# Properties

 Label 483.2.y.b.16.3 Level $483$ Weight $2$ Character 483.16 Analytic conductor $3.857$ Analytic rank $0$ Dimension $320$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$483 = 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 483.y (of order $$33$$, degree $$20$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.85677441763$$ Analytic rank: $$0$$ Dimension: $$320$$ Relative dimension: $$16$$ over $$\Q(\zeta_{33})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

## Embedding invariants

 Embedding label 16.3 Character $$\chi$$ $$=$$ 483.16 Dual form 483.2.y.b.151.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.695372 - 2.00914i) q^{2} +(-0.888835 - 0.458227i) q^{3} +(-1.98101 + 1.55789i) q^{4} +(1.53680 + 0.146746i) q^{5} +(-0.302572 + 2.10444i) q^{6} +(0.278867 - 2.63101i) q^{7} +(0.930423 + 0.597946i) q^{8} +(0.580057 + 0.814576i) q^{9} +O(q^{10})$$ $$q+(-0.695372 - 2.00914i) q^{2} +(-0.888835 - 0.458227i) q^{3} +(-1.98101 + 1.55789i) q^{4} +(1.53680 + 0.146746i) q^{5} +(-0.302572 + 2.10444i) q^{6} +(0.278867 - 2.63101i) q^{7} +(0.930423 + 0.597946i) q^{8} +(0.580057 + 0.814576i) q^{9} +(-0.773810 - 3.18969i) q^{10} +(1.64903 - 4.76457i) q^{11} +(2.47466 - 0.476952i) q^{12} +(5.59522 + 1.64291i) q^{13} +(-5.48000 + 1.26925i) q^{14} +(-1.29872 - 0.834634i) q^{15} +(-0.633951 + 2.61318i) q^{16} +(1.71634 - 0.687119i) q^{17} +(1.23325 - 1.73185i) q^{18} +(-5.97581 - 2.39235i) q^{19} +(-3.27303 + 2.10345i) q^{20} +(-1.45347 + 2.21075i) q^{21} -10.7194 q^{22} +(-4.08657 - 2.50997i) q^{23} +(-0.552998 - 0.957820i) q^{24} +(-2.56943 - 0.495218i) q^{25} +(-0.589925 - 12.3840i) q^{26} +(-0.142315 - 0.989821i) q^{27} +(3.54638 + 5.64652i) q^{28} +(0.309018 - 2.14926i) q^{29} +(-0.773810 + 3.18969i) q^{30} +(-0.253419 + 5.31991i) q^{31} +(7.89306 - 0.753696i) q^{32} +(-3.64897 + 3.47929i) q^{33} +(-2.57402 - 2.97057i) q^{34} +(0.814653 - 4.00241i) q^{35} +(-2.41812 - 0.710024i) q^{36} +(2.49405 + 3.50240i) q^{37} +(-0.651174 + 13.6698i) q^{38} +(-4.22041 - 4.02415i) q^{39} +(1.34212 + 1.05546i) q^{40} +(-0.514318 - 1.12620i) q^{41} +(5.45242 + 1.38293i) q^{42} +(-4.61679 + 2.96703i) q^{43} +(4.15590 + 12.0077i) q^{44} +(0.771893 + 1.33696i) q^{45} +(-2.20120 + 9.95587i) q^{46} +(1.17750 - 2.03949i) q^{47} +(1.76091 - 2.03219i) q^{48} +(-6.84447 - 1.46741i) q^{49} +(0.791748 + 5.50673i) q^{50} +(-1.84040 - 0.175737i) q^{51} +(-13.6437 + 5.46211i) q^{52} +(4.76235 + 4.54089i) q^{53} +(-1.88973 + 0.974225i) q^{54} +(3.23341 - 7.08019i) q^{55} +(1.83267 - 2.28121i) q^{56} +(4.21527 + 4.86468i) q^{57} +(-4.53307 + 0.873677i) q^{58} +(0.0726728 + 0.299561i) q^{59} +(3.87304 - 0.369831i) q^{60} +(-1.00295 + 0.517058i) q^{61} +(10.8647 - 3.19016i) q^{62} +(2.30492 - 1.29898i) q^{63} +(-4.76881 - 10.4422i) q^{64} +(8.35763 + 3.34589i) q^{65} +(9.52779 + 4.91192i) q^{66} +(-3.30229 - 0.636464i) q^{67} +(-2.32964 + 4.03506i) q^{68} +(2.48216 + 4.10352i) q^{69} +(-8.60791 + 1.14641i) q^{70} +(9.95447 - 11.4881i) q^{71} +(0.0526254 + 1.10474i) q^{72} +(9.61321 - 7.55991i) q^{73} +(5.30254 - 7.44637i) q^{74} +(2.05688 + 1.61755i) q^{75} +(15.5652 - 4.57035i) q^{76} +(-12.0758 - 5.66731i) q^{77} +(-5.15035 + 11.2777i) q^{78} +(-9.47874 + 9.03796i) q^{79} +(-1.35773 + 3.92290i) q^{80} +(-0.327068 + 0.945001i) q^{81} +(-1.90506 + 1.81647i) q^{82} +(-2.42922 + 5.31924i) q^{83} +(-0.564765 - 6.64387i) q^{84} +(2.73850 - 0.804096i) q^{85} +(9.17157 + 7.21260i) q^{86} +(-1.25952 + 1.76874i) q^{87} +(4.38326 - 3.44703i) q^{88} +(-0.691732 - 14.5212i) q^{89} +(2.14939 - 2.48053i) q^{90} +(5.88283 - 14.2630i) q^{91} +(12.0058 - 1.39414i) q^{92} +(2.66297 - 4.61240i) q^{93} +(-4.91643 - 0.947564i) q^{94} +(-8.83253 - 4.55349i) q^{95} +(-7.36100 - 2.94690i) q^{96} +(-2.45897 - 5.38440i) q^{97} +(1.81122 + 14.7719i) q^{98} +(4.83764 - 1.42046i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$320q + 2q^{2} + 16q^{3} + 18q^{4} - 2q^{5} + 18q^{6} + 2q^{7} - 12q^{8} + 16q^{9} + O(q^{10})$$ $$320q + 2q^{2} + 16q^{3} + 18q^{4} - 2q^{5} + 18q^{6} + 2q^{7} - 12q^{8} + 16q^{9} + 2q^{11} + 18q^{12} + 18q^{14} - 18q^{15} - 8q^{16} + 4q^{17} + 2q^{18} + 8q^{19} - 162q^{20} - 4q^{21} + 144q^{22} - 26q^{23} + 6q^{24} - 8q^{25} - 14q^{26} - 32q^{27} + 86q^{28} - 74q^{29} - 56q^{31} - 28q^{32} + 13q^{33} + 40q^{34} - 32q^{35} - 14q^{36} + 2q^{37} - 39q^{38} - 52q^{40} + 60q^{41} - 61q^{42} + 16q^{43} - 75q^{44} - 2q^{45} - 4q^{46} - 40q^{47} - 28q^{48} - 100q^{49} + 146q^{50} - 18q^{51} - 18q^{52} + 34q^{53} + 2q^{54} + 36q^{55} - 102q^{56} + 28q^{57} - 17q^{58} - 102q^{59} - 18q^{60} - 18q^{61} - 88q^{62} + 2q^{63} - 252q^{64} - 78q^{65} + 16q^{66} + 12q^{67} + 34q^{68} + 8q^{69} + 264q^{70} + 160q^{71} + 6q^{72} - 8q^{73} + 70q^{74} + 14q^{75} - 40q^{76} - 90q^{77} - 16q^{78} + 26q^{79} - 103q^{80} + 16q^{81} - 30q^{82} - 80q^{83} - 52q^{84} - 128q^{85} + 90q^{86} + 4q^{87} - 293q^{88} - 36q^{89} + 16q^{91} - 174q^{92} + 32q^{93} + 57q^{94} - 85q^{95} - 50q^{96} - 8q^{97} - 193q^{98} - 26q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/483\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$346$$ $$442$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{4}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.695372 2.00914i −0.491702 1.42068i −0.869104 0.494630i $$-0.835304\pi$$
0.377401 0.926050i $$-0.376818\pi$$
$$3$$ −0.888835 0.458227i −0.513169 0.264557i
$$4$$ −1.98101 + 1.55789i −0.990507 + 0.778944i
$$5$$ 1.53680 + 0.146746i 0.687276 + 0.0656269i 0.432851 0.901466i $$-0.357508\pi$$
0.254425 + 0.967092i $$0.418114\pi$$
$$6$$ −0.302572 + 2.10444i −0.123525 + 0.859133i
$$7$$ 0.278867 2.63101i 0.105402 0.994430i
$$8$$ 0.930423 + 0.597946i 0.328954 + 0.211406i
$$9$$ 0.580057 + 0.814576i 0.193352 + 0.271525i
$$10$$ −0.773810 3.18969i −0.244700 1.00867i
$$11$$ 1.64903 4.76457i 0.497203 1.43657i −0.365477 0.930821i $$-0.619094\pi$$
0.862679 0.505752i $$-0.168785\pi$$
$$12$$ 2.47466 0.476952i 0.714373 0.137684i
$$13$$ 5.59522 + 1.64291i 1.55184 + 0.455660i 0.941649 0.336597i $$-0.109276\pi$$
0.610187 + 0.792257i $$0.291094\pi$$
$$14$$ −5.48000 + 1.26925i −1.46459 + 0.339221i
$$15$$ −1.29872 0.834634i −0.335327 0.215502i
$$16$$ −0.633951 + 2.61318i −0.158488 + 0.653295i
$$17$$ 1.71634 0.687119i 0.416274 0.166651i −0.154065 0.988061i $$-0.549236\pi$$
0.570338 + 0.821410i $$0.306812\pi$$
$$18$$ 1.23325 1.73185i 0.290679 0.408201i
$$19$$ −5.97581 2.39235i −1.37094 0.548843i −0.434821 0.900517i $$-0.643188\pi$$
−0.936123 + 0.351674i $$0.885613\pi$$
$$20$$ −3.27303 + 2.10345i −0.731872 + 0.470345i
$$21$$ −1.45347 + 2.21075i −0.317173 + 0.482426i
$$22$$ −10.7194 −2.28538
$$23$$ −4.08657 2.50997i −0.852109 0.523364i
$$24$$ −0.552998 0.957820i −0.112880 0.195514i
$$25$$ −2.56943 0.495218i −0.513887 0.0990436i
$$26$$ −0.589925 12.3840i −0.115694 2.42871i
$$27$$ −0.142315 0.989821i −0.0273885 0.190491i
$$28$$ 3.54638 + 5.64652i 0.670203 + 1.06709i
$$29$$ 0.309018 2.14926i 0.0573831 0.399108i −0.940806 0.338947i $$-0.889929\pi$$
0.998189 0.0601616i $$-0.0191616\pi$$
$$30$$ −0.773810 + 3.18969i −0.141278 + 0.582355i
$$31$$ −0.253419 + 5.31991i −0.0455153 + 0.955485i 0.854453 + 0.519529i $$0.173893\pi$$
−0.899968 + 0.435956i $$0.856410\pi$$
$$32$$ 7.89306 0.753696i 1.39531 0.133236i
$$33$$ −3.64897 + 3.47929i −0.635205 + 0.605666i
$$34$$ −2.57402 2.97057i −0.441440 0.509449i
$$35$$ 0.814653 4.00241i 0.137702 0.676531i
$$36$$ −2.41812 0.710024i −0.403020 0.118337i
$$37$$ 2.49405 + 3.50240i 0.410019 + 0.575791i 0.967013 0.254725i $$-0.0819851\pi$$
−0.556995 + 0.830516i $$0.688046\pi$$
$$38$$ −0.651174 + 13.6698i −0.105634 + 2.21754i
$$39$$ −4.22041 4.02415i −0.675806 0.644380i
$$40$$ 1.34212 + 1.05546i 0.212208 + 0.166883i
$$41$$ −0.514318 1.12620i −0.0803230 0.175883i 0.865209 0.501411i $$-0.167185\pi$$
−0.945533 + 0.325528i $$0.894458\pi$$
$$42$$ 5.45242 + 1.38293i 0.841327 + 0.213391i
$$43$$ −4.61679 + 2.96703i −0.704053 + 0.452467i −0.843057 0.537824i $$-0.819246\pi$$
0.139004 + 0.990292i $$0.455610\pi$$
$$44$$ 4.15590 + 12.0077i 0.626526 + 1.81023i
$$45$$ 0.771893 + 1.33696i 0.115067 + 0.199302i
$$46$$ −2.20120 + 9.95587i −0.324549 + 1.46791i
$$47$$ 1.17750 2.03949i 0.171756 0.297490i −0.767278 0.641315i $$-0.778389\pi$$
0.939034 + 0.343825i $$0.111723\pi$$
$$48$$ 1.76091 2.03219i 0.254165 0.293322i
$$49$$ −6.84447 1.46741i −0.977781 0.209629i
$$50$$ 0.791748 + 5.50673i 0.111970 + 0.778769i
$$51$$ −1.84040 0.175737i −0.257708 0.0246081i
$$52$$ −13.6437 + 5.46211i −1.89204 + 0.757458i
$$53$$ 4.76235 + 4.54089i 0.654159 + 0.623740i 0.942666 0.333738i $$-0.108310\pi$$
−0.288507 + 0.957478i $$0.593159\pi$$
$$54$$ −1.88973 + 0.974225i −0.257160 + 0.132575i
$$55$$ 3.23341 7.08019i 0.435993 0.954692i
$$56$$ 1.83267 2.28121i 0.244901 0.304839i
$$57$$ 4.21527 + 4.86468i 0.558326 + 0.644343i
$$58$$ −4.53307 + 0.873677i −0.595221 + 0.114719i
$$59$$ 0.0726728 + 0.299561i 0.00946120 + 0.0389996i 0.976347 0.216212i $$-0.0693701\pi$$
−0.966885 + 0.255211i $$0.917855\pi$$
$$60$$ 3.87304 0.369831i 0.500008 0.0477449i
$$61$$ −1.00295 + 0.517058i −0.128415 + 0.0662026i −0.521237 0.853412i $$-0.674529\pi$$
0.392822 + 0.919615i $$0.371499\pi$$
$$62$$ 10.8647 3.19016i 1.37982 0.405151i
$$63$$ 2.30492 1.29898i 0.290393 0.163656i
$$64$$ −4.76881 10.4422i −0.596102 1.30528i
$$65$$ 8.35763 + 3.34589i 1.03664 + 0.415007i
$$66$$ 9.52779 + 4.91192i 1.17279 + 0.604615i
$$67$$ −3.30229 0.636464i −0.403439 0.0777564i −0.0165046 0.999864i $$-0.505254\pi$$
−0.386934 + 0.922107i $$0.626466\pi$$
$$68$$ −2.32964 + 4.03506i −0.282511 + 0.489323i
$$69$$ 2.48216 + 4.10352i 0.298816 + 0.494006i
$$70$$ −8.60791 + 1.14641i −1.02884 + 0.137022i
$$71$$ 9.95447 11.4881i 1.18138 1.36338i 0.264416 0.964409i $$-0.414821\pi$$
0.916962 0.398975i $$-0.130634\pi$$
$$72$$ 0.0526254 + 1.10474i 0.00620196 + 0.130195i
$$73$$ 9.61321 7.55991i 1.12514 0.884820i 0.130837 0.991404i $$-0.458234\pi$$
0.994304 + 0.106584i $$0.0339912\pi$$
$$74$$ 5.30254 7.44637i 0.616407 0.865623i
$$75$$ 2.05688 + 1.61755i 0.237508 + 0.186779i
$$76$$ 15.5652 4.57035i 1.78545 0.524255i
$$77$$ −12.0758 5.66731i −1.37616 0.645850i
$$78$$ −5.15035 + 11.2777i −0.583162 + 1.27695i
$$79$$ −9.47874 + 9.03796i −1.06644 + 1.01685i −0.0666233 + 0.997778i $$0.521223\pi$$
−0.999818 + 0.0190716i $$0.993929\pi$$
$$80$$ −1.35773 + 3.92290i −0.151799 + 0.438593i
$$81$$ −0.327068 + 0.945001i −0.0363409 + 0.105000i
$$82$$ −1.90506 + 1.81647i −0.210378 + 0.200595i
$$83$$ −2.42922 + 5.31924i −0.266641 + 0.583863i −0.994835 0.101509i $$-0.967633\pi$$
0.728193 + 0.685372i $$0.240360\pi$$
$$84$$ −0.564765 6.64387i −0.0616209 0.724906i
$$85$$ 2.73850 0.804096i 0.297032 0.0872164i
$$86$$ 9.17157 + 7.21260i 0.988996 + 0.777755i
$$87$$ −1.25952 + 1.76874i −0.135034 + 0.189629i
$$88$$ 4.38326 3.44703i 0.467257 0.367455i
$$89$$ −0.691732 14.5212i −0.0733235 1.53925i −0.673383 0.739294i $$-0.735160\pi$$
0.600060 0.799955i $$-0.295143\pi$$
$$90$$ 2.14939 2.48053i 0.226566 0.261471i
$$91$$ 5.88283 14.2630i 0.616688 1.49516i
$$92$$ 12.0058 1.39414i 1.25169 0.145349i
$$93$$ 2.66297 4.61240i 0.276137 0.478284i
$$94$$ −4.91643 0.947564i −0.507091 0.0977337i
$$95$$ −8.83253 4.55349i −0.906198 0.467178i
$$96$$ −7.36100 2.94690i −0.751279 0.300767i
$$97$$ −2.45897 5.38440i −0.249671 0.546703i 0.742753 0.669566i $$-0.233520\pi$$
−0.992424 + 0.122863i $$0.960792\pi$$
$$98$$ 1.81122 + 14.7719i 0.182961 + 1.49219i
$$99$$ 4.83764 1.42046i 0.486201 0.142761i
$$100$$ 5.86158 3.02186i 0.586158 0.302186i
$$101$$ 9.94205 0.949351i 0.989271 0.0944639i 0.412144 0.911119i $$-0.364780\pi$$
0.577127 + 0.816655i $$0.304174\pi$$
$$102$$ 0.926682 + 3.81983i 0.0917551 + 0.378220i
$$103$$ 17.7609 3.42314i 1.75004 0.337292i 0.789143 0.614210i $$-0.210525\pi$$
0.960894 + 0.276918i $$0.0893130\pi$$
$$104$$ 4.22355 + 4.87424i 0.414153 + 0.477958i
$$105$$ −2.55810 + 3.18419i −0.249645 + 0.310745i
$$106$$ 5.81171 12.7259i 0.564483 1.23604i
$$107$$ −6.79223 + 3.50164i −0.656630 + 0.338516i −0.754136 0.656719i $$-0.771944\pi$$
0.0975056 + 0.995235i $$0.468914\pi$$
$$108$$ 1.82396 + 1.73914i 0.175510 + 0.167349i
$$109$$ 10.8820 4.35648i 1.04230 0.417275i 0.213575 0.976927i $$-0.431489\pi$$
0.828728 + 0.559651i $$0.189065\pi$$
$$110$$ −16.4735 1.57303i −1.57069 0.149983i
$$111$$ −0.611905 4.25589i −0.0580795 0.403952i
$$112$$ 6.69852 + 2.39666i 0.632951 + 0.226463i
$$113$$ −13.6947 + 15.8045i −1.28829 + 1.48677i −0.507986 + 0.861365i $$0.669610\pi$$
−0.780304 + 0.625401i $$0.784936\pi$$
$$114$$ 6.84267 11.8518i 0.640875 1.11003i
$$115$$ −5.91190 4.45700i −0.551287 0.415617i
$$116$$ 2.73614 + 4.73914i 0.254045 + 0.440018i
$$117$$ 1.90728 + 5.51071i 0.176328 + 0.509466i
$$118$$ 0.551328 0.354317i 0.0507538 0.0326175i
$$119$$ −1.32919 4.70733i −0.121847 0.431520i
$$120$$ −0.709288 1.55312i −0.0647489 0.141780i
$$121$$ −11.3352 8.91413i −1.03048 0.810376i
$$122$$ 1.73627 + 1.65553i 0.157195 + 0.149885i
$$123$$ −0.0589104 + 1.23668i −0.00531177 + 0.111508i
$$124$$ −7.78580 10.9336i −0.699185 0.981868i
$$125$$ −11.2823 3.31278i −1.00912 0.296304i
$$126$$ −4.21261 3.72764i −0.375289 0.332085i
$$127$$ 9.70632 + 11.2017i 0.861296 + 0.993989i 0.999993 + 0.00365414i $$0.00116315\pi$$
−0.138697 + 0.990335i $$0.544291\pi$$
$$128$$ −6.18696 + 5.89926i −0.546855 + 0.521425i
$$129$$ 5.46313 0.521666i 0.481002 0.0459301i
$$130$$ 0.910718 19.1183i 0.0798752 1.67679i
$$131$$ 1.48240 6.11054i 0.129518 0.533880i −0.869672 0.493631i $$-0.835670\pi$$
0.999190 0.0402496i $$-0.0128153\pi$$
$$132$$ 1.80833 12.5772i 0.157395 1.09471i
$$133$$ −7.96077 + 15.0553i −0.690286 + 1.30546i
$$134$$ 1.01757 + 7.07735i 0.0879047 + 0.611390i
$$135$$ −0.0734563 1.54204i −0.00632211 0.132718i
$$136$$ 2.00778 + 0.386968i 0.172166 + 0.0331823i
$$137$$ −4.32002 7.48250i −0.369084 0.639273i 0.620338 0.784334i $$-0.286995\pi$$
−0.989423 + 0.145062i $$0.953662\pi$$
$$138$$ 6.51855 7.84048i 0.554896 0.667426i
$$139$$ 13.4262 1.13879 0.569396 0.822063i $$-0.307177\pi$$
0.569396 + 0.822063i $$0.307177\pi$$
$$140$$ 4.62146 + 9.19797i 0.390585 + 0.777370i
$$141$$ −1.98115 + 1.27321i −0.166843 + 0.107223i
$$142$$ −30.0033 12.0115i −2.51782 1.00798i
$$143$$ 17.0545 23.9496i 1.42617 2.00277i
$$144$$ −2.49636 + 0.999392i −0.208030 + 0.0832827i
$$145$$ 0.790294 3.25764i 0.0656303 0.270532i
$$146$$ −21.8737 14.0574i −1.81028 1.16340i
$$147$$ 5.41120 + 4.44060i 0.446308 + 0.366254i
$$148$$ −10.3971 3.05286i −0.854635 0.250943i
$$149$$ 7.48570 1.44275i 0.613253 0.118195i 0.126839 0.991923i $$-0.459517\pi$$
0.486414 + 0.873729i $$0.338305\pi$$
$$150$$ 1.81959 5.25737i 0.148569 0.429263i
$$151$$ 1.89690 + 7.81914i 0.154368 + 0.636313i 0.995440 + 0.0953899i $$0.0304098\pi$$
−0.841072 + 0.540923i $$0.818075\pi$$
$$152$$ −4.12953 5.79911i −0.334949 0.470370i
$$153$$ 1.55529 + 0.999521i 0.125737 + 0.0808065i
$$154$$ −2.98929 + 28.2029i −0.240884 + 2.27265i
$$155$$ −1.17013 + 8.13843i −0.0939871 + 0.653695i
$$156$$ 14.6299 + 1.39698i 1.17133 + 0.111848i
$$157$$ −0.628442 + 0.494212i −0.0501551 + 0.0394424i −0.642922 0.765932i $$-0.722278\pi$$
0.592767 + 0.805374i $$0.298036\pi$$
$$158$$ 24.7498 + 12.7594i 1.96899 + 1.01508i
$$159$$ −2.15219 6.21834i −0.170680 0.493147i
$$160$$ 12.2406 0.967707
$$161$$ −7.74337 + 10.0519i −0.610263 + 0.792199i
$$162$$ 2.12608 0.167040
$$163$$ 6.88554 + 19.8945i 0.539317 + 1.55825i 0.804436 + 0.594039i $$0.202467\pi$$
−0.265119 + 0.964216i $$0.585411\pi$$
$$164$$ 2.77337 + 1.42977i 0.216563 + 0.111646i
$$165$$ −6.11830 + 4.81149i −0.476309 + 0.374574i
$$166$$ 12.3763 + 1.18180i 0.960590 + 0.0917252i
$$167$$ −2.09282 + 14.5559i −0.161947 + 1.12637i 0.733011 + 0.680217i $$0.238114\pi$$
−0.894958 + 0.446150i $$0.852795\pi$$
$$168$$ −2.67425 + 1.18784i −0.206323 + 0.0916438i
$$169$$ 17.6711 + 11.3565i 1.35931 + 0.873578i
$$170$$ −3.51982 4.94289i −0.269958 0.379103i
$$171$$ −1.51756 6.25545i −0.116050 0.478366i
$$172$$ 4.52362 13.0702i 0.344923 0.996590i
$$173$$ 7.52057 1.44947i 0.571778 0.110201i 0.104837 0.994489i $$-0.466568\pi$$
0.466941 + 0.884288i $$0.345356\pi$$
$$174$$ 4.42949 + 1.30062i 0.335799 + 0.0985995i
$$175$$ −2.01946 + 6.62212i −0.152657 + 0.500585i
$$176$$ 11.4053 + 7.32973i 0.859705 + 0.552499i
$$177$$ 0.0726728 0.299561i 0.00546242 0.0225164i
$$178$$ −28.6943 + 11.4875i −2.15073 + 0.861021i
$$179$$ 9.60815 13.4928i 0.718147 1.00850i −0.280667 0.959805i $$-0.590556\pi$$
0.998814 0.0486913i $$-0.0155050\pi$$
$$180$$ −3.61196 1.44601i −0.269220 0.107779i
$$181$$ −6.19395 + 3.98061i −0.460392 + 0.295876i −0.750203 0.661208i $$-0.770044\pi$$
0.289810 + 0.957084i $$0.406408\pi$$
$$182$$ −32.7471 1.90140i −2.42738 0.140941i
$$183$$ 1.12839 0.0834130
$$184$$ −2.30141 4.77888i −0.169662 0.352304i
$$185$$ 3.31888 + 5.74846i 0.244009 + 0.422636i
$$186$$ −11.1187 2.14296i −0.815266 0.157130i
$$187$$ −0.443524 9.31071i −0.0324337 0.680866i
$$188$$ 0.844650 + 5.87467i 0.0616024 + 0.428454i
$$189$$ −2.64392 + 0.0984036i −0.192317 + 0.00715781i
$$190$$ −3.00672 + 20.9122i −0.218130 + 1.51713i
$$191$$ −1.57332 + 6.48533i −0.113842 + 0.469262i 0.886141 + 0.463415i $$0.153376\pi$$
−0.999983 + 0.00584664i $$0.998139\pi$$
$$192$$ −0.546223 + 11.4666i −0.0394203 + 0.827533i
$$193$$ 14.3433 1.36962i 1.03245 0.0985871i 0.434949 0.900455i $$-0.356766\pi$$
0.597501 + 0.801868i $$0.296160\pi$$
$$194$$ −9.10814 + 8.68459i −0.653926 + 0.623517i
$$195$$ −5.89538 6.80363i −0.422177 0.487218i
$$196$$ 15.8450 7.75595i 1.13179 0.553997i
$$197$$ 10.9413 + 3.21266i 0.779536 + 0.228892i 0.647208 0.762314i $$-0.275937\pi$$
0.132328 + 0.991206i $$0.457755\pi$$
$$198$$ −6.21787 8.73177i −0.441884 0.620540i
$$199$$ 0.392253 8.23440i 0.0278061 0.583721i −0.941374 0.337366i $$-0.890464\pi$$
0.969180 0.246355i $$-0.0792330\pi$$
$$200$$ −2.09455 1.99715i −0.148107 0.141220i
$$201$$ 2.64355 + 2.07891i 0.186461 + 0.146635i
$$202$$ −8.82081 19.3149i −0.620630 1.35899i
$$203$$ −5.56857 1.41239i −0.390837 0.0991303i
$$204$$ 3.91964 2.51900i 0.274430 0.176365i
$$205$$ −0.625137 1.80621i −0.0436615 0.126152i
$$206$$ −19.2280 33.3039i −1.33968 2.32039i
$$207$$ −0.325885 4.78475i −0.0226506 0.332563i
$$208$$ −7.84030 + 13.5798i −0.543627 + 0.941590i
$$209$$ −21.2528 + 24.5271i −1.47009 + 1.69657i
$$210$$ 8.17633 + 2.92541i 0.564220 + 0.201872i
$$211$$ −1.19727 8.32716i −0.0824231 0.573266i −0.988623 0.150416i $$-0.951939\pi$$
0.906200 0.422850i $$-0.138970\pi$$
$$212$$ −16.5085 1.57637i −1.13381 0.108265i
$$213$$ −14.1120 + 5.64960i −0.966940 + 0.387104i
$$214$$ 11.7584 + 11.2116i 0.803790 + 0.766412i
$$215$$ −7.53046 + 3.88222i −0.513573 + 0.264765i
$$216$$ 0.459447 1.00605i 0.0312614 0.0684530i
$$217$$ 13.9261 + 2.15030i 0.945365 + 0.145972i
$$218$$ −16.3198 18.8341i −1.10532 1.27560i
$$219$$ −12.0087 + 2.31449i −0.811473 + 0.156399i
$$220$$ 4.62469 + 19.0632i 0.311797 + 1.28524i
$$221$$ 10.7322 1.02480i 0.721924 0.0689354i
$$222$$ −8.12521 + 4.18883i −0.545328 + 0.281136i
$$223$$ 27.1872 7.98289i 1.82059 0.534574i 0.821240 0.570583i $$-0.193283\pi$$
0.999351 + 0.0360095i $$0.0114647\pi$$
$$224$$ 0.218131 20.9769i 0.0145745 1.40158i
$$225$$ −1.08703 2.38025i −0.0724684 0.158684i
$$226$$ 41.2765 + 16.5246i 2.74567 + 1.09920i
$$227$$ 6.40170 + 3.30030i 0.424895 + 0.219049i 0.657393 0.753548i $$-0.271659\pi$$
−0.232497 + 0.972597i $$0.574690\pi$$
$$228$$ −15.9291 3.07009i −1.05493 0.203322i
$$229$$ −4.80489 + 8.32232i −0.317516 + 0.549954i −0.979969 0.199149i $$-0.936182\pi$$
0.662453 + 0.749103i $$0.269515\pi$$
$$230$$ −4.84378 + 14.9771i −0.319390 + 0.987563i
$$231$$ 8.13648 + 10.5708i 0.535341 + 0.695505i
$$232$$ 1.57266 1.81495i 0.103250 0.119157i
$$233$$ 0.977456 + 20.5193i 0.0640353 + 1.34427i 0.770917 + 0.636935i $$0.219798\pi$$
−0.706882 + 0.707331i $$0.749899\pi$$
$$234$$ 9.74555 7.66399i 0.637087 0.501011i
$$235$$ 2.10886 2.96149i 0.137567 0.193186i
$$236$$ −0.610649 0.480220i −0.0397499 0.0312596i
$$237$$ 12.5665 3.68985i 0.816280 0.239681i
$$238$$ −8.53343 + 5.94388i −0.553140 + 0.385284i
$$239$$ −3.19680 + 7.00001i −0.206784 + 0.452793i −0.984400 0.175946i $$-0.943701\pi$$
0.777616 + 0.628739i $$0.216429\pi$$
$$240$$ 3.00437 2.86466i 0.193931 0.184913i
$$241$$ 1.08577 3.13713i 0.0699407 0.202080i −0.904613 0.426233i $$-0.859840\pi$$
0.974554 + 0.224153i $$0.0719615\pi$$
$$242$$ −10.0276 + 28.9728i −0.644597 + 1.86244i
$$243$$ 0.723734 0.690079i 0.0464276 0.0442686i
$$244$$ 1.18135 2.58679i 0.0756280 0.165602i
$$245$$ −10.3032 3.25950i −0.658248 0.208242i
$$246$$ 2.52564 0.741594i 0.161029 0.0472823i
$$247$$ −29.5056 23.2034i −1.87739 1.47640i
$$248$$ −3.41681 + 4.79824i −0.216968 + 0.304688i
$$249$$ 4.59659 3.61480i 0.291297 0.229079i
$$250$$ 1.18953 + 24.9714i 0.0752327 + 1.57933i
$$251$$ 18.4164 21.2536i 1.16243 1.34152i 0.233019 0.972472i $$-0.425140\pi$$
0.929412 0.369044i $$-0.120315\pi$$
$$252$$ −2.54242 + 6.16410i −0.160157 + 0.388302i
$$253$$ −18.6978 + 15.3317i −1.17552 + 0.963898i
$$254$$ 15.7563 27.2907i 0.988639 1.71237i
$$255$$ −2.80253 0.540144i −0.175501 0.0338251i
$$256$$ −4.25232 2.19222i −0.265770 0.137014i
$$257$$ −5.27430 2.11151i −0.329002 0.131713i 0.201280 0.979534i $$-0.435490\pi$$
−0.530282 + 0.847821i $$0.677914\pi$$
$$258$$ −4.84701 10.6135i −0.301762 0.660766i
$$259$$ 9.91036 5.58517i 0.615800 0.347045i
$$260$$ −21.7691 + 6.39199i −1.35006 + 0.396414i
$$261$$ 1.92999 0.994978i 0.119463 0.0615876i
$$262$$ −13.3078 + 1.27074i −0.822157 + 0.0785065i
$$263$$ 2.19860 + 9.06277i 0.135572 + 0.558834i 0.998562 + 0.0536133i $$0.0170738\pi$$
−0.862990 + 0.505221i $$0.831411\pi$$
$$264$$ −5.47551 + 1.05532i −0.336995 + 0.0649504i
$$265$$ 6.65240 + 7.67728i 0.408654 + 0.471612i
$$266$$ 35.7839 + 5.52532i 2.19405 + 0.338779i
$$267$$ −6.03918 + 13.2240i −0.369592 + 0.809294i
$$268$$ 7.53342 3.88375i 0.460177 0.237238i
$$269$$ −15.2866 14.5757i −0.932040 0.888698i 0.0619603 0.998079i $$-0.480265\pi$$
−0.994000 + 0.109381i $$0.965113\pi$$
$$270$$ −3.04710 + 1.21987i −0.185441 + 0.0742392i
$$271$$ 11.3707 + 1.08577i 0.690719 + 0.0659557i 0.434512 0.900666i $$-0.356921\pi$$
0.256208 + 0.966622i $$0.417527\pi$$
$$272$$ 0.707491 + 4.92071i 0.0428979 + 0.298362i
$$273$$ −11.7645 + 9.98175i −0.712022 + 0.604123i
$$274$$ −12.0294 + 13.8827i −0.726722 + 0.838682i
$$275$$ −6.59659 + 11.4256i −0.397789 + 0.688991i
$$276$$ −11.3100 4.26222i −0.680783 0.256556i
$$277$$ −7.71358 13.3603i −0.463464 0.802744i 0.535666 0.844430i $$-0.320060\pi$$
−0.999131 + 0.0416860i $$0.986727\pi$$
$$278$$ −9.33617 26.9751i −0.559946 1.61786i
$$279$$ −4.48047 + 2.87942i −0.268239 + 0.172387i
$$280$$ 3.15120 3.23681i 0.188320 0.193437i
$$281$$ 7.58625 + 16.6116i 0.452558 + 0.990963i 0.989121 + 0.147103i $$0.0469949\pi$$
−0.536564 + 0.843860i $$0.680278\pi$$
$$282$$ 3.93570 + 3.09507i 0.234367 + 0.184309i
$$283$$ −4.89509 4.66746i −0.290983 0.277452i 0.530500 0.847685i $$-0.322004\pi$$
−0.821483 + 0.570233i $$0.806853\pi$$
$$284$$ −1.82283 + 38.2660i −0.108165 + 2.27067i
$$285$$ 5.76414 + 8.09460i 0.341438 + 0.479483i
$$286$$ −59.9775 17.6110i −3.54654 1.04136i
$$287$$ −3.10647 + 1.03912i −0.183369 + 0.0613372i
$$288$$ 5.19237 + 5.99231i 0.305963 + 0.353100i
$$289$$ −9.82979 + 9.37268i −0.578223 + 0.551334i
$$290$$ −7.09461 + 0.677453i −0.416610 + 0.0397814i
$$291$$ −0.281652 + 5.91261i −0.0165108 + 0.346603i
$$292$$ −7.26642 + 29.9526i −0.425235 + 1.75284i
$$293$$ −1.00809 + 7.01141i −0.0588931 + 0.409611i 0.938955 + 0.344041i $$0.111796\pi$$
−0.997848 + 0.0655703i $$0.979113\pi$$
$$294$$ 5.15901 13.9598i 0.300880 0.814149i
$$295$$ 0.0677238 + 0.471029i 0.00394303 + 0.0274244i
$$296$$ 0.226271 + 4.75002i 0.0131517 + 0.276089i
$$297$$ −4.95076 0.954180i −0.287272 0.0553672i
$$298$$ −8.10404 14.0366i −0.469455 0.813119i
$$299$$ −18.7416 20.7577i −1.08386 1.20045i
$$300$$ −6.59468 −0.380744
$$301$$ 6.51882 + 12.9742i 0.375739 + 0.747822i
$$302$$ 14.3907 9.24836i 0.828094 0.532184i
$$303$$ −9.27187 3.71190i −0.532655 0.213243i
$$304$$ 10.0400 14.0992i 0.575834 0.808646i
$$305$$ −1.61721 + 0.647434i −0.0926013 + 0.0370720i
$$306$$ 0.926682 3.81983i 0.0529749 0.218365i
$$307$$ 6.98716 + 4.49037i 0.398778 + 0.256279i 0.724625 0.689143i $$-0.242013\pi$$
−0.325847 + 0.945423i $$0.605649\pi$$
$$308$$ 32.7514 7.58569i 1.86618 0.432235i
$$309$$ −17.3551 5.09592i −0.987298 0.289897i
$$310$$ 17.1650 3.30828i 0.974905 0.187897i
$$311$$ −8.91929 + 25.7706i −0.505766 + 1.46132i 0.346421 + 0.938079i $$0.387397\pi$$
−0.852187 + 0.523237i $$0.824724\pi$$
$$312$$ −1.52054 6.26774i −0.0860835 0.354841i
$$313$$ −4.76663 6.69379i −0.269426 0.378356i 0.657591 0.753375i $$-0.271575\pi$$
−0.927017 + 0.375019i $$0.877636\pi$$
$$314$$ 1.42994 + 0.918969i 0.0806964 + 0.0518604i
$$315$$ 3.73281 1.65803i 0.210320 0.0934193i
$$316$$ 4.69740 32.6711i 0.264249 1.83789i
$$317$$ −8.71170 0.831867i −0.489298 0.0467223i −0.152508 0.988302i $$-0.548735\pi$$
−0.336790 + 0.941580i $$0.609341\pi$$
$$318$$ −10.9970 + 8.64812i −0.616680 + 0.484962i
$$319$$ −9.73075 5.01655i −0.544817 0.280873i
$$320$$ −5.79634 16.7474i −0.324025 0.936209i
$$321$$ 7.64172 0.426519
$$322$$ 25.5802 + 8.56776i 1.42553 + 0.477462i
$$323$$ −11.9003 −0.662153
$$324$$ −0.824278 2.38160i −0.0457932 0.132311i
$$325$$ −13.5630 6.99219i −0.752338 0.387857i
$$326$$ 35.1828 27.6681i 1.94860 1.53239i
$$327$$ −11.6685 1.11421i −0.645271 0.0616160i
$$328$$ 0.194874 1.35538i 0.0107601 0.0748382i
$$329$$ −5.03756 3.66676i −0.277730 0.202155i
$$330$$ 13.9215 + 8.94678i 0.766351 + 0.492504i
$$331$$ −10.8687 15.2629i −0.597396 0.838926i 0.399574 0.916701i $$-0.369158\pi$$
−0.996971 + 0.0777748i $$0.975218\pi$$
$$332$$ −3.47447 14.3219i −0.190686 0.786019i
$$333$$ −1.40628 + 4.06318i −0.0770637 + 0.222661i
$$334$$ 30.7001 5.91696i 1.67984 0.323762i
$$335$$ −4.98155 1.46271i −0.272171 0.0799166i
$$336$$ −4.85567 5.19968i −0.264899 0.283666i
$$337$$ −5.29331 3.40180i −0.288345 0.185308i 0.388470 0.921461i $$-0.373004\pi$$
−0.676815 + 0.736153i $$0.736640\pi$$
$$338$$ 10.5289 43.4008i 0.572697 2.36069i
$$339$$ 19.4144 7.77235i 1.05445 0.422136i
$$340$$ −4.17231 + 5.85920i −0.226276 + 0.317759i
$$341$$ 24.9292 + 9.98015i 1.34999 + 0.540455i
$$342$$ −11.5128 + 7.39885i −0.622543 + 0.400084i
$$343$$ −5.76946 + 17.5987i −0.311522 + 0.950239i
$$344$$ −6.06968 −0.327255
$$345$$ 3.21239 + 6.67053i 0.172949 + 0.359129i
$$346$$ −8.14179 14.1020i −0.437705 0.758128i
$$347$$ 1.04599 + 0.201598i 0.0561518 + 0.0108224i 0.217250 0.976116i $$-0.430291\pi$$
−0.161098 + 0.986938i $$0.551504\pi$$
$$348$$ −0.260382 5.46609i −0.0139579 0.293013i
$$349$$ 0.525382 + 3.65411i 0.0281230 + 0.195600i 0.999040 0.0438184i $$-0.0139523\pi$$
−0.970916 + 0.239418i $$0.923043\pi$$
$$350$$ 14.7091 0.547454i 0.786233 0.0292627i
$$351$$ 0.829900 5.77208i 0.0442968 0.308091i
$$352$$ 9.42489 38.8499i 0.502348 2.07071i
$$353$$ 0.358290 7.52143i 0.0190698 0.400325i −0.969072 0.246779i $$-0.920628\pi$$
0.988142 0.153546i $$-0.0490693\pi$$
$$354$$ −0.652397 + 0.0622964i −0.0346745 + 0.00331101i
$$355$$ 16.9838 16.1940i 0.901408 0.859491i
$$356$$ 23.9928 + 27.6892i 1.27162 + 1.46752i
$$357$$ −0.975593 + 4.79311i −0.0516339 + 0.253678i
$$358$$ −33.7902 9.92168i −1.78587 0.524377i
$$359$$ −9.85407 13.8381i −0.520078 0.730347i 0.468097 0.883677i $$-0.344940\pi$$
−0.988175 + 0.153330i $$0.951000\pi$$
$$360$$ −0.0812424 + 1.70549i −0.00428185 + 0.0898871i
$$361$$ 16.2360 + 15.4810i 0.854525 + 0.814787i
$$362$$ 12.3047 + 9.67653i 0.646721 + 0.508587i
$$363$$ 5.99047 + 13.1173i 0.314418 + 0.688480i
$$364$$ 10.5661 + 37.4199i 0.553814 + 1.96134i
$$365$$ 15.8829 10.2073i 0.831350 0.534276i
$$366$$ −0.784651 2.26710i −0.0410144 0.118503i
$$367$$ 16.2620 + 28.1666i 0.848869 + 1.47028i 0.882218 + 0.470840i $$0.156049\pi$$
−0.0333496 + 0.999444i $$0.510617\pi$$
$$368$$ 9.14968 9.08775i 0.476960 0.473732i
$$369$$ 0.619042 1.07221i 0.0322260 0.0558171i
$$370$$ 9.24164 10.6654i 0.480450 0.554469i
$$371$$ 13.2752 11.2635i 0.689215 0.584772i
$$372$$ 1.91022 + 13.2859i 0.0990401 + 0.688839i
$$373$$ 25.5421 + 2.43898i 1.32252 + 0.126286i 0.732315 0.680966i $$-0.238440\pi$$
0.590207 + 0.807252i $$0.299046\pi$$
$$374$$ −18.3981 + 7.36551i −0.951346 + 0.380861i
$$375$$ 8.51010 + 8.11436i 0.439459 + 0.419024i
$$376$$ 2.31508 1.19350i 0.119391 0.0615503i
$$377$$ 5.26006 11.5179i 0.270907 0.593204i
$$378$$ 2.03621 + 5.24359i 0.104732 + 0.269701i
$$379$$ −19.0598 21.9962i −0.979035 1.12987i −0.991521 0.129944i $$-0.958520\pi$$
0.0124863 0.999922i $$-0.496025\pi$$
$$380$$ 24.5912 4.73956i 1.26150 0.243134i
$$381$$ −3.49441 14.4041i −0.179024 0.737947i
$$382$$ 14.1240 1.34868i 0.722647 0.0690045i
$$383$$ −15.4267 + 7.95299i −0.788265 + 0.406379i −0.804846 0.593484i $$-0.797752\pi$$
0.0165810 + 0.999863i $$0.494722\pi$$
$$384$$ 8.20239 2.40844i 0.418576 0.122905i
$$385$$ −17.7264 10.4816i −0.903420 0.534191i
$$386$$ −12.7257 27.8653i −0.647719 1.41831i
$$387$$ −5.09487 2.03968i −0.258987 0.103683i
$$388$$ 13.2595 + 6.83577i 0.673152 + 0.347034i
$$389$$ −17.2223 3.31933i −0.873207 0.168297i −0.267089 0.963672i $$-0.586062\pi$$
−0.606118 + 0.795375i $$0.707274\pi$$
$$390$$ −9.57000 + 16.5757i −0.484596 + 0.839345i
$$391$$ −8.73859 1.50000i −0.441930 0.0758581i
$$392$$ −5.49082 5.45793i −0.277328 0.275667i
$$393$$ −4.11762 + 4.75199i −0.207706 + 0.239706i
$$394$$ −1.15358 24.2167i −0.0581166 1.22002i
$$395$$ −15.8932 + 12.4985i −0.799673 + 0.628869i
$$396$$ −7.37052 + 10.3504i −0.370383 + 0.520129i
$$397$$ 25.1079 + 19.7451i 1.26013 + 0.990979i 0.999675 + 0.0254931i $$0.00811559\pi$$
0.260457 + 0.965486i $$0.416127\pi$$
$$398$$ −16.8169 + 4.93788i −0.842953 + 0.247513i
$$399$$ 13.9745 9.73383i 0.699602 0.487301i
$$400$$ 2.92299 6.40045i 0.146149 0.320023i
$$401$$ 16.1909 15.4380i 0.808536 0.770937i −0.168116 0.985767i $$-0.553768\pi$$
0.976651 + 0.214830i $$0.0689198\pi$$
$$402$$ 2.33858 6.75688i 0.116638 0.337003i
$$403$$ −10.1580 + 29.3498i −0.506008 + 1.46202i
$$404$$ −18.2164 + 17.3693i −0.906298 + 0.864154i
$$405$$ −0.641312 + 1.40428i −0.0318671 + 0.0697791i
$$406$$ 1.03453 + 12.1702i 0.0513430 + 0.603997i
$$407$$ 20.8002 6.10749i 1.03103 0.302737i
$$408$$ −1.60727 1.26397i −0.0795717 0.0625758i
$$409$$ 4.91389 6.90059i 0.242976 0.341212i −0.675021 0.737798i $$-0.735866\pi$$
0.917998 + 0.396586i $$0.129805\pi$$
$$410$$ −3.19424 + 2.51198i −0.157752 + 0.124058i
$$411$$ 0.411110 + 8.63026i 0.0202785 + 0.425699i
$$412$$ −29.8518 + 34.4508i −1.47069 + 1.69727i
$$413$$ 0.808416 0.107665i 0.0397796 0.00529787i
$$414$$ −9.38664 + 3.98193i −0.461328 + 0.195701i
$$415$$ −4.51379 + 7.81811i −0.221573 + 0.383776i
$$416$$ 45.4017 + 8.75046i 2.22600 + 0.429027i
$$417$$ −11.9336 6.15222i −0.584393 0.301276i
$$418$$ 64.0571 + 25.6446i 3.13313 + 1.25432i
$$419$$ −3.35577 7.34812i −0.163940 0.358979i 0.809778 0.586737i $$-0.199588\pi$$
−0.973718 + 0.227758i $$0.926860\pi$$
$$420$$ 0.107034 10.2932i 0.00522275 0.502255i
$$421$$ −0.0805178 + 0.0236422i −0.00392420 + 0.00115225i −0.283694 0.958915i $$-0.591560\pi$$
0.279770 + 0.960067i $$0.409742\pi$$
$$422$$ −15.8979 + 8.19595i −0.773899 + 0.398973i
$$423$$ 2.34434 0.223857i 0.113985 0.0108843i
$$424$$ 1.71579 + 7.07258i 0.0833261 + 0.343475i
$$425$$ −4.75030 + 0.915545i −0.230423 + 0.0444105i
$$426$$ 21.1640 + 24.4245i 1.02540 + 1.18337i
$$427$$ 1.08070 + 2.78298i 0.0522986 + 0.134678i
$$428$$ 8.00036 17.5183i 0.386712 0.846781i
$$429$$ −26.1330 + 13.4725i −1.26171 + 0.650457i
$$430$$ 13.0364 + 12.4302i 0.628672 + 0.599437i
$$431$$ −1.64489 + 0.658515i −0.0792317 + 0.0317196i −0.410940 0.911663i $$-0.634799\pi$$
0.331708 + 0.943382i $$0.392375\pi$$
$$432$$ 2.67680 + 0.255604i 0.128788 + 0.0122977i
$$433$$ −3.04839 21.2020i −0.146496 1.01890i −0.921897 0.387435i $$-0.873361\pi$$
0.775401 0.631469i $$-0.217548\pi$$
$$434$$ −5.36355 29.4748i −0.257459 1.41484i
$$435$$ −2.19518 + 2.53337i −0.105251 + 0.121466i
$$436$$ −14.7704 + 25.5831i −0.707375 + 1.22521i
$$437$$ 18.4158 + 24.7756i 0.880949 + 1.18518i
$$438$$ 13.0007 + 22.5178i 0.621196 + 1.07594i
$$439$$ 5.07650 + 14.6676i 0.242288 + 0.700046i 0.998931 + 0.0462177i $$0.0147168\pi$$
−0.756643 + 0.653828i $$0.773162\pi$$
$$440$$ 7.24201 4.65416i 0.345249 0.221878i
$$441$$ −2.77487 6.42652i −0.132136 0.306025i
$$442$$ −9.52182 20.8499i −0.452907 0.991728i
$$443$$ −4.00499 3.14956i −0.190283 0.149640i 0.518473 0.855094i $$-0.326501\pi$$
−0.708756 + 0.705454i $$0.750743\pi$$
$$444$$ 7.84240 + 7.47771i 0.372184 + 0.354876i
$$445$$ 1.06789 22.4177i 0.0506227 1.06270i
$$446$$ −34.9440 49.0720i −1.65465 2.32363i
$$447$$ −7.31467 2.14778i −0.345972 0.101586i
$$448$$ −28.8036 + 9.63482i −1.36084 + 0.455202i
$$449$$ 2.69434 + 3.10943i 0.127154 + 0.146743i 0.815756 0.578396i $$-0.196321\pi$$
−0.688603 + 0.725139i $$0.741776\pi$$
$$450$$ −4.02639 + 3.83915i −0.189806 + 0.180979i
$$451$$ −6.21399 + 0.593364i −0.292605 + 0.0279404i
$$452$$ 2.50774 52.6438i 0.117954 2.47616i
$$453$$ 1.89690 7.81914i 0.0891243 0.367375i
$$454$$ 2.17923 15.1569i 0.102276 0.711347i
$$455$$ 11.1337 21.0560i 0.521958 0.987119i
$$456$$ 1.01316 + 7.04671i 0.0474458 + 0.329993i
$$457$$ −1.10954 23.2921i −0.0519021 1.08956i −0.863179 0.504897i $$-0.831530\pi$$
0.811277 0.584662i $$-0.198773\pi$$
$$458$$ 20.0619 + 3.86662i 0.937432 + 0.180675i
$$459$$ −0.924386 1.60108i −0.0431466 0.0747322i
$$460$$ 18.6551 0.380696i 0.869797 0.0177500i
$$461$$ −33.2558 −1.54888 −0.774438 0.632650i $$-0.781967\pi$$
−0.774438 + 0.632650i $$0.781967\pi$$
$$462$$ 15.5803 23.6980i 0.724861 1.10253i
$$463$$ 16.6978 10.7310i 0.776013 0.498713i −0.0916955 0.995787i $$-0.529229\pi$$
0.867708 + 0.497074i $$0.165592\pi$$
$$464$$ 5.42051 + 2.17005i 0.251641 + 0.100742i
$$465$$ 4.76930 6.69754i 0.221171 0.310591i
$$466$$ 40.5466 16.2324i 1.87829 0.751952i
$$467$$ −6.26858 + 25.8394i −0.290075 + 1.19571i 0.621115 + 0.783720i $$0.286680\pi$$
−0.911190 + 0.411987i $$0.864835\pi$$
$$468$$ −12.3634 7.94548i −0.571499 0.367280i
$$469$$ −2.59544 + 8.51088i −0.119847 + 0.392996i
$$470$$ −7.41650 2.17768i −0.342098 0.100449i
$$471$$ 0.785042 0.151304i 0.0361728 0.00697174i
$$472$$ −0.111505 + 0.322173i −0.00513244 + 0.0148292i
$$473$$ 6.52338 + 26.8897i 0.299945 + 1.23639i
$$474$$ −16.1518 22.6820i −0.741877 1.04182i
$$475$$ 14.1697 + 9.10632i 0.650151 + 0.417827i
$$476$$ 9.96663 + 7.25456i 0.456820 + 0.332512i
$$477$$ −0.936467 + 6.51327i −0.0428779 + 0.298222i
$$478$$ 16.2870 + 1.55522i 0.744950 + 0.0711341i
$$479$$ −5.10361 + 4.01353i −0.233190 + 0.183383i −0.727916 0.685666i $$-0.759511\pi$$
0.494726 + 0.869049i $$0.335268\pi$$
$$480$$ −10.8799 5.60898i −0.496598 0.256014i
$$481$$ 8.20064 + 23.6942i 0.373917 + 1.08036i
$$482$$ −7.05797 −0.321482
$$483$$ 11.4886 5.38625i 0.522750 0.245083i
$$484$$ 36.3425 1.65193
$$485$$ −2.98880 8.63557i −0.135714 0.392121i
$$486$$ −1.88973 0.974225i −0.0857200 0.0441917i
$$487$$ −1.43454 + 1.12813i −0.0650052 + 0.0511207i −0.650133 0.759820i $$-0.725287\pi$$
0.585128 + 0.810941i $$0.301044\pi$$
$$488$$ −1.24234 0.118629i −0.0562383 0.00537010i
$$489$$ 2.99606 20.8380i 0.135486 0.942329i
$$490$$ 0.615748 + 22.9672i 0.0278166 + 1.03755i
$$491$$ −11.2996 7.26180i −0.509943 0.327720i 0.260240 0.965544i $$-0.416198\pi$$
−0.770182 + 0.637824i $$0.779835\pi$$
$$492$$ −1.80991 2.54166i −0.0815969 0.114587i
$$493$$ −0.946421 3.90120i −0.0426247 0.175701i
$$494$$ −26.1017 + 75.4159i −1.17437 + 3.39312i
$$495$$ 7.64291 1.47305i 0.343523 0.0662087i
$$496$$ −13.7412 4.03479i −0.617000 0.181167i
$$497$$ −27.4493 29.3940i −1.23127 1.31850i
$$498$$ −10.4590 6.72159i −0.468679 0.301202i
$$499$$ −7.34472 + 30.2754i −0.328795 + 1.35531i 0.532166 + 0.846640i $$0.321378\pi$$
−0.860961 + 0.508671i $$0.830137\pi$$
$$500$$ 27.5113 11.0139i 1.23034 0.492555i
$$501$$ 8.53005 11.9788i 0.381095 0.535173i
$$502$$ −55.5078 22.2220i −2.47744 0.991815i
$$503$$ 10.4991 6.74736i 0.468131 0.300850i −0.285227 0.958460i $$-0.592069\pi$$
0.753358 + 0.657610i $$0.228433\pi$$
$$504$$ 2.92127 + 0.169618i 0.130124 + 0.00755540i
$$505$$ 15.4182 0.686102
$$506$$ 43.8056 + 26.9054i 1.94740 + 1.19609i
$$507$$ −10.5028 18.1914i −0.466447 0.807910i
$$508$$ −36.6793 7.06936i −1.62738 0.313652i
$$509$$ 0.0152231 + 0.319572i 0.000674752 + 0.0141648i 0.999180 0.0404983i $$-0.0128945\pi$$
−0.998505 + 0.0546631i $$0.982592\pi$$
$$510$$ 0.863575 + 6.00629i 0.0382397 + 0.265963i
$$511$$ −17.2094 27.4007i −0.761300 1.21213i
$$512$$ −3.88076 + 26.9912i −0.171507 + 1.19286i
$$513$$ −1.51756 + 6.25545i −0.0670017 + 0.276185i
$$514$$ −0.574733 + 12.0651i −0.0253504 + 0.532170i
$$515$$ 27.7973 2.65432i 1.22489 0.116963i
$$516$$ −10.0099 + 9.54437i −0.440659 + 0.420168i
$$517$$ −7.77555 8.97347i −0.341968 0.394653i
$$518$$ −18.1128 16.0276i −0.795831 0.704212i
$$519$$ −7.34873 2.15778i −0.322574 0.0947161i
$$520$$ 5.77546 + 8.11050i 0.253271 + 0.355669i
$$521$$ −1.97587 + 41.4786i −0.0865645 + 1.81721i 0.371653 + 0.928372i $$0.378791\pi$$
−0.458217 + 0.888840i $$0.651512\pi$$
$$522$$ −3.34111 3.18574i −0.146237 0.139436i
$$523$$ −10.5346 8.28454i −0.460648 0.362258i 0.360703 0.932681i $$-0.382537\pi$$
−0.821351 + 0.570423i $$0.806779\pi$$
$$524$$ 6.58287 + 14.4145i 0.287574 + 0.629699i
$$525$$ 4.82939 4.96061i 0.210772 0.216499i
$$526$$ 16.6796 10.7193i 0.727264 0.467384i
$$527$$ 3.22046 + 9.30491i 0.140285 + 0.405328i
$$528$$ −6.77874 11.7411i −0.295007 0.510967i
$$529$$ 10.4001 + 20.5143i 0.452180 + 0.891927i
$$530$$ 10.7989 18.7042i 0.469073 0.812459i
$$531$$ −0.201861 + 0.232960i −0.00876003 + 0.0101096i
$$532$$ −7.68403 42.2267i −0.333145 1.83076i
$$533$$ −1.02749 7.14632i −0.0445053 0.309541i
$$534$$ 30.7683 + 2.93802i 1.33148 + 0.127141i
$$535$$ −10.9521 + 4.38457i −0.473502 + 0.189562i
$$536$$ −2.69195 2.56677i −0.116275 0.110868i
$$537$$ −14.7228 + 7.59014i −0.635336 + 0.327539i
$$538$$ −18.6549 + 40.8485i −0.804270 + 1.76110i
$$539$$ −18.2783 + 30.1911i −0.787303 + 1.30042i
$$540$$ 2.54784 + 2.94036i 0.109642 + 0.126533i
$$541$$ −32.4333 + 6.25101i −1.39442 + 0.268752i −0.830472 0.557060i $$-0.811929\pi$$
−0.563946 + 0.825812i $$0.690717\pi$$
$$542$$ −5.72538 23.6003i −0.245926 1.01372i
$$543$$ 7.32942 0.699875i 0.314535 0.0300345i
$$544$$ 13.0293 6.71707i 0.558627 0.287992i
$$545$$ 17.3627 5.09814i 0.743735 0.218380i
$$546$$ 28.2355 + 16.6956i 1.20837 + 0.714507i
$$547$$ 0.544445 + 1.19217i 0.0232788 + 0.0509735i 0.920914 0.389765i $$-0.127444\pi$$
−0.897635 + 0.440739i $$0.854717\pi$$
$$548$$ 20.2149 + 8.09283i 0.863538 + 0.345709i
$$549$$ −1.00295 0.517058i −0.0428050 0.0220675i
$$550$$ 27.5428 + 5.30844i 1.17443 + 0.226353i
$$551$$ −6.98843 + 12.1043i −0.297717 + 0.515661i
$$552$$ −0.144232 + 5.30221i −0.00613894 + 0.225677i
$$553$$ 21.1357 + 27.4591i 0.898781 + 1.16768i
$$554$$ −21.4790 + 24.7881i −0.912555 + 1.05315i
$$555$$ −0.315837 6.63024i −0.0134065 0.281438i
$$556$$ −26.5974 + 20.9164i −1.12798 + 0.887055i
$$557$$ 5.15295 7.23631i 0.218337 0.306612i −0.690851 0.722997i $$-0.742764\pi$$
0.909188 + 0.416385i $$0.136703\pi$$
$$558$$ 8.90077 + 6.99964i 0.376800 + 0.296319i
$$559$$ −30.7065 + 9.01624i −1.29875 + 0.381346i
$$560$$ 9.94257 + 4.66617i 0.420150 + 0.197181i
$$561$$ −3.87219 + 8.47892i −0.163484 + 0.357980i
$$562$$ 28.0998 26.7931i 1.18532 1.13020i
$$563$$ 9.16668 26.4854i 0.386329 1.11623i −0.569421 0.822046i $$-0.692832\pi$$
0.955750 0.294179i $$-0.0950463\pi$$
$$564$$ 1.94117 5.60865i 0.0817382 0.236167i
$$565$$ −23.3652 + 22.2787i −0.982983 + 0.937272i
$$566$$ −5.97370 + 13.0806i −0.251093 + 0.549817i
$$567$$ 2.39510 + 1.12405i 0.100585 + 0.0472057i
$$568$$ 16.1311 4.73652i 0.676846 0.198740i
$$569$$ −13.5100 10.6244i −0.566369 0.445397i 0.293466 0.955969i $$-0.405191\pi$$
−0.859835 + 0.510572i $$0.829434\pi$$
$$570$$ 12.2550 17.2097i 0.513305 0.720837i
$$571$$ −24.2580 + 19.0767i −1.01516 + 0.798335i −0.979585 0.201032i $$-0.935570\pi$$
−0.0355804 + 0.999367i $$0.511328\pi$$
$$572$$ 3.52570 + 74.0135i 0.147417 + 3.09466i
$$573$$ 4.37018 5.04345i 0.182567 0.210693i
$$574$$ 4.24789 + 5.51878i 0.177304 + 0.230350i
$$575$$ 9.25720 + 8.47294i 0.386052 + 0.353346i
$$576$$ 5.73982 9.94166i 0.239159 0.414236i
$$577$$ 24.8880 + 4.79677i 1.03610 + 0.199692i 0.678820 0.734305i $$-0.262492\pi$$
0.357281 + 0.933997i $$0.383704\pi$$
$$578$$ 25.6664 + 13.2320i 1.06758 + 0.550377i
$$579$$ −13.3764 5.35510i −0.555904 0.222550i
$$580$$ 3.50944 + 7.68461i 0.145722 + 0.319086i
$$581$$ 13.3176 + 7.87466i 0.552506 + 0.326696i
$$582$$ 12.0751 3.54558i 0.500531 0.146969i
$$583$$ 29.4887 15.2025i 1.22130 0.629622i
$$584$$ 13.4648 1.28573i 0.557176 0.0532038i
$$585$$ 2.12242 + 8.74873i 0.0877512 + 0.361715i
$$586$$ 14.7879 2.85014i 0.610884 0.117738i
$$587$$ −2.28476 2.63675i −0.0943020 0.108830i 0.706637 0.707576i $$-0.250211\pi$$
−0.800939 + 0.598746i $$0.795666\pi$$
$$588$$ −17.6376 0.366853i −0.727363 0.0151288i
$$589$$ 14.2415 31.1845i 0.586810 1.28493i
$$590$$ 0.899273 0.463607i 0.0370225 0.0190864i
$$591$$ −8.25289 7.86912i −0.339479 0.323692i
$$592$$ −10.7335 + 4.29704i −0.441144 + 0.176607i
$$593$$ 24.4400 + 2.33374i 1.00363 + 0.0958350i 0.583910 0.811819i $$-0.301522\pi$$
0.419720 + 0.907654i $$0.362128\pi$$
$$594$$ 1.52553 + 10.6103i 0.0625933 + 0.435346i
$$595$$ −1.35191 7.42926i −0.0554229 0.304570i
$$596$$ −12.5816 + 14.5200i −0.515364 + 0.594762i
$$597$$ −4.12187 + 7.13929i −0.168697 + 0.292192i
$$598$$ −28.6728 + 52.0890i −1.17252 + 2.13008i
$$599$$ −15.0888 26.1346i −0.616512 1.06783i −0.990117 0.140242i $$-0.955212\pi$$
0.373605 0.927588i $$-0.378121\pi$$
$$600$$ 0.946562 + 2.73491i 0.0386432 + 0.111652i
$$601$$ 7.70095 4.94910i 0.314128 0.201878i −0.374070 0.927400i $$-0.622038\pi$$
0.688199 + 0.725522i $$0.258402\pi$$
$$602$$ 21.5341 22.1192i 0.877665 0.901510i
$$603$$ −1.39707 3.05915i −0.0568930 0.124578i
$$604$$ −15.9391 12.5347i −0.648554 0.510029i
$$605$$ −16.1118 15.3626i −0.655040 0.624579i
$$606$$ −1.01034 + 21.2097i −0.0410423 + 0.861584i
$$607$$ −18.6054 26.1276i −0.755169 1.06049i −0.995950 0.0899066i $$-0.971343\pi$$
0.240782 0.970579i $$-0.422596\pi$$
$$608$$ −48.9705 14.3790i −1.98602 0.583147i
$$609$$ 4.30235 + 3.80705i 0.174340 + 0.154269i
$$610$$ 2.42535 + 2.79901i 0.0981996 + 0.113328i
$$611$$ 9.93906 9.47687i 0.402091 0.383393i
$$612$$ −4.63819 + 0.442893i −0.187488 + 0.0179029i
$$613$$ 1.56437 32.8401i 0.0631842 1.32640i −0.715336 0.698781i $$-0.753726\pi$$
0.778520 0.627620i $$-0.215971\pi$$
$$614$$ 4.16314 17.1607i 0.168011 0.692549i
$$615$$ −0.272012 + 1.89188i −0.0109686 + 0.0762880i
$$616$$ −7.84684 12.4937i −0.316158 0.503384i
$$617$$ 3.52701 + 24.5309i 0.141992 + 0.987577i 0.928853 + 0.370447i $$0.120796\pi$$
−0.786861 + 0.617130i $$0.788295\pi$$
$$618$$ 1.82981 + 38.4125i 0.0736059 + 1.54518i
$$619$$ 25.4284 + 4.90092i 1.02205 + 0.196985i 0.672629 0.739980i $$-0.265165\pi$$
0.349425 + 0.936964i $$0.386377\pi$$
$$620$$ −10.3607 17.9453i −0.416096 0.720700i
$$621$$ −1.90284 + 4.40218i −0.0763583 + 0.176653i
$$622$$ 57.9791 2.32475
$$623$$ −38.3985 2.22954i −1.53840 0.0893247i
$$624$$ 13.1914 8.47757i 0.528077 0.339375i
$$625$$ −4.70604 1.88401i −0.188242 0.0753605i
$$626$$ −10.1342 + 14.2315i −0.405045 + 0.568806i
$$627$$ 30.1292 12.0619i 1.20325 0.481707i
$$628$$ 0.475026 1.95808i 0.0189556 0.0781360i
$$629$$ 6.68720 + 4.29760i 0.266636 + 0.171357i
$$630$$ −5.92691 6.34681i −0.236134 0.252863i
$$631$$ 29.3664 + 8.62275i 1.16906 + 0.343266i 0.807946 0.589257i $$-0.200579\pi$$
0.361111 + 0.932523i $$0.382398\pi$$
$$632$$ −14.2234 + 2.74134i −0.565778 + 0.109045i
$$633$$ −2.75156 + 7.95010i −0.109364 + 0.315988i
$$634$$ 4.38653 + 18.0815i 0.174211 + 0.718109i
$$635$$ 13.2728 + 18.6391i 0.526716 + 0.739669i
$$636$$ 13.9510 + 8.96576i 0.553193 + 0.355515i
$$637$$ −35.8855 19.4553i −1.42184 0.770846i
$$638$$ −3.31249 + 23.0388i −0.131143 + 0.912117i
$$639$$ 15.1321 + 1.44494i 0.598615 + 0.0571608i
$$640$$ −10.3738 + 8.15804i −0.410060 + 0.322475i
$$641$$ −8.64632 4.45749i −0.341509 0.176060i 0.278937 0.960310i $$-0.410018\pi$$
−0.620446 + 0.784249i $$0.713048\pi$$
$$642$$ −5.31384 15.3533i −0.209720 0.605948i
$$643$$ −15.3263 −0.604411 −0.302206 0.953243i $$-0.597723\pi$$
−0.302206 + 0.953243i $$0.597723\pi$$
$$644$$ −0.319966 31.9762i −0.0126084 1.26004i
$$645$$ 8.47228 0.333596
$$646$$ 8.27517 + 23.9095i 0.325582 + 0.940708i
$$647$$ 9.39039 + 4.84108i 0.369174 + 0.190323i 0.632824 0.774296i $$-0.281896\pi$$
−0.263649 + 0.964619i $$0.584926\pi$$
$$648$$ −0.869371 + 0.683681i −0.0341521 + 0.0268575i
$$649$$ 1.54712 + 0.147732i 0.0607298 + 0.00579900i
$$650$$ −4.61703 + 32.1121i −0.181095 + 1.25954i
$$651$$ −11.3927 8.29257i −0.446514 0.325011i
$$652$$ −44.6337 28.6843i −1.74799 1.12336i
$$653$$ −13.4194 18.8449i −0.525143 0.737460i 0.463770 0.885955i $$-0.346496\pi$$
−0.988913 + 0.148496i $$0.952557\pi$$
$$654$$ 5.87536 + 24.2186i 0.229745 + 0.947021i
$$655$$ 3.17485 9.17312i 0.124052 0.358423i
$$656$$ 3.26902 0.630051i 0.127634 0.0245994i
$$657$$ 11.7343 + 3.44551i 0.457800 + 0.134422i
$$658$$ −3.86408 + 12.6709i −0.150638 + 0.493965i
$$659$$ −11.6331 7.47611i −0.453159 0.291228i 0.294082 0.955780i $$-0.404986\pi$$
−0.747242 + 0.664552i $$0.768622\pi$$
$$660$$ 4.62469 19.0632i 0.180016 0.742036i
$$661$$ 10.1511 4.06389i 0.394832 0.158067i −0.165746 0.986168i $$-0.553003\pi$$
0.560578 + 0.828102i $$0.310579\pi$$
$$662$$ −23.1076 + 32.4501i −0.898104 + 1.26121i
$$663$$ −10.0087 4.00689i −0.388707 0.155615i
$$664$$ −5.44082 + 3.49660i −0.211145 + 0.135694i
$$665$$ −14.4434 + 21.9687i −0.560090 + 0.851909i
$$666$$ 9.14141 0.354222
$$667$$ −6.65741 + 8.00750i −0.257776 + 0.310052i
$$668$$ −18.5305 32.0957i −0.716966 1.24182i
$$669$$ −27.8229 5.36243i −1.07570 0.207324i
$$670$$ 0.525222 + 11.0258i 0.0202911 + 0.425963i
$$671$$ 0.809657 + 5.63129i 0.0312565 + 0.217394i
$$672$$ −9.80607 + 18.5451i −0.378277 + 0.715392i
$$673$$ −4.31043 + 29.9797i −0.166155 + 1.15563i 0.720586 + 0.693365i $$0.243873\pi$$
−0.886741 + 0.462267i $$0.847036\pi$$
$$674$$ −3.15390 + 13.0005i −0.121484 + 0.500762i
$$675$$ −0.124509 + 2.61376i −0.00479234 + 0.100604i
$$676$$ −52.6988 + 5.03213i −2.02688 + 0.193543i
$$677$$ 5.16831 4.92797i 0.198634 0.189397i −0.584233 0.811586i $$-0.698605\pi$$
0.782868 + 0.622188i $$0.213756\pi$$
$$678$$ −29.1160 33.6017i −1.11819 1.29046i
$$679$$ −14.8522 + 4.96806i −0.569973 + 0.190657i
$$680$$ 3.02877 + 0.889326i 0.116148 + 0.0341041i
$$681$$ −4.17777 5.86685i −0.160092 0.224818i
$$682$$ 2.71650 57.0263i 0.104020 2.18365i
$$683$$ −27.4260 26.1506i −1.04943 1.00063i −0.999998 0.00184754i $$-0.999412\pi$$
−0.0494273 0.998778i $$-0.515740\pi$$
$$684$$ 12.7516 + 10.0280i 0.487569 + 0.383428i
$$685$$ −5.54096 12.1330i −0.211709 0.463579i
$$686$$ 39.3702 0.645934i 1.50316 0.0246619i
$$687$$ 8.08426 5.19544i 0.308434 0.198218i
$$688$$ −4.82656 13.9454i −0.184011 0.531665i
$$689$$ 19.1862 + 33.2314i 0.730934 + 1.26602i
$$690$$ 11.1682 11.0927i 0.425168 0.422290i
$$691$$ 13.4545 23.3039i 0.511834 0.886522i −0.488072 0.872803i $$-0.662300\pi$$
0.999906 0.0137185i $$-0.00436689\pi$$
$$692$$ −12.6402 + 14.5876i −0.480510 + 0.554538i
$$693$$ −2.38819 13.1240i −0.0907198 0.498540i
$$694$$ −0.322313 2.24174i −0.0122348 0.0850951i
$$695$$ 20.6333 + 1.97024i 0.782665 + 0.0747354i
$$696$$ −2.22950 + 0.892555i −0.0845088 + 0.0338322i
$$697$$ −1.65658 1.57954i −0.0627474 0.0598295i
$$698$$ 6.97630 3.59653i 0.264057 0.136131i
$$699$$ 8.53371 18.6862i 0.322774 0.706777i
$$700$$ −6.31594 16.2646i −0.238720 0.614744i
$$701$$ −10.7743 12.4343i −0.406941 0.469635i 0.514873 0.857266i $$-0.327839\pi$$
−0.921815 + 0.387631i $$0.873294\pi$$
$$702$$ −12.1740 + 2.34635i −0.459479 + 0.0885574i
$$703$$ −6.52497 26.8963i −0.246094 1.01441i
$$704$$ −57.6168 + 5.50173i −2.17151 + 0.207354i
$$705$$ −3.23146 + 1.66594i −0.121704 + 0.0627428i
$$706$$ −15.3608 + 4.51033i −0.578111 + 0.169749i
$$707$$ 0.274756 26.4224i 0.0103333 0.993717i
$$708$$ 0.322717 + 0.706652i 0.0121284 + 0.0265576i
$$709$$ −9.31748 3.73016i −0.349925 0.140089i 0.190040 0.981776i $$-0.439138\pi$$
−0.539965 + 0.841687i $$0.681563\pi$$
$$710$$ −44.3463 22.8621i −1.66429 0.857999i
$$711$$ −12.8603 2.47862i −0.482299 0.0929556i
$$712$$ 8.03932 13.9245i 0.301286 0.521843i
$$713$$ 14.3884 21.1041i 0.538851 0.790356i
$$714$$ 10.3085 1.37289i 0.385784 0.0513790i
$$715$$ 29.7237 34.3030i 1.11160 1.28286i
$$716$$ 1.98631 + 41.6978i 0.0742319 + 1.55832i
$$717$$ 6.04902 4.75700i 0.225905 0.177653i
$$718$$ −20.9505 + 29.4209i −0.781866 + 1.09798i
$$719$$ 40.1079 + 31.5412i 1.49577 + 1.17629i 0.938167 + 0.346183i $$0.112522\pi$$
0.557606 + 0.830106i $$0.311720\pi$$
$$720$$ −3.98306 + 1.16953i −0.148440 + 0.0435858i
$$721$$ −4.05339 47.6838i −0.150956 1.77584i
$$722$$ 19.8135 43.3854i 0.737381 1.61464i
$$723$$ −2.40259 + 2.29087i −0.0893533 + 0.0851982i
$$724$$ 6.06896 17.5351i 0.225551 0.651687i
$$725$$ −1.85836 + 5.36937i −0.0690176 + 0.199413i
$$726$$ 22.1890 21.1571i 0.823510 0.785215i
$$727$$ −12.7538 + 27.9270i −0.473014 + 1.03576i 0.511311 + 0.859395i $$0.329160\pi$$
−0.984326 + 0.176361i $$0.943567\pi$$
$$728$$ 14.0020 9.75296i 0.518949 0.361469i
$$729$$ −0.959493 + 0.281733i −0.0355368 + 0.0104345i
$$730$$ −31.5526 24.8132i −1.16781 0.918378i
$$731$$ −5.88527 + 8.26471i −0.217675 + 0.305681i
$$732$$ −2.23536 + 1.75791i −0.0826212 + 0.0649740i
$$733$$ −2.23651 46.9502i −0.0826075 1.73415i −0.537208 0.843450i $$-0.680521\pi$$
0.454600 0.890696i $$-0.349782\pi$$
$$734$$ 45.2826 52.2589i 1.67141 1.92891i
$$735$$ 7.66427 + 7.61837i 0.282701 + 0.281008i
$$736$$ −34.1473 16.7313i −1.25869 0.616724i
$$737$$ −8.47806 + 14.6844i −0.312294 + 0.540908i
$$738$$ −2.58469 0.498159i −0.0951438 0.0183375i
$$739$$ −11.5710 5.96529i −0.425648 0.219437i 0.232073 0.972698i $$-0.425449\pi$$
−0.657721 + 0.753262i $$0.728479\pi$$
$$740$$ −15.5302 6.21736i −0.570902 0.228555i
$$741$$ 15.5932 + 34.1443i 0.572829 + 1.25432i
$$742$$ −31.8612 18.8395i −1.16966 0.691620i
$$743$$ −15.8206 + 4.64536i −0.580403 + 0.170422i −0.558739 0.829344i $$-0.688715\pi$$
−0.0216640 + 0.999765i $$0.506896\pi$$
$$744$$ 5.23566 2.69917i 0.191949 0.0989564i
$$745$$ 11.7157 1.11872i 0.429231 0.0409866i
$$746$$ −12.8610 53.0139i −0.470876 1.94098i
$$747$$ −5.74201 + 1.10668i −0.210089 + 0.0404914i
$$748$$ 15.3837 + 17.7537i 0.562482 + 0.649139i
$$749$$ 7.31873 + 18.8470i 0.267421 + 0.688653i
$$750$$ 10.3852 22.7405i 0.379215 0.830366i
$$751$$ 14.9107 7.68699i 0.544098 0.280502i −0.164186 0.986429i $$-0.552500\pi$$
0.708284 + 0.705927i $$0.249469\pi$$
$$752$$ 4.58307 + 4.36995i 0.167128 + 0.159356i
$$753$$ −26.1081 + 10.4521i −0.951432 + 0.380896i
$$754$$ −26.7989 2.55898i −0.975958 0.0931927i
$$755$$ 1.76772 + 12.2948i 0.0643341 + 0.447453i
$$756$$ 5.08434 4.31387i 0.184916 0.156894i
$$757$$ 8.18478 9.44574i 0.297481 0.343311i −0.587257 0.809401i $$-0.699792\pi$$
0.884738 + 0.466089i $$0.154338\pi$$
$$758$$ −30.9398 + 53.5894i −1.12379 + 1.94645i
$$759$$ 23.6447 5.05956i 0.858248 0.183650i
$$760$$ −5.49524 9.51804i −0.199333 0.345256i
$$761$$ 8.52300 + 24.6256i 0.308959 + 0.892677i 0.987431 + 0.158051i $$0.0505211\pi$$
−0.678472 + 0.734626i $$0.737358\pi$$
$$762$$ −26.5101 + 17.0370i −0.960360 + 0.617186i
$$763$$ −8.42734 29.8455i −0.305090 1.08048i
$$764$$ −6.98663 15.2986i −0.252768 0.553484i
$$765$$ 2.24348 + 1.76429i 0.0811132 + 0.0637882i
$$766$$ 26.7060 + 25.4641i 0.964926 + 0.920055i
$$767$$ −0.0855306 + 1.79551i −0.00308833 + 0.0648320i
$$768$$ 2.77508 + 3.89705i 0.100137 + 0.140623i
$$769$$ −3.02374 0.887850i −0.109039 0.0320167i 0.226758 0.973951i $$-0.427187\pi$$
−0.335797 + 0.941934i $$0.609006\pi$$
$$770$$ −8.73260 + 42.9035i −0.314701 + 1.54613i
$$771$$ 3.72044 + 4.29361i 0.133988 + 0.154631i
$$772$$ −26.2805 + 25.0584i −0.945856 + 0.901872i
$$773$$ −21.3892