614i 0.125050 0.216593i −0.796703 0.604372i \(-0.793424\pi\)
0.921752 + 0.387779i \(0.126758\pi\)
\(234\) 10.1953 + 17.6587i 0.666485 + 1.15439i
\(235\) −1.64323 2.84616i −0.107193 0.185663i
\(236\) 26.6112 46.0919i 1.73224 3.00033i
\(237\) 3.30473 0.214666
\(238\) −4.09306 + 8.93193i −0.265314 + 0.578971i
\(239\) −13.0037 −0.841142 −0.420571 0.907260i \(-0.638170\pi\)
−0.420571 + 0.907260i \(0.638170\pi\)
\(240\) 4.14323 7.17629i 0.267444 0.463227i
\(241\) −0.225292 0.390216i −0.0145123 0.0251360i 0.858678 0.512515i \(-0.171286\pi\)
−0.873190 + 0.487379i \(0.837953\pi\)
\(242\) 0 0
\(243\) 7.54551 13.0692i 0.484045 0.838391i
\(244\) 54.5804 3.49415
\(245\) 15.1595 2.88104i 0.968503 0.184063i
\(246\) −19.9948 −1.27482
\(247\) −11.3678 + 19.6896i −0.723314 + 1.25282i
\(248\) 6.45245 + 11.1760i 0.409731 + 0.709675i
\(249\) 0.690780 + 1.19647i 0.0437764 + 0.0758230i
\(250\) 14.1132 24.4448i 0.892597 1.54602i
\(251\) 1.11861 0.0706058 0.0353029 0.999377i \(-0.488760\pi\)
0.0353029 + 0.999377i \(0.488760\pi\)
\(252\) −11.5429 + 25.1890i −0.727134 + 1.58676i
\(253\) 0 0
\(254\) −15.4153 + 26.7001i −0.967243 + 1.67531i
\(255\) −1.17251 2.03084i −0.0734253 0.127176i
\(256\) 16.2727 + 28.1851i 1.01704 + 1.76157i
\(257\) 11.4198 19.7797i 0.712348 1.23382i −0.251626 0.967825i \(-0.580965\pi\)
0.963974 0.265998i \(-0.0857015\pi\)
\(258\) 9.36329 0.582933
\(259\) −8.50914 11.9822i −0.528732 0.744539i
\(260\) 30.4596 1.88902
\(261\) 2.05465 3.55876i 0.127180 0.220282i
\(262\) 0.945349 + 1.63739i 0.0584038 + 0.101158i
\(263\) −4.59568 7.95995i −0.283382 0.490832i 0.688834 0.724919i \(-0.258123\pi\)
−0.972215 + 0.234088i \(0.924790\pi\)
\(264\) 0 0
\(265\) 0.671758 0.0412658
\(266\) −45.3898 + 4.27489i −2.78303 + 0.262110i
\(267\) −2.28646 −0.139929
\(268\) 9.61320 16.6506i 0.587220 1.01709i
\(269\) 7.80660 + 13.5214i 0.475977 + 0.824416i 0.999621 0.0275208i \(-0.00876123\pi\)
−0.523644 + 0.851937i \(0.675428\pi\)
\(270\) −10.7564 18.6307i −0.654616 1.13383i
\(271\) 13.8723 24.0275i 0.842680 1.45956i −0.0449415 0.998990i \(-0.514310\pi\)
0.887621 0.460574i \(-0.152357\pi\)
\(272\) −7.85415 −0.476228
\(273\) 6.17699 0.581759i 0.373849 0.0352097i
\(274\) −14.5494 −0.878962
\(275\) 0 0
\(276\) 9.73630 + 16.8638i 0.586056 + 1.01508i
\(277\) 7.40619 + 12.8279i 0.444995 + 0.770753i 0.998052 0.0623900i \(-0.0198723\pi\)
−0.553057 + 0.833143i \(0.686539\pi\)
\(278\) −6.94070 + 12.0216i −0.416275 + 0.721010i
\(279\) 5.85415 0.350479
\(280\) 18.5421 + 26.1103i 1.10811 + 1.56039i
\(281\) −15.2227 −0.908109 −0.454054 0.890974i \(-0.650023\pi\)
−0.454054 + 0.890974i \(0.650023\pi\)
\(282\) 1.32488 2.29475i 0.0788952 0.136650i
\(283\) 10.8586 + 18.8077i 0.645479 + 1.11800i 0.984191 + 0.177112i \(0.0566755\pi\)
−0.338712 + 0.940890i \(0.609991\pi\)
\(284\) −23.8111 41.2420i −1.41293 2.44726i
\(285\) 5.44070 9.42356i 0.322279 0.558204i
\(286\) 0 0
\(287\) 12.3997 27.0587i 0.731929 1.59722i
\(288\) −5.33198 −0.314190
\(289\) 7.38866 12.7975i 0.434627 0.752796i
\(290\) −4.52928 7.84494i −0.265968 0.460671i
\(291\) 0.663371 + 1.14899i 0.0388875 + 0.0673551i
\(292\) −18.0110 + 31.1960i −1.05401 + 1.82561i
\(293\) −11.1276 −0.650080 −0.325040 0.945700i \(-0.605378\pi\)
−0.325040 + 0.945700i \(0.605378\pi\)
\(294\) 8.12292 + 9.42356i 0.473739 + 0.549593i
\(295\) −27.9049 −1.62469
\(296\) 15.2499 26.4136i 0.886383 1.53526i
\(297\) 0 0
\(298\) −1.24543 2.15715i −0.0721459 0.124960i
\(299\) −10.6660 + 18.4740i −0.616830 + 1.06838i
\(300\) 0.421841 0.0243550
\(301\) −5.80660 + 12.6712i −0.334687 + 0.730358i
\(302\) −36.9672 −2.12722
\(303\) −2.15685 + 3.73578i −0.123908 + 0.214615i
\(304\) −18.2225 31.5623i −1.04513 1.81022i
\(305\) −14.3085 24.7830i −0.819301 1.41907i
\(306\) −4.62496 + 8.01066i −0.264391 + 0.457939i
\(307\) −24.9855 −1.42600 −0.712998 0.701166i \(-0.752663\pi\)
−0.712998 + 0.701166i \(0.752663\pi\)
\(308\) 0 0
\(309\) 0.759053 0.0431810
\(310\) 6.45245 11.1760i 0.366475 0.634753i
\(311\) −17.3704 30.0864i −0.984984 1.70604i −0.642005 0.766700i \(-0.721897\pi\)
−0.342979 0.939343i \(-0.611436\pi\)
\(312\) 6.43808 + 11.1511i 0.364484 + 0.631306i
\(313\) −11.8547 + 20.5330i −0.670069 + 1.16059i 0.307815 + 0.951446i \(0.400402\pi\)
−0.977884 + 0.209148i \(0.932931\pi\)
\(314\) 15.9179 0.898301
\(315\) 14.4635 1.36219i 0.814923 0.0767508i
\(316\) −19.4726 −1.09542
\(317\) −9.83850 + 17.0408i −0.552585 + 0.957105i 0.445502 + 0.895281i \(0.353025\pi\)
−0.998087 + 0.0618244i \(0.980308\pi\)
\(318\) 0.270807 + 0.469051i 0.0151861 + 0.0263031i
\(319\) 0 0
\(320\) 5.73630 9.93556i 0.320669 0.555414i
\(321\) −4.51811 −0.252176
\(322\) −42.5877 + 4.01098i −2.37332 + 0.223523i
\(323\) −10.3137 −0.573870
\(324\) −9.83198 + 17.0295i −0.546221 + 0.946082i
\(325\) 0.231061 + 0.400209i 0.0128170 + 0.0221996i
\(326\) −12.3860 21.4533i −0.686000 1.18819i
\(327\) 1.00390 1.73881i 0.0555159 0.0961564i
\(328\) 61.7718 3.41077
\(329\) 2.28384 + 3.21602i 0.125912 + 0.177305i
\(330\) 0 0
\(331\) 14.0949 24.4131i 0.774728 1.34187i −0.160220 0.987081i \(-0.551220\pi\)
0.934947 0.354786i \(-0.115446\pi\)
\(332\) −4.07031 7.04998i −0.223387 0.386918i
\(333\) −6.91794 11.9822i −0.379101 0.656622i
\(334\) −2.41794 + 4.18799i −0.132304 + 0.229157i
\(335\) −10.0806 −0.550760
\(336\) −4.14323 + 9.04140i −0.226032 + 0.493249i
\(337\) −21.7460 −1.18458 −0.592290 0.805725i \(-0.701776\pi\)
−0.592290 + 0.805725i \(0.701776\pi\)
\(338\) 2.73891 4.74394i 0.148977 0.258036i
\(339\) −4.55017 7.88112i −0.247131 0.428044i
\(340\) 6.90880 + 11.9664i 0.374682 + 0.648969i
\(341\) 0 0
\(342\) −42.9217 −2.32094
\(343\) −17.7902 + 5.14868i −0.960580 + 0.278003i
\(344\) −28.9269 −1.55963
\(345\) 5.10482 8.84180i 0.274834 0.476027i
\(346\) 8.01100 + 13.8755i 0.430674 + 0.745950i
\(347\) −1.97072 3.41339i −0.105794 0.183241i 0.808268 0.588814i \(-0.200405\pi\)
−0.914062 + 0.405574i \(0.867072\pi\)
\(348\) 2.47463 4.28618i 0.132654 0.229763i
\(349\) 14.1093 0.755254 0.377627 0.925958i \(-0.376740\pi\)
0.377627 + 0.925958i \(0.376740\pi\)
\(350\) −0.386046 + 0.842433i −0.0206350 + 0.0450299i
\(351\) 12.8762 0.687279
\(352\) 0 0
\(353\) 2.48434 + 4.30301i 0.132228 + 0.229026i 0.924535 0.381097i \(-0.124453\pi\)
−0.792307 + 0.610123i \(0.791120\pi\)
\(354\) −11.2493 19.4844i −0.597895 1.03559i
\(355\) −12.4843 + 21.6235i −0.662600 + 1.14766i
\(356\) 13.4726 0.714046
\(357\) 1.62961 + 2.29475i 0.0862481 + 0.121451i
\(358\) −8.93214 −0.472078
\(359\) −2.03580 + 3.52610i −0.107445 + 0.186101i −0.914735 0.404055i \(-0.867600\pi\)
0.807289 + 0.590156i \(0.200934\pi\)
\(360\) 15.0748 + 26.1103i 0.794511 + 1.37613i
\(361\) −14.4289 24.9917i −0.759418 1.31535i
\(362\) −15.2109 + 26.3461i −0.799468 + 1.38472i
\(363\) 0 0
\(364\) −36.3969 + 3.42792i −1.90772 + 0.179672i
\(365\) 18.8866 0.988571
\(366\) 11.5364 19.9816i 0.603016 1.04445i
\(367\) 9.01100 + 15.6075i 0.470371 + 0.814706i 0.999426 0.0338816i \(-0.0107869\pi\)
−0.529055 + 0.848587i \(0.677454\pi\)
\(368\) −17.0975 29.6138i −0.891271 1.54373i
\(369\) 14.0110 24.2678i 0.729384 1.26333i
\(370\) −30.4998 −1.58561
\(371\) −0.802700 + 0.0755997i −0.0416741 + 0.00392494i
\(372\) 7.05075 0.365564
\(373\) 14.4582 25.0424i 0.748618 1.29664i −0.199867 0.979823i \(-0.564051\pi\)
0.948485 0.316822i \(-0.102616\pi\)
\(374\) 0 0
\(375\) −4.04290 7.00250i −0.208774 0.361608i
\(376\) −4.09306 + 7.08940i −0.211084 + 0.365608i
\(377\) 5.42184 0.279239
\(378\) 14.9498 + 21.0518i 0.768936 + 1.08279i
\(379\) 4.30847 0.221311 0.110656 0.993859i \(-0.464705\pi\)
0.110656 + 0.993859i \(0.464705\pi\)
\(380\) −32.0584 + 55.5268i −1.64456 + 2.84846i
\(381\) 4.41591 + 7.64857i 0.226234 + 0.391848i
\(382\) −15.0813 26.1216i −0.771627 1.33650i
\(383\) 6.17438 10.6943i 0.315496 0.546455i −0.664047 0.747691i \(-0.731163\pi\)
0.979543 + 0.201236i \(0.0644958\pi\)
\(384\) 12.3047 0.627923
\(385\) 0 0
\(386\) 29.7408 1.51377
\(387\) −6.56117 + 11.3643i −0.333523 + 0.577679i
\(388\) −3.90880 6.77025i −0.198439 0.343707i
\(389\) −14.7115 25.4811i −0.745903 1.29194i −0.949772 0.312943i \(-0.898685\pi\)
0.203869 0.978998i \(-0.434648\pi\)
\(390\) 6.43808 11.1511i 0.326005 0.564657i
\(391\) −9.67699 −0.489387
\(392\) −25.0949 29.1131i −1.26749 1.47043i
\(393\) 0.541613 0.0273208
\(394\) 15.1477 26.2366i 0.763131 1.32178i
\(395\) 5.10482 + 8.84180i 0.256851 + 0.444879i
\(396\) 0 0
\(397\) 8.64975 14.9818i 0.434119 0.751915i −0.563105 0.826386i \(-0.690393\pi\)
0.997223 + 0.0744702i \(0.0237266\pi\)
\(398\) 4.74485 0.237838
\(399\) −5.44070 + 11.8727i −0.272376 + 0.594381i
\(400\) −0.740780 −0.0370390
\(401\) 12.4752 21.6077i 0.622982 1.07904i −0.365945 0.930636i \(-0.619254\pi\)
0.988927 0.148400i \(-0.0474124\pi\)
\(402\) −4.06379 7.03869i −0.202683 0.351058i
\(403\) 3.86200 + 6.68919i 0.192380 + 0.333212i
\(404\) 12.7089 22.0124i 0.632291 1.09516i
\(405\) 10.3100 0.512306
\(406\) 6.29502 + 8.86439i 0.312416 + 0.439932i
\(407\) 0 0
\(408\) −2.92056 + 5.05855i −0.144589 + 0.250436i
\(409\) −19.2792 33.3925i −0.953295 1.65115i −0.738223 0.674557i \(-0.764335\pi\)
−0.215072 0.976598i \(-0.568999\pi\)
\(410\) −30.8859 53.4959i −1.52534 2.64197i
\(411\) −2.08393 + 3.60947i −0.102793 + 0.178042i
\(412\) −4.47259 −0.220349
\(413\) 33.3443 3.14042i 1.64076 0.154530i
\(414\) −40.2719 −1.97926
\(415\) −2.13409 + 3.69636i −0.104759 + 0.181447i
\(416\) −3.51752 6.09253i −0.172461 0.298711i
\(417\) 1.98825 + 3.44374i 0.0973648 + 0.168641i
\(418\) 0 0
\(419\) 0.908970 0.0444061 0.0222030 0.999753i \(-0.492932\pi\)
0.0222030 + 0.999753i \(0.492932\pi\)
\(420\) 17.4198 1.64063i 0.850000 0.0800544i
\(421\) 15.5532 0.758014 0.379007 0.925394i \(-0.376266\pi\)
0.379007 + 0.925394i \(0.376266\pi\)
\(422\) −20.2316 + 35.0422i −0.984861 + 1.70583i
\(423\) 1.85677 + 3.21602i 0.0902792 + 0.156368i
\(424\) −0.836629 1.44908i −0.0406303 0.0703737i
\(425\) −0.104818 + 0.181550i −0.00508442 + 0.00880647i
\(426\) −20.1313 −0.975365
\(427\) 19.8866 + 28.0035i 0.962381 + 1.35519i
\(428\) 26.6222 1.28683
\(429\) 0 0
\(430\) 14.4635 + 25.0514i 0.697490 + 1.20809i
\(431\) 1.76819 + 3.06259i 0.0851707 + 0.147520i 0.905464 0.424423i \(-0.139523\pi\)
−0.820293 + 0.571943i \(0.806190\pi\)
\(432\) −10.3202 + 17.8752i −0.496532 + 0.860019i
\(433\) 17.6457 0.847997 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(434\) −6.45245 + 14.0806i −0.309728 + 0.675891i
\(435\) −2.59493 −0.124417
\(436\) −5.91532 + 10.2456i −0.283293 + 0.490677i
\(437\) −22.4517 38.8875i −1.07401 1.86024i
\(438\) 7.61379 + 13.1875i 0.363801 + 0.630122i
\(439\) 7.51362 13.0140i 0.358606 0.621123i −0.629123 0.777306i \(-0.716586\pi\)
0.987728 + 0.156183i \(0.0499190\pi\)
\(440\) 0 0
\(441\) −17.1294 + 3.25544i −0.815688 + 0.155021i
\(442\) −12.2044 −0.580504
\(443\) −6.61134 + 11.4512i −0.314114 + 0.544062i −0.979249 0.202662i \(-0.935041\pi\)
0.665135 + 0.746723i \(0.268374\pi\)
\(444\) −8.33198 14.4314i −0.395418 0.684884i
\(445\) −3.53189 6.11742i −0.167428 0.289994i
\(446\) −3.78181 + 6.55029i −0.179074 + 0.310165i
\(447\) −0.713538 −0.0337492
\(448\) −5.73630 + 12.5178i −0.271014 + 0.591411i
\(449\) −9.90864 −0.467617 −0.233809 0.972283i \(-0.575119\pi\)
−0.233809 + 0.972283i \(0.575119\pi\)
\(450\) −0.436212 + 0.755542i −0.0205632 + 0.0356166i
\(451\) 0 0
\(452\) 26.8111 + 46.4382i 1.26109 + 2.18427i
\(453\) −5.29485 + 9.17095i −0.248774 + 0.430889i
\(454\) −45.9542 −2.15674
\(455\) 11.0981 + 15.6279i 0.520286 + 0.732646i
\(456\) −27.1041 −1.26926
\(457\) 5.17251 8.95905i 0.241960 0.419087i −0.719313 0.694686i \(-0.755543\pi\)
0.961272 + 0.275600i \(0.0888765\pi\)
\(458\) 31.7583 + 55.0070i 1.48397 + 2.57031i
\(459\) 2.92056 + 5.05855i 0.136320 + 0.236113i
\(460\) −30.0793 + 52.0988i −1.40245 + 2.42912i
\(461\) 15.3372 0.714325 0.357163 0.934042i \(-0.383744\pi\)
0.357163 + 0.934042i \(0.383744\pi\)
\(462\) 0 0
\(463\) −25.1313 −1.16795 −0.583976 0.811771i \(-0.698504\pi\)
−0.583976 + 0.811771i \(0.698504\pi\)
\(464\) −4.34560 + 7.52680i −0.201739 + 0.349423i
\(465\) −1.84838 3.20149i −0.0857167 0.148466i
\(466\) 4.75457 + 8.23515i 0.220251 + 0.381486i
\(467\) 0.373007 0.646068i 0.0172607 0.0298964i −0.857266 0.514874i \(-0.827839\pi\)
0.874527 + 0.484977i \(0.161172\pi\)
\(468\) −34.4178 −1.59096
\(469\) 12.0455 1.13447i 0.556210 0.0523848i
\(470\) 8.18613 0.377598
\(471\) 2.27994 3.94898i 0.105054 0.181959i
\(472\) 34.7537 + 60.1951i 1.59967 + 2.77070i
\(473\) 0 0
\(474\) −4.11582 + 7.12881i −0.189046 + 0.327437i
\(475\) −0.972758 −0.0446332
\(476\) −9.60220 13.5214i −0.440116 0.619754i
\(477\) −0.759053 −0.0347546
\(478\) 16.1953 28.0510i 0.740754 1.28302i
\(479\) −10.0565 17.4184i −0.459494 0.795867i 0.539440 0.842024i \(-0.318636\pi\)
−0.998934 + 0.0461569i \(0.985303\pi\)
\(480\) 1.68351 + 2.91593i 0.0768414 + 0.133093i
\(481\) 9.12758 15.8094i 0.416182 0.720848i
\(482\) 1.12234 0.0511212
\(483\) −5.10482 + 11.1398i −0.232277 + 0.506878i
\(484\) 0 0
\(485\) −2.04942 + 3.54969i −0.0930592 + 0.161183i
\(486\) 18.7948 + 32.5536i 0.852552 + 1.47666i
\(487\) 2.12496 + 3.68054i 0.0962911 + 0.166781i 0.910147 0.414286i \(-0.135969\pi\)
−0.813856 + 0.581067i \(0.802635\pi\)
\(488\) −35.6404 + 61.7311i −1.61337 + 2.79443i
\(489\) −7.09626 −0.320904
\(490\) −12.6652 + 36.2894i −0.572157 + 1.63939i
\(491\) −30.3279 −1.36868 −0.684340 0.729163i \(-0.739909\pi\)
−0.684340 + 0.729163i \(0.739909\pi\)
\(492\) 16.8749 29.2281i 0.760778 1.31771i
\(493\) 1.22978 + 2.13003i 0.0553863 + 0.0959320i
\(494\) −28.3156 49.0440i −1.27398 2.20659i
\(495\) 0 0
\(496\) −12.3816 −0.555948
\(497\) 12.4843 27.2435i 0.559999 1.22204i
\(498\) −3.44128 −0.154207
\(499\) −7.22064 + 12.5065i −0.323240 + 0.559869i −0.981155 0.193224i \(-0.938106\pi\)
0.657914 + 0.753093i \(0.271439\pi\)
\(500\) 23.8221 + 41.2611i 1.06536 + 1.84525i
\(501\) 0.692648 + 1.19970i 0.0309452 + 0.0535987i
\(502\) −1.39315 + 2.41300i −0.0621792 + 0.107698i
\(503\) 2.95822 0.131901 0.0659503 0.997823i \(-0.478992\pi\)
0.0659503 + 0.997823i \(0.478992\pi\)
\(504\) −20.9517 29.5033i −0.933263 1.31418i
\(505\) −13.3267 −0.593032
\(506\) 0 0
\(507\) −0.784595 1.35896i −0.0348451 0.0603534i
\(508\) −26.0200 45.0679i −1.15445 1.99957i
\(509\) 12.4953 21.6426i 0.553847 0.959290i −0.444146 0.895955i \(-0.646493\pi\)
0.997992 0.0633358i \(-0.0201739\pi\)
\(510\) 5.84111 0.258649
\(511\) −22.5681 + 2.12550i −0.998354 + 0.0940267i
\(512\) −46.5767 −2.05842
\(513\) −13.5520 + 23.4728i −0.598337 + 1.03635i
\(514\) 28.4452 + 49.2685i 1.25466 + 2.17314i
\(515\) 1.17251 + 2.03084i 0.0516669 + 0.0894896i
\(516\) −7.90228 + 13.6872i −0.347879 + 0.602544i
\(517\) 0 0
\(518\) 36.4450 3.43245i 1.60130 0.150813i
\(519\) 4.58970 0.201465
\(520\) −19.8898 + 34.4501i −0.872225 + 1.51074i
\(521\) −14.4316 24.9962i −0.632258 1.09510i −0.987089 0.160173i \(-0.948795\pi\)
0.354831 0.934931i \(-0.384538\pi\)
\(522\) 5.11786 + 8.86439i 0.224002 + 0.387984i
\(523\) 0.236295 0.409276i 0.0103325 0.0178964i −0.860813 0.508921i \(-0.830044\pi\)
0.871145 + 0.491025i \(0.163378\pi\)
\(524\) −3.19136 −0.139415
\(525\) 0.153700 + 0.216434i 0.00670802 + 0.00944596i
\(526\) 22.8944 0.998245
\(527\) −1.75195 + 3.03447i −0.0763162 + 0.132184i
\(528\) 0 0
\(529\) −9.56566 16.5682i −0.415898 0.720357i
\(530\) −0.836629 + 1.44908i −0.0363408 + 0.0629442i
\(531\) 31.5311 1.36834
\(532\) 32.0584 69.9582i 1.38991 3.03307i
\(533\) 36.9724 1.60145
\(534\) 2.84763 4.93224i 0.123229 0.213439i
\(535\) −6.97911 12.0882i −0.301733 0.522617i
\(536\) 12.5547 + 21.7453i 0.542278 + 0.939254i
\(537\) −1.27936 + 2.21592i −0.0552085 + 0.0956239i
\(538\) −38.8904 −1.67668
\(539\) 0 0
\(540\) 36.3122 1.56263
\(541\) 7.72978 13.3884i 0.332329 0.575611i −0.650639 0.759387i \(-0.725499\pi\)
0.982968 + 0.183776i \(0.0588322\pi\)
\(542\) 34.5539 + 59.8491i 1.48422 + 2.57074i
\(543\) 4.35735 + 7.54715i 0.186992 + 0.323879i
\(544\) 1.59568 2.76380i 0.0684143 0.118497i
\(545\) 6.20290 0.265703
\(546\) −6.43808 + 14.0492i −0.275524 + 0.601252i
\(547\) 35.0440 1.49837 0.749187 0.662359i \(-0.230444\pi\)
0.749187 + 0.662359i \(0.230444\pi\)
\(548\) 12.2792 21.2682i 0.524541 0.908532i
\(549\) 16.1679 + 28.0035i 0.690027 + 1.19516i
\(550\) 0 0
\(551\) −5.70644 + 9.88384i −0.243102 + 0.421066i
\(552\) −25.4308 −1.08241
\(553\) −7.09493 9.99080i −0.301707 0.424852i
\(554\) −36.8956 −1.56754
\(555\) −4.36852 + 7.56650i −0.185433 + 0.321180i
\(556\) −11.7154 20.2917i −0.496844 0.860559i
\(557\) 5.26632 + 9.12154i 0.223141 + 0.386492i 0.955760 0.294147i \(-0.0950356\pi\)
−0.732619 + 0.680639i \(0.761702\pi\)
\(558\) −7.29095 + 12.6283i −0.308650 + 0.534598i
\(559\) −17.3137 −0.732292
\(560\) −30.5903 + 2.88104i −1.29268 + 0.121746i
\(561\) 0 0
\(562\) 18.9588 32.8376i 0.799729 1.38517i
\(563\) −15.3574 26.5997i −0.647235 1.12104i −0.983780 0.179377i \(-0.942592\pi\)
0.336545 0.941667i \(-0.390742\pi\)
\(564\) 2.23630 + 3.87338i 0.0941650 + 0.163099i
\(565\) 14.0573 24.3479i 0.591394 1.02432i
\(566\) −54.0948 −2.27377
\(567\) −12.3196 + 1.16028i −0.517376 + 0.0487274i
\(568\) 62.1936 2.60959
\(569\) −15.3860 + 26.6494i −0.645017 + 1.11720i 0.339281 + 0.940685i \(0.389816\pi\)
−0.984298 + 0.176516i \(0.943517\pi\)
\(570\) 13.5520 + 23.4728i 0.567632 + 0.983168i
\(571\) −3.75847 6.50986i −0.157287 0.272429i 0.776602 0.629991i \(-0.216941\pi\)
−0.933889 + 0.357562i \(0.883608\pi\)
\(572\) 0 0
\(573\) −8.64045 −0.360960
\(574\) 42.9267 + 60.4477i 1.79173 + 2.52304i
\(575\) −0.912705 −0.0380624
\(576\) −6.48173 + 11.2267i −0.270072 + 0.467778i
\(577\) −13.8092 23.9183i −0.574885 0.995731i −0.996054 0.0887483i \(-0.971713\pi\)
0.421169 0.906982i \(-0.361620\pi\)
\(578\) 18.4042 + 31.8769i 0.765512 + 1.32591i
\(579\) 4.25980 7.37819i 0.177031 0.306627i
\(580\) 15.2902 0.634891
\(581\) 2.13409 4.65704i 0.0885372 0.193207i
\(582\) −3.30473 −0.136986
\(583\) 0 0
\(584\) −23.5220 40.7413i −0.973348 1.68589i
\(585\) 9.02276 + 15.6279i 0.373045 + 0.646133i
\(586\) 13.8586 24.0039i 0.572495 0.991590i
\(587\) −29.9582 −1.23651 −0.618254 0.785978i \(-0.712160\pi\)
−0.618254 + 0.785978i \(0.712160\pi\)
\(588\) −20.6307 + 3.92085i −0.850797 + 0.161693i
\(589\) −16.2589 −0.669936
\(590\) 34.7537 60.1951i 1.43079 2.47819i
\(591\) −4.33925 7.51579i −0.178493 0.309158i
\(592\) 14.6315 + 25.3425i 0.601350 + 1.04157i
\(593\) 6.33401 10.9708i 0.260107 0.450518i −0.706163 0.708049i \(-0.749576\pi\)
0.966270 + 0.257531i \(0.0829089\pi\)
\(594\) 0 0
\(595\) −3.62234 + 7.90471i −0.148502 + 0.324062i
\(596\) 4.20440 0.172219
\(597\) 0.679610 1.17712i 0.0278146 0.0481762i
\(598\) −26.5675 46.0163i −1.08643 1.88175i
\(599\) −0.647133 1.12087i −0.0264411 0.0457974i 0.852502 0.522724i \(-0.175084\pi\)
−0.878943 + 0.476926i \(0.841751\pi\)
\(600\) −0.275458 + 0.477108i −0.0112455 + 0.0194778i
\(601\) 41.0220 1.67332 0.836661 0.547721i \(-0.184504\pi\)
0.836661 + 0.547721i \(0.184504\pi\)
\(602\) −20.1020 28.3069i −0.819298 1.15370i
\(603\) 11.3905 0.463858
\(604\) 31.1990 54.0383i 1.26947 2.19879i
\(605\) 0 0
\(606\) −5.37242 9.30531i −0.218240 0.378002i
\(607\) −10.5884 + 18.3397i −0.429770 + 0.744384i −0.996853 0.0792770i \(-0.974739\pi\)
0.567082 + 0.823661i \(0.308072\pi\)
\(608\) 14.8086 0.600570
\(609\) 3.10075 0.292034i 0.125649 0.0118338i
\(610\) 71.2809 2.88608
\(611\) −2.44983 + 4.24324i −0.0991096 + 0.171663i
\(612\) −7.80660 13.5214i −0.315563 0.546571i
\(613\) 3.38156 + 5.85704i 0.136580 + 0.236563i 0.926200 0.377033i \(-0.123056\pi\)
−0.789620 + 0.613596i \(0.789722\pi\)
\(614\) 31.1177 53.8974i 1.25581 2.17512i
\(615\) −17.6953 −0.713542
\(616\) 0 0
\(617\) −41.0728 −1.65353 −0.826763 0.562550i \(-0.809820\pi\)
−0.826763 + 0.562550i \(0.809820\pi\)
\(618\) −0.945349 + 1.63739i −0.0380275 + 0.0658656i
\(619\) 15.2134 + 26.3503i 0.611477 + 1.05911i 0.990992 + 0.133924i \(0.0427577\pi\)
−0.379515 + 0.925186i \(0.623909\pi\)
\(620\) 10.8913 + 18.8643i 0.437404 + 0.757607i
\(621\) −12.7154 + 22.0237i −0.510252 + 0.883782i
\(622\) 86.5345 3.46972
\(623\) 4.90880 + 6.91238i 0.196667 + 0.276939i
\(624\) −12.3540 −0.494555
\(625\) 12.1386 21.0246i 0.485543 0.840985i
\(626\) −29.5285 51.1449i −1.18020 2.04416i
\(627\) 0 0
\(628\) −13.4342 + 23.2687i −0.536082 + 0.928521i
\(629\) 8.28123 0.330194
\(630\) −15.0748 + 32.8964i −0.600594 + 1.31062i
\(631\) 12.3670 0.492323 0.246162 0.969229i \(-0.420831\pi\)
0.246162 + 0.969229i \(0.420831\pi\)
\(632\) 12.7154 22.0237i 0.505792 0.876057i
\(633\) 5.79560 + 10.0383i 0.230354 + 0.398985i
\(634\) −24.5064 42.4462i −0.973272 1.68576i
\(635\) −13.6425 + 23.6295i −0.541385 + 0.937707i
\(636\) −0.914205 −0.0362506
\(637\) −15.0201 17.4252i −0.595120 0.690410i
\(638\) 0 0
\(639\) 14.1067 24.4335i 0.558052 0.966574i
\(640\) 19.0071 + 32.9213i 0.751322 + 1.30133i
\(641\) 23.5657 + 40.8169i 0.930787 + 1.61217i 0.781979 + 0.623305i \(0.214211\pi\)
0.148809 + 0.988866i \(0.452456\pi\)
\(642\) 5.62699 9.74624i 0.222080 0.384653i
\(643\) 1.87242 0.0738412 0.0369206 0.999318i \(-0.488245\pi\)
0.0369206 + 0.999318i \(0.488245\pi\)
\(644\) 30.0793 65.6393i 1.18529 2.58655i
\(645\) 8.28646 0.326279
\(646\) 12.8450 22.2482i 0.505380 0.875344i
\(647\) 0.917939 + 1.58992i 0.0360879 + 0.0625061i 0.883505 0.468421i \(-0.155177\pi\)
−0.847417 + 0.530927i \(0.821844\pi\)
\(648\) −12.8404 22.2402i −0.504417 0.873676i
\(649\) 0 0
\(650\) −1.15108 −0.0451492
\(651\) 2.56897 + 3.61753i 0.100686 + 0.141782i
\(652\) 41.8135 1.63754
\(653\) 9.08858 15.7419i 0.355664 0.616027i −0.631568 0.775321i \(-0.717588\pi\)
0.987231 + 0.159293i \(0.0509216\pi\)
\(654\) 2.50058 + 4.33114i 0.0977805 + 0.169361i
\(655\) 0.836629 + 1.44908i 0.0326898 + 0.0566204i
\(656\) −29.6333 + 51.3265i −1.15699 + 2.00396i
\(657\) −21.3409 −0.832590
\(658\) −9.78181 + 0.921267i −0.381335 + 0.0359147i
\(659\) 16.8997 0.658318 0.329159 0.944275i \(-0.393235\pi\)
0.329159 + 0.944275i \(0.393235\pi\)
\(660\) 0 0
\(661\) 22.6516 + 39.2338i 0.881046 + 1.52602i 0.850180 + 0.526493i \(0.176493\pi\)
0.0308661 + 0.999524i \(0.490173\pi\)
\(662\) 35.1086 + 60.8098i 1.36453 + 2.36344i
\(663\) −1.74805 + 3.02771i −0.0678886 + 0.117587i
\(664\) 10.6315 0.412581
\(665\) −40.1697 + 3.78325i −1.55772 + 0.146708i
\(666\) 34.4633 1.33543
\(667\) −5.35415 + 9.27366i −0.207314 + 0.359078i
\(668\) −4.08131 7.06904i −0.157911 0.273509i
\(669\) 1.08335 + 1.87641i 0.0418845 + 0.0725462i
\(670\) 12.5547 21.7453i 0.485028 0.840094i
\(671\) 0 0
\(672\) −2.33983 3.29485i −0.0902609 0.127102i
\(673\) −39.5076 −1.52291 −0.761454 0.648219i \(-0.775514\pi\)
−0.761454 + 0.648219i \(0.775514\pi\)
\(674\) 27.0832 46.9094i 1.04321 1.80688i
\(675\) 0.275458 + 0.477108i 0.0106024 + 0.0183639i
\(676\) 4.62309 + 8.00743i 0.177811 + 0.307978i
\(677\) −17.0669 + 29.5608i −0.655936 + 1.13611i 0.325723 + 0.945465i \(0.394392\pi\)
−0.981658 + 0.190649i \(0.938941\pi\)
\(678\) 22.6677 0.870547
\(679\) 2.04942 4.47226i 0.0786494 0.171630i
\(680\) −18.0455 −0.692014
\(681\) −6.58206 + 11.4005i −0.252225 + 0.436867i
\(682\) 0 0
\(683\) −11.8931 20.5995i −0.455079 0.788219i 0.543614 0.839335i \(-0.317056\pi\)
−0.998693 + 0.0511160i \(0.983722\pi\)
\(684\) 36.2244 62.7425i 1.38507 2.39902i
\(685\) −12.8762 −0.491973
\(686\) 11.0500 44.7885i 0.421891 1.71003i
\(687\) 18.1951 0.694186
\(688\) 13.8769 24.0355i 0.529052 0.916345i
\(689\) −0.500750 0.867324i −0.0190770 0.0330424i
\(690\) 12.7154 + 22.0237i 0.484067 + 0.838429i
\(691\) 10.2812 17.8076i 0.391116 0.677433i −0.601481 0.798887i \(-0.705422\pi\)
0.992597 + 0.121454i \(0.0387557\pi\)
\(692\) −27.0440 −1.02806
\(693\) 0 0
\(694\) 9.81761 0.372671
\(695\) −6.14248 + 10.6391i −0.232998 + 0.403564i
\(696\) 3.23181 + 5.59766i 0.122501 + 0.212179i
\(697\) 8.38605 + 14.5251i 0.317644 + 0.550176i
\(698\) −17.5722 + 30.4359i −0.665117 + 1.15202i
\(699\) 2.72401 0.103031
\(700\) −0.905651 1.27530i −0.0342304 0.0482019i
\(701\) 23.9907 0.906116 0.453058 0.891481i \(-0.350333\pi\)
0.453058 + 0.891481i \(0.350333\pi\)
\(702\) −16.0364 + 27.7758i −0.605254 + 1.04833i
\(703\) 19.2134 + 33.2785i 0.724646 + 1.25512i
\(704\) 0 0
\(705\) 1.17251 2.03084i 0.0441592 0.0764860i
\(706\) −12.3763 −0.465789
\(707\) 15.9245 1.49979i 0.598901 0.0564055i
\(708\) 37.9762 1.42723
\(709\) 25.8559 44.7836i 0.971037 1.68189i 0.278599 0.960407i \(-0.410130\pi\)
0.692437 0.721478i \(-0.256537\pi\)
\(710\) −31.0968 53.8612i −1.16704 2.02138i
\(711\) −5.76819 9.99080i −0.216324 0.374684i
\(712\) −8.79747 + 15.2377i −0.329699 + 0.571055i
\(713\) −15.2552 −0.571310
\(714\) −6.97969 + 0.657359i −0.261208 + 0.0246010i
\(715\) 0 0
\(716\) 7.53841 13.0569i 0.281724 0.487960i
\(717\) −4.63933 8.03555i −0.173259 0.300093i
\(718\) −5.07089 8.78304i −0.189244 0.327780i
\(719\) −12.8926 + 22.3306i −0.480812 + 0.832790i −0.999758 0.0220170i \(-0.992991\pi\)
0.518946 + 0.854807i \(0.326325\pi\)
\(720\) −28.9269 −1.07804
\(721\) −1.62961 2.29475i −0.0606898 0.0854610i
\(722\) 71.8811 2.67514
\(723\) 0.160754 0.278434i 0.00597851 0.0103551i
\(724\) −25.6750 44.4703i −0.954202 1.65273i
\(725\) 0.115989 + 0.200899i 0.00430772 + 0.00746118i
\(726\) 0 0
\(727\) 32.7330 1.21400 0.606999 0.794702i \(-0.292373\pi\)
0.606999 + 0.794702i \(0.292373\pi\)
\(728\) 19.8898 43.4037i 0.737164 1.60865i
\(729\) −3.26295 −0.120850
\(730\) −23.5220 + 40.7413i −0.870589 + 1.50790i
\(731\) −3.92708 6.80189i −0.145248 0.251577i
\(732\) 19.4726 + 33.7275i 0.719728 + 1.24660i
\(733\) −4.64136 + 8.03908i −0.171433 + 0.296930i −0.938921 0.344133i \(-0.888173\pi\)
0.767488 + 0.641063i \(0.221506\pi\)
\(734\) −44.8904 −1.65693
\(735\) 7.18875 + 8.33981i 0.265161 + 0.307618i
\(736\) 13.8944 0.512156
\(737\) 0 0
\(738\) 34.8995 + 60.4477i 1.28467 + 2.22511i
\(739\) −25.0466 43.3820i −0.921355 1.59583i −0.797320 0.603556i \(-0.793750\pi\)
−0.124035 0.992278i \(-0.539583\pi\)
\(740\) 25.7408 44.5843i 0.946250 1.63895i
\(741\) −16.2227 −0.595955
\(742\) 0.836629 1.82570i 0.0307136 0.0670236i
\(743\) −13.1679 −0.483082 −0.241541 0.970391i \(-0.577653\pi\)
−0.241541 + 0.970391i \(0.577653\pi\)
\(744\) −4.60407 + 7.97448i −0.168793 + 0.292359i
\(745\) −1.10220 1.90907i −0.0403815 0.0699428i
\(746\) 36.0135 + 62.3771i 1.31855 + 2.28379i
\(747\) 2.41142 4.17670i 0.0882293 0.152818i
\(748\) 0 0
\(749\) 9.69992 + 13.6590i 0.354427 + 0.499090i
\(750\) 20.1406 0.735431
\(751\) −20.6569 + 35.7787i −0.753779 + 1.30558i 0.192200 + 0.981356i \(0.438438\pi\)
−0.945979 + 0.324228i \(0.894895\pi\)
\(752\) −3.92708 6.80189i −0.143206 0.248040i
\(753\) 0.399084 + 0.691234i 0.0145434 + 0.0251900i
\(754\) −6.75253 + 11.6957i −0.245913 + 0.425933i
\(755\) −32.7158 −1.19065
\(756\) −43.3904 + 4.08658i −1.57809 + 0.148627i
\(757\) −45.5114 −1.65414 −0.827069 0.562100i \(-0.809994\pi\)
−0.827069 + 0.562100i \(0.809994\pi\)
\(758\) −5.36591 + 9.29402i −0.194898 + 0.337574i
\(759\) 0 0
\(760\) −41.8676 72.5168i −1.51870 2.63046i
\(761\) 15.6360 27.0823i 0.566803 0.981732i −0.430076 0.902793i \(-0.641513\pi\)
0.996879 0.0789393i \(-0.0251533\pi\)
\(762\) −21.9988 −0.796934
\(763\) −7.41200 + 0.698075i −0.268333 + 0.0252720i
\(764\) 50.9124 1.84194
\(765\) −4.09306 + 7.08940i −0.147985 + 0.256318i
\(766\) 15.3795 + 26.6381i 0.555685 + 0.962474i
\(767\) 20.8012 + 36.0287i 0.751088 + 1.30092i
\(768\) −11.6112 + 20.1111i −0.418982 + 0.725698i
\(769\) −42.0467 −1.51624 −0.758121 0.652114i \(-0.773882\pi\)
−0.758121 + 0.652114i \(0.773882\pi\)
\(770\) 0 0
\(771\) 16.2969 0.586920
\(772\) −25.1002 + 43.4748i −0.903375 + 1.56469i
\(773\) −3.82226 6.62034i −0.137477 0.238117i 0.789064 0.614311i \(-0.210566\pi\)
−0.926541 + 0.376194i \(0.877233\pi\)
\(774\) −16.3430 28.3069i −0.587436 1.01747i
\(775\) −0.165239 + 0.286202i −0.00593555 + 0.0102807i
\(776\) 10.2096 0.366505
\(777\) 4.36852 9.53304i 0.156720 0.341996i
\(778\) 73.2887 2.62753
\(779\) −38.9131 + 67.3995i −1.39421 + 2.41484i
\(780\) 10.8670 + 18.8222i 0.389102 + 0.673944i
\(781\) 0 0
\(782\) 12.0520 20.8747i 0.430980 0.746479i
\(783\) 6.46362 0.230991
\(784\) 36.2289 6.88526i 1.29389 0.245902i
\(785\) 14.0873 0.502797
\(786\) −0.674542 + 1.16834i −0.0240601 + 0.0416734i
\(787\) −13.9517 24.1651i −0.497324 0.861391i 0.502671 0.864478i \(-0.332351\pi\)
−0.999995 + 0.00308674i \(0.999017\pi\)
\(788\) 25.5683 + 44.2855i 0.910832 + 1.57761i
\(789\) 3.27919 5.67973i 0.116742 0.202204i
\(790\) −25.4308 −0.904788
\(791\) −14.0573 + 30.6759i −0.499819 + 1.09071i
\(792\) 0 0
\(793\) −21.3320 + 36.9481i −0.757521 + 1.31206i
\(794\) 21.5453 + 37.3176i 0.764616 + 1.32435i
\(795\) 0.239662 + 0.415107i 0.00849995 + 0.0147223i
\(796\) −4.00448 + 6.93597i −0.141935 + 0.245839i
\(797\) 10.0560 0.356201 0.178101 0.984012i \(-0.443005\pi\)
0.178101 + 0.984012i \(0.443005\pi\)
\(798\) −18.8353 26.5231i −0.666762 0.938908i
\(799\) −2.22267 −0.0786326
\(800\) 0.150500 0.260674i 0.00532098 0.00921620i
\(801\) 3.99086 + 6.91238i 0.141010 + 0.244237i
\(802\) 31.0740 + 53.8218i 1.09726 + 1.90051i
\(803\) 0 0
\(804\) 13.7188 0.483824
\(805\) −37.6899 + 3.54969i −1.32839 + 0.125110i
\(806\) −19.2394 −0.677681
\(807\) −5.57031 + 9.64805i −0.196084 + 0.339628i
\(808\) 16.5975 + 28.7478i 0.583900 + 1.01134i
\(809\) 19.2863 + 33.4048i 0.678070 + 1.17445i 0.975561 + 0.219727i \(0.0705167\pi\)
−0.297491 + 0.954725i \(0.596150\pi\)
\(810\) −12.8404 + 22.2402i −0.451164 + 0.781440i
\(811\) −12.3760 −0.434580 −0.217290 0.976107i \(-0.569722\pi\)
−0.217290 + 0.976107i \(0.569722\pi\)
\(812\) −18.2706 + 1.72076i −0.641174 + 0.0603868i
\(813\) 19.7968 0.694303
\(814\) 0 0
\(815\) −10.9616 18.9860i −0.383968 0.665051i
\(816\) −2.80212 4.85341i −0.0980937 0.169903i
\(817\) 18.2225 31.5623i 0.637525 1.10423i
\(818\) 96.0437 3.35809
\(819\) −12.5403 17.6587i −0.438193 0.617046i
\(820\) 104.266 3.64114
\(821\) 14.8691 25.7540i 0.518934 0.898820i −0.480824 0.876817i \(-0.659662\pi\)
0.999758 0.0220025i \(-0.00700418\pi\)
\(822\) −5.19078 8.99070i −0.181049 0.313587i
\(823\) −20.3885 35.3139i −0.710698 1.23097i −0.964595 0.263734i \(-0.915046\pi\)
0.253897 0.967231i \(-0.418288\pi\)
\(824\) 2.92056 5.05855i 0.101742 0.176223i
\(825\) 0 0
\(826\) −34.7537 + 75.8398i −1.20923 + 2.63880i
\(827\) 18.8411 0.655170 0.327585 0.944822i \(-0.393765\pi\)
0.327585 + 0.944822i \(0.393765\pi\)
\(828\) 33.9881 58.8691i 1.18117 2.04584i
\(829\) 15.5703 + 26.9686i 0.540779 + 0.936657i 0.998860 + 0.0477461i \(0.0152038\pi\)
−0.458080 + 0.888911i \(0.651463\pi\)
\(830\) −5.31574 9.20713i −0.184512 0.319584i
\(831\) −5.28459 + 9.15319i −0.183321 + 0.317521i
\(832\) −17.1041 −0.592977
\(833\) 3.43883 9.85320i 0.119148 0.341393i
\(834\) −9.90490 −0.342979
\(835\) −2.13986 + 3.70635i −0.0740530 + 0.128264i
\(836\) 0 0
\(837\) 4.60407 + 7.97448i 0.159140 + 0.275638i
\(838\) −1.13206 + 1.96079i −0.0391064 + 0.0677342i
\(839\) 10.2589 0.354176 0.177088 0.984195i \(-0.443332\pi\)
0.177088 + 0.984195i \(0.443332\pi\)
\(840\) −9.51939 + 20.7733i −0.328450 + 0.716748i
\(841\) −26.2783 −0.906149
\(842\) −19.3704 + 33.5505i −0.667548 + 1.15623i
\(843\) −5.43098 9.40673i −0.187053 0.323985i
\(844\) −34.1496 59.1488i −1.17548 2.03599i
\(845\) 2.42392 4.19836i 0.0833855 0.144428i
\(846\) −9.24992 −0.318019
\(847\) 0 0
\(848\) 1.60540 0.0551297
\(849\) −7.74805 + 13.4200i −0.265912 + 0.460574i
\(850\) −0.261087 0.452217i −0.00895522 0.0155109i
\(851\) 18.0272 + 31.2241i 0.617966 + 1.07035i
\(852\) 16.9901 29.4277i 0.582072 1.00818i
\(853\) −3.04435 −0.104237 −0.0521183 0.998641i \(-0.516597\pi\)
−0.0521183 + 0.998641i \(0.516597\pi\)
\(854\) −85.1753 + 8.02195i −2.91464 + 0.274506i
\(855\) −37.9855 −1.29908
\(856\) −17.3840 + 30.1100i −0.594173 + 1.02914i
\(857\) 24.7766 + 42.9143i 0.846352 + 1.46592i 0.884442 + 0.466650i \(0.154539\pi\)
−0.0380904 + 0.999274i \(0.512127\pi\)
\(858\) 0 0
\(859\) −18.4373 + 31.9344i −0.629074 + 1.08959i 0.358664 + 0.933467i \(0.383232\pi\)
−0.987738 + 0.156121i \(0.950101\pi\)
\(860\) −48.8266 −1.66497
\(861\) 21.1445 1.99143i 0.720603 0.0678676i
\(862\) −8.80864 −0.300023
\(863\) 23.2115 40.2035i 0.790129 1.36854i −0.135758 0.990742i \(-0.543347\pi\)
0.925887 0.377801i \(-0.123320\pi\)
\(864\) −4.19340 7.26318i −0.142662 0.247098i
\(865\) 7.08970 + 12.2797i 0.241057 + 0.417523i
\(866\) −21.9765 + 38.0644i −0.746792 + 1.29348i
\(867\) 10.5442 0.358099
\(868\) −15.1372 21.3157i −0.513792 0.723501i
\(869\) 0 0
\(870\) 3.23181 5.59766i 0.109569 0.189778i
\(871\) 7.51437 + 13.0153i 0.254615 + 0.441006i
\(872\) −7.72529 13.3806i −0.261611 0.453124i
\(873\) 2.31574 4.01098i 0.0783759 0.135751i
\(874\) 111.848 3.78332
\(875\) −12.4901 + 27.2561i −0.422243 + 0.921423i
\(876\) −25.7031 −0.868426
\(877\) 19.5155 33.8018i 0.658991 1.14141i −0.321886 0.946778i \(-0.604317\pi\)
0.980877 0.194628i \(-0.0623499\pi\)
\(878\) 18.7154 + 32.4160i 0.631614 + 1.09399i
\(879\) −3.96997 6.87620i −0.133904 0.231928i
\(880\) 0 0
\(881\) −44.0049 −1.48256 −0.741281 0.671194i \(-0.765782\pi\)
−0.741281 + 0.671194i \(0.765782\pi\)
\(882\) 14.3111 41.0052i 0.481879 1.38072i
\(883\) −23.3596 −0.786112 −0.393056 0.919515i \(-0.628582\pi\)
−0.393056 + 0.919515i \(0.628582\pi\)
\(884\) 10.3001 17.8403i 0.346429 0.600033i
\(885\) −9.95560 17.2436i −0.334654 0.579638i
\(886\) −16.4679 28.5233i −0.553251 0.958259i
\(887\) 20.9588 36.3017i 0.703728 1.21889i −0.263421 0.964681i \(-0.584851\pi\)
0.967149 0.254211i \(-0.0818158\pi\)
\(888\) 21.7628 0.730311
\(889\) 13.6425 29.7708i 0.457554 0.998480i
\(890\) 17.5949 0.589783
\(891\) 0 0
\(892\) −6.38343 11.0564i −0.213733 0.370196i
\(893\) −5.15685 8.93193i −0.172567 0.298896i
\(894\) 0.888663 1.53921i 0.0297213 0.0514789i
\(895\) −7.90490 −0.264232
\(896\) −26.4170 37.1994i −0.882531 1.24274i
\(897\) −15.2212 −0.508220
\(898\) 12.3405 21.3744i 0.411809 0.713274i
\(899\) 1.93866 + 3.35786i 0.0646580 + 0.111991i
\(900\) −0.736295 1.27530i −0.0245432 0.0425100i
\(901\) 0.227159 0.393451i 0.00756776 0.0131078i
\(902\) 0 0
\(903\) −9.90170 + 0.932559i −0.329508 + 0.0310336i
\(904\) −70.0295 −2.32915
\(905\) −13.4616 + 23.3162i −0.447478 + 0.775055i
\(906\) −13.1887 22.8436i −0.438167 0.758927i
\(907\) 10.2591 + 17.7692i 0.340646 + 0.590017i 0.984553 0.175087i \(-0.0560208\pi\)
−0.643907 + 0.765104i \(0.722687\pi\)
\(908\) 38.7837 67.1753i 1.28708 2.22929i
\(909\) 15.0586 0.499461
\(910\) −47.5336 + 4.47679i −1.57572 + 0.148404i
\(911\) 27.6755 0.916930 0.458465 0.888712i \(-0.348399\pi\)
0.458465 + 0.888712i \(0.348399\pi\)
\(912\) 13.0025 22.5209i 0.430554 0.745742i
\(913\) 0 0
\(914\) 12.8840 + 22.3158i 0.426165 + 0.738140i
\(915\) 10.2096 17.6836i 0.337520 0.584602i
\(916\) −107.212 −3.54237
\(917\) −1.16279 1.63739i −0.0383987 0.0540714i
\(918\) −14.5494 −0.480202
\(919\) 0.481727 0.834376i 0.0158907 0.0275235i −0.857971 0.513699i \(-0.828275\pi\)
0.873861 + 0.486175i \(0.161608\pi\)
\(920\) −39.2829 68.0400i −1.29512 2.24321i
\(921\) −8.91404 15.4396i −0.293728 0.508751i
\(922\) −19.1015 + 33.0847i −0.629073 + 1.08959i
\(923\) 37.2249 1.22527
\(924\) 0 0
\(925\) 0.781061 0.0256811
\(926\) 31.2993 54.2120i 1.02856 1.78152i
\(927\) −1.32488 2.29475i −0.0435146 0.0753695i
\(928\) −1.76574 3.05835i −0.0579632 0.100395i
\(929\) −13.1660 + 22.8042i −0.431962 + 0.748180i −0.997042 0.0768558i \(-0.975512\pi\)
0.565080 + 0.825036i \(0.308845\pi\)
\(930\) 9.20814 0.301947
\(931\) 47.5740 9.04140i 1.55918 0.296320i
\(932\) −16.0507 −0.525760
\(933\) 12.3944 21.4678i 0.405775 0.702824i
\(934\) 0.929110 + 1.60927i 0.0304014 + 0.0526568i
\(935\) 0 0
\(936\) 22.4745 38.9269i 0.734601 1.27237i
\(937\) 21.3865 0.698665 0.349333 0.936999i \(-0.386408\pi\)
0.349333 + 0.936999i \(0.386408\pi\)
\(938\) −12.5547 + 27.3969i −0.409924 + 0.894540i
\(939\) −16.9176 −0.552085
\(940\) −6.90880 + 11.9664i −0.225340 + 0.390301i
\(941\) 7.41142 + 12.8370i 0.241605 + 0.418473i 0.961172 0.275951i \(-0.0889927\pi\)
−0.719566 + 0.694424i \(0.755659\pi\)
\(942\) 5.67903 + 9.83636i 0.185033 + 0.320486i
\(943\) −36.5108 + 63.2386i −1.18896 + 2.05933i
\(944\) −66.6885 −2.17053
\(945\) 13.2305 + 18.6307i 0.430389 + 0.606056i
\(946\) 0 0
\(947\) −15.8560 + 27.4634i −0.515251 + 0.892442i 0.484592 + 0.874740i \(0.338968\pi\)
−0.999843 + 0.0177013i \(0.994365\pi\)
\(948\) −6.94722 12.0329i −0.225635 0.390811i
\(949\) −14.0787 24.3850i −0.457014 0.791571i
\(950\) 1.21150 2.09839i 0.0393064 0.0680806i
\(951\) −14.0403 −0.455287
\(952\) 21.5630 2.03084i 0.698862 0.0658200i
\(953\) −49.9620 −1.61843 −0.809213 0.587515i \(-0.800106\pi\)
−0.809213 + 0.587515i \(0.800106\pi\)
\(954\) 0.945349 1.63739i 0.0306068 0.0530125i
\(955\) −13.3469 23.1175i −0.431895 0.748064i
\(956\) 27.3365 + 47.3481i 0.884124 + 1.53135i
\(957\) 0 0
\(958\) 50.0988 1.61862
\(959\) 15.3860 1.44908i 0.496841 0.0467933i
\(960\) 8.18613 0.264206
\(961\) 12.7382 22.0631i 0.410908 0.711714i
\(962\) 22.7355 + 39.3791i 0.733023 + 1.26963i
\(963\) 7.88605 + 13.6590i 0.254124 + 0.440156i
\(964\) −0.947216 + 1.64063i −0.0305078 + 0.0528410i
\(965\) 26.3204 0.847285
\(966\) −17.6725 24.8857i −0.568604 0.800685i
\(967\) 52.4581 1.68694 0.843469 0.537178i \(-0.180510\pi\)
0.843469 + 0.537178i \(0.180510\pi\)
\(968\) 0 0
\(969\) −3.67961 6.37327i −0.118206 0.204739i
\(970\) −5.10482 8.84180i −0.163906 0.283893i
\(971\) −15.4133 + 26.6966i −0.494636 + 0.856735i −0.999981 0.00618284i \(-0.998032\pi\)
0.505345 + 0.862917i \(0.331365\pi\)
\(972\) −63.4487 −2.03512
\(973\) 6.14248 13.4042i 0.196919 0.429719i
\(974\) −10.5860 −0.339196
\(975\) −0.164871 + 0.285565i −0.00528009 + 0.00914538i
\(976\) −34.1951 59.2276i −1.09456 1.89583i
\(977\) −12.3678 21.4216i −0.395680 0.685338i 0.597508 0.801863i \(-0.296158\pi\)
−0.993188 + 0.116525i \(0.962824\pi\)
\(978\) 8.83791 15.3077i 0.282605 0.489487i
\(979\) 0 0
\(980\) −42.3585 49.1409i −1.35309 1.56975i
\(981\) −7.00897 −0.223779
\(982\) 37.7713 65.4219i 1.20533 2.08770i
\(983\) −6.11192 10.5862i −0.194940 0.337646i 0.751941 0.659231i \(-0.229118\pi\)
−0.946881 + 0.321585i \(0.895785\pi\)
\(984\) 22.0382 + 38.1714i 0.702554 + 1.21686i
\(985\) 13.4057 23.2193i 0.427140 0.739827i
\(986\) −6.12641 −0.195105
\(987\) −1.17251 + 2.55866i −0.0373213 + 0.0814430i
\(988\) 95.5894 3.04110
\(989\) 17.0975 29.6138i 0.543670 0.941665i
\(990\) 0 0
\(991\) −2.30008 3.98386i −0.0730645 0.126552i 0.827178 0.561939i \(-0.189945\pi\)
−0.900243 + 0.435388i \(0.856611\pi\)
\(992\) 2.51549 4.35695i 0.0798668 0.138333i
\(993\) 20.1145 0.638316
\(994\) 43.2199 + 60.8605i 1.37085 + 1.93038i
\(995\) 4.19917 0.133123
\(996\) 2.90432 5.03043i 0.0920268 0.159395i
\(997\) −17.2382 29.8574i −0.545938 0.945593i −0.998547 0.0538835i \(-0.982840\pi\)
0.452609 0.891709i \(-0.350493\pi\)
\(998\) −17.9856 31.1520i −0.569325 0.986100i
\(999\) 10.8814 18.8471i 0.344272 0.596297i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.2.e.d.485.1 6
7.2 even 3 5929.2.a.v.1.3 3
7.4 even 3 inner 847.2.e.d.606.1 6
7.5 odd 6 5929.2.a.w.1.3 3
11.2 odd 10 847.2.n.e.807.1 24
11.3 even 5 847.2.n.d.9.3 24
11.4 even 5 847.2.n.d.632.1 24
11.5 even 5 847.2.n.d.366.1 24
11.6 odd 10 847.2.n.e.366.3 24
11.7 odd 10 847.2.n.e.632.3 24
11.8 odd 10 847.2.n.e.9.1 24
11.9 even 5 847.2.n.d.807.3 24
11.10 odd 2 77.2.e.b.23.3 6
33.32 even 2 693.2.i.g.100.1 6
44.43 even 2 1232.2.q.k.177.2 6
77.4 even 15 847.2.n.d.753.3 24
77.10 even 6 539.2.e.l.67.3 6
77.18 odd 30 847.2.n.e.753.1 24
77.25 even 15 847.2.n.d.130.1 24
77.32 odd 6 77.2.e.b.67.3 yes 6
77.39 odd 30 847.2.n.e.487.1 24
77.46 odd 30 847.2.n.e.81.3 24
77.53 even 15 847.2.n.d.81.1 24
77.54 even 6 539.2.a.i.1.1 3
77.60 even 15 847.2.n.d.487.3 24
77.65 odd 6 539.2.a.h.1.1 3
77.74 odd 30 847.2.n.e.130.3 24
77.76 even 2 539.2.e.l.177.3 6
231.32 even 6 693.2.i.g.298.1 6
231.65 even 6 4851.2.a.bo.1.3 3
231.131 odd 6 4851.2.a.bn.1.3 3
308.131 odd 6 8624.2.a.ck.1.2 3
308.219 even 6 8624.2.a.cl.1.2 3
308.263 even 6 1232.2.q.k.529.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.b.23.3 6 11.10 odd 2
77.2.e.b.67.3 yes 6 77.32 odd 6
539.2.a.h.1.1 3 77.65 odd 6
539.2.a.i.1.1 3 77.54 even 6
539.2.e.l.67.3 6 77.10 even 6
539.2.e.l.177.3 6 77.76 even 2
693.2.i.g.100.1 6 33.32 even 2
693.2.i.g.298.1 6 231.32 even 6
847.2.e.d.485.1 6 1.1 even 1 trivial
847.2.e.d.606.1 6 7.4 even 3 inner
847.2.n.d.9.3 24 11.3 even 5
847.2.n.d.81.1 24 77.53 even 15
847.2.n.d.130.1 24 77.25 even 15
847.2.n.d.366.1 24 11.5 even 5
847.2.n.d.487.3 24 77.60 even 15
847.2.n.d.632.1 24 11.4 even 5
847.2.n.d.753.3 24 77.4 even 15
847.2.n.d.807.3 24 11.9 even 5
847.2.n.e.9.1 24 11.8 odd 10
847.2.n.e.81.3 24 77.46 odd 30
847.2.n.e.130.3 24 77.74 odd 30
847.2.n.e.366.3 24 11.6 odd 10
847.2.n.e.487.1 24 77.39 odd 30
847.2.n.e.632.3 24 11.7 odd 10
847.2.n.e.753.1 24 77.18 odd 30
847.2.n.e.807.1 24 11.2 odd 10
1232.2.q.k.177.2 6 44.43 even 2
1232.2.q.k.529.2 6 308.263 even 6
4851.2.a.bn.1.3 3 231.131 odd 6
4851.2.a.bo.1.3 3 231.65 even 6
5929.2.a.v.1.3 3 7.2 even 3
5929.2.a.w.1.3 3 7.5 odd 6
8624.2.a.ck.1.2 3 308.131 odd 6
8624.2.a.cl.1.2 3 308.219 even 6