Defining parameters
| Level: | \( N \) | \(=\) | \( 4851 = 3^{2} \cdot 7^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4851.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 60 \) | ||
| Sturm bound: | \(1344\) | ||
| Trace bound: | \(23\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4851))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 704 | 172 | 532 |
| Cusp forms | 641 | 172 | 469 |
| Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(7\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(80\) | \(19\) | \(61\) | \(73\) | \(19\) | \(54\) | \(7\) | \(0\) | \(7\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(96\) | \(19\) | \(77\) | \(88\) | \(19\) | \(69\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(96\) | \(16\) | \(80\) | \(88\) | \(16\) | \(72\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(80\) | \(16\) | \(64\) | \(72\) | \(16\) | \(56\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(88\) | \(28\) | \(60\) | \(80\) | \(28\) | \(52\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(88\) | \(20\) | \(68\) | \(80\) | \(20\) | \(60\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(88\) | \(24\) | \(64\) | \(80\) | \(24\) | \(56\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(88\) | \(30\) | \(58\) | \(80\) | \(30\) | \(50\) | \(8\) | \(0\) | \(8\) | |||
| Plus space | \(+\) | \(336\) | \(79\) | \(257\) | \(305\) | \(79\) | \(226\) | \(31\) | \(0\) | \(31\) | |||||
| Minus space | \(-\) | \(368\) | \(93\) | \(275\) | \(336\) | \(93\) | \(243\) | \(32\) | \(0\) | \(32\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4851))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4851))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4851)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(441))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(539))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(693))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1617))\)\(^{\oplus 2}\)