# Properties

 Label 483.2.y.b.4.8 Level $483$ Weight $2$ Character 483.4 Analytic conductor $3.857$ Analytic rank $0$ Dimension $320$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$483 = 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 483.y (of order $$33$$, degree $$20$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.85677441763$$ Analytic rank: $$0$$ Dimension: $$320$$ Relative dimension: $$16$$ over $$\Q(\zeta_{33})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

## Embedding invariants

 Embedding label 4.8 Character $$\chi$$ $$=$$ 483.4 Dual form 483.2.y.b.121.8

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.111942 + 0.157200i) q^{2} +(0.235759 - 0.971812i) q^{3} +(0.641955 + 1.85481i) q^{4} +(-0.171106 + 3.59197i) q^{5} +(0.126378 + 0.145848i) q^{6} +(-2.30883 - 1.29202i) q^{7} +(-0.733771 - 0.215455i) q^{8} +(-0.888835 - 0.458227i) q^{9} +O(q^{10})$$ $$q+(-0.111942 + 0.157200i) q^{2} +(0.235759 - 0.971812i) q^{3} +(0.641955 + 1.85481i) q^{4} +(-0.171106 + 3.59197i) q^{5} +(0.126378 + 0.145848i) q^{6} +(-2.30883 - 1.29202i) q^{7} +(-0.733771 - 0.215455i) q^{8} +(-0.888835 - 0.458227i) q^{9} +(-0.545504 - 0.428989i) q^{10} +(1.58074 + 2.21984i) q^{11} +(1.95387 - 0.186572i) q^{12} +(0.00476466 - 0.0331389i) q^{13} +(0.461560 - 0.218318i) q^{14} +(3.45038 + 1.01312i) q^{15} +(-2.96965 + 2.33536i) q^{16} +(-7.18554 + 1.38490i) q^{17} +(0.171531 - 0.0884304i) q^{18} +(1.20057 + 0.231392i) q^{19} +(-6.77225 + 1.98851i) q^{20} +(-1.79992 + 1.93914i) q^{21} -0.525910 q^{22} +(1.86902 - 4.41664i) q^{23} +(-0.382375 + 0.662292i) q^{24} +(-7.89559 - 0.753938i) q^{25} +(0.00467608 + 0.00445864i) q^{26} +(-0.654861 + 0.755750i) q^{27} +(0.914278 - 5.11185i) q^{28} +(6.71327 + 7.74752i) q^{29} +(-0.545504 + 0.428989i) q^{30} +(-2.29403 + 2.18735i) q^{31} +(-0.107467 - 2.25602i) q^{32} +(2.52994 - 1.01283i) q^{33} +(0.586655 - 1.28460i) q^{34} +(5.03594 - 8.07217i) q^{35} +(0.279329 - 1.94278i) q^{36} +(-8.07604 - 4.16349i) q^{37} +(-0.170769 + 0.162828i) q^{38} +(-0.0310815 - 0.0124432i) q^{39} +(0.899459 - 2.59882i) q^{40} +(8.26094 + 5.30898i) q^{41} +(-0.103347 - 0.500019i) q^{42} +(1.84414 - 0.541489i) q^{43} +(-3.10261 + 4.35700i) q^{44} +(1.79802 - 3.11426i) q^{45} +(0.485075 + 0.788218i) q^{46} +(4.78237 + 8.28331i) q^{47} +(1.56941 + 3.43653i) q^{48} +(3.66138 + 5.96609i) q^{49} +(1.00237 - 1.15679i) q^{50} +(-0.348194 + 7.30949i) q^{51} +(0.0645250 - 0.0124362i) q^{52} +(4.54748 + 1.82053i) q^{53} +(-0.0454977 - 0.187544i) q^{54} +(-8.24406 + 5.29813i) q^{55} +(1.41578 + 1.44549i) q^{56} +(0.507915 - 1.11218i) q^{57} +(-1.96941 + 0.188056i) q^{58} +(-0.227942 - 0.179256i) q^{59} +(0.335840 + 7.05016i) q^{60} +(-2.27820 - 9.39087i) q^{61} +(-0.0870546 - 0.605478i) q^{62} +(1.46013 + 2.20636i) q^{63} +(-5.98972 - 3.84936i) q^{64} +(0.118219 + 0.0227848i) q^{65} +(-0.123988 + 0.511085i) q^{66} +(13.4980 + 1.28890i) q^{67} +(-7.18151 - 12.4387i) q^{68} +(-3.85151 - 2.85760i) q^{69} +(0.705214 + 1.69526i) q^{70} +(1.59779 + 3.49867i) q^{71} +(0.553475 + 0.527737i) q^{72} +(3.27947 + 9.47541i) q^{73} +(1.55855 - 0.803487i) q^{74} +(-2.59414 + 7.49528i) q^{75} +(0.341528 + 2.37538i) q^{76} +(-0.781588 - 7.16757i) q^{77} +(0.00543538 - 0.00349311i) q^{78} +(14.8391 - 5.94067i) q^{79} +(-7.88041 - 11.0665i) q^{80} +(0.580057 + 0.814576i) q^{81} +(-1.75932 + 0.704325i) q^{82} +(-3.51891 + 2.26147i) q^{83} +(-4.75221 - 2.09367i) q^{84} +(-3.74502 - 26.0472i) q^{85} +(-0.121314 + 0.350515i) q^{86} +(9.11184 - 4.69748i) q^{87} +(-0.681627 - 1.96943i) q^{88} +(-1.14537 - 1.09211i) q^{89} +(0.288289 + 0.631265i) q^{90} +(-0.0538169 + 0.0703561i) q^{91} +(9.39185 + 0.631393i) q^{92} +(1.58486 + 2.74505i) q^{93} +(-1.83748 - 0.175459i) q^{94} +(-1.03658 + 4.27283i) q^{95} +(-2.21776 - 0.427439i) q^{96} +(-10.8280 - 6.95872i) q^{97} +(-1.34773 - 0.0922847i) q^{98} +(-0.387829 - 2.69741i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$320q + 2q^{2} + 16q^{3} + 18q^{4} - 2q^{5} + 18q^{6} + 2q^{7} - 12q^{8} + 16q^{9} + O(q^{10})$$ $$320q + 2q^{2} + 16q^{3} + 18q^{4} - 2q^{5} + 18q^{6} + 2q^{7} - 12q^{8} + 16q^{9} + 2q^{11} + 18q^{12} + 18q^{14} - 18q^{15} - 8q^{16} + 4q^{17} + 2q^{18} + 8q^{19} - 162q^{20} - 4q^{21} + 144q^{22} - 26q^{23} + 6q^{24} - 8q^{25} - 14q^{26} - 32q^{27} + 86q^{28} - 74q^{29} - 56q^{31} - 28q^{32} + 13q^{33} + 40q^{34} - 32q^{35} - 14q^{36} + 2q^{37} - 39q^{38} - 52q^{40} + 60q^{41} - 61q^{42} + 16q^{43} - 75q^{44} - 2q^{45} - 4q^{46} - 40q^{47} - 28q^{48} - 100q^{49} + 146q^{50} - 18q^{51} - 18q^{52} + 34q^{53} + 2q^{54} + 36q^{55} - 102q^{56} + 28q^{57} - 17q^{58} - 102q^{59} - 18q^{60} - 18q^{61} - 88q^{62} + 2q^{63} - 252q^{64} - 78q^{65} + 16q^{66} + 12q^{67} + 34q^{68} + 8q^{69} + 264q^{70} + 160q^{71} + 6q^{72} - 8q^{73} + 70q^{74} + 14q^{75} - 40q^{76} - 90q^{77} - 16q^{78} + 26q^{79} - 103q^{80} + 16q^{81} - 30q^{82} - 80q^{83} - 52q^{84} - 128q^{85} + 90q^{86} + 4q^{87} - 293q^{88} - 36q^{89} + 16q^{91} - 174q^{92} + 32q^{93} + 57q^{94} - 85q^{95} - 50q^{96} - 8q^{97} - 193q^{98} - 26q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/483\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$346$$ $$442$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.111942 + 0.157200i −0.0791548 + 0.111157i −0.852255 0.523126i $$-0.824766\pi$$
0.773100 + 0.634284i $$0.218705\pi$$
$$3$$ 0.235759 0.971812i 0.136115 0.561076i
$$4$$ 0.641955 + 1.85481i 0.320977 + 0.927404i
$$5$$ −0.171106 + 3.59197i −0.0765211 + 1.60638i 0.555561 + 0.831476i $$0.312503\pi$$
−0.632083 + 0.774901i $$0.717800\pi$$
$$6$$ 0.126378 + 0.145848i 0.0515935 + 0.0595420i
$$7$$ −2.30883 1.29202i −0.872655 0.488337i
$$8$$ −0.733771 0.215455i −0.259427 0.0761747i
$$9$$ −0.888835 0.458227i −0.296278 0.152742i
$$10$$ −0.545504 0.428989i −0.172504 0.135658i
$$11$$ 1.58074 + 2.21984i 0.476611 + 0.669306i 0.980964 0.194191i $$-0.0622083\pi$$
−0.504353 + 0.863498i $$0.668269\pi$$
$$12$$ 1.95387 0.186572i 0.564034 0.0538587i
$$13$$ 0.00476466 0.0331389i 0.00132148 0.00919109i −0.989150 0.146909i $$-0.953068\pi$$
0.990472 + 0.137718i $$0.0439767\pi$$
$$14$$ 0.461560 0.218318i 0.123357 0.0583479i
$$15$$ 3.45038 + 1.01312i 0.890883 + 0.261587i
$$16$$ −2.96965 + 2.33536i −0.742413 + 0.583840i
$$17$$ −7.18554 + 1.38490i −1.74275 + 0.335887i −0.958615 0.284705i $$-0.908105\pi$$
−0.784134 + 0.620592i $$0.786892\pi$$
$$18$$ 0.171531 0.0884304i 0.0404303 0.0208433i
$$19$$ 1.20057 + 0.231392i 0.275431 + 0.0530849i 0.325096 0.945681i $$-0.394603\pi$$
−0.0496654 + 0.998766i $$0.515815\pi$$
$$20$$ −6.77225 + 1.98851i −1.51432 + 0.444645i
$$21$$ −1.79992 + 1.93914i −0.392776 + 0.423156i
$$22$$ −0.525910 −0.112124
$$23$$ 1.86902 4.41664i 0.389719 0.920934i
$$24$$ −0.382375 + 0.662292i −0.0780519 + 0.135190i
$$25$$ −7.89559 0.753938i −1.57912 0.150788i
$$26$$ 0.00467608 + 0.00445864i 0.000917055 + 0.000874410i
$$27$$ −0.654861 + 0.755750i −0.126028 + 0.145444i
$$28$$ 0.914278 5.11185i 0.172782 0.966049i
$$29$$ 6.71327 + 7.74752i 1.24662 + 1.43868i 0.855062 + 0.518526i $$0.173519\pi$$
0.391561 + 0.920152i $$0.371935\pi$$
$$30$$ −0.545504 + 0.428989i −0.0995949 + 0.0783223i
$$31$$ −2.29403 + 2.18735i −0.412020 + 0.392860i −0.867542 0.497364i $$-0.834301\pi$$
0.455522 + 0.890225i $$0.349453\pi$$
$$32$$ −0.107467 2.25602i −0.0189977 0.398812i
$$33$$ 2.52994 1.01283i 0.440406 0.176312i
$$34$$ 0.586655 1.28460i 0.100611 0.220306i
$$35$$ 5.03594 8.07217i 0.851229 1.36445i
$$36$$ 0.279329 1.94278i 0.0465549 0.323797i
$$37$$ −8.07604 4.16349i −1.32769 0.684473i −0.359140 0.933284i $$-0.616930\pi$$
−0.968552 + 0.248811i $$0.919960\pi$$
$$38$$ −0.170769 + 0.162828i −0.0277024 + 0.0264142i
$$39$$ −0.0310815 0.0124432i −0.00497702 0.00199250i
$$40$$ 0.899459 2.59882i 0.142217 0.410909i
$$41$$ 8.26094 + 5.30898i 1.29014 + 0.829124i 0.992103 0.125429i $$-0.0400309\pi$$
0.298040 + 0.954553i $$0.403667\pi$$
$$42$$ −0.103347 0.500019i −0.0159468 0.0771547i
$$43$$ 1.84414 0.541489i 0.281229 0.0825763i −0.138076 0.990422i $$-0.544092\pi$$
0.419305 + 0.907845i $$0.362274\pi$$
$$44$$ −3.10261 + 4.35700i −0.467736 + 0.656843i
$$45$$ 1.79802 3.11426i 0.268033 0.464247i
$$46$$ 0.485075 + 0.788218i 0.0715205 + 0.116216i
$$47$$ 4.78237 + 8.28331i 0.697580 + 1.20824i 0.969303 + 0.245869i $$0.0790734\pi$$
−0.271723 + 0.962376i $$0.587593\pi$$
$$48$$ 1.56941 + 3.43653i 0.226525 + 0.496020i
$$49$$ 3.66138 + 5.96609i 0.523055 + 0.852299i
$$50$$ 1.00237 1.15679i 0.141756 0.163595i
$$51$$ −0.348194 + 7.30949i −0.0487569 + 1.02353i
$$52$$ 0.0645250 0.0124362i 0.00894801 0.00172459i
$$53$$ 4.54748 + 1.82053i 0.624644 + 0.250070i 0.662321 0.749220i $$-0.269572\pi$$
−0.0376771 + 0.999290i $$0.511996\pi$$
$$54$$ −0.0454977 0.187544i −0.00619146 0.0255215i
$$55$$ −8.24406 + 5.29813i −1.11163 + 0.714400i
$$56$$ 1.41578 + 1.44549i 0.189192 + 0.193162i
$$57$$ 0.507915 1.11218i 0.0672750 0.147312i
$$58$$ −1.96941 + 0.188056i −0.258596 + 0.0246929i
$$59$$ −0.227942 0.179256i −0.0296755 0.0233371i 0.603211 0.797582i $$-0.293888\pi$$
−0.632887 + 0.774244i $$0.718130\pi$$
$$60$$ 0.335840 + 7.05016i 0.0433568 + 0.910172i
$$61$$ −2.27820 9.39087i −0.291694 1.20238i −0.909384 0.415957i $$-0.863447\pi$$
0.617691 0.786421i $$-0.288068\pi$$
$$62$$ −0.0870546 0.605478i −0.0110559 0.0768958i
$$63$$ 1.46013 + 2.20636i 0.183959 + 0.277975i
$$64$$ −5.98972 3.84936i −0.748715 0.481170i
$$65$$ 0.118219 + 0.0227848i 0.0146632 + 0.00282611i
$$66$$ −0.123988 + 0.511085i −0.0152619 + 0.0629102i
$$67$$ 13.4980 + 1.28890i 1.64904 + 0.157464i 0.877782 0.479060i $$-0.159022\pi$$
0.771257 + 0.636524i $$0.219628\pi$$
$$68$$ −7.18151 12.4387i −0.870886 1.50842i
$$69$$ −3.85151 2.85760i −0.463667 0.344015i
$$70$$ 0.705214 + 1.69526i 0.0842892 + 0.202623i
$$71$$ 1.59779 + 3.49867i 0.189623 + 0.415216i 0.980435 0.196843i $$-0.0630688\pi$$
−0.790812 + 0.612059i $$0.790342\pi$$
$$72$$ 0.553475 + 0.527737i 0.0652276 + 0.0621944i
$$73$$ 3.27947 + 9.47541i 0.383833 + 1.10901i 0.957128 + 0.289664i $$0.0935435\pi$$
−0.573296 + 0.819349i $$0.694335\pi$$
$$74$$ 1.55855 0.803487i 0.181177 0.0934034i
$$75$$ −2.59414 + 7.49528i −0.299546 + 0.865480i
$$76$$ 0.341528 + 2.37538i 0.0391759 + 0.272474i
$$77$$ −0.781588 7.16757i −0.0890703 0.816820i
$$78$$ 0.00543538 0.00349311i 0.000615436 0.000395517i
$$79$$ 14.8391 5.94067i 1.66953 0.668377i 0.672125 0.740437i $$-0.265382\pi$$
0.997400 + 0.0720600i $$0.0229573\pi$$
$$80$$ −7.88041 11.0665i −0.881057 1.23727i
$$81$$ 0.580057 + 0.814576i 0.0644508 + 0.0905084i
$$82$$ −1.75932 + 0.704325i −0.194284 + 0.0777796i
$$83$$ −3.51891 + 2.26147i −0.386251 + 0.248228i −0.719327 0.694672i $$-0.755550\pi$$
0.333076 + 0.942900i $$0.391913\pi$$
$$84$$ −4.75221 2.09367i −0.518508 0.228438i
$$85$$ −3.74502 26.0472i −0.406204 2.82521i
$$86$$ −0.121314 + 0.350515i −0.0130817 + 0.0377970i
$$87$$ 9.11184 4.69748i 0.976892 0.503623i
$$88$$ −0.681627 1.96943i −0.0726616 0.209942i
$$89$$ −1.14537 1.09211i −0.121409 0.115764i 0.626943 0.779065i $$-0.284306\pi$$
−0.748352 + 0.663302i $$0.769155\pi$$
$$90$$ 0.288289 + 0.631265i 0.0303883 + 0.0665412i
$$91$$ −0.0538169 + 0.0703561i −0.00564154 + 0.00737533i
$$92$$ 9.39185 + 0.631393i 0.979168 + 0.0658273i
$$93$$ 1.58486 + 2.74505i 0.164342 + 0.284649i
$$94$$ −1.83748 0.175459i −0.189522 0.0180972i
$$95$$ −1.03658 + 4.27283i −0.106351 + 0.438383i
$$96$$ −2.21776 0.427439i −0.226349 0.0436253i
$$97$$ −10.8280 6.95872i −1.09942 0.706551i −0.140454 0.990087i $$-0.544856\pi$$
−0.958962 + 0.283536i $$0.908493\pi$$
$$98$$ −1.34773 0.0922847i −0.136142 0.00932217i
$$99$$ −0.387829 2.69741i −0.0389782 0.271100i
$$100$$ −3.67021 15.1288i −0.367021 1.51288i
$$101$$ −0.748558 15.7142i −0.0744843 1.56362i −0.658942 0.752193i $$-0.728996\pi$$
0.584458 0.811424i $$-0.301307\pi$$
$$102$$ −1.11008 0.872973i −0.109914 0.0864373i
$$103$$ −10.9829 + 1.04874i −1.08218 + 0.103336i −0.620878 0.783907i $$-0.713224\pi$$
−0.461303 + 0.887243i $$0.652618\pi$$
$$104$$ −0.0106361 + 0.0232898i −0.00104296 + 0.00228376i
$$105$$ −6.65736 6.79707i −0.649691 0.663326i
$$106$$ −0.795241 + 0.511070i −0.0772406 + 0.0496395i
$$107$$ −1.42769 5.88500i −0.138020 0.568924i −0.998256 0.0590294i $$-0.981199\pi$$
0.860237 0.509895i $$-0.170316\pi$$
$$108$$ −1.82216 0.729483i −0.175338 0.0701945i
$$109$$ 1.67718 0.323250i 0.160645 0.0309618i −0.108295 0.994119i $$-0.534539\pi$$
0.268939 + 0.963157i $$0.413327\pi$$
$$110$$ 0.0899865 1.88905i 0.00857988 0.180114i
$$111$$ −5.95012 + 6.86681i −0.564761 + 0.651768i
$$112$$ 9.87375 1.55511i 0.932982 0.146944i
$$113$$ 4.12936 + 9.04203i 0.388457 + 0.850603i 0.998311 + 0.0580890i $$0.0185007\pi$$
−0.609854 + 0.792514i $$0.708772\pi$$
$$114$$ 0.117978 + 0.204344i 0.0110496 + 0.0191385i
$$115$$ 15.5446 + 7.46919i 1.44955 + 0.696506i
$$116$$ −10.0605 + 17.4254i −0.934098 + 1.61791i
$$117$$ −0.0194201 + 0.0272718i −0.00179539 + 0.00252128i
$$118$$ 0.0536952 0.0157663i 0.00494305 0.00145141i
$$119$$ 18.3795 + 6.08634i 1.68485 + 0.557934i
$$120$$ −2.31350 1.48680i −0.211193 0.135726i
$$121$$ 1.16881 3.37704i 0.106255 0.307004i
$$122$$ 1.73127 + 0.693097i 0.156742 + 0.0627501i
$$123$$ 7.10692 6.77644i 0.640810 0.611011i
$$124$$ −5.52978 2.85080i −0.496589 0.256010i
$$125$$ 1.50026 10.4345i 0.134187 0.933291i
$$126$$ −0.510290 0.0174504i −0.0454602 0.00155460i
$$127$$ −0.562520 + 1.23175i −0.0499156 + 0.109300i −0.932947 0.360015i $$-0.882772\pi$$
0.883031 + 0.469315i $$0.155499\pi$$
$$128$$ 5.46920 2.18954i 0.483414 0.193530i
$$129$$ −0.0914523 1.91982i −0.00805192 0.169031i
$$130$$ −0.0168154 + 0.0160334i −0.00147481 + 0.00140623i
$$131$$ −5.06522 + 3.98333i −0.442550 + 0.348025i −0.814436 0.580253i $$-0.802954\pi$$
0.371886 + 0.928278i $$0.378711\pi$$
$$132$$ 3.50272 + 4.04235i 0.304872 + 0.351842i
$$133$$ −2.47296 2.08541i −0.214433 0.180828i
$$134$$ −1.71360 + 1.97760i −0.148033 + 0.170839i
$$135$$ −2.60258 2.48155i −0.223994 0.213578i
$$136$$ 5.57093 + 0.531959i 0.477703 + 0.0456151i
$$137$$ 0.331853 0.574786i 0.0283521 0.0491073i −0.851501 0.524353i $$-0.824307\pi$$
0.879853 + 0.475245i $$0.157641\pi$$
$$138$$ 0.880360 0.285573i 0.0749412 0.0243095i
$$139$$ 20.7875 1.76317 0.881586 0.472023i $$-0.156476\pi$$
0.881586 + 0.472023i $$0.156476\pi$$
$$140$$ 18.2052 + 4.15873i 1.53862 + 0.351477i
$$141$$ 9.17730 2.69470i 0.772868 0.226935i
$$142$$ −0.728852 0.140475i −0.0611639 0.0117884i
$$143$$ 0.0810947 0.0418072i 0.00678148 0.00349610i
$$144$$ 3.70966 0.714978i 0.309138 0.0595815i
$$145$$ −28.9775 + 22.7882i −2.40645 + 1.89246i
$$146$$ −1.85665 0.545160i −0.153657 0.0451178i
$$147$$ 6.66112 2.15162i 0.549400 0.177462i
$$148$$ 2.53801 17.6523i 0.208623 1.45101i
$$149$$ 3.41110 0.325720i 0.279448 0.0266841i 0.0456090 0.998959i $$-0.485477\pi$$
0.233839 + 0.972275i $$0.424871\pi$$
$$150$$ −0.887867 1.24683i −0.0724940 0.101804i
$$151$$ 6.61419 + 5.20145i 0.538255 + 0.423288i 0.849926 0.526902i $$-0.176646\pi$$
−0.311671 + 0.950190i $$0.600889\pi$$
$$152$$ −0.831093 0.428458i −0.0674105 0.0347525i
$$153$$ 7.02136 + 2.06166i 0.567643 + 0.166675i
$$154$$ 1.21424 + 0.679484i 0.0978459 + 0.0547544i
$$155$$ −7.46438 8.61435i −0.599553 0.691921i
$$156$$ 0.00312673 0.0656381i 0.000250339 0.00525526i
$$157$$ 1.29856 + 3.75194i 0.103636 + 0.299437i 0.984883 0.173218i $$-0.0554166\pi$$
−0.881247 + 0.472656i $$0.843295\pi$$
$$158$$ −0.727237 + 2.99771i −0.0578559 + 0.238485i
$$159$$ 2.84132 3.99008i 0.225332 0.316434i
$$160$$ 8.12194 0.642096
$$161$$ −10.0216 + 7.78247i −0.789816 + 0.613344i
$$162$$ −0.192984 −0.0151623
$$163$$ 0.195601 0.274683i 0.0153206 0.0215148i −0.806845 0.590764i $$-0.798827\pi$$
0.822165 + 0.569249i $$0.192766\pi$$
$$164$$ −4.54399 + 18.7306i −0.354826 + 1.46261i
$$165$$ 3.20518 + 9.26075i 0.249523 + 0.720949i
$$166$$ 0.0384101 0.806326i 0.00298120 0.0625831i
$$167$$ −1.36214 1.57200i −0.105406 0.121645i 0.700595 0.713559i $$-0.252918\pi$$
−0.806001 + 0.591914i $$0.798372\pi$$
$$168$$ 1.73853 1.03508i 0.134131 0.0798585i
$$169$$ 12.4723 + 3.66221i 0.959410 + 0.281708i
$$170$$ 4.51385 + 2.32705i 0.346196 + 0.178477i
$$171$$ −0.961083 0.755804i −0.0734959 0.0577978i
$$172$$ 2.18821 + 3.07292i 0.166850 + 0.234308i
$$173$$ −9.11675 + 0.870544i −0.693134 + 0.0661863i −0.435676 0.900103i $$-0.643491\pi$$
−0.257458 + 0.966290i $$0.582885\pi$$
$$174$$ −0.281551 + 1.95823i −0.0213443 + 0.148453i
$$175$$ 17.2555 + 11.9420i 1.30439 + 0.902727i
$$176$$ −9.87837 2.90055i −0.744610 0.218637i
$$177$$ −0.227942 + 0.179256i −0.0171332 + 0.0134737i
$$178$$ 0.299895 0.0578001i 0.0224781 0.00433230i
$$179$$ −5.42728 + 2.79796i −0.405654 + 0.209129i −0.648964 0.760819i $$-0.724797\pi$$
0.243309 + 0.969949i $$0.421767\pi$$
$$180$$ 6.93060 + 1.33576i 0.516577 + 0.0995620i
$$181$$ −12.1853 + 3.57792i −0.905725 + 0.265945i −0.701240 0.712925i $$-0.747370\pi$$
−0.204484 + 0.978870i $$0.565552\pi$$
$$182$$ −0.00503564 0.0163358i −0.000373267 0.00121089i
$$183$$ −9.66327 −0.714329
$$184$$ −2.32302 + 2.83812i −0.171256 + 0.209229i
$$185$$ 16.3370 28.2965i 1.20112 2.08040i
$$186$$ −0.608935 0.0581462i −0.0446493 0.00426349i
$$187$$ −14.4327 13.7616i −1.05542 1.00635i
$$188$$ −12.2939 + 14.1879i −0.896623 + 1.03476i
$$189$$ 2.48840 0.898805i 0.181005 0.0653785i
$$190$$ −0.555654 0.641258i −0.0403113 0.0465218i
$$191$$ 0.551406 0.433630i 0.0398983 0.0313764i −0.598011 0.801488i $$-0.704042\pi$$
0.637909 + 0.770112i $$0.279800\pi$$
$$192$$ −5.15298 + 4.91336i −0.371884 + 0.354591i
$$193$$ −0.583887 12.2573i −0.0420291 0.882300i −0.917186 0.398460i $$-0.869545\pi$$
0.875157 0.483840i $$-0.160758\pi$$
$$194$$ 2.30602 0.923190i 0.165562 0.0662812i
$$195$$ 0.0500136 0.109515i 0.00358155 0.00784250i
$$196$$ −8.71551 + 10.6211i −0.622536 + 0.758652i
$$197$$ 2.25054 15.6529i 0.160345 1.11522i −0.737640 0.675194i $$-0.764060\pi$$
0.897985 0.440027i $$-0.145031\pi$$
$$198$$ 0.467447 + 0.240986i 0.0332200 + 0.0171261i
$$199$$ −3.48591 + 3.32381i −0.247110 + 0.235619i −0.803503 0.595300i $$-0.797033\pi$$
0.556394 + 0.830919i $$0.312185\pi$$
$$200$$ 5.63112 + 2.25436i 0.398180 + 0.159407i
$$201$$ 4.43483 12.8136i 0.312809 0.903803i
$$202$$ 2.55406 + 1.64140i 0.179703 + 0.115488i
$$203$$ −5.48985 26.5614i −0.385312 1.86424i
$$204$$ −13.7812 + 4.04653i −0.964879 + 0.283314i
$$205$$ −20.4832 + 28.7646i −1.43061 + 2.00901i
$$206$$ 1.06459 1.84392i 0.0741733 0.128472i
$$207$$ −3.68508 + 3.06923i −0.256131 + 0.213326i
$$208$$ 0.0632420 + 0.109538i 0.00438504 + 0.00759512i
$$209$$ 1.38414 + 3.03085i 0.0957432 + 0.209648i
$$210$$ 1.81374 0.285662i 0.125160 0.0197125i
$$211$$ −7.84180 + 9.04992i −0.539852 + 0.623022i −0.958488 0.285132i $$-0.907963\pi$$
0.418637 + 0.908154i $$0.362508\pi$$
$$212$$ −0.457466 + 9.60339i −0.0314189 + 0.659564i
$$213$$ 3.77675 0.727908i 0.258778 0.0498754i
$$214$$ 1.08494 + 0.434345i 0.0741650 + 0.0296912i
$$215$$ 1.62947 + 6.71675i 0.111129 + 0.458079i
$$216$$ 0.643348 0.413455i 0.0437743 0.0281320i
$$217$$ 8.12262 2.08630i 0.551400 0.141627i
$$218$$ −0.136932 + 0.299838i −0.00927418 + 0.0203076i
$$219$$ 9.98147 0.953115i 0.674485 0.0644056i
$$220$$ −15.1193 11.8900i −1.01935 0.801622i
$$221$$ 0.0116574 + 0.244720i 0.000784164 + 0.0164616i
$$222$$ −0.413396 1.70404i −0.0277453 0.114368i
$$223$$ −1.63530 11.3737i −0.109507 0.761641i −0.968385 0.249460i $$-0.919747\pi$$
0.858878 0.512181i $$-0.171162\pi$$
$$224$$ −2.66669 + 5.34762i −0.178176 + 0.357303i
$$225$$ 6.67241 + 4.28810i 0.444827 + 0.285873i
$$226$$ −1.88366 0.363045i −0.125299 0.0241494i
$$227$$ −2.94990 + 12.1597i −0.195792 + 0.807065i 0.786174 + 0.618006i $$0.212059\pi$$
−0.981966 + 0.189060i $$0.939456\pi$$
$$228$$ 2.38894 + 0.228116i 0.158211 + 0.0151073i
$$229$$ 0.804014 + 1.39259i 0.0531307 + 0.0920251i 0.891368 0.453281i $$-0.149747\pi$$
−0.838237 + 0.545306i $$0.816413\pi$$
$$230$$ −2.91425 + 1.60751i −0.192160 + 0.105996i
$$231$$ −7.14979 0.930261i −0.470422 0.0612067i
$$232$$ −3.25676 7.13131i −0.213817 0.468194i
$$233$$ 10.9960 + 10.4847i 0.720372 + 0.686873i 0.958734 0.284303i $$-0.0917622\pi$$
−0.238363 + 0.971176i $$0.576611\pi$$
$$234$$ −0.00211320 0.00610570i −0.000138144 0.000399142i
$$235$$ −30.5717 + 15.7608i −1.99428 + 1.02812i
$$236$$ 0.186156 0.537863i 0.0121177 0.0350119i
$$237$$ −2.27477 15.8213i −0.147762 1.02771i
$$238$$ −3.01421 + 2.20794i −0.195382 + 0.143120i
$$239$$ −4.87478 + 3.13283i −0.315324 + 0.202646i −0.688723 0.725024i $$-0.741828\pi$$
0.373400 + 0.927671i $$0.378192\pi$$
$$240$$ −12.6124 + 5.04925i −0.814128 + 0.325928i
$$241$$ 0.348609 + 0.489553i 0.0224559 + 0.0315349i 0.825651 0.564181i $$-0.190808\pi$$
−0.803195 + 0.595716i $$0.796869\pi$$
$$242$$ 0.400033 + 0.561768i 0.0257151 + 0.0361118i
$$243$$ 0.928368 0.371662i 0.0595548 0.0238422i
$$244$$ 15.9558 10.2541i 1.02146 0.656454i
$$245$$ −22.0565 + 12.1307i −1.40914 + 0.775004i
$$246$$ 0.269696 + 1.87578i 0.0171952 + 0.119595i
$$247$$ 0.0133884 0.0386833i 0.000851884 0.00246136i
$$248$$ 2.15457 1.11076i 0.136815 0.0705332i
$$249$$ 1.36811 + 3.95288i 0.0867002 + 0.250504i
$$250$$ 1.47237 + 1.40390i 0.0931206 + 0.0887903i
$$251$$ −1.48949 3.26153i −0.0940160 0.205866i 0.856781 0.515680i $$-0.172461\pi$$
−0.950797 + 0.309814i $$0.899733\pi$$
$$252$$ −3.15503 + 4.12465i −0.198748 + 0.259828i
$$253$$ 12.7587 2.83263i 0.802131 0.178086i
$$254$$ −0.130661 0.226312i −0.00819842 0.0142001i
$$255$$ −26.1959 2.50140i −1.64045 0.156644i
$$256$$ 3.08917 12.7337i 0.193073 0.795857i
$$257$$ −8.77141 1.69055i −0.547145 0.105454i −0.0918149 0.995776i $$-0.529267\pi$$
−0.455331 + 0.890322i $$0.650479\pi$$
$$258$$ 0.312033 + 0.200532i 0.0194263 + 0.0124846i
$$259$$ 13.2669 + 20.0472i 0.824365 + 1.24567i
$$260$$ 0.0336297 + 0.233900i 0.00208563 + 0.0145058i
$$261$$ −2.41687 9.96247i −0.149600 0.616661i
$$262$$ −0.0591711 1.24215i −0.00365560 0.0767405i
$$263$$ 2.62571 + 2.06488i 0.161908 + 0.127326i 0.695826 0.718210i $$-0.255038\pi$$
−0.533918 + 0.845536i $$0.679281\pi$$
$$264$$ −2.07462 + 0.198102i −0.127684 + 0.0121923i
$$265$$ −7.31740 + 16.0229i −0.449504 + 0.984277i
$$266$$ 0.604654 0.155306i 0.0370737 0.00952239i
$$267$$ −1.33136 + 0.855612i −0.0814778 + 0.0523626i
$$268$$ 6.27443 + 25.8635i 0.383272 + 1.57987i
$$269$$ −11.7712 4.71249i −0.717705 0.287326i −0.0160788 0.999871i $$-0.505118\pi$$
−0.701627 + 0.712545i $$0.747542\pi$$
$$270$$ 0.681437 0.131336i 0.0414710 0.00799287i
$$271$$ −0.259382 + 5.44509i −0.0157563 + 0.330766i 0.977203 + 0.212308i $$0.0680980\pi$$
−0.992959 + 0.118458i $$0.962205\pi$$
$$272$$ 18.1043 20.8935i 1.09774 1.26685i
$$273$$ 0.0556851 + 0.0688869i 0.00337021 + 0.00416923i
$$274$$ 0.0532083 + 0.116510i 0.00321443 + 0.00703862i
$$275$$ −10.8073 18.7187i −0.651702 1.12878i
$$276$$ 2.82781 8.97825i 0.170214 0.540427i
$$277$$ −8.30769 + 14.3893i −0.499161 + 0.864572i −1.00000 0.000968891i $$-0.999692\pi$$
0.500839 + 0.865541i $$0.333025\pi$$
$$278$$ −2.32699 + 3.26780i −0.139563 + 0.195989i
$$279$$ 3.04132 0.893012i 0.182079 0.0534632i
$$280$$ −5.43441 + 4.83811i −0.324768 + 0.289132i
$$281$$ 14.7964 + 9.50909i 0.882681 + 0.567265i 0.901607 0.432556i $$-0.142388\pi$$
−0.0189257 + 0.999821i $$0.506025\pi$$
$$282$$ −0.603716 + 1.74432i −0.0359508 + 0.103873i
$$283$$ 21.1393 + 8.46292i 1.25660 + 0.503068i 0.901914 0.431916i $$-0.142162\pi$$
0.354690 + 0.934984i $$0.384586\pi$$
$$284$$ −5.46366 + 5.20959i −0.324208 + 0.309132i
$$285$$ 3.90800 + 2.01472i 0.231490 + 0.119341i
$$286$$ −0.00250578 + 0.0174281i −0.000148170 + 0.00103054i
$$287$$ −12.2138 22.9308i −0.720958 1.35356i
$$288$$ −0.938247 + 2.05448i −0.0552868 + 0.121061i
$$289$$ 33.9318 13.5842i 1.99599 0.799072i
$$290$$ −0.338511 7.10622i −0.0198781 0.417292i
$$291$$ −9.31536 + 8.88218i −0.546076 + 0.520683i
$$292$$ −15.4698 + 12.1656i −0.905300 + 0.711936i
$$293$$ 3.59569 + 4.14965i 0.210062 + 0.242425i 0.850997 0.525171i $$-0.175998\pi$$
−0.640935 + 0.767596i $$0.721453\pi$$
$$294$$ −0.407423 + 1.28799i −0.0237614 + 0.0751168i
$$295$$ 0.682883 0.788089i 0.0397590 0.0458843i
$$296$$ 5.02892 + 4.79507i 0.292300 + 0.278708i
$$297$$ −2.71281 0.259042i −0.157413 0.0150311i
$$298$$ −0.330641 + 0.572687i −0.0191535 + 0.0331749i
$$299$$ −0.137458 0.0829813i −0.00794938 0.00479893i
$$300$$ −15.5676 −0.898797
$$301$$ −4.95742 1.13246i −0.285741 0.0652738i
$$302$$ −1.55807 + 0.457492i −0.0896571 + 0.0263257i
$$303$$ −15.4477 2.97730i −0.887446 0.171041i
$$304$$ −4.10567 + 2.11662i −0.235476 + 0.121397i
$$305$$ 34.1215 6.57638i 1.95379 0.376563i
$$306$$ −1.11008 + 0.872973i −0.0634588 + 0.0499046i
$$307$$ 19.0306 + 5.58788i 1.08613 + 0.318917i 0.775329 0.631557i $$-0.217584\pi$$
0.310803 + 0.950474i $$0.399402\pi$$
$$308$$ 12.7927 6.05095i 0.728932 0.344785i
$$309$$ −1.57015 + 10.9206i −0.0893224 + 0.621251i
$$310$$ 2.18975 0.209096i 0.124370 0.0118759i
$$311$$ −9.13464 12.8278i −0.517978 0.727398i 0.469885 0.882728i $$-0.344295\pi$$
−0.987863 + 0.155330i $$0.950356\pi$$
$$312$$ 0.0201258 + 0.0158271i 0.00113940 + 0.000896032i
$$313$$ 8.15446 + 4.20392i 0.460917 + 0.237619i 0.673015 0.739629i $$-0.264999\pi$$
−0.212097 + 0.977249i $$0.568029\pi$$
$$314$$ −0.735169 0.215865i −0.0414880 0.0121820i
$$315$$ −8.17500 + 4.86723i −0.460609 + 0.274237i
$$316$$ 20.5448 + 23.7100i 1.15574 + 1.33379i
$$317$$ −1.12647 + 23.6475i −0.0632689 + 1.32818i 0.714503 + 0.699632i $$0.246653\pi$$
−0.777772 + 0.628546i $$0.783650\pi$$
$$318$$ 0.309179 + 0.893313i 0.0173379 + 0.0500945i
$$319$$ −6.58632 + 27.1492i −0.368763 + 1.52006i
$$320$$ 14.8516 20.8562i 0.830232 1.16590i
$$321$$ −6.05570 −0.337996
$$322$$ −0.101565 2.44659i −0.00566002 0.136343i
$$323$$ −8.94723 −0.497837
$$324$$ −1.13851 + 1.59881i −0.0632506 + 0.0888230i
$$325$$ −0.0626045 + 0.258059i −0.00347267 + 0.0143146i
$$326$$ 0.0212843 + 0.0614969i 0.00117883 + 0.00340600i
$$327$$ 0.0812722 1.70611i 0.00449436 0.0943483i
$$328$$ −4.91780 5.67544i −0.271540 0.313374i
$$329$$ −0.339500 25.3037i −0.0187172 1.39504i
$$330$$ −1.81459 0.532810i −0.0998896 0.0293302i
$$331$$ −0.0596015 0.0307267i −0.00327600 0.00168889i 0.456588 0.889678i $$-0.349071\pi$$
−0.459864 + 0.887989i $$0.652102\pi$$
$$332$$ −6.45357 5.07514i −0.354186 0.278535i
$$333$$ 5.27045 + 7.40131i 0.288819 + 0.405589i
$$334$$ 0.399599 0.0381571i 0.0218651 0.00208786i
$$335$$ −6.93928 + 48.2637i −0.379133 + 2.63693i
$$336$$ 0.816554 9.96205i 0.0445466 0.543475i
$$337$$ 1.16763 + 0.342848i 0.0636050 + 0.0186761i 0.313380 0.949628i $$-0.398539\pi$$
−0.249775 + 0.968304i $$0.580357\pi$$
$$338$$ −1.97187 + 1.55070i −0.107256 + 0.0843469i
$$339$$ 9.76068 1.88122i 0.530127 0.102174i
$$340$$ 45.9084 23.6674i 2.48973 1.28355i
$$341$$ −8.48183 1.63474i −0.459317 0.0885261i
$$342$$ 0.226398 0.0664764i 0.0122422 0.00359463i
$$343$$ −0.745214 18.5053i −0.0402378 0.999190i
$$344$$ −1.46985 −0.0792487
$$345$$ 10.9234 13.3455i 0.588098 0.718499i
$$346$$ 0.883696 1.53061i 0.0475078 0.0822859i
$$347$$ 30.7365 + 2.93498i 1.65002 + 0.157558i 0.878204 0.478286i $$-0.158742\pi$$
0.771817 + 0.635844i $$0.219348\pi$$
$$348$$ 14.5623 + 13.8851i 0.780622 + 0.744322i
$$349$$ 13.4834 15.5606i 0.721748 0.832941i −0.269768 0.962925i $$-0.586947\pi$$
0.991516 + 0.129984i $$0.0414926\pi$$
$$350$$ −3.80888 + 1.37576i −0.203593 + 0.0735375i
$$351$$ 0.0219245 + 0.0253023i 0.00117025 + 0.00135054i
$$352$$ 4.83812 3.80474i 0.257873 0.202793i
$$353$$ −11.9089 + 11.3551i −0.633845 + 0.604370i −0.937320 0.348469i $$-0.886702\pi$$
0.303475 + 0.952839i $$0.401853\pi$$
$$354$$ −0.00266278 0.0558987i −0.000141525 0.00297098i
$$355$$ −12.8405 + 5.14057i −0.681504 + 0.272833i
$$356$$ 1.29038 2.82553i 0.0683899 0.149753i
$$357$$ 10.2479 16.4265i 0.542377 0.869382i
$$358$$ 0.167700 1.16638i 0.00886322 0.0616450i
$$359$$ −25.8470 13.3251i −1.36415 0.703271i −0.388268 0.921547i $$-0.626926\pi$$
−0.975887 + 0.218276i $$0.929957\pi$$
$$360$$ −1.99032 + 1.89776i −0.104899 + 0.100021i
$$361$$ −16.2512 6.50598i −0.855324 0.342420i
$$362$$ 0.801592 2.31605i 0.0421307 0.121729i
$$363$$ −3.00629 1.93203i −0.157789 0.101405i
$$364$$ −0.165045 0.0546544i −0.00865071 0.00286467i
$$365$$ −34.5965 + 10.1584i −1.81086 + 0.531717i
$$366$$ 1.08172 1.51907i 0.0565426 0.0794029i
$$367$$ −13.7198 + 23.7633i −0.716166 + 1.24044i 0.246342 + 0.969183i $$0.420771\pi$$
−0.962508 + 0.271253i $$0.912562\pi$$
$$368$$ 4.76411 + 17.4808i 0.248346 + 0.911247i
$$369$$ −4.90990 8.50420i −0.255599 0.442711i
$$370$$ 2.61942 + 5.73573i 0.136177 + 0.298186i
$$371$$ −8.14718 10.0787i −0.422981 0.523261i
$$372$$ −4.07414 + 4.70181i −0.211234 + 0.243777i
$$373$$ 0.622519 13.0683i 0.0322328 0.676651i −0.923709 0.383095i $$-0.874858\pi$$
0.955942 0.293556i $$-0.0948387\pi$$
$$374$$ 3.77894 0.728332i 0.195405 0.0376611i
$$375$$ −9.78668 3.91800i −0.505382 0.202324i
$$376$$ −1.72449 7.10844i −0.0889337 0.366590i
$$377$$ 0.288731 0.185556i 0.0148704 0.00955663i
$$378$$ −0.137264 + 0.491791i −0.00706009 + 0.0252950i
$$379$$ 4.97271 10.8887i 0.255431 0.559316i −0.737860 0.674953i $$-0.764164\pi$$
0.993292 + 0.115637i $$0.0368910\pi$$
$$380$$ −8.59071 + 0.820314i −0.440694 + 0.0420812i
$$381$$ 1.06441 + 0.837059i 0.0545312 + 0.0428838i
$$382$$ 0.00644144 + 0.135222i 0.000329573 + 0.00691858i
$$383$$ −0.463747 1.91159i −0.0236964 0.0976777i 0.958735 0.284300i $$-0.0917611\pi$$
−0.982432 + 0.186622i $$0.940246\pi$$
$$384$$ −0.838405 5.83124i −0.0427847 0.297574i
$$385$$ 25.8794 1.58102i 1.31894 0.0805764i
$$386$$ 1.99221 + 1.28032i 0.101401 + 0.0651664i
$$387$$ −1.88726 0.363740i −0.0959350 0.0184900i
$$388$$ 5.95601 24.5510i 0.302371 1.24639i
$$389$$ −27.7170 2.64665i −1.40531 0.134190i −0.635319 0.772250i $$-0.719131\pi$$
−0.769987 + 0.638059i $$0.779737\pi$$
$$390$$ 0.0116171 + 0.0201214i 0.000588255 + 0.00101889i
$$391$$ −7.31334 + 34.3244i −0.369852 + 1.73586i
$$392$$ −1.40120 5.16661i −0.0707711 0.260953i
$$393$$ 2.67688 + 5.86154i 0.135031 + 0.295676i
$$394$$ 2.20871 + 2.10600i 0.111273 + 0.106099i
$$395$$ 18.7996 + 54.3179i 0.945912 + 2.73303i
$$396$$ 4.75420 2.45096i 0.238908 0.123165i
$$397$$ 10.0899 29.1528i 0.506397 1.46314i −0.344993 0.938605i $$-0.612119\pi$$
0.851390 0.524533i $$-0.175760\pi$$
$$398$$ −0.132284 0.920059i −0.00663082 0.0461184i
$$399$$ −2.60964 + 1.91160i −0.130646 + 0.0956995i
$$400$$ 25.2079 16.2001i 1.26039 0.810006i
$$401$$ −28.4714 + 11.3982i −1.42179 + 0.569200i −0.949928 0.312470i $$-0.898844\pi$$
−0.471866 + 0.881670i $$0.656420\pi$$
$$402$$ 1.51786 + 2.13154i 0.0757039 + 0.106311i
$$403$$ 0.0615563 + 0.0864437i 0.00306634 + 0.00430607i
$$404$$ 28.6662 11.4762i 1.42620 0.570963i
$$405$$ −3.02518 + 1.94417i −0.150322 + 0.0966064i
$$406$$ 4.78999 + 2.11032i 0.237723 + 0.104733i
$$407$$ −3.52384 24.5089i −0.174670 1.21486i
$$408$$ 1.83036 5.28848i 0.0906163 0.261819i
$$409$$ 16.2605 8.38285i 0.804028 0.414505i −0.00666432 0.999978i $$-0.502121\pi$$
0.810692 + 0.585473i $$0.199091\pi$$
$$410$$ −2.22888 6.43993i −0.110077 0.318045i
$$411$$ −0.480346 0.458009i −0.0236937 0.0225919i
$$412$$ −8.99577 19.6980i −0.443190 0.970450i
$$413$$ 0.294678 + 0.708376i 0.0145002 + 0.0348569i
$$414$$ −0.0699699 0.922870i −0.00343883 0.0453566i
$$415$$ −7.52101 13.0268i −0.369192 0.639459i
$$416$$ −0.0752742 0.00718781i −0.00369062 0.000352411i
$$417$$ 4.90084 20.2015i 0.239995 0.989273i
$$418$$ −0.631394 0.121691i −0.0308825 0.00595211i
$$419$$ −22.6845 14.5784i −1.10821 0.712203i −0.147308 0.989091i $$-0.547061\pi$$
−0.960902 + 0.276887i $$0.910697\pi$$
$$420$$ 8.33353 16.7115i 0.406635 0.815439i
$$421$$ 0.959546 + 6.67379i 0.0467654 + 0.325261i 0.999752 + 0.0222495i $$0.00708283\pi$$
−0.952987 + 0.303011i $$0.902008\pi$$
$$422$$ −0.544824 2.24580i −0.0265216 0.109324i
$$423$$ −0.455109 9.55391i −0.0221281 0.464527i
$$424$$ −2.94456 2.31563i −0.143001 0.112457i
$$425$$ 57.7782 5.51715i 2.80265 0.267621i
$$426$$ −0.308348 + 0.675189i −0.0149395 + 0.0327130i
$$427$$ −6.87319 + 24.6254i −0.332617 + 1.19171i
$$428$$ 9.99903 6.42599i 0.483321 0.310612i
$$429$$ −0.0215100 0.0886652i −0.00103851 0.00428080i
$$430$$ −1.23828 0.495732i −0.0597152 0.0239063i
$$431$$ −0.301669 + 0.0581419i −0.0145309 + 0.00280060i −0.196512 0.980502i $$-0.562961\pi$$
0.181981 + 0.983302i $$0.441749\pi$$
$$432$$ 0.179761 3.77365i 0.00864876 0.181560i
$$433$$ 5.12628 5.91604i 0.246353 0.284307i −0.619083 0.785325i $$-0.712496\pi$$
0.865437 + 0.501019i $$0.167041\pi$$
$$434$$ −0.581294 + 1.51042i −0.0279030 + 0.0725026i
$$435$$ 15.3141 + 33.5332i 0.734255 + 1.60779i
$$436$$ 1.67624 + 2.90334i 0.0802774 + 0.139045i
$$437$$ 3.26588 4.87003i 0.156228 0.232965i
$$438$$ −0.967514 + 1.67578i −0.0462296 + 0.0800720i
$$439$$ −3.56030 + 4.99974i −0.169924 + 0.238625i −0.890753 0.454489i $$-0.849822\pi$$
0.720829 + 0.693113i $$0.243761\pi$$
$$440$$ 7.19076 2.11140i 0.342806 0.100657i
$$441$$ −0.520545 6.98062i −0.0247879 0.332410i
$$442$$ −0.0397749 0.0255618i −0.00189190 0.00121585i
$$443$$ −6.90825 + 19.9601i −0.328221 + 0.948331i 0.653321 + 0.757081i $$0.273375\pi$$
−0.981541 + 0.191250i $$0.938746\pi$$
$$444$$ −16.5563 6.62815i −0.785728 0.314558i
$$445$$ 4.11881 3.92728i 0.195250 0.186171i
$$446$$ 1.97101 + 1.01613i 0.0933300 + 0.0481150i
$$447$$ 0.487658 3.39174i 0.0230654 0.160424i
$$448$$ 8.85580 + 16.6263i 0.418397 + 0.785520i
$$449$$ 5.19622 11.3781i 0.245225 0.536967i −0.746495 0.665391i $$-0.768265\pi$$
0.991719 + 0.128424i $$0.0409920\pi$$
$$450$$ −1.42101 + 0.568887i −0.0669871 + 0.0268176i
$$451$$ 1.27331 + 26.7301i 0.0599578 + 1.25867i
$$452$$ −14.1204 + 13.4637i −0.664166 + 0.633281i
$$453$$ 6.61419 5.20145i 0.310762 0.244386i
$$454$$ −1.58128 1.82490i −0.0742134 0.0856468i
$$455$$ −0.243508 0.205347i −0.0114159 0.00962681i
$$456$$ −0.612318 + 0.706653i −0.0286744 + 0.0330920i
$$457$$ 11.1874 + 10.6672i 0.523325 + 0.498989i 0.905061 0.425282i $$-0.139825\pi$$
−0.381736 + 0.924271i $$0.624674\pi$$
$$458$$ −0.308919 0.0294981i −0.0144348 0.00137836i
$$459$$ 3.65889 6.33738i 0.170782 0.295804i
$$460$$ −3.87495 + 33.6272i −0.180670 + 1.56788i
$$461$$ −19.0846 −0.888857 −0.444429 0.895814i $$-0.646593\pi$$
−0.444429 + 0.895814i $$0.646593\pi$$
$$462$$ 0.946597 1.01981i 0.0440397 0.0474460i
$$463$$ −24.3955 + 7.16318i −1.13376 + 0.332901i −0.794183 0.607678i $$-0.792101\pi$$
−0.339574 + 0.940579i $$0.610283\pi$$
$$464$$ −38.0293 7.32955i −1.76547 0.340266i
$$465$$ −10.1313 + 5.22306i −0.469829 + 0.242214i
$$466$$ −2.87910 + 0.554901i −0.133372 + 0.0257053i
$$467$$ 18.7102 14.7139i 0.865805 0.680876i −0.0830651 0.996544i $$-0.526471\pi$$
0.948870 + 0.315668i $$0.102229\pi$$
$$468$$ −0.0630507 0.0185134i −0.00291452 0.000855781i
$$469$$ −29.4992 20.4155i −1.36215 0.942698i
$$470$$ 0.944647 6.57016i 0.0435733 0.303059i
$$471$$ 3.95233 0.377401i 0.182114 0.0173897i
$$472$$ 0.128636 + 0.180644i 0.00592095 + 0.00831481i
$$473$$ 4.11713 + 3.23774i 0.189306 + 0.148872i
$$474$$ 2.74176 + 1.41348i 0.125933 + 0.0649231i
$$475$$ −9.30479 2.73213i −0.426933 0.125359i
$$476$$ 0.509814 + 37.9976i 0.0233673 + 1.74162i
$$477$$ −3.20774 3.70193i −0.146872 0.169500i
$$478$$ 0.0532098 1.11701i 0.00243376 0.0510909i
$$479$$ −0.887948 2.56556i −0.0405714 0.117223i 0.922896 0.385050i $$-0.125816\pi$$
−0.963467 + 0.267827i $$0.913695\pi$$
$$480$$ 1.91482 7.89299i 0.0873992 0.360264i
$$481$$ −0.176453 + 0.247794i −0.00804557 + 0.0112984i
$$482$$ −0.115982 −0.00528282
$$483$$ 5.20040 + 11.5739i 0.236626 + 0.526632i
$$484$$ 7.01408 0.318822
$$485$$ 26.8483 37.7031i 1.21912 1.71201i
$$486$$ −0.0454977 + 0.187544i −0.00206382 + 0.00850718i
$$487$$ −9.83899 28.4279i −0.445847 1.28819i −0.914420 0.404766i $$-0.867353\pi$$
0.468573 0.883425i $$-0.344768\pi$$
$$488$$ −0.351629 + 7.38160i −0.0159175 + 0.334149i
$$489$$ −0.220825 0.254846i −0.00998606 0.0115245i
$$490$$ 0.562090 4.82522i 0.0253926 0.217981i
$$491$$ −9.61134 2.82214i −0.433754 0.127362i 0.0575644 0.998342i $$-0.481667\pi$$
−0.491318 + 0.870980i $$0.663485\pi$$
$$492$$ 17.1313 + 8.83180i 0.772339 + 0.398168i
$$493$$ −58.9680 46.3729i −2.65578 2.08853i
$$494$$ 0.00458229 + 0.00643493i 0.000206167 + 0.000289521i
$$495$$ 9.75536 0.931524i 0.438471 0.0418689i
$$496$$ 1.70421 11.8531i 0.0765215 0.532219i
$$497$$ 0.831321 10.1422i 0.0372898 0.454941i
$$498$$ −0.774542 0.227426i −0.0347080 0.0101912i
$$499$$ 17.5614 13.8104i 0.786156 0.618240i −0.142240 0.989832i $$-0.545430\pi$$
0.928396 + 0.371592i $$0.121188\pi$$
$$500$$ 20.3171 3.91580i 0.908609 0.175120i
$$501$$ −1.84882 + 0.953134i −0.0825993 + 0.0425829i
$$502$$ 0.679450 + 0.130953i 0.0303254 + 0.00584473i
$$503$$ 37.6484 11.0546i 1.67866 0.492899i 0.702817 0.711371i $$-0.251925\pi$$
0.975843 + 0.218472i $$0.0701072\pi$$
$$504$$ −0.596033 1.93355i −0.0265494 0.0861274i
$$505$$ 56.5728 2.51746
$$506$$ −0.982938 + 2.32276i −0.0436969 + 0.103259i
$$507$$ 6.49944 11.2574i 0.288650 0.499957i
$$508$$ −2.64577 0.252640i −0.117387 0.0112091i
$$509$$ −4.71804 4.49864i −0.209124 0.199399i 0.578277 0.815840i $$-0.303725\pi$$
−0.787401 + 0.616441i $$0.788574\pi$$
$$510$$ 3.32563 3.83799i 0.147262 0.169949i
$$511$$ 4.67065 26.1142i 0.206617 1.15523i
$$512$$ 9.37177 + 10.8156i 0.414178 + 0.477986i
$$513$$ −0.961083 + 0.755804i −0.0424329 + 0.0333696i
$$514$$ 1.24764 1.18962i 0.0550311 0.0524721i
$$515$$ −1.88780 39.6298i −0.0831864 1.74630i
$$516$$ 3.50219 1.40206i 0.154175 0.0617224i
$$517$$ −10.8279 + 23.7098i −0.476211 + 1.04276i
$$518$$ −4.63654 0.158556i −0.203718 0.00696653i
$$519$$ −1.30335 + 9.06501i −0.0572108 + 0.397910i
$$520$$ −0.0818364 0.0421896i −0.00358876 0.00185014i
$$521$$ −1.37199 + 1.30819i −0.0601079 + 0.0573127i −0.719538 0.694453i $$-0.755646\pi$$
0.659430 + 0.751766i $$0.270798\pi$$
$$522$$ 1.83665 + 0.735284i 0.0803880 + 0.0321825i
$$523$$ −2.14925 + 6.20984i −0.0939799 + 0.271537i −0.982187 0.187906i $$-0.939830\pi$$
0.888207 + 0.459443i $$0.151951\pi$$
$$524$$ −10.6400 6.83788i −0.464808 0.298714i
$$525$$ 15.6735 13.9536i 0.684046 0.608987i
$$526$$ −0.618527 + 0.181616i −0.0269691 + 0.00791883i
$$527$$ 13.4546 18.8943i 0.586091 0.823049i
$$528$$ −5.14770 + 8.91608i −0.224025 + 0.388023i
$$529$$ −16.0135 16.5096i −0.696239 0.717810i
$$530$$ −1.69968 2.94393i −0.0738292 0.127876i
$$531$$ 0.120463 + 0.263778i 0.00522766 + 0.0114470i
$$532$$ 2.28050 5.92560i 0.0988721 0.256907i
$$533$$ 0.215295 0.248463i 0.00932545 0.0107621i
$$534$$ 0.0145322 0.305068i 0.000628870 0.0132016i
$$535$$ 21.3830 4.12124i 0.924468 0.178177i
$$536$$ −9.62672 3.85396i −0.415811 0.166466i
$$537$$ 1.43956 + 5.93394i 0.0621215 + 0.256068i
$$538$$ 2.05850 1.32292i 0.0887482 0.0570350i
$$539$$ −7.45607 + 17.5585i −0.321155 + 0.756299i
$$540$$ 2.93206 6.42032i 0.126176 0.276287i
$$541$$ 17.1400 1.63667i 0.736904 0.0703658i 0.280147 0.959957i $$-0.409617\pi$$
0.456757 + 0.889591i $$0.349011\pi$$
$$542$$ −0.826934 0.650308i −0.0355198 0.0279331i
$$543$$ 0.604276 + 12.6853i 0.0259320 + 0.544379i
$$544$$ 3.89657 + 16.0619i 0.167064 + 0.688648i
$$545$$ 0.874128 + 6.07969i 0.0374435 + 0.260425i
$$546$$ −0.0170625 + 0.00104238i −0.000730209 + 4.46099e-5i
$$547$$ −24.7220 15.8879i −1.05704 0.679316i −0.107893 0.994162i $$-0.534410\pi$$
−0.949142 + 0.314847i $$0.898047\pi$$
$$548$$ 1.27915 + 0.246536i 0.0546426 + 0.0105315i
$$549$$ −2.27820 + 9.39087i −0.0972313 + 0.400793i
$$550$$ 4.15237 + 0.396503i 0.177058 + 0.0169069i
$$551$$ 6.26706 + 10.8549i 0.266986 + 0.462433i
$$552$$ 2.21044 + 2.92665i 0.0940826 + 0.124567i
$$553$$ −41.9363 5.45635i −1.78331 0.232027i
$$554$$ −1.33203 2.91674i −0.0565925 0.123920i
$$555$$ −23.6472 22.5476i −1.00377 0.957092i
$$556$$ 13.3446 + 38.5568i 0.565939 + 1.63517i
$$557$$ −15.9613 + 8.22862i −0.676302 + 0.348658i −0.761921 0.647670i $$-0.775743\pi$$
0.0856191 + 0.996328i $$0.472713\pi$$
$$558$$ −0.200069 + 0.578061i −0.00846959 + 0.0244713i
$$559$$ −0.00915766 0.0636929i −0.000387328 0.00269392i
$$560$$ 3.89643 + 35.7323i 0.164654 + 1.50996i
$$561$$ −16.7763 + 10.7815i −0.708295 + 0.455194i
$$562$$ −3.15117 + 1.26154i −0.132924 + 0.0532148i
$$563$$ 18.9428 + 26.6015i 0.798345 + 1.12112i 0.990195 + 0.139694i $$0.0446118\pi$$
−0.191850 + 0.981424i $$0.561449\pi$$
$$564$$ 10.8896 + 15.2923i 0.458533 + 0.643920i
$$565$$ −33.1852 + 13.2854i −1.39611 + 0.558919i
$$566$$ −3.69675 + 2.37576i −0.155386 + 0.0998605i
$$567$$ −0.286806 2.63016i −0.0120447 0.110456i
$$568$$ −0.418607 2.91148i −0.0175644 0.122163i
$$569$$ 9.64620 27.8709i 0.404390 1.16841i −0.540592 0.841285i $$-0.681800\pi$$
0.944982 0.327123i $$-0.106079\pi$$
$$570$$ −0.754183 + 0.388808i −0.0315892 + 0.0162854i
$$571$$ −8.01674 23.1628i −0.335490 0.969334i −0.978994 0.203891i $$-0.934641\pi$$
0.643504 0.765443i $$-0.277480\pi$$
$$572$$ 0.129604 + 0.123577i 0.00541900 + 0.00516700i
$$573$$ −0.291408 0.638095i −0.0121738 0.0266568i
$$574$$ 4.97196 + 0.646903i 0.207526 + 0.0270012i
$$575$$ −18.0869 + 33.4629i −0.754277 + 1.39550i
$$576$$ 3.56000 + 6.16609i 0.148333 + 0.256921i
$$577$$ 25.7368 + 2.45757i 1.07144 + 0.102310i 0.615836 0.787875i $$-0.288818\pi$$
0.455601 + 0.890184i $$0.349425\pi$$
$$578$$ −1.66294 + 6.85472i −0.0691691 + 0.285119i
$$579$$ −12.0494 2.32234i −0.500758 0.0965131i
$$580$$ −60.8699 39.1187i −2.52749 1.62432i
$$581$$ 11.0464 0.674847i 0.458283 0.0279974i
$$582$$ −0.353503 2.45866i −0.0146532 0.101915i
$$583$$ 3.14708 + 12.9724i 0.130339 + 0.537264i
$$584$$ −0.364860 7.65936i −0.0150980 0.316947i
$$585$$ −0.0946364 0.0744229i −0.00391273 0.00307701i
$$586$$ −1.05483 + 0.100724i −0.0435747 + 0.00416088i
$$587$$ 3.19283 6.99133i 0.131782 0.288563i −0.832225 0.554438i $$-0.812933\pi$$
0.964008 + 0.265874i $$0.0856607\pi$$
$$588$$ 8.26697 + 10.9739i 0.340924 + 0.452554i
$$589$$ −3.26029 + 2.09526i −0.134338 + 0.0863337i
$$590$$ 0.0474446 + 0.195569i 0.00195326 + 0.00805146i
$$591$$ −14.6811 5.87741i −0.603898 0.241764i
$$592$$ 33.7063 6.49635i 1.38532 0.266998i
$$593$$ −0.314515 + 6.60249i −0.0129156 + 0.271132i 0.983167 + 0.182708i $$0.0584861\pi$$
−0.996083 + 0.0884242i $$0.971817\pi$$
$$594$$ 0.344398 0.397456i 0.0141308 0.0163078i
$$595$$ −25.0068 + 64.9771i −1.02518 + 2.66380i
$$596$$ 2.79392 + 6.11783i 0.114443 + 0.250596i
$$597$$ 2.40828 + 4.17126i 0.0985644 + 0.170719i
$$598$$ 0.0284319 0.0123193i 0.00116267 0.000503773i
$$599$$ 18.3949 31.8609i 0.751596 1.30180i −0.195453 0.980713i $$-0.562618\pi$$
0.947049 0.321090i $$-0.104049\pi$$
$$600$$ 3.51840 4.94090i 0.143638 0.201711i
$$601$$ −38.5727 + 11.3260i −1.57341 + 0.461996i −0.947993 0.318291i $$-0.896891\pi$$
−0.625421 + 0.780287i $$0.715073\pi$$
$$602$$ 0.732965 0.652538i 0.0298734 0.0265955i
$$603$$ −11.4069 7.33075i −0.464523 0.298531i
$$604$$ −5.40168 + 15.6071i −0.219791 + 0.635046i
$$605$$ 11.9302 + 4.77614i 0.485033 + 0.194178i
$$606$$ 2.19727 2.09509i 0.0892581 0.0851074i
$$607$$ 11.3195 + 5.83562i 0.459445 + 0.236860i 0.672380 0.740206i $$-0.265272\pi$$
−0.212935 + 0.977066i $$0.568302\pi$$
$$608$$ 0.393002 2.73339i 0.0159383 0.110853i
$$609$$ −27.1069 0.926975i −1.09843 0.0375629i
$$610$$ −2.78581 + 6.10008i −0.112794 + 0.246985i
$$611$$ 0.297286 0.119016i 0.0120269 0.00481485i
$$612$$ 0.683420 + 14.3468i 0.0276256 + 0.579933i
$$613$$ −13.8188 + 13.1762i −0.558137 + 0.532183i −0.915782 0.401675i $$-0.868428\pi$$
0.357645 + 0.933858i $$0.383580\pi$$
$$614$$ −3.00873 + 2.36609i −0.121422 + 0.0954877i
$$615$$ 23.1247 + 26.6873i 0.932478 + 1.07614i
$$616$$ −0.970779 + 5.42775i −0.0391138 + 0.218690i
$$617$$ 10.0252 11.5697i 0.403600 0.465780i −0.517171 0.855882i $$-0.673015\pi$$
0.920772 + 0.390102i $$0.127560\pi$$
$$618$$ −1.54096 1.46930i −0.0619863 0.0591038i
$$619$$ 26.0641 + 2.48882i 1.04760 + 0.100034i 0.604635 0.796503i $$-0.293319\pi$$
0.442969 + 0.896537i $$0.353925\pi$$
$$620$$ 11.1862 19.3750i 0.449247 0.778119i
$$621$$ 2.11393 + 4.30480i 0.0848289 + 0.172746i
$$622$$ 3.03908 0.121856
$$623$$ 1.23344 + 4.00134i 0.0494169 + 0.160310i
$$624$$ 0.121361 0.0356347i 0.00485831 0.00142653i
$$625$$ −1.71714 0.330952i −0.0686856 0.0132381i
$$626$$ −1.57368 + 0.811289i −0.0628969 + 0.0324256i
$$627$$ 3.27174 0.630576i 0.130661 0.0251828i
$$628$$ −6.12551 + 4.81715i −0.244434 + 0.192225i
$$629$$ 63.7967 + 18.7324i 2.54374 + 0.746909i
$$630$$ 0.149995 1.82996i 0.00597594 0.0729073i
$$631$$ 3.41537 23.7544i 0.135964 0.945648i −0.801607 0.597852i $$-0.796021\pi$$
0.937570 0.347796i $$-0.113070\pi$$
$$632$$ −12.1684 + 1.16194i −0.484034 + 0.0462197i
$$633$$ 6.94604 + 9.75435i 0.276080 + 0.387701i
$$634$$ −3.59130 2.82423i −0.142629 0.112164i
$$635$$ −4.32814 2.23131i −0.171757 0.0885470i
$$636$$ 9.22483 + 2.70866i 0.365788 + 0.107405i
$$637$$ 0.215155 0.0929080i 0.00852476 0.00368115i
$$638$$ −3.53057 4.07450i −0.139777 0.161311i
$$639$$ 0.183012 3.84190i 0.00723985 0.151983i
$$640$$ 6.92893 + 20.0198i 0.273890 + 0.791354i
$$641$$ −4.89018 + 20.1576i −0.193150 + 0.796177i 0.789959 + 0.613159i $$0.210102\pi$$
−0.983110 + 0.183017i $$0.941414\pi$$
$$642$$ 0.677886 0.951957i 0.0267540 0.0375708i
$$643$$ 30.4286 1.19999 0.599993 0.800005i $$-0.295170\pi$$
0.599993 + 0.800005i $$0.295170\pi$$
$$644$$ −20.8684 13.5922i −0.822331 0.535608i
$$645$$ 6.91158 0.272143
$$646$$ 1.00157 1.40651i 0.0394062 0.0553382i
$$647$$ 1.83477 7.56302i 0.0721322 0.297333i −0.924307 0.381650i $$-0.875356\pi$$
0.996439 + 0.0843175i $$0.0268710\pi$$
$$648$$ −0.250125 0.722688i −0.00982583 0.0283899i
$$649$$ 0.0376014 0.789351i 0.00147598 0.0309847i
$$650$$ −0.0335589 0.0387290i −0.00131629 0.00151908i
$$651$$ −0.112509 8.38552i −0.00440957 0.328655i
$$652$$ 0.635050 + 0.186468i 0.0248705 + 0.00730264i
$$653$$ 2.94253 + 1.51698i 0.115150 + 0.0593640i 0.514839 0.857287i $$-0.327852\pi$$
−0.399689 + 0.916651i $$0.630882\pi$$
$$654$$ 0.259104 + 0.203761i 0.0101318 + 0.00796770i
$$655$$ −13.4413 18.8757i −0.525195 0.737533i
$$656$$ −36.9305 + 3.52644i −1.44189 + 0.137684i
$$657$$ 1.42697 9.92482i 0.0556715 0.387204i
$$658$$ 4.01574 + 2.77917i 0.156550 + 0.108343i
$$659$$ −5.79589 1.70183i −0.225776 0.0662937i 0.166888 0.985976i $$-0.446628\pi$$
−0.392664 + 0.919682i $$0.628446\pi$$
$$660$$ −15.1193 + 11.8900i −0.588519 + 0.462817i
$$661$$ 18.4826 3.56222i 0.718889 0.138554i 0.183329 0.983052i $$-0.441313\pi$$
0.535560 + 0.844497i $$0.320101\pi$$
$$662$$ 0.0115021 0.00592977i 0.000447043 0.000230467i
$$663$$ 0.240570 + 0.0463660i 0.00934296 + 0.00180071i
$$664$$ 3.06932 0.901234i 0.119113 0.0349747i
$$665$$ 7.91385 8.52596i 0.306886 0.330623i
$$666$$ −1.75347 −0.0679456
$$667$$ 46.7653 15.1698i 1.81076 0.587377i
$$668$$ 2.04132 3.53566i 0.0789809 0.136799i
$$669$$ −11.4387 1.09226i −0.442244 0.0422292i
$$670$$ −6.81027 6.49358i −0.263104 0.250869i
$$671$$ 17.2450 19.9018i 0.665735 0.768299i
$$672$$ 4.56818 + 3.85227i 0.176221 + 0.148605i
$$673$$ −23.8931 27.5741i −0.921010 1.06290i −0.997829 0.0658573i $$-0.979022\pi$$
0.0768189 0.997045i $$-0.475524\pi$$
$$674$$ −0.184603 + 0.145173i −0.00711062 + 0.00559186i
$$675$$ 5.74030 5.47337i 0.220944 0.210670i
$$676$$ 1.21399 + 25.4847i 0.0466918 + 0.980182i
$$677$$ 12.9174 5.17136i 0.496457 0.198752i −0.109902 0.993942i $$-0.535054\pi$$
0.606359 + 0.795191i $$0.292629\pi$$
$$678$$ −0.796900 + 1.74497i −0.0306048 + 0.0670151i
$$679$$ 16.0092 + 30.0565i 0.614376 + 1.15346i
$$680$$ −2.86400 + 19.9196i −0.109829 + 0.763880i
$$681$$ 11.1214 + 5.73350i 0.426174 + 0.219708i
$$682$$ 1.20645 1.15035i 0.0461975 0.0440492i
$$683$$ −16.1929 6.48265i −0.619603 0.248052i 0.0405564 0.999177i $$-0.487087\pi$$
−0.660159 + 0.751126i $$0.729511\pi$$
$$684$$ 0.784899 2.26782i 0.0300114 0.0867121i
$$685$$ 2.00783 + 1.29035i 0.0767152 + 0.0493019i
$$686$$ 2.99245 + 1.95436i 0.114252 + 0.0746179i
$$687$$ 1.54289 0.453034i 0.0588650 0.0172843i
$$688$$ −4.21189 + 5.91477i −0.160577 + 0.225499i
$$689$$ 0.0819977 0.142024i 0.00312387 0.00541069i
$$690$$ 0.875132 + 3.21109i 0.0333157 + 0.122244i
$$691$$ −1.09054 1.88887i −0.0414861 0.0718560i 0.844537 0.535498i $$-0.179876\pi$$
−0.886023 + 0.463642i $$0.846543\pi$$
$$692$$ −7.46724 16.3510i −0.283862 0.621571i
$$693$$ −2.58967 + 6.72893i −0.0983733 + 0.255611i
$$694$$ −3.90208 + 4.50324i −0.148121 + 0.170940i
$$695$$ −3.55687 + 74.6680i −0.134920 + 2.83232i
$$696$$ −7.69810 + 1.48369i −0.291796 + 0.0562391i
$$697$$ −66.7117 26.7073i −2.52689 1.01161i
$$698$$ 0.936783 + 3.86147i 0.0354577 + 0.146159i
$$699$$ 12.7815 8.21418i 0.483441 0.310689i
$$700$$ −11.0728 + 39.6718i −0.418512 + 1.49945i
$$701$$ 0.0400964 0.0877989i 0.00151442 0.00331612i −0.908873 0.417072i $$-0.863056\pi$$
0.910388 + 0.413756i $$0.135783\pi$$
$$702$$ −0.00643180 0.000614162i −0.000242752 2.31801e-5i
$$703$$ −8.73249 6.86730i −0.329352 0.259005i
$$704$$ −0.923232 19.3810i −0.0347956 0.730450i
$$705$$ 8.10898 + 33.4257i 0.305402 + 1.25888i
$$706$$ −0.451922 3.14318i −0.0170083 0.118295i
$$707$$ −18.5747 + 37.2485i −0.698572 + 1.40087i
$$708$$ −0.478813 0.307715i −0.0179949 0.0115646i
$$709$$ −38.1272 7.34841i −1.43190 0.275975i −0.586428 0.810001i $$-0.699466\pi$$
−0.845468 + 0.534026i $$0.820679\pi$$
$$710$$ 0.629292 2.59398i 0.0236169 0.0973502i
$$711$$ −15.9117 1.51938i −0.596734 0.0569812i
$$712$$ 0.605142 + 1.04814i 0.0226786 + 0.0392806i
$$713$$ 5.37316 + 14.2201i 0.201227 + 0.532548i
$$714$$ 1.43508 + 3.44978i 0.0537065 + 0.129105i
$$715$$ 0.136294 + 0.298443i 0.00509712 + 0.0111611i
$$716$$ −8.67375 8.27040i −0.324153 0.309079i
$$717$$ 1.89525 + 5.47596i 0.0707794 + 0.204504i
$$718$$ 4.98807 2.57153i 0.186153 0.0959686i
$$719$$ 0.740393 2.13923i 0.0276120 0.0797797i −0.930353 0.366666i $$-0.880499\pi$$
0.957965 + 0.286887i $$0.0926203\pi$$
$$720$$ 1.93343 + 13.4473i 0.0720547 + 0.501152i
$$721$$ 26.7127 + 11.7688i 0.994834 + 0.438292i
$$722$$ 2.84192 1.82639i 0.105765 0.0679713i
$$723$$ 0.557941 0.223366i 0.0207501 0.00830707i
$$724$$ −14.4588 20.3045i −0.537355 0.754610i
$$725$$ −47.1641 66.2327i −1.75163 2.45982i
$$726$$ 0.640244 0.256315i 0.0237617 0.00951275i
$$727$$ 8.86062 5.69437i 0.328622 0.211193i −0.365917 0.930647i $$-0.619245\pi$$
0.694539 + 0.719455i $$0.255608\pi$$
$$728$$ 0.0546478 0.0400302i 0.00202538 0.00148362i
$$729$$ −0.142315 0.989821i −0.00527092 0.0366601i
$$730$$ 2.27588 6.57573i 0.0842342 0.243379i
$$731$$ −12.5012 + 6.44484i −0.462375 + 0.238371i
$$732$$ −6.20338 17.9235i −0.229284 0.662471i
$$733$$ 2.12556 + 2.02672i 0.0785094 + 0.0748585i 0.728318 0.685239i $$-0.240302\pi$$
−0.649809 + 0.760098i $$0.725151\pi$$
$$734$$ −2.19979 4.81686i −0.0811956 0.177794i
$$735$$ 6.58877 + 24.2947i 0.243030 + 0.896123i
$$736$$ −10.1649 3.74191i −0.374683 0.137929i
$$737$$ 18.4756 + 32.0007i 0.680558 + 1.17876i
$$738$$ 1.88648 + 0.180137i 0.0694424 + 0.00663095i
$$739$$ 0.851927 3.51169i 0.0313386 0.129180i −0.953993 0.299827i $$-0.903071\pi$$
0.985332 + 0.170648i $$0.0545860\pi$$
$$740$$ 62.9721 + 12.1369i 2.31490 + 0.446160i
$$741$$ −0.0344364 0.0221309i −0.00126505 0.000813000i
$$742$$ 2.49639 0.152509i 0.0916452 0.00559878i
$$743$$ 4.48766 + 31.2124i 0.164636 + 1.14507i 0.889752 + 0.456444i $$0.150877\pi$$
−0.725116 + 0.688627i $$0.758214\pi$$
$$744$$ −0.571488 2.35571i −0.0209518 0.0863644i
$$745$$ 0.586316 + 12.3083i 0.0214810 + 0.450941i
$$746$$ 1.98465 + 1.56075i 0.0726633 + 0.0571430i
$$747$$ 4.16400 0.397614i 0.152353 0.0145479i
$$748$$ 16.2599 35.6042i 0.594521 1.30182i
$$749$$ −4.30724 + 15.4321i −0.157383 + 0.563875i
$$750$$ 1.71145 1.09988i 0.0624932 0.0401620i
$$751$$ 1.76951 + 7.29401i 0.0645703 + 0.266162i 0.994941 0.100457i $$-0.0320304\pi$$
−0.930371 + 0.366619i $$0.880515\pi$$
$$752$$ −33.5465 13.4300i −1.22332 0.489742i
$$753$$ −3.52076 + 0.678571i −0.128304 + 0.0247285i
$$754$$ −0.00315159 + 0.0661601i −0.000114774 + 0.00240941i
$$755$$ −19.8152 + 22.8679i −0.721148 + 0.832250i
$$756$$ 3.26455 + 4.03851i 0.118731 + 0.146879i
$$757$$ 1.02937 + 2.25400i 0.0374130 + 0.0819230i 0.927416 0.374032i $$-0.122025\pi$$
−0.890003 + 0.455955i $$0.849298\pi$$
$$758$$ 1.15506 + 2.00061i 0.0419535 + 0.0726656i
$$759$$ 0.255187 13.0668i 0.00926269 0.474296i
$$760$$ 1.68121 2.91195i 0.0609840 0.105627i
$$761$$ 7.10858 9.98260i 0.257686 0.361869i −0.665384 0.746501i $$-0.731732\pi$$
0.923070 + 0.384632i $$0.125672\pi$$
$$762$$ −0.250737 + 0.0736231i −0.00908326 + 0.00266708i
$$763$$ −4.28997 1.42062i −0.155307 0.0514298i
$$764$$ 1.15828 + 0.744380i 0.0419050 + 0.0269307i
$$765$$ −8.60680 + 24.8677i −0.311180 + 0.899095i
$$766$$ 0.352415 + 0.141086i 0.0127333 + 0.00509763i
$$767$$ −0.00702641 + 0.00669967i −0.000253709 + 0.000241911i
$$768$$ −11.6465 6.00418i −0.420256 0.216657i
$$769$$ 2.34961 16.3419i 0.0847290 0.589303i −0.902584 0.430515i $$-0.858332\pi$$
0.987313 0.158789i $$-0.0507589\pi$$
$$770$$ −2.64845 + 4.24523i −0.0954435 + 0.152987i
$$771$$ −3.71083 + 8.12559i −0.133642 + 0.292636i
$$772$$ 22.3601