Properties

Label 5929.2.a.w.1.3
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,4,2,-1,0,9,0,-9,0,9,-11,0,-7,2,-3,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.713538\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49086 q^{2} +0.713538 q^{3} +4.20440 q^{4} -2.20440 q^{5} +1.77733 q^{6} +5.49086 q^{8} -2.49086 q^{9} -5.49086 q^{10} +3.00000 q^{12} -3.28646 q^{13} -1.57292 q^{15} +5.26819 q^{16} +1.49086 q^{17} -6.20440 q^{18} -6.91794 q^{19} -9.26819 q^{20} +6.49086 q^{23} +3.91794 q^{24} -0.140614 q^{25} -8.18613 q^{26} -3.91794 q^{27} +1.64975 q^{29} -3.91794 q^{30} +2.35025 q^{31} +2.14061 q^{32} +3.71354 q^{34} -10.4726 q^{36} -5.55465 q^{37} -17.2316 q^{38} -2.34502 q^{39} -12.1041 q^{40} -11.2499 q^{41} -5.26819 q^{43} +5.49086 q^{45} +16.1679 q^{46} -1.49086 q^{47} +3.75905 q^{48} -0.350250 q^{50} +1.06379 q^{51} -13.8176 q^{52} +0.304735 q^{53} -9.75905 q^{54} -4.93621 q^{57} +4.10930 q^{58} +12.6587 q^{59} -6.61320 q^{60} -12.9817 q^{61} +5.85415 q^{62} -5.20440 q^{64} +7.24468 q^{65} -4.57292 q^{67} +6.26819 q^{68} +4.63148 q^{69} +11.3267 q^{71} -13.6770 q^{72} -8.56769 q^{73} -13.8359 q^{74} -0.100333 q^{75} -29.0858 q^{76} -5.84111 q^{78} -4.63148 q^{79} -11.6132 q^{80} +4.67699 q^{81} -28.0220 q^{82} -1.93621 q^{83} -3.28646 q^{85} -13.1223 q^{86} +1.17716 q^{87} -3.20440 q^{89} +13.6770 q^{90} +27.2902 q^{92} +1.67699 q^{93} -3.71354 q^{94} +15.2499 q^{95} +1.52741 q^{96} -1.85939 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + 4 q^{4} + 2 q^{5} - q^{6} + 9 q^{8} - 9 q^{10} + 9 q^{12} - 11 q^{13} - 7 q^{15} + 2 q^{16} - 3 q^{17} - 10 q^{18} - 11 q^{19} - 14 q^{20} + 12 q^{23} + 2 q^{24} + 3 q^{25} - q^{26} - 2 q^{27}+ \cdots - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.49086 1.76131 0.880653 0.473761i \(-0.157104\pi\)
0.880653 + 0.473761i \(0.157104\pi\)
\(3\) 0.713538 0.411961 0.205981 0.978556i \(-0.433962\pi\)
0.205981 + 0.978556i \(0.433962\pi\)
\(4\) 4.20440 2.10220
\(5\) −2.20440 −0.985838 −0.492919 0.870075i \(-0.664070\pi\)
−0.492919 + 0.870075i \(0.664070\pi\)
\(6\) 1.77733 0.725590
\(7\) 0 0
\(8\) 5.49086 1.94131
\(9\) −2.49086 −0.830288
\(10\) −5.49086 −1.73636
\(11\) 0 0
\(12\) 3.00000 0.866025
\(13\) −3.28646 −0.911501 −0.455750 0.890108i \(-0.650629\pi\)
−0.455750 + 0.890108i \(0.650629\pi\)
\(14\) 0 0
\(15\) −1.57292 −0.406127
\(16\) 5.26819 1.31705
\(17\) 1.49086 0.361588 0.180794 0.983521i \(-0.442133\pi\)
0.180794 + 0.983521i \(0.442133\pi\)
\(18\) −6.20440 −1.46239
\(19\) −6.91794 −1.58708 −0.793542 0.608515i \(-0.791765\pi\)
−0.793542 + 0.608515i \(0.791765\pi\)
\(20\) −9.26819 −2.07243
\(21\) 0 0
\(22\) 0 0
\(23\) 6.49086 1.35344 0.676719 0.736241i \(-0.263401\pi\)
0.676719 + 0.736241i \(0.263401\pi\)
\(24\) 3.91794 0.799746
\(25\) −0.140614 −0.0281228
\(26\) −8.18613 −1.60543
\(27\) −3.91794 −0.754008
\(28\) 0 0
\(29\) 1.64975 0.306351 0.153175 0.988199i \(-0.451050\pi\)
0.153175 + 0.988199i \(0.451050\pi\)
\(30\) −3.91794 −0.715315
\(31\) 2.35025 0.422117 0.211059 0.977473i \(-0.432309\pi\)
0.211059 + 0.977473i \(0.432309\pi\)
\(32\) 2.14061 0.378411
\(33\) 0 0
\(34\) 3.71354 0.636867
\(35\) 0 0
\(36\) −10.4726 −1.74543
\(37\) −5.55465 −0.913179 −0.456590 0.889677i \(-0.650929\pi\)
−0.456590 + 0.889677i \(0.650929\pi\)
\(38\) −17.2316 −2.79534
\(39\) −2.34502 −0.375503
\(40\) −12.1041 −1.91382
\(41\) −11.2499 −1.75694 −0.878471 0.477796i \(-0.841436\pi\)
−0.878471 + 0.477796i \(0.841436\pi\)
\(42\) 0 0
\(43\) −5.26819 −0.803391 −0.401696 0.915773i \(-0.631579\pi\)
−0.401696 + 0.915773i \(0.631579\pi\)
\(44\) 0 0
\(45\) 5.49086 0.818530
\(46\) 16.1679 2.38382
\(47\) −1.49086 −0.217465 −0.108732 0.994071i \(-0.534679\pi\)
−0.108732 + 0.994071i \(0.534679\pi\)
\(48\) 3.75905 0.542573
\(49\) 0 0
\(50\) −0.350250 −0.0495328
\(51\) 1.06379 0.148960
\(52\) −13.8176 −1.91616
\(53\) 0.304735 0.0418585 0.0209293 0.999781i \(-0.493338\pi\)
0.0209293 + 0.999781i \(0.493338\pi\)
\(54\) −9.75905 −1.32804
\(55\) 0 0
\(56\) 0 0
\(57\) −4.93621 −0.653817
\(58\) 4.10930 0.539578
\(59\) 12.6587 1.64802 0.824012 0.566572i \(-0.191731\pi\)
0.824012 + 0.566572i \(0.191731\pi\)
\(60\) −6.61320 −0.853761
\(61\) −12.9817 −1.66214 −0.831070 0.556168i \(-0.812271\pi\)
−0.831070 + 0.556168i \(0.812271\pi\)
\(62\) 5.85415 0.743478
\(63\) 0 0
\(64\) −5.20440 −0.650550
\(65\) 7.24468 0.898592
\(66\) 0 0
\(67\) −4.57292 −0.558672 −0.279336 0.960193i \(-0.590114\pi\)
−0.279336 + 0.960193i \(0.590114\pi\)
\(68\) 6.26819 0.760130
\(69\) 4.63148 0.557564
\(70\) 0 0
\(71\) 11.3267 1.34424 0.672119 0.740444i \(-0.265385\pi\)
0.672119 + 0.740444i \(0.265385\pi\)
\(72\) −13.6770 −1.61185
\(73\) −8.56769 −1.00277 −0.501386 0.865224i \(-0.667176\pi\)
−0.501386 + 0.865224i \(0.667176\pi\)
\(74\) −13.8359 −1.60839
\(75\) −0.100333 −0.0115855
\(76\) −29.0858 −3.33637
\(77\) 0 0
\(78\) −5.84111 −0.661376
\(79\) −4.63148 −0.521082 −0.260541 0.965463i \(-0.583901\pi\)
−0.260541 + 0.965463i \(0.583901\pi\)
\(80\) −11.6132 −1.29840
\(81\) 4.67699 0.519666
\(82\) −28.0220 −3.09451
\(83\) −1.93621 −0.212527 −0.106263 0.994338i \(-0.533889\pi\)
−0.106263 + 0.994338i \(0.533889\pi\)
\(84\) 0 0
\(85\) −3.28646 −0.356467
\(86\) −13.1223 −1.41502
\(87\) 1.17716 0.126205
\(88\) 0 0
\(89\) −3.20440 −0.339666 −0.169833 0.985473i \(-0.554323\pi\)
−0.169833 + 0.985473i \(0.554323\pi\)
\(90\) 13.6770 1.44168
\(91\) 0 0
\(92\) 27.2902 2.84520
\(93\) 1.67699 0.173896
\(94\) −3.71354 −0.383022
\(95\) 15.2499 1.56461
\(96\) 1.52741 0.155891
\(97\) −1.85939 −0.188792 −0.0943960 0.995535i \(-0.530092\pi\)
−0.0943960 + 0.995535i \(0.530092\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.591197 −0.0591197
\(101\) 6.04551 0.601551 0.300776 0.953695i \(-0.402754\pi\)
0.300776 + 0.953695i \(0.402754\pi\)
\(102\) 2.64975 0.262364
\(103\) 1.06379 0.104818 0.0524091 0.998626i \(-0.483310\pi\)
0.0524091 + 0.998626i \(0.483310\pi\)
\(104\) −18.0455 −1.76951
\(105\) 0 0
\(106\) 0.759053 0.0737257
\(107\) 6.33198 0.612135 0.306068 0.952010i \(-0.400987\pi\)
0.306068 + 0.952010i \(0.400987\pi\)
\(108\) −16.4726 −1.58508
\(109\) 2.81387 0.269520 0.134760 0.990878i \(-0.456974\pi\)
0.134760 + 0.990878i \(0.456974\pi\)
\(110\) 0 0
\(111\) −3.96345 −0.376194
\(112\) 0 0
\(113\) −12.7538 −1.19978 −0.599889 0.800083i \(-0.704789\pi\)
−0.599889 + 0.800083i \(0.704789\pi\)
\(114\) −12.2954 −1.15157
\(115\) −14.3085 −1.33427
\(116\) 6.93621 0.644011
\(117\) 8.18613 0.756808
\(118\) 31.5311 2.90268
\(119\) 0 0
\(120\) −8.63671 −0.788420
\(121\) 0 0
\(122\) −32.3357 −2.92754
\(123\) −8.02724 −0.723792
\(124\) 9.88139 0.887375
\(125\) 11.3320 1.01356
\(126\) 0 0
\(127\) 12.3775 1.09832 0.549162 0.835716i \(-0.314947\pi\)
0.549162 + 0.835716i \(0.314947\pi\)
\(128\) −17.2447 −1.52423
\(129\) −3.75905 −0.330966
\(130\) 18.0455 1.58270
\(131\) 0.759053 0.0663188 0.0331594 0.999450i \(-0.489443\pi\)
0.0331594 + 0.999450i \(0.489443\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −11.3905 −0.983992
\(135\) 8.63671 0.743330
\(136\) 8.18613 0.701955
\(137\) −5.84111 −0.499040 −0.249520 0.968370i \(-0.580273\pi\)
−0.249520 + 0.968370i \(0.580273\pi\)
\(138\) 11.5364 0.982042
\(139\) −5.57292 −0.472689 −0.236345 0.971669i \(-0.575949\pi\)
−0.236345 + 0.971669i \(0.575949\pi\)
\(140\) 0 0
\(141\) −1.06379 −0.0895871
\(142\) 28.2134 2.36761
\(143\) 0 0
\(144\) −13.1223 −1.09353
\(145\) −3.63671 −0.302012
\(146\) −21.3409 −1.76619
\(147\) 0 0
\(148\) −23.3540 −1.91969
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) −0.249917 −0.0204056
\(151\) −14.8411 −1.20775 −0.603876 0.797078i \(-0.706378\pi\)
−0.603876 + 0.797078i \(0.706378\pi\)
\(152\) −37.9855 −3.08103
\(153\) −3.71354 −0.300222
\(154\) 0 0
\(155\) −5.18089 −0.416139
\(156\) −9.85939 −0.789383
\(157\) −6.39053 −0.510020 −0.255010 0.966938i \(-0.582079\pi\)
−0.255010 + 0.966938i \(0.582079\pi\)
\(158\) −11.5364 −0.917785
\(159\) 0.217440 0.0172441
\(160\) −4.71877 −0.373052
\(161\) 0 0
\(162\) 11.6498 0.915291
\(163\) 9.94518 0.778967 0.389483 0.921033i \(-0.372654\pi\)
0.389483 + 0.921033i \(0.372654\pi\)
\(164\) −47.2992 −3.69344
\(165\) 0 0
\(166\) −4.82284 −0.374325
\(167\) −1.94145 −0.150234 −0.0751168 0.997175i \(-0.523933\pi\)
−0.0751168 + 0.997175i \(0.523933\pi\)
\(168\) 0 0
\(169\) −2.19917 −0.169167
\(170\) −8.18613 −0.627847
\(171\) 17.2316 1.31774
\(172\) −22.1496 −1.68889
\(173\) 6.43231 0.489039 0.244520 0.969644i \(-0.421370\pi\)
0.244520 + 0.969644i \(0.421370\pi\)
\(174\) 2.93214 0.222285
\(175\) 0 0
\(176\) 0 0
\(177\) 9.03248 0.678923
\(178\) −7.98173 −0.598256
\(179\) −3.58596 −0.268027 −0.134014 0.990979i \(-0.542787\pi\)
−0.134014 + 0.990979i \(0.542787\pi\)
\(180\) 23.0858 1.72071
\(181\) −12.2134 −0.907813 −0.453906 0.891049i \(-0.649970\pi\)
−0.453906 + 0.891049i \(0.649970\pi\)
\(182\) 0 0
\(183\) −9.26295 −0.684737
\(184\) 35.6404 2.62745
\(185\) 12.2447 0.900247
\(186\) 4.17716 0.306284
\(187\) 0 0
\(188\) −6.26819 −0.457155
\(189\) 0 0
\(190\) 37.9855 2.75576
\(191\) 12.1093 0.876198 0.438099 0.898927i \(-0.355652\pi\)
0.438099 + 0.898927i \(0.355652\pi\)
\(192\) −3.71354 −0.268002
\(193\) 11.9399 0.859456 0.429728 0.902958i \(-0.358609\pi\)
0.429728 + 0.902958i \(0.358609\pi\)
\(194\) −4.63148 −0.332521
\(195\) 5.16936 0.370185
\(196\) 0 0
\(197\) −12.1626 −0.866551 −0.433275 0.901262i \(-0.642642\pi\)
−0.433275 + 0.901262i \(0.642642\pi\)
\(198\) 0 0
\(199\) −1.90490 −0.135035 −0.0675174 0.997718i \(-0.521508\pi\)
−0.0675174 + 0.997718i \(0.521508\pi\)
\(200\) −0.772091 −0.0545951
\(201\) −3.26295 −0.230151
\(202\) 15.0586 1.05952
\(203\) 0 0
\(204\) 4.47259 0.313144
\(205\) 24.7993 1.73206
\(206\) 2.64975 0.184617
\(207\) −16.1679 −1.12374
\(208\) −17.3137 −1.20049
\(209\) 0 0
\(210\) 0 0
\(211\) 16.2447 1.11833 0.559165 0.829056i \(-0.311122\pi\)
0.559165 + 0.829056i \(0.311122\pi\)
\(212\) 1.28123 0.0879951
\(213\) 8.08206 0.553774
\(214\) 15.7721 1.07816
\(215\) 11.6132 0.792014
\(216\) −21.5129 −1.46377
\(217\) 0 0
\(218\) 7.00897 0.474707
\(219\) −6.11337 −0.413103
\(220\) 0 0
\(221\) −4.89967 −0.329587
\(222\) −9.87242 −0.662594
\(223\) −3.03655 −0.203342 −0.101671 0.994818i \(-0.532419\pi\)
−0.101671 + 0.994818i \(0.532419\pi\)
\(224\) 0 0
\(225\) 0.350250 0.0233500
\(226\) −31.7680 −2.11318
\(227\) 18.4491 1.22451 0.612254 0.790661i \(-0.290263\pi\)
0.612254 + 0.790661i \(0.290263\pi\)
\(228\) −20.7538 −1.37446
\(229\) 25.4998 1.68508 0.842538 0.538637i \(-0.181060\pi\)
0.842538 + 0.538637i \(0.181060\pi\)
\(230\) −35.6404 −2.35006
\(231\) 0 0
\(232\) 9.05855 0.594723
\(233\) −3.81761 −0.250100 −0.125050 0.992150i \(-0.539909\pi\)
−0.125050 + 0.992150i \(0.539909\pi\)
\(234\) 20.3905 1.33297
\(235\) 3.28646 0.214385
\(236\) 53.2223 3.46448
\(237\) −3.30473 −0.214666
\(238\) 0 0
\(239\) −13.0037 −0.841142 −0.420571 0.907260i \(-0.638170\pi\)
−0.420571 + 0.907260i \(0.638170\pi\)
\(240\) −8.28646 −0.534889
\(241\) −0.450583 −0.0290246 −0.0145123 0.999895i \(-0.504620\pi\)
−0.0145123 + 0.999895i \(0.504620\pi\)
\(242\) 0 0
\(243\) 15.0910 0.968090
\(244\) −54.5804 −3.49415
\(245\) 0 0
\(246\) −19.9948 −1.27482
\(247\) 22.7355 1.44663
\(248\) 12.9049 0.819462
\(249\) −1.38156 −0.0875529
\(250\) 28.2264 1.78519
\(251\) −1.11861 −0.0706058 −0.0353029 0.999377i \(-0.511240\pi\)
−0.0353029 + 0.999377i \(0.511240\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 30.8306 1.93449
\(255\) −2.34502 −0.146851
\(256\) −32.5453 −2.03408
\(257\) 22.8396 1.42470 0.712348 0.701826i \(-0.247632\pi\)
0.712348 + 0.701826i \(0.247632\pi\)
\(258\) −9.36329 −0.582933
\(259\) 0 0
\(260\) 30.4596 1.88902
\(261\) −4.10930 −0.254359
\(262\) 1.89070 0.116808
\(263\) 9.19136 0.566764 0.283382 0.959007i \(-0.408544\pi\)
0.283382 + 0.959007i \(0.408544\pi\)
\(264\) 0 0
\(265\) −0.671758 −0.0412658
\(266\) 0 0
\(267\) −2.28646 −0.139929
\(268\) −19.2264 −1.17444
\(269\) 15.6132 0.951954 0.475977 0.879458i \(-0.342095\pi\)
0.475977 + 0.879458i \(0.342095\pi\)
\(270\) 21.5129 1.30923
\(271\) 27.7445 1.68536 0.842680 0.538415i \(-0.180977\pi\)
0.842680 + 0.538415i \(0.180977\pi\)
\(272\) 7.85415 0.476228
\(273\) 0 0
\(274\) −14.5494 −0.878962
\(275\) 0 0
\(276\) 19.4726 1.17211
\(277\) −14.8124 −0.889989 −0.444995 0.895533i \(-0.646794\pi\)
−0.444995 + 0.895533i \(0.646794\pi\)
\(278\) −13.8814 −0.832551
\(279\) −5.85415 −0.350479
\(280\) 0 0
\(281\) −15.2227 −0.908109 −0.454054 0.890974i \(-0.650023\pi\)
−0.454054 + 0.890974i \(0.650023\pi\)
\(282\) −2.64975 −0.157790
\(283\) 21.7173 1.29096 0.645479 0.763778i \(-0.276658\pi\)
0.645479 + 0.763778i \(0.276658\pi\)
\(284\) 47.6222 2.82586
\(285\) 10.8814 0.644558
\(286\) 0 0
\(287\) 0 0
\(288\) −5.33198 −0.314190
\(289\) −14.7773 −0.869254
\(290\) −9.05855 −0.531937
\(291\) −1.32674 −0.0777750
\(292\) −36.0220 −2.10803
\(293\) 11.1276 0.650080 0.325040 0.945700i \(-0.394622\pi\)
0.325040 + 0.945700i \(0.394622\pi\)
\(294\) 0 0
\(295\) −27.9049 −1.62469
\(296\) −30.4998 −1.77277
\(297\) 0 0
\(298\) 2.49086 0.144292
\(299\) −21.3320 −1.23366
\(300\) −0.421841 −0.0243550
\(301\) 0 0
\(302\) −36.9672 −2.12722
\(303\) 4.31370 0.247816
\(304\) −36.4450 −2.09026
\(305\) 28.6169 1.63860
\(306\) −9.24992 −0.528783
\(307\) 24.9855 1.42600 0.712998 0.701166i \(-0.247337\pi\)
0.712998 + 0.701166i \(0.247337\pi\)
\(308\) 0 0
\(309\) 0.759053 0.0431810
\(310\) −12.9049 −0.732949
\(311\) −34.7408 −1.96997 −0.984984 0.172643i \(-0.944769\pi\)
−0.984984 + 0.172643i \(0.944769\pi\)
\(312\) −12.8762 −0.728969
\(313\) −23.7095 −1.34014 −0.670069 0.742299i \(-0.733736\pi\)
−0.670069 + 0.742299i \(0.733736\pi\)
\(314\) −15.9179 −0.898301
\(315\) 0 0
\(316\) −19.4726 −1.09542
\(317\) 19.6770 1.10517 0.552585 0.833457i \(-0.313641\pi\)
0.552585 + 0.833457i \(0.313641\pi\)
\(318\) 0.541613 0.0303722
\(319\) 0 0
\(320\) 11.4726 0.641337
\(321\) 4.51811 0.252176
\(322\) 0 0
\(323\) −10.3137 −0.573870
\(324\) 19.6640 1.09244
\(325\) 0.462122 0.0256339
\(326\) 24.7721 1.37200
\(327\) 2.00780 0.111032
\(328\) −61.7718 −3.41077
\(329\) 0 0
\(330\) 0 0
\(331\) −28.1899 −1.54946 −0.774728 0.632295i \(-0.782113\pi\)
−0.774728 + 0.632295i \(0.782113\pi\)
\(332\) −8.14061 −0.446774
\(333\) 13.8359 0.758201
\(334\) −4.83588 −0.264608
\(335\) 10.0806 0.550760
\(336\) 0 0
\(337\) −21.7460 −1.18458 −0.592290 0.805725i \(-0.701776\pi\)
−0.592290 + 0.805725i \(0.701776\pi\)
\(338\) −5.47783 −0.297954
\(339\) −9.10033 −0.494262
\(340\) −13.8176 −0.749365
\(341\) 0 0
\(342\) 42.9217 2.32094
\(343\) 0 0
\(344\) −28.9269 −1.55963
\(345\) −10.2096 −0.549668
\(346\) 16.0220 0.861348
\(347\) 3.94145 0.211588 0.105794 0.994388i \(-0.466262\pi\)
0.105794 + 0.994388i \(0.466262\pi\)
\(348\) 4.94925 0.265308
\(349\) −14.1093 −0.755254 −0.377627 0.925958i \(-0.623260\pi\)
−0.377627 + 0.925958i \(0.623260\pi\)
\(350\) 0 0
\(351\) 12.8762 0.687279
\(352\) 0 0
\(353\) 4.96869 0.264457 0.132228 0.991219i \(-0.457787\pi\)
0.132228 + 0.991219i \(0.457787\pi\)
\(354\) 22.4987 1.19579
\(355\) −24.9687 −1.32520
\(356\) −13.4726 −0.714046
\(357\) 0 0
\(358\) −8.93214 −0.472078
\(359\) 4.07159 0.214890 0.107445 0.994211i \(-0.465733\pi\)
0.107445 + 0.994211i \(0.465733\pi\)
\(360\) 30.1496 1.58902
\(361\) 28.8579 1.51884
\(362\) −30.4218 −1.59894
\(363\) 0 0
\(364\) 0 0
\(365\) 18.8866 0.988571
\(366\) −23.0728 −1.20603
\(367\) 18.0220 0.940741 0.470371 0.882469i \(-0.344120\pi\)
0.470371 + 0.882469i \(0.344120\pi\)
\(368\) 34.1951 1.78254
\(369\) 28.0220 1.45877
\(370\) 30.4998 1.58561
\(371\) 0 0
\(372\) 7.05075 0.365564
\(373\) −28.9164 −1.49724 −0.748618 0.663001i \(-0.769282\pi\)
−0.748618 + 0.663001i \(0.769282\pi\)
\(374\) 0 0
\(375\) 8.08580 0.417549
\(376\) −8.18613 −0.422167
\(377\) −5.42184 −0.279239
\(378\) 0 0
\(379\) 4.30847 0.221311 0.110656 0.993859i \(-0.464705\pi\)
0.110656 + 0.993859i \(0.464705\pi\)
\(380\) 64.1168 3.28912
\(381\) 8.83181 0.452467
\(382\) 30.1626 1.54325
\(383\) 12.3488 0.630992 0.315496 0.948927i \(-0.397829\pi\)
0.315496 + 0.948927i \(0.397829\pi\)
\(384\) −12.3047 −0.627923
\(385\) 0 0
\(386\) 29.7408 1.51377
\(387\) 13.1223 0.667046
\(388\) −7.81761 −0.396879
\(389\) 29.4230 1.49181 0.745903 0.666055i \(-0.232018\pi\)
0.745903 + 0.666055i \(0.232018\pi\)
\(390\) 12.8762 0.652010
\(391\) 9.67699 0.489387
\(392\) 0 0
\(393\) 0.541613 0.0273208
\(394\) −30.2954 −1.52626
\(395\) 10.2096 0.513703
\(396\) 0 0
\(397\) 17.2995 0.868237 0.434119 0.900856i \(-0.357060\pi\)
0.434119 + 0.900856i \(0.357060\pi\)
\(398\) −4.74485 −0.237838
\(399\) 0 0
\(400\) −0.740780 −0.0370390
\(401\) −24.9504 −1.24596 −0.622982 0.782236i \(-0.714079\pi\)
−0.622982 + 0.782236i \(0.714079\pi\)
\(402\) −8.12758 −0.405367
\(403\) −7.72401 −0.384760
\(404\) 25.4178 1.26458
\(405\) −10.3100 −0.512306
\(406\) 0 0
\(407\) 0 0
\(408\) 5.84111 0.289178
\(409\) −38.5584 −1.90659 −0.953295 0.302042i \(-0.902332\pi\)
−0.953295 + 0.302042i \(0.902332\pi\)
\(410\) 61.7718 3.05069
\(411\) −4.16786 −0.205585
\(412\) 4.47259 0.220349
\(413\) 0 0
\(414\) −40.2719 −1.97926
\(415\) 4.26819 0.209517
\(416\) −7.03505 −0.344922
\(417\) −3.97649 −0.194730
\(418\) 0 0
\(419\) −0.908970 −0.0444061 −0.0222030 0.999753i \(-0.507068\pi\)
−0.0222030 + 0.999753i \(0.507068\pi\)
\(420\) 0 0
\(421\) 15.5532 0.758014 0.379007 0.925394i \(-0.376266\pi\)
0.379007 + 0.925394i \(0.376266\pi\)
\(422\) 40.4633 1.96972
\(423\) 3.71354 0.180558
\(424\) 1.67326 0.0812606
\(425\) −0.209636 −0.0101688
\(426\) 20.1313 0.975365
\(427\) 0 0
\(428\) 26.6222 1.28683
\(429\) 0 0
\(430\) 28.9269 1.39498
\(431\) −3.53638 −0.170341 −0.0851707 0.996366i \(-0.527144\pi\)
−0.0851707 + 0.996366i \(0.527144\pi\)
\(432\) −20.6404 −0.993064
\(433\) −17.6457 −0.847997 −0.423999 0.905663i \(-0.639374\pi\)
−0.423999 + 0.905663i \(0.639374\pi\)
\(434\) 0 0
\(435\) −2.59493 −0.124417
\(436\) 11.8306 0.566585
\(437\) −44.9034 −2.14802
\(438\) −15.2276 −0.727602
\(439\) 15.0272 0.717211 0.358606 0.933489i \(-0.383252\pi\)
0.358606 + 0.933489i \(0.383252\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12.2044 −0.580504
\(443\) 13.2227 0.628228 0.314114 0.949385i \(-0.398293\pi\)
0.314114 + 0.949385i \(0.398293\pi\)
\(444\) −16.6640 −0.790836
\(445\) 7.06379 0.334856
\(446\) −7.56362 −0.358148
\(447\) 0.713538 0.0337492
\(448\) 0 0
\(449\) −9.90864 −0.467617 −0.233809 0.972283i \(-0.575119\pi\)
−0.233809 + 0.972283i \(0.575119\pi\)
\(450\) 0.872425 0.0411265
\(451\) 0 0
\(452\) −53.6222 −2.52217
\(453\) −10.5897 −0.497547
\(454\) 45.9542 2.15674
\(455\) 0 0
\(456\) −27.1041 −1.26926
\(457\) −10.3450 −0.483919 −0.241960 0.970286i \(-0.577790\pi\)
−0.241960 + 0.970286i \(0.577790\pi\)
\(458\) 63.5166 2.96794
\(459\) −5.84111 −0.272640
\(460\) −60.1586 −2.80491
\(461\) −15.3372 −0.714325 −0.357163 0.934042i \(-0.616256\pi\)
−0.357163 + 0.934042i \(0.616256\pi\)
\(462\) 0 0
\(463\) −25.1313 −1.16795 −0.583976 0.811771i \(-0.698504\pi\)
−0.583976 + 0.811771i \(0.698504\pi\)
\(464\) 8.69120 0.403479
\(465\) −3.69676 −0.171433
\(466\) −9.50914 −0.440502
\(467\) 0.746015 0.0345214 0.0172607 0.999851i \(-0.494505\pi\)
0.0172607 + 0.999851i \(0.494505\pi\)
\(468\) 34.4178 1.59096
\(469\) 0 0
\(470\) 8.18613 0.377598
\(471\) −4.55989 −0.210108
\(472\) 69.5073 3.19933
\(473\) 0 0
\(474\) −8.23164 −0.378092
\(475\) 0.972758 0.0446332
\(476\) 0 0
\(477\) −0.759053 −0.0347546
\(478\) −32.3905 −1.48151
\(479\) −20.1130 −0.918988 −0.459494 0.888181i \(-0.651969\pi\)
−0.459494 + 0.888181i \(0.651969\pi\)
\(480\) −3.36702 −0.153683
\(481\) 18.2552 0.832363
\(482\) −1.12234 −0.0511212
\(483\) 0 0
\(484\) 0 0
\(485\) 4.09883 0.186118
\(486\) 37.5897 1.70510
\(487\) −4.24992 −0.192582 −0.0962911 0.995353i \(-0.530698\pi\)
−0.0962911 + 0.995353i \(0.530698\pi\)
\(488\) −71.2809 −3.22673
\(489\) 7.09626 0.320904
\(490\) 0 0
\(491\) −30.3279 −1.36868 −0.684340 0.729163i \(-0.739909\pi\)
−0.684340 + 0.729163i \(0.739909\pi\)
\(492\) −33.7497 −1.52156
\(493\) 2.45955 0.110773
\(494\) 56.6311 2.54796
\(495\) 0 0
\(496\) 12.3816 0.555948
\(497\) 0 0
\(498\) −3.44128 −0.154207
\(499\) 14.4413 0.646480 0.323240 0.946317i \(-0.395228\pi\)
0.323240 + 0.946317i \(0.395228\pi\)
\(500\) 47.6442 2.13071
\(501\) −1.38530 −0.0618905
\(502\) −2.78630 −0.124358
\(503\) −2.95822 −0.131901 −0.0659503 0.997823i \(-0.521008\pi\)
−0.0659503 + 0.997823i \(0.521008\pi\)
\(504\) 0 0
\(505\) −13.3267 −0.593032
\(506\) 0 0
\(507\) −1.56919 −0.0696901
\(508\) 52.0399 2.30890
\(509\) 24.9907 1.10769 0.553847 0.832619i \(-0.313159\pi\)
0.553847 + 0.832619i \(0.313159\pi\)
\(510\) −5.84111 −0.258649
\(511\) 0 0
\(512\) −46.5767 −2.05842
\(513\) 27.1041 1.19667
\(514\) 56.8904 2.50933
\(515\) −2.34502 −0.103334
\(516\) −15.8046 −0.695757
\(517\) 0 0
\(518\) 0 0
\(519\) 4.58970 0.201465
\(520\) 39.7796 1.74445
\(521\) −28.8631 −1.26452 −0.632258 0.774758i \(-0.717872\pi\)
−0.632258 + 0.774758i \(0.717872\pi\)
\(522\) −10.2357 −0.448005
\(523\) 0.472591 0.0206650 0.0103325 0.999947i \(-0.496711\pi\)
0.0103325 + 0.999947i \(0.496711\pi\)
\(524\) 3.19136 0.139415
\(525\) 0 0
\(526\) 22.8944 0.998245
\(527\) 3.50390 0.152632
\(528\) 0 0
\(529\) 19.1313 0.831796
\(530\) −1.67326 −0.0726817
\(531\) −31.5311 −1.36834
\(532\) 0 0
\(533\) 36.9724 1.60145
\(534\) −5.69527 −0.246458
\(535\) −13.9582 −0.603466
\(536\) −25.1093 −1.08456
\(537\) −2.55872 −0.110417
\(538\) 38.8904 1.67668
\(539\) 0 0
\(540\) 36.3122 1.56263
\(541\) −15.4596 −0.664658 −0.332329 0.943164i \(-0.607834\pi\)
−0.332329 + 0.943164i \(0.607834\pi\)
\(542\) 69.1078 2.96843
\(543\) −8.71470 −0.373984
\(544\) 3.19136 0.136829
\(545\) −6.20290 −0.265703
\(546\) 0 0
\(547\) 35.0440 1.49837 0.749187 0.662359i \(-0.230444\pi\)
0.749187 + 0.662359i \(0.230444\pi\)
\(548\) −24.5584 −1.04908
\(549\) 32.3357 1.38005
\(550\) 0 0
\(551\) −11.4129 −0.486205
\(552\) 25.4308 1.08241
\(553\) 0 0
\(554\) −36.8956 −1.56754
\(555\) 8.73705 0.370867
\(556\) −23.4308 −0.993688
\(557\) −10.5326 −0.446282 −0.223141 0.974786i \(-0.571631\pi\)
−0.223141 + 0.974786i \(0.571631\pi\)
\(558\) −14.5819 −0.617301
\(559\) 17.3137 0.732292
\(560\) 0 0
\(561\) 0 0
\(562\) −37.9176 −1.59946
\(563\) −30.7147 −1.29447 −0.647235 0.762290i \(-0.724075\pi\)
−0.647235 + 0.762290i \(0.724075\pi\)
\(564\) −4.47259 −0.188330
\(565\) 28.1145 1.18279
\(566\) 54.0948 2.27377
\(567\) 0 0
\(568\) 62.1936 2.60959
\(569\) 30.7721 1.29003 0.645017 0.764169i \(-0.276850\pi\)
0.645017 + 0.764169i \(0.276850\pi\)
\(570\) 27.1041 1.13526
\(571\) 7.51694 0.314574 0.157287 0.987553i \(-0.449725\pi\)
0.157287 + 0.987553i \(0.449725\pi\)
\(572\) 0 0
\(573\) 8.64045 0.360960
\(574\) 0 0
\(575\) −0.912705 −0.0380624
\(576\) 12.9635 0.540144
\(577\) −27.6184 −1.14977 −0.574885 0.818234i \(-0.694953\pi\)
−0.574885 + 0.818234i \(0.694953\pi\)
\(578\) −36.8083 −1.53102
\(579\) 8.51961 0.354063
\(580\) −15.2902 −0.634891
\(581\) 0 0
\(582\) −3.30473 −0.136986
\(583\) 0 0
\(584\) −47.0440 −1.94670
\(585\) −18.0455 −0.746090
\(586\) 27.7173 1.14499
\(587\) 29.9582 1.23651 0.618254 0.785978i \(-0.287840\pi\)
0.618254 + 0.785978i \(0.287840\pi\)
\(588\) 0 0
\(589\) −16.2589 −0.669936
\(590\) −69.5073 −2.86157
\(591\) −8.67849 −0.356985
\(592\) −29.2630 −1.20270
\(593\) 12.6680 0.520213 0.260107 0.965580i \(-0.416242\pi\)
0.260107 + 0.965580i \(0.416242\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.20440 0.172219
\(597\) −1.35922 −0.0556291
\(598\) −53.1350 −2.17285
\(599\) 1.29427 0.0528823 0.0264411 0.999650i \(-0.491583\pi\)
0.0264411 + 0.999650i \(0.491583\pi\)
\(600\) −0.550916 −0.0224911
\(601\) −41.0220 −1.67332 −0.836661 0.547721i \(-0.815496\pi\)
−0.836661 + 0.547721i \(0.815496\pi\)
\(602\) 0 0
\(603\) 11.3905 0.463858
\(604\) −62.3980 −2.53894
\(605\) 0 0
\(606\) 10.7448 0.436480
\(607\) −21.1768 −0.859541 −0.429770 0.902938i \(-0.641406\pi\)
−0.429770 + 0.902938i \(0.641406\pi\)
\(608\) −14.8086 −0.600570
\(609\) 0 0
\(610\) 71.2809 2.88608
\(611\) 4.89967 0.198219
\(612\) −15.6132 −0.631126
\(613\) −6.76312 −0.273160 −0.136580 0.990629i \(-0.543611\pi\)
−0.136580 + 0.990629i \(0.543611\pi\)
\(614\) 62.2354 2.51162
\(615\) 17.6953 0.713542
\(616\) 0 0
\(617\) −41.0728 −1.65353 −0.826763 0.562550i \(-0.809820\pi\)
−0.826763 + 0.562550i \(0.809820\pi\)
\(618\) 1.89070 0.0760550
\(619\) 30.4267 1.22295 0.611477 0.791262i \(-0.290576\pi\)
0.611477 + 0.791262i \(0.290576\pi\)
\(620\) −21.7826 −0.874809
\(621\) −25.4308 −1.02050
\(622\) −86.5345 −3.46972
\(623\) 0 0
\(624\) −12.3540 −0.494555
\(625\) −24.2772 −0.971086
\(626\) −59.0571 −2.36039
\(627\) 0 0
\(628\) −26.8684 −1.07216
\(629\) −8.28123 −0.330194
\(630\) 0 0
\(631\) 12.3670 0.492323 0.246162 0.969229i \(-0.420831\pi\)
0.246162 + 0.969229i \(0.420831\pi\)
\(632\) −25.4308 −1.01158
\(633\) 11.5912 0.460709
\(634\) 49.0127 1.94654
\(635\) −27.2850 −1.08277
\(636\) 0.914205 0.0362506
\(637\) 0 0
\(638\) 0 0
\(639\) −28.2134 −1.11610
\(640\) 38.0142 1.50264
\(641\) −47.1313 −1.86157 −0.930787 0.365561i \(-0.880877\pi\)
−0.930787 + 0.365561i \(0.880877\pi\)
\(642\) 11.2540 0.444159
\(643\) −1.87242 −0.0738412 −0.0369206 0.999318i \(-0.511755\pi\)
−0.0369206 + 0.999318i \(0.511755\pi\)
\(644\) 0 0
\(645\) 8.28646 0.326279
\(646\) −25.6900 −1.01076
\(647\) 1.83588 0.0721758 0.0360879 0.999349i \(-0.488510\pi\)
0.0360879 + 0.999349i \(0.488510\pi\)
\(648\) 25.6807 1.00883
\(649\) 0 0
\(650\) 1.15108 0.0451492
\(651\) 0 0
\(652\) 41.8135 1.63754
\(653\) −18.1772 −0.711327 −0.355664 0.934614i \(-0.615745\pi\)
−0.355664 + 0.934614i \(0.615745\pi\)
\(654\) 5.00117 0.195561
\(655\) −1.67326 −0.0653796
\(656\) −59.2667 −2.31398
\(657\) 21.3409 0.832590
\(658\) 0 0
\(659\) 16.8997 0.658318 0.329159 0.944275i \(-0.393235\pi\)
0.329159 + 0.944275i \(0.393235\pi\)
\(660\) 0 0
\(661\) 45.3032 1.76209 0.881046 0.473031i \(-0.156840\pi\)
0.881046 + 0.473031i \(0.156840\pi\)
\(662\) −70.2171 −2.72907
\(663\) −3.49610 −0.135777
\(664\) −10.6315 −0.412581
\(665\) 0 0
\(666\) 34.4633 1.33543
\(667\) 10.7083 0.414627
\(668\) −8.16262 −0.315821
\(669\) −2.16669 −0.0837691
\(670\) 25.1093 0.970057
\(671\) 0 0
\(672\) 0 0
\(673\) −39.5076 −1.52291 −0.761454 0.648219i \(-0.775514\pi\)
−0.761454 + 0.648219i \(0.775514\pi\)
\(674\) −54.1664 −2.08641
\(675\) 0.550916 0.0212048
\(676\) −9.24618 −0.355622
\(677\) −34.1339 −1.31187 −0.655936 0.754817i \(-0.727726\pi\)
−0.655936 + 0.754817i \(0.727726\pi\)
\(678\) −22.6677 −0.870547
\(679\) 0 0
\(680\) −18.0455 −0.692014
\(681\) 13.1641 0.504450
\(682\) 0 0
\(683\) 23.7863 0.910157 0.455079 0.890451i \(-0.349611\pi\)
0.455079 + 0.890451i \(0.349611\pi\)
\(684\) 72.4487 2.77015
\(685\) 12.8762 0.491973
\(686\) 0 0
\(687\) 18.1951 0.694186
\(688\) −27.7538 −1.05810
\(689\) −1.00150 −0.0381541
\(690\) −25.4308 −0.968134
\(691\) 20.5625 0.782233 0.391116 0.920341i \(-0.372089\pi\)
0.391116 + 0.920341i \(0.372089\pi\)
\(692\) 27.0440 1.02806
\(693\) 0 0
\(694\) 9.81761 0.372671
\(695\) 12.2850 0.465995
\(696\) 6.46362 0.245003
\(697\) −16.7721 −0.635288
\(698\) −35.1443 −1.33023
\(699\) −2.72401 −0.103031
\(700\) 0 0
\(701\) 23.9907 0.906116 0.453058 0.891481i \(-0.350333\pi\)
0.453058 + 0.891481i \(0.350333\pi\)
\(702\) 32.0728 1.21051
\(703\) 38.4267 1.44929
\(704\) 0 0
\(705\) 2.34502 0.0883184
\(706\) 12.3763 0.465789
\(707\) 0 0
\(708\) 37.9762 1.42723
\(709\) −51.7117 −1.94207 −0.971037 0.238930i \(-0.923204\pi\)
−0.971037 + 0.238930i \(0.923204\pi\)
\(710\) −62.1936 −2.33408
\(711\) 11.5364 0.432648
\(712\) −17.5949 −0.659398
\(713\) 15.2552 0.571310
\(714\) 0 0
\(715\) 0 0
\(716\) −15.0768 −0.563447
\(717\) −9.27866 −0.346518
\(718\) 10.1418 0.378488
\(719\) −25.7851 −0.961623 −0.480812 0.876824i \(-0.659658\pi\)
−0.480812 + 0.876824i \(0.659658\pi\)
\(720\) 28.9269 1.07804
\(721\) 0 0
\(722\) 71.8811 2.67514
\(723\) −0.321508 −0.0119570
\(724\) −51.3499 −1.90840
\(725\) −0.231978 −0.00861543
\(726\) 0 0
\(727\) −32.7330 −1.21400 −0.606999 0.794702i \(-0.707627\pi\)
−0.606999 + 0.794702i \(0.707627\pi\)
\(728\) 0 0
\(729\) −3.26295 −0.120850
\(730\) 47.0440 1.74118
\(731\) −7.85415 −0.290496
\(732\) −38.9452 −1.43946
\(733\) −9.28273 −0.342865 −0.171433 0.985196i \(-0.554840\pi\)
−0.171433 + 0.985196i \(0.554840\pi\)
\(734\) 44.8904 1.65693
\(735\) 0 0
\(736\) 13.8944 0.512156
\(737\) 0 0
\(738\) 69.7990 2.56934
\(739\) 50.0933 1.84271 0.921355 0.388722i \(-0.127083\pi\)
0.921355 + 0.388722i \(0.127083\pi\)
\(740\) 51.4816 1.89250
\(741\) 16.2227 0.595955
\(742\) 0 0
\(743\) −13.1679 −0.483082 −0.241541 0.970391i \(-0.577653\pi\)
−0.241541 + 0.970391i \(0.577653\pi\)
\(744\) 9.20814 0.337587
\(745\) −2.20440 −0.0807630
\(746\) −72.0269 −2.63709
\(747\) 4.82284 0.176459
\(748\) 0 0
\(749\) 0 0
\(750\) 20.1406 0.735431
\(751\) 41.3137 1.50756 0.753779 0.657128i \(-0.228229\pi\)
0.753779 + 0.657128i \(0.228229\pi\)
\(752\) −7.85415 −0.286411
\(753\) −0.798168 −0.0290869
\(754\) −13.5051 −0.491826
\(755\) 32.7158 1.19065
\(756\) 0 0
\(757\) −45.5114 −1.65414 −0.827069 0.562100i \(-0.809994\pi\)
−0.827069 + 0.562100i \(0.809994\pi\)
\(758\) 10.7318 0.389797
\(759\) 0 0
\(760\) 83.7352 3.03740
\(761\) 31.2719 1.13361 0.566803 0.823853i \(-0.308180\pi\)
0.566803 + 0.823853i \(0.308180\pi\)
\(762\) 21.9988 0.796934
\(763\) 0 0
\(764\) 50.9124 1.84194
\(765\) 8.18613 0.295970
\(766\) 30.7591 1.11137
\(767\) −41.6024 −1.50218
\(768\) −23.2223 −0.837964
\(769\) 42.0467 1.51624 0.758121 0.652114i \(-0.226118\pi\)
0.758121 + 0.652114i \(0.226118\pi\)
\(770\) 0 0
\(771\) 16.2969 0.586920
\(772\) 50.2003 1.80675
\(773\) −7.64452 −0.274954 −0.137477 0.990505i \(-0.543899\pi\)
−0.137477 + 0.990505i \(0.543899\pi\)
\(774\) 32.6860 1.17487
\(775\) −0.330478 −0.0118711
\(776\) −10.2096 −0.366505
\(777\) 0 0
\(778\) 73.2887 2.62753
\(779\) 77.8262 2.78841
\(780\) 21.7340 0.778204
\(781\) 0 0
\(782\) 24.1041 0.861960
\(783\) −6.46362 −0.230991
\(784\) 0 0
\(785\) 14.0873 0.502797
\(786\) 1.34908 0.0481202
\(787\) −27.9034 −0.994649 −0.497324 0.867565i \(-0.665684\pi\)
−0.497324 + 0.867565i \(0.665684\pi\)
\(788\) −51.1365 −1.82166
\(789\) 6.55839 0.233485
\(790\) 25.4308 0.904788
\(791\) 0 0
\(792\) 0 0
\(793\) 42.6640 1.51504
\(794\) 43.0907 1.52923
\(795\) −0.479325 −0.0169999
\(796\) −8.00897 −0.283870
\(797\) −10.0560 −0.356201 −0.178101 0.984012i \(-0.556995\pi\)
−0.178101 + 0.984012i \(0.556995\pi\)
\(798\) 0 0
\(799\) −2.22267 −0.0786326
\(800\) −0.301000 −0.0106420
\(801\) 7.98173 0.282020
\(802\) −62.1481 −2.19453
\(803\) 0 0
\(804\) −13.7188 −0.483824
\(805\) 0 0
\(806\) −19.2394 −0.677681
\(807\) 11.1406 0.392168
\(808\) 33.1951 1.16780
\(809\) −38.5726 −1.35614 −0.678070 0.734997i \(-0.737183\pi\)
−0.678070 + 0.734997i \(0.737183\pi\)
\(810\) −25.6807 −0.902329
\(811\) 12.3760 0.434580 0.217290 0.976107i \(-0.430278\pi\)
0.217290 + 0.976107i \(0.430278\pi\)
\(812\) 0 0
\(813\) 19.7968 0.694303
\(814\) 0 0
\(815\) −21.9232 −0.767935
\(816\) 5.60424 0.196187
\(817\) 36.4450 1.27505
\(818\) −96.0437 −3.35809
\(819\) 0 0
\(820\) 104.266 3.64114
\(821\) −29.7381 −1.03787 −0.518934 0.854814i \(-0.673671\pi\)
−0.518934 + 0.854814i \(0.673671\pi\)
\(822\) −10.3816 −0.362099
\(823\) 40.7770 1.42140 0.710698 0.703497i \(-0.248379\pi\)
0.710698 + 0.703497i \(0.248379\pi\)
\(824\) 5.84111 0.203485
\(825\) 0 0
\(826\) 0 0
\(827\) 18.8411 0.655170 0.327585 0.944822i \(-0.393765\pi\)
0.327585 + 0.944822i \(0.393765\pi\)
\(828\) −67.9762 −2.36233
\(829\) 31.1406 1.08156 0.540779 0.841165i \(-0.318129\pi\)
0.540779 + 0.841165i \(0.318129\pi\)
\(830\) 10.6315 0.369024
\(831\) −10.5692 −0.366641
\(832\) 17.1041 0.592977
\(833\) 0 0
\(834\) −9.90490 −0.342979
\(835\) 4.27973 0.148106
\(836\) 0 0
\(837\) −9.20814 −0.318280
\(838\) −2.26412 −0.0782127
\(839\) −10.2589 −0.354176 −0.177088 0.984195i \(-0.556668\pi\)
−0.177088 + 0.984195i \(0.556668\pi\)
\(840\) 0 0
\(841\) −26.2783 −0.906149
\(842\) 38.7408 1.33510
\(843\) −10.8620 −0.374106
\(844\) 68.2992 2.35095
\(845\) 4.84785 0.166771
\(846\) 9.24992 0.318019
\(847\) 0 0
\(848\) 1.60540 0.0551297
\(849\) 15.4961 0.531825
\(850\) −0.522175 −0.0179104
\(851\) −36.0545 −1.23593
\(852\) 33.9802 1.16414
\(853\) 3.04435 0.104237 0.0521183 0.998641i \(-0.483403\pi\)
0.0521183 + 0.998641i \(0.483403\pi\)
\(854\) 0 0
\(855\) −37.9855 −1.29908
\(856\) 34.7680 1.18835
\(857\) 49.5532 1.69270 0.846352 0.532624i \(-0.178794\pi\)
0.846352 + 0.532624i \(0.178794\pi\)
\(858\) 0 0
\(859\) −36.8747 −1.25815 −0.629074 0.777346i \(-0.716566\pi\)
−0.629074 + 0.777346i \(0.716566\pi\)
\(860\) 48.8266 1.66497
\(861\) 0 0
\(862\) −8.80864 −0.300023
\(863\) −46.4230 −1.58026 −0.790129 0.612941i \(-0.789986\pi\)
−0.790129 + 0.612941i \(0.789986\pi\)
\(864\) −8.38680 −0.285325
\(865\) −14.1794 −0.482114
\(866\) −43.9530 −1.49358
\(867\) −10.5442 −0.358099
\(868\) 0 0
\(869\) 0 0
\(870\) −6.46362 −0.219137
\(871\) 15.0287 0.509229
\(872\) 15.4506 0.523223
\(873\) 4.63148 0.156752
\(874\) −111.848 −3.78332
\(875\) 0 0
\(876\) −25.7031 −0.868426
\(877\) −39.0310 −1.31798 −0.658991 0.752151i \(-0.729017\pi\)
−0.658991 + 0.752151i \(0.729017\pi\)
\(878\) 37.4308 1.26323
\(879\) 7.93995 0.267808
\(880\) 0 0
\(881\) 44.0049 1.48256 0.741281 0.671194i \(-0.234218\pi\)
0.741281 + 0.671194i \(0.234218\pi\)
\(882\) 0 0
\(883\) −23.3596 −0.786112 −0.393056 0.919515i \(-0.628582\pi\)
−0.393056 + 0.919515i \(0.628582\pi\)
\(884\) −20.6002 −0.692859
\(885\) −19.9112 −0.669308
\(886\) 32.9359 1.10650
\(887\) 41.9176 1.40746 0.703728 0.710470i \(-0.251517\pi\)
0.703728 + 0.710470i \(0.251517\pi\)
\(888\) −21.7628 −0.730311
\(889\) 0 0
\(890\) 17.5949 0.589783
\(891\) 0 0
\(892\) −12.7669 −0.427466
\(893\) 10.3137 0.345135
\(894\) 1.77733 0.0594427
\(895\) 7.90490 0.264232
\(896\) 0 0
\(897\) −15.2212 −0.508220
\(898\) −24.6811 −0.823618
\(899\) 3.87733 0.129316
\(900\) 1.47259 0.0490864
\(901\) 0.454318 0.0151355
\(902\) 0 0
\(903\) 0 0
\(904\) −70.0295 −2.32915
\(905\) 26.9232 0.894957
\(906\) −26.3775 −0.876333
\(907\) −20.5181 −0.681293 −0.340646 0.940192i \(-0.610646\pi\)
−0.340646 + 0.940192i \(0.610646\pi\)
\(908\) 77.5674 2.57416
\(909\) −15.0586 −0.499461
\(910\) 0 0
\(911\) 27.6755 0.916930 0.458465 0.888712i \(-0.348399\pi\)
0.458465 + 0.888712i \(0.348399\pi\)
\(912\) −26.0049 −0.861108
\(913\) 0 0
\(914\) −25.7680 −0.852330
\(915\) 20.4193 0.675040
\(916\) 107.212 3.54237
\(917\) 0 0
\(918\) −14.5494 −0.480202
\(919\) −0.963454 −0.0317814 −0.0158907 0.999874i \(-0.505058\pi\)
−0.0158907 + 0.999874i \(0.505058\pi\)
\(920\) −78.5659 −2.59024
\(921\) 17.8281 0.587455
\(922\) −38.2029 −1.25815
\(923\) −37.2249 −1.22527
\(924\) 0 0
\(925\) 0.781061 0.0256811
\(926\) −62.5987 −2.05712
\(927\) −2.64975 −0.0870292
\(928\) 3.53148 0.115926
\(929\) −26.3320 −0.863924 −0.431962 0.901892i \(-0.642179\pi\)
−0.431962 + 0.901892i \(0.642179\pi\)
\(930\) −9.20814 −0.301947
\(931\) 0 0
\(932\) −16.0507 −0.525760
\(933\) −24.7889 −0.811551
\(934\) 1.85822 0.0608028
\(935\) 0 0
\(936\) 44.9489 1.46920
\(937\) −21.3865 −0.698665 −0.349333 0.936999i \(-0.613592\pi\)
−0.349333 + 0.936999i \(0.613592\pi\)
\(938\) 0 0
\(939\) −16.9176 −0.552085
\(940\) 13.8176 0.450681
\(941\) 14.8228 0.483211 0.241605 0.970375i \(-0.422326\pi\)
0.241605 + 0.970375i \(0.422326\pi\)
\(942\) −11.3581 −0.370065
\(943\) −73.0217 −2.37791
\(944\) 66.6885 2.17053
\(945\) 0 0
\(946\) 0 0
\(947\) 31.7120 1.03050 0.515251 0.857039i \(-0.327699\pi\)
0.515251 + 0.857039i \(0.327699\pi\)
\(948\) −13.8944 −0.451270
\(949\) 28.1574 0.914027
\(950\) 2.42301 0.0786127
\(951\) 14.0403 0.455287
\(952\) 0 0
\(953\) −49.9620 −1.61843 −0.809213 0.587515i \(-0.800106\pi\)
−0.809213 + 0.587515i \(0.800106\pi\)
\(954\) −1.89070 −0.0612136
\(955\) −26.6938 −0.863790
\(956\) −54.6729 −1.76825
\(957\) 0 0
\(958\) −50.0988 −1.61862
\(959\) 0 0
\(960\) 8.18613 0.264206
\(961\) −25.4763 −0.821817
\(962\) 45.4711 1.46605
\(963\) −15.7721 −0.508249
\(964\) −1.89443 −0.0610156
\(965\) −26.3204 −0.847285
\(966\) 0 0
\(967\) 52.4581 1.68694 0.843469 0.537178i \(-0.180510\pi\)
0.843469 + 0.537178i \(0.180510\pi\)
\(968\) 0 0
\(969\) −7.35922 −0.236412
\(970\) 10.2096 0.327812
\(971\) −30.8266 −0.989272 −0.494636 0.869100i \(-0.664699\pi\)
−0.494636 + 0.869100i \(0.664699\pi\)
\(972\) 63.4487 2.03512
\(973\) 0 0
\(974\) −10.5860 −0.339196
\(975\) 0.329742 0.0105602
\(976\) −68.3902 −2.18912
\(977\) 24.7355 0.791360 0.395680 0.918388i \(-0.370509\pi\)
0.395680 + 0.918388i \(0.370509\pi\)
\(978\) 17.6758 0.565211
\(979\) 0 0
\(980\) 0 0
\(981\) −7.00897 −0.223779
\(982\) −75.5427 −2.41066
\(983\) −12.2238 −0.389880 −0.194940 0.980815i \(-0.562451\pi\)
−0.194940 + 0.980815i \(0.562451\pi\)
\(984\) −44.0765 −1.40511
\(985\) 26.8113 0.854279
\(986\) 6.12641 0.195105
\(987\) 0 0
\(988\) 95.5894 3.04110
\(989\) −34.1951 −1.08734
\(990\) 0 0
\(991\) 4.60017 0.146129 0.0730645 0.997327i \(-0.476722\pi\)
0.0730645 + 0.997327i \(0.476722\pi\)
\(992\) 5.03098 0.159734
\(993\) −20.1145 −0.638316
\(994\) 0 0
\(995\) 4.19917 0.133123
\(996\) −5.80864 −0.184054
\(997\) −34.4763 −1.09188 −0.545938 0.837826i \(-0.683827\pi\)
−0.545938 + 0.837826i \(0.683827\pi\)
\(998\) 35.9713 1.13865
\(999\) 21.7628 0.688544
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.w.1.3 3
7.3 odd 6 847.2.e.d.485.1 6
7.5 odd 6 847.2.e.d.606.1 6
7.6 odd 2 5929.2.a.v.1.3 3
11.10 odd 2 539.2.a.i.1.1 3
33.32 even 2 4851.2.a.bn.1.3 3
44.43 even 2 8624.2.a.ck.1.2 3
77.3 odd 30 847.2.n.d.9.3 24
77.5 odd 30 847.2.n.d.487.3 24
77.10 even 6 77.2.e.b.23.3 6
77.17 even 30 847.2.n.e.366.3 24
77.19 even 30 847.2.n.e.130.3 24
77.24 even 30 847.2.n.e.807.1 24
77.26 odd 30 847.2.n.d.753.3 24
77.31 odd 30 847.2.n.d.807.3 24
77.32 odd 6 539.2.e.l.177.3 6
77.38 odd 30 847.2.n.d.366.1 24
77.40 even 30 847.2.n.e.753.1 24
77.47 odd 30 847.2.n.d.130.1 24
77.52 even 30 847.2.n.e.9.1 24
77.54 even 6 77.2.e.b.67.3 yes 6
77.59 odd 30 847.2.n.d.632.1 24
77.61 even 30 847.2.n.e.487.1 24
77.65 odd 6 539.2.e.l.67.3 6
77.68 even 30 847.2.n.e.81.3 24
77.73 even 30 847.2.n.e.632.3 24
77.75 odd 30 847.2.n.d.81.1 24
77.76 even 2 539.2.a.h.1.1 3
231.131 odd 6 693.2.i.g.298.1 6
231.164 odd 6 693.2.i.g.100.1 6
231.230 odd 2 4851.2.a.bo.1.3 3
308.87 odd 6 1232.2.q.k.177.2 6
308.131 odd 6 1232.2.q.k.529.2 6
308.307 odd 2 8624.2.a.cl.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.b.23.3 6 77.10 even 6
77.2.e.b.67.3 yes 6 77.54 even 6
539.2.a.h.1.1 3 77.76 even 2
539.2.a.i.1.1 3 11.10 odd 2
539.2.e.l.67.3 6 77.65 odd 6
539.2.e.l.177.3 6 77.32 odd 6
693.2.i.g.100.1 6 231.164 odd 6
693.2.i.g.298.1 6 231.131 odd 6
847.2.e.d.485.1 6 7.3 odd 6
847.2.e.d.606.1 6 7.5 odd 6
847.2.n.d.9.3 24 77.3 odd 30
847.2.n.d.81.1 24 77.75 odd 30
847.2.n.d.130.1 24 77.47 odd 30
847.2.n.d.366.1 24 77.38 odd 30
847.2.n.d.487.3 24 77.5 odd 30
847.2.n.d.632.1 24 77.59 odd 30
847.2.n.d.753.3 24 77.26 odd 30
847.2.n.d.807.3 24 77.31 odd 30
847.2.n.e.9.1 24 77.52 even 30
847.2.n.e.81.3 24 77.68 even 30
847.2.n.e.130.3 24 77.19 even 30
847.2.n.e.366.3 24 77.17 even 30
847.2.n.e.487.1 24 77.61 even 30
847.2.n.e.632.3 24 77.73 even 30
847.2.n.e.753.1 24 77.40 even 30
847.2.n.e.807.1 24 77.24 even 30
1232.2.q.k.177.2 6 308.87 odd 6
1232.2.q.k.529.2 6 308.131 odd 6
4851.2.a.bn.1.3 3 33.32 even 2
4851.2.a.bo.1.3 3 231.230 odd 2
5929.2.a.v.1.3 3 7.6 odd 2
5929.2.a.w.1.3 3 1.1 even 1 trivial
8624.2.a.ck.1.2 3 44.43 even 2
8624.2.a.cl.1.2 3 308.307 odd 2