Newform invariants
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator \(12\!\cdots\!09\)\( T_{2}^{292} - \)\(16\!\cdots\!22\)\( T_{2}^{291} - \)\(86\!\cdots\!57\)\( T_{2}^{290} + \)\(16\!\cdots\!10\)\( T_{2}^{289} + \)\(16\!\cdots\!18\)\( T_{2}^{288} - \)\(59\!\cdots\!17\)\( T_{2}^{287} + \)\(24\!\cdots\!57\)\( T_{2}^{286} - \)\(20\!\cdots\!43\)\( T_{2}^{285} - \)\(25\!\cdots\!33\)\( T_{2}^{284} + \)\(39\!\cdots\!11\)\( T_{2}^{283} + \)\(78\!\cdots\!94\)\( T_{2}^{282} - \)\(17\!\cdots\!52\)\( T_{2}^{281} + \)\(65\!\cdots\!61\)\( T_{2}^{280} - \)\(84\!\cdots\!07\)\( T_{2}^{279} - \)\(88\!\cdots\!22\)\( T_{2}^{278} + \)\(17\!\cdots\!54\)\( T_{2}^{277} + \)\(38\!\cdots\!80\)\( T_{2}^{276} - \)\(11\!\cdots\!42\)\( T_{2}^{275} + \)\(10\!\cdots\!94\)\( T_{2}^{274} + \)\(23\!\cdots\!42\)\( T_{2}^{273} - \)\(25\!\cdots\!95\)\( T_{2}^{272} + \)\(18\!\cdots\!38\)\( T_{2}^{271} + \)\(16\!\cdots\!94\)\( T_{2}^{270} - \)\(17\!\cdots\!70\)\( T_{2}^{269} - \)\(36\!\cdots\!14\)\( T_{2}^{268} + \)\(61\!\cdots\!64\)\( T_{2}^{267} - \)\(25\!\cdots\!80\)\( T_{2}^{266} - \)\(25\!\cdots\!24\)\( T_{2}^{265} + \)\(29\!\cdots\!08\)\( T_{2}^{264} - \)\(45\!\cdots\!88\)\( T_{2}^{263} - \)\(11\!\cdots\!65\)\( T_{2}^{262} - \)\(12\!\cdots\!55\)\( T_{2}^{261} - \)\(17\!\cdots\!05\)\( T_{2}^{260} + \)\(34\!\cdots\!75\)\( T_{2}^{259} + \)\(47\!\cdots\!93\)\( T_{2}^{258} - \)\(23\!\cdots\!33\)\( T_{2}^{257} - \)\(23\!\cdots\!18\)\( T_{2}^{256} + \)\(77\!\cdots\!70\)\( T_{2}^{255} - \)\(82\!\cdots\!63\)\( T_{2}^{254} + \)\(15\!\cdots\!67\)\( T_{2}^{253} + \)\(85\!\cdots\!98\)\( T_{2}^{252} - \)\(30\!\cdots\!35\)\( T_{2}^{251} - \)\(53\!\cdots\!05\)\( T_{2}^{250} + \)\(74\!\cdots\!58\)\( T_{2}^{249} + \)\(83\!\cdots\!16\)\( T_{2}^{248} + \)\(91\!\cdots\!35\)\( T_{2}^{247} + \)\(10\!\cdots\!65\)\( T_{2}^{246} - \)\(69\!\cdots\!75\)\( T_{2}^{245} - \)\(92\!\cdots\!17\)\( T_{2}^{244} - \)\(62\!\cdots\!72\)\( T_{2}^{243} + \)\(30\!\cdots\!68\)\( T_{2}^{242} + \)\(34\!\cdots\!79\)\( T_{2}^{241} + \)\(64\!\cdots\!96\)\( T_{2}^{240} - \)\(20\!\cdots\!69\)\( T_{2}^{239} - \)\(11\!\cdots\!60\)\( T_{2}^{238} + \)\(22\!\cdots\!95\)\( T_{2}^{237} + \)\(51\!\cdots\!82\)\( T_{2}^{236} + \)\(43\!\cdots\!46\)\( T_{2}^{235} + \)\(18\!\cdots\!18\)\( T_{2}^{234} - \)\(28\!\cdots\!91\)\( T_{2}^{233} - \)\(14\!\cdots\!97\)\( T_{2}^{232} + \)\(33\!\cdots\!11\)\( T_{2}^{231} + \)\(78\!\cdots\!27\)\( T_{2}^{230} + \)\(52\!\cdots\!07\)\( T_{2}^{229} - \)\(85\!\cdots\!18\)\( T_{2}^{228} - \)\(37\!\cdots\!39\)\( T_{2}^{227} - \)\(13\!\cdots\!03\)\( T_{2}^{226} + \)\(96\!\cdots\!00\)\( T_{2}^{225} + \)\(85\!\cdots\!06\)\( T_{2}^{224} + \)\(16\!\cdots\!25\)\( T_{2}^{223} - \)\(17\!\cdots\!36\)\( T_{2}^{222} - \)\(26\!\cdots\!08\)\( T_{2}^{221} - \)\(71\!\cdots\!60\)\( T_{2}^{220} + \)\(11\!\cdots\!43\)\( T_{2}^{219} + \)\(61\!\cdots\!72\)\( T_{2}^{218} - \)\(28\!\cdots\!79\)\( T_{2}^{217} - \)\(15\!\cdots\!73\)\( T_{2}^{216} - \)\(23\!\cdots\!95\)\( T_{2}^{215} - \)\(38\!\cdots\!12\)\( T_{2}^{214} + \)\(58\!\cdots\!75\)\( T_{2}^{213} + \)\(42\!\cdots\!40\)\( T_{2}^{212} - \)\(21\!\cdots\!09\)\( T_{2}^{211} - \)\(12\!\cdots\!71\)\( T_{2}^{210} - \)\(42\!\cdots\!68\)\( T_{2}^{209} - \)\(19\!\cdots\!17\)\( T_{2}^{208} + \)\(72\!\cdots\!42\)\( T_{2}^{207} + \)\(32\!\cdots\!85\)\( T_{2}^{206} - \)\(24\!\cdots\!62\)\( T_{2}^{205} - \)\(12\!\cdots\!04\)\( T_{2}^{204} - \)\(35\!\cdots\!33\)\( T_{2}^{203} + \)\(67\!\cdots\!44\)\( T_{2}^{202} + \)\(63\!\cdots\!67\)\( T_{2}^{201} + \)\(15\!\cdots\!43\)\( T_{2}^{200} - \)\(22\!\cdots\!57\)\( T_{2}^{199} - \)\(71\!\cdots\!22\)\( T_{2}^{198} + \)\(77\!\cdots\!51\)\( T_{2}^{197} + \)\(54\!\cdots\!19\)\( T_{2}^{196} + \)\(20\!\cdots\!39\)\( T_{2}^{195} + \)\(78\!\cdots\!28\)\( T_{2}^{194} - \)\(47\!\cdots\!95\)\( T_{2}^{193} - \)\(36\!\cdots\!96\)\( T_{2}^{192} - \)\(17\!\cdots\!20\)\( T_{2}^{191} + \)\(28\!\cdots\!73\)\( T_{2}^{190} + \)\(12\!\cdots\!28\)\( T_{2}^{189} + \)\(36\!\cdots\!14\)\( T_{2}^{188} - \)\(28\!\cdots\!24\)\( T_{2}^{187} - \)\(16\!\cdots\!23\)\( T_{2}^{186} - \)\(66\!\cdots\!40\)\( T_{2}^{185} + \)\(20\!\cdots\!10\)\( T_{2}^{184} + \)\(17\!\cdots\!31\)\( T_{2}^{183} + \)\(10\!\cdots\!25\)\( T_{2}^{182} - \)\(22\!\cdots\!10\)\( T_{2}^{181} - \)\(57\!\cdots\!46\)\( T_{2}^{180} - \)\(52\!\cdots\!24\)\( T_{2}^{179} + \)\(85\!\cdots\!51\)\( T_{2}^{178} + \)\(60\!\cdots\!62\)\( T_{2}^{177} + \)\(27\!\cdots\!01\)\( T_{2}^{176} + \)\(34\!\cdots\!36\)\( T_{2}^{175} - \)\(16\!\cdots\!28\)\( T_{2}^{174} + \)\(32\!\cdots\!41\)\( T_{2}^{173} + \)\(28\!\cdots\!24\)\( T_{2}^{172} - \)\(19\!\cdots\!18\)\( T_{2}^{171} + \)\(59\!\cdots\!21\)\( T_{2}^{170} - \)\(10\!\cdots\!88\)\( T_{2}^{169} - \)\(49\!\cdots\!33\)\( T_{2}^{168} + \)\(39\!\cdots\!57\)\( T_{2}^{167} + \)\(13\!\cdots\!83\)\( T_{2}^{166} - \)\(16\!\cdots\!08\)\( T_{2}^{165} - \)\(10\!\cdots\!11\)\( T_{2}^{164} + \)\(23\!\cdots\!88\)\( T_{2}^{163} - \)\(43\!\cdots\!65\)\( T_{2}^{162} + \)\(43\!\cdots\!82\)\( T_{2}^{161} + \)\(16\!\cdots\!16\)\( T_{2}^{160} - \)\(29\!\cdots\!41\)\( T_{2}^{159} - \)\(21\!\cdots\!30\)\( T_{2}^{158} + \)\(70\!\cdots\!11\)\( T_{2}^{157} - \)\(17\!\cdots\!01\)\( T_{2}^{156} - \)\(86\!\cdots\!18\)\( T_{2}^{155} + \)\(14\!\cdots\!20\)\( T_{2}^{154} - \)\(41\!\cdots\!00\)\( T_{2}^{153} - \)\(27\!\cdots\!25\)\( T_{2}^{152} + \)\(49\!\cdots\!12\)\( T_{2}^{151} - \)\(64\!\cdots\!03\)\( T_{2}^{150} - \)\(10\!\cdots\!32\)\( T_{2}^{149} + \)\(17\!\cdots\!05\)\( T_{2}^{148} + \)\(45\!\cdots\!54\)\( T_{2}^{147} - \)\(49\!\cdots\!40\)\( T_{2}^{146} + \)\(39\!\cdots\!39\)\( T_{2}^{145} + \)\(72\!\cdots\!93\)\( T_{2}^{144} - \)\(14\!\cdots\!76\)\( T_{2}^{143} + \)\(22\!\cdots\!79\)\( T_{2}^{142} + \)\(28\!\cdots\!82\)\( T_{2}^{141} - \)\(34\!\cdots\!50\)\( T_{2}^{140} - \)\(15\!\cdots\!86\)\( T_{2}^{139} + \)\(83\!\cdots\!83\)\( T_{2}^{138} - \)\(66\!\cdots\!30\)\( T_{2}^{137} - \)\(68\!\cdots\!00\)\( T_{2}^{136} + \)\(16\!\cdots\!54\)\( T_{2}^{135} - \)\(70\!\cdots\!96\)\( T_{2}^{134} - \)\(15\!\cdots\!55\)\( T_{2}^{133} + \)\(23\!\cdots\!55\)\( T_{2}^{132} + \)\(37\!\cdots\!74\)\( T_{2}^{131} - \)\(37\!\cdots\!44\)\( T_{2}^{130} + \)\(18\!\cdots\!31\)\( T_{2}^{129} + \)\(46\!\cdots\!67\)\( T_{2}^{128} - \)\(73\!\cdots\!37\)\( T_{2}^{127} + \)\(67\!\cdots\!55\)\( T_{2}^{126} + \)\(11\!\cdots\!61\)\( T_{2}^{125} - \)\(16\!\cdots\!89\)\( T_{2}^{124} + \)\(30\!\cdots\!84\)\( T_{2}^{123} + \)\(22\!\cdots\!56\)\( T_{2}^{122} - \)\(33\!\cdots\!25\)\( T_{2}^{121} + \)\(12\!\cdots\!21\)\( T_{2}^{120} + \)\(30\!\cdots\!54\)\( T_{2}^{119} - \)\(63\!\cdots\!28\)\( T_{2}^{118} + \)\(42\!\cdots\!66\)\( T_{2}^{117} + \)\(38\!\cdots\!90\)\( T_{2}^{116} - \)\(10\!\cdots\!45\)\( T_{2}^{115} + \)\(80\!\cdots\!51\)\( T_{2}^{114} + \)\(28\!\cdots\!04\)\( T_{2}^{113} - \)\(14\!\cdots\!44\)\( T_{2}^{112} + \)\(14\!\cdots\!35\)\( T_{2}^{111} + \)\(14\!\cdots\!69\)\( T_{2}^{110} - \)\(17\!\cdots\!32\)\( T_{2}^{109} + \)\(18\!\cdots\!29\)\( T_{2}^{108} - \)\(31\!\cdots\!41\)\( T_{2}^{107} - \)\(16\!\cdots\!62\)\( T_{2}^{106} + \)\(23\!\cdots\!68\)\( T_{2}^{105} - \)\(78\!\cdots\!60\)\( T_{2}^{104} - \)\(14\!\cdots\!12\)\( T_{2}^{103} + \)\(21\!\cdots\!82\)\( T_{2}^{102} - \)\(13\!\cdots\!78\)\( T_{2}^{101} - \)\(58\!\cdots\!56\)\( T_{2}^{100} + \)\(21\!\cdots\!94\)\( T_{2}^{99} - \)\(15\!\cdots\!76\)\( T_{2}^{98} - \)\(32\!\cdots\!59\)\( T_{2}^{97} + \)\(14\!\cdots\!96\)\( T_{2}^{96} - \)\(14\!\cdots\!15\)\( T_{2}^{95} + \)\(27\!\cdots\!65\)\( T_{2}^{94} + \)\(11\!\cdots\!54\)\( T_{2}^{93} - \)\(10\!\cdots\!27\)\( T_{2}^{92} + \)\(10\!\cdots\!88\)\( T_{2}^{91} + \)\(57\!\cdots\!26\)\( T_{2}^{90} - \)\(72\!\cdots\!41\)\( T_{2}^{89} + \)\(17\!\cdots\!75\)\( T_{2}^{88} + \)\(42\!\cdots\!60\)\( T_{2}^{87} - \)\(35\!\cdots\!86\)\( T_{2}^{86} + \)\(17\!\cdots\!45\)\( T_{2}^{85} + \)\(16\!\cdots\!21\)\( T_{2}^{84} - \)\(17\!\cdots\!50\)\( T_{2}^{83} + \)\(35\!\cdots\!42\)\( T_{2}^{82} + \)\(11\!\cdots\!48\)\( T_{2}^{81} - \)\(72\!\cdots\!81\)\( T_{2}^{80} + \)\(45\!\cdots\!73\)\( T_{2}^{79} + \)\(26\!\cdots\!41\)\( T_{2}^{78} - \)\(40\!\cdots\!20\)\( T_{2}^{77} + \)\(72\!\cdots\!81\)\( T_{2}^{76} + \)\(15\!\cdots\!56\)\( T_{2}^{75} - \)\(10\!\cdots\!10\)\( T_{2}^{74} + \)\(29\!\cdots\!94\)\( T_{2}^{73} + \)\(55\!\cdots\!03\)\( T_{2}^{72} - \)\(45\!\cdots\!82\)\( T_{2}^{71} - \)\(13\!\cdots\!93\)\( T_{2}^{70} + \)\(18\!\cdots\!50\)\( T_{2}^{69} - \)\(92\!\cdots\!92\)\( T_{2}^{68} - \)\(43\!\cdots\!89\)\( T_{2}^{67} + \)\(11\!\cdots\!81\)\( T_{2}^{66} + \)\(11\!\cdots\!78\)\( T_{2}^{65} - \)\(68\!\cdots\!44\)\( T_{2}^{64} - \)\(81\!\cdots\!01\)\( T_{2}^{63} - \)\(54\!\cdots\!01\)\( T_{2}^{62} + \)\(42\!\cdots\!71\)\( T_{2}^{61} - \)\(13\!\cdots\!93\)\( T_{2}^{60} - \)\(15\!\cdots\!92\)\( T_{2}^{59} + \)\(13\!\cdots\!07\)\( T_{2}^{58} + \)\(57\!\cdots\!92\)\( T_{2}^{57} - \)\(16\!\cdots\!17\)\( T_{2}^{56} - \)\(18\!\cdots\!29\)\( T_{2}^{55} + \)\(11\!\cdots\!38\)\( T_{2}^{54} + \)\(28\!\cdots\!78\)\( T_{2}^{53} - \)\(45\!\cdots\!56\)\( T_{2}^{52} + \)\(47\!\cdots\!97\)\( T_{2}^{51} + \)\(97\!\cdots\!09\)\( T_{2}^{50} - \)\(37\!\cdots\!99\)\( T_{2}^{49} - \)\(79\!\cdots\!37\)\( T_{2}^{48} + \)\(95\!\cdots\!87\)\( T_{2}^{47} - \)\(13\!\cdots\!47\)\( T_{2}^{46} - \)\(12\!\cdots\!38\)\( T_{2}^{45} + \)\(50\!\cdots\!44\)\( T_{2}^{44} + \)\(36\!\cdots\!69\)\( T_{2}^{43} - \)\(49\!\cdots\!34\)\( T_{2}^{42} + \)\(15\!\cdots\!86\)\( T_{2}^{41} - \)\(34\!\cdots\!31\)\( T_{2}^{40} - \)\(24\!\cdots\!88\)\( T_{2}^{39} + \)\(16\!\cdots\!68\)\( T_{2}^{38} + \)\(10\!\cdots\!45\)\( T_{2}^{37} - \)\(13\!\cdots\!32\)\( T_{2}^{36} - \)\(68\!\cdots\!05\)\( T_{2}^{35} + \)\(18\!\cdots\!02\)\( T_{2}^{34} + \)\(18\!\cdots\!37\)\( T_{2}^{33} + \)\(94\!\cdots\!77\)\( T_{2}^{32} - \)\(21\!\cdots\!71\)\( T_{2}^{31} - \)\(16\!\cdots\!30\)\( T_{2}^{30} + \)\(33\!\cdots\!71\)\( T_{2}^{29} + \)\(13\!\cdots\!69\)\( T_{2}^{28} + \)\(46\!\cdots\!97\)\( T_{2}^{27} - \)\(74\!\cdots\!09\)\( T_{2}^{26} - \)\(46\!\cdots\!90\)\( T_{2}^{25} - \)\(51\!\cdots\!31\)\( T_{2}^{24} + \)\(46\!\cdots\!35\)\( T_{2}^{23} + \)\(13\!\cdots\!20\)\( T_{2}^{22} - \)\(14\!\cdots\!59\)\( T_{2}^{21} - \)\(76\!\cdots\!86\)\( T_{2}^{20} - \)\(22\!\cdots\!04\)\( T_{2}^{19} + \)\(50\!\cdots\!34\)\( T_{2}^{18} + \)\(71\!\cdots\!36\)\( T_{2}^{17} + \)\(28\!\cdots\!65\)\( T_{2}^{16} - \)\(86\!\cdots\!12\)\( T_{2}^{15} - \)\(22\!\cdots\!03\)\( T_{2}^{14} - \)\(27\!\cdots\!14\)\( T_{2}^{13} + \)\(91\!\cdots\!49\)\( T_{2}^{12} - \)\(11\!\cdots\!40\)\( T_{2}^{11} + \)\(14\!\cdots\!09\)\( T_{2}^{10} - \)\(57\!\cdots\!15\)\( T_{2}^{9} + \)\(13\!\cdots\!85\)\( T_{2}^{8} - \)\(23\!\cdots\!04\)\( T_{2}^{7} + \)\(16\!\cdots\!46\)\( T_{2}^{6} - \)\(55\!\cdots\!79\)\( T_{2}^{5} - \)\(16\!\cdots\!52\)\( T_{2}^{4} - \)\(20\!\cdots\!28\)\( T_{2}^{3} + \)\(41\!\cdots\!33\)\( T_{2}^{2} + \)\(29\!\cdots\!82\)\( T_{2} + \)\(13\!\cdots\!01\)\( \)">\(T_{2}^{320} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\).