# Properties

 Label 483.2.y.b.16.4 Level $483$ Weight $2$ Character 483.16 Analytic conductor $3.857$ Analytic rank $0$ Dimension $320$ CM no Inner twists $4$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$483 = 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 483.y (of order $$33$$, degree $$20$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.85677441763$$ Analytic rank: $$0$$ Dimension: $$320$$ Relative dimension: $$16$$ over $$\Q(\zeta_{33})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

## Embedding invariants

 Embedding label 16.4 Character $$\chi$$ $$=$$ 483.16 Dual form 483.2.y.b.151.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.620909 - 1.79400i) q^{2} +(-0.888835 - 0.458227i) q^{3} +(-1.26080 + 0.991503i) q^{4} +(-3.16803 - 0.302510i) q^{5} +(-0.270172 + 1.87909i) q^{6} +(1.40046 - 2.24471i) q^{7} +(-0.632491 - 0.406478i) q^{8} +(0.580057 + 0.814576i) q^{9} +O(q^{10})$$ $$q+(-0.620909 - 1.79400i) q^{2} +(-0.888835 - 0.458227i) q^{3} +(-1.26080 + 0.991503i) q^{4} +(-3.16803 - 0.302510i) q^{5} +(-0.270172 + 1.87909i) q^{6} +(1.40046 - 2.24471i) q^{7} +(-0.632491 - 0.406478i) q^{8} +(0.580057 + 0.814576i) q^{9} +(1.42436 + 5.87128i) q^{10} +(-0.842932 + 2.43549i) q^{11} +(1.57498 - 0.303552i) q^{12} +(-3.50062 - 1.02787i) q^{13} +(-4.89656 - 1.11867i) q^{14} +(2.67724 + 1.72056i) q^{15} +(-1.09280 + 4.50457i) q^{16} +(-1.43410 + 0.574128i) q^{17} +(1.10119 - 1.54640i) q^{18} +(2.71924 + 1.08862i) q^{19} +(4.29419 - 2.75971i) q^{20} +(-2.27336 + 1.35345i) q^{21} +4.89265 q^{22} +(2.95904 - 3.77413i) q^{23} +(0.375922 + 0.651116i) q^{24} +(5.03527 + 0.970470i) q^{25} +(0.329561 + 6.91833i) q^{26} +(-0.142315 - 0.989821i) q^{27} +(0.459933 + 4.21868i) q^{28} +(-1.35096 + 9.39616i) q^{29} +(1.42436 - 5.87128i) q^{30} +(-0.0236884 + 0.497280i) q^{31} +(7.26285 - 0.693518i) q^{32} +(1.86523 - 1.77850i) q^{33} +(1.92043 + 2.21630i) q^{34} +(-5.11575 + 6.68765i) q^{35} +(-1.53899 - 0.451888i) q^{36} +(4.33020 + 6.08092i) q^{37} +(0.264582 - 5.55425i) q^{38} +(2.64048 + 2.51769i) q^{39} +(1.88079 + 1.47907i) q^{40} +(-3.04181 - 6.66063i) q^{41} +(3.83963 + 3.23805i) q^{42} +(2.95900 - 1.90163i) q^{43} +(-1.35203 - 3.90643i) q^{44} +(-1.59122 - 2.75608i) q^{45} +(-8.60808 - 2.96513i) q^{46} +(-4.58771 + 7.94615i) q^{47} +(3.03543 - 3.50307i) q^{48} +(-3.07742 - 6.28725i) q^{49} +(-1.38543 - 9.63585i) q^{50} +(1.53776 + 0.146838i) q^{51} +(5.43272 - 2.17493i) q^{52} +(-5.25639 - 5.01196i) q^{53} +(-1.68737 + 0.869902i) q^{54} +(3.40720 - 7.46072i) q^{55} +(-1.79820 + 0.850501i) q^{56} +(-1.91812 - 2.21363i) q^{57} +(17.6955 - 3.41053i) q^{58} +(-0.828341 - 3.41447i) q^{59} +(-5.08140 + 0.485215i) q^{60} +(-8.94618 + 4.61208i) q^{61} +(0.906828 - 0.266269i) q^{62} +(2.64083 - 0.161275i) q^{63} +(-1.90265 - 4.16622i) q^{64} +(10.7791 + 4.31532i) q^{65} +(-4.34877 - 2.24194i) q^{66} +(-4.79805 - 0.924749i) q^{67} +(1.23886 - 2.14578i) q^{68} +(-4.35951 + 1.99867i) q^{69} +(15.1741 + 5.02524i) q^{70} +(-0.887049 + 1.02371i) q^{71} +(-0.0357742 - 0.750992i) q^{72} +(-6.13279 + 4.82288i) q^{73} +(8.22050 - 11.5441i) q^{74} +(-4.03084 - 3.16988i) q^{75} +(-4.50779 + 1.32361i) q^{76} +(4.28647 + 5.30295i) q^{77} +(2.87724 - 6.30027i) q^{78} +(-5.24501 + 5.00111i) q^{79} +(4.82470 - 13.9400i) q^{80} +(-0.327068 + 0.945001i) q^{81} +(-10.0605 + 9.59264i) q^{82} +(-0.967975 + 2.11957i) q^{83} +(1.52431 - 3.96047i) q^{84} +(4.71696 - 1.38503i) q^{85} +(-5.24879 - 4.12770i) q^{86} +(5.50635 - 7.73259i) q^{87} +(1.52312 - 1.19779i) q^{88} +(0.309384 + 6.49478i) q^{89} +(-3.95639 + 4.56592i) q^{90} +(-7.20976 + 6.41837i) q^{91} +(0.0113038 + 7.69232i) q^{92} +(0.248922 - 0.431145i) q^{93} +(17.1039 + 3.29651i) q^{94} +(-8.28533 - 4.27138i) q^{95} +(-6.77326 - 2.71161i) q^{96} +(-6.82291 - 14.9401i) q^{97} +(-9.36853 + 9.42469i) q^{98} +(-2.47284 + 0.726092i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$320q + 2q^{2} + 16q^{3} + 18q^{4} - 2q^{5} + 18q^{6} + 2q^{7} - 12q^{8} + 16q^{9} + O(q^{10})$$ $$320q + 2q^{2} + 16q^{3} + 18q^{4} - 2q^{5} + 18q^{6} + 2q^{7} - 12q^{8} + 16q^{9} + 2q^{11} + 18q^{12} + 18q^{14} - 18q^{15} - 8q^{16} + 4q^{17} + 2q^{18} + 8q^{19} - 162q^{20} - 4q^{21} + 144q^{22} - 26q^{23} + 6q^{24} - 8q^{25} - 14q^{26} - 32q^{27} + 86q^{28} - 74q^{29} - 56q^{31} - 28q^{32} + 13q^{33} + 40q^{34} - 32q^{35} - 14q^{36} + 2q^{37} - 39q^{38} - 52q^{40} + 60q^{41} - 61q^{42} + 16q^{43} - 75q^{44} - 2q^{45} - 4q^{46} - 40q^{47} - 28q^{48} - 100q^{49} + 146q^{50} - 18q^{51} - 18q^{52} + 34q^{53} + 2q^{54} + 36q^{55} - 102q^{56} + 28q^{57} - 17q^{58} - 102q^{59} - 18q^{60} - 18q^{61} - 88q^{62} + 2q^{63} - 252q^{64} - 78q^{65} + 16q^{66} + 12q^{67} + 34q^{68} + 8q^{69} + 264q^{70} + 160q^{71} + 6q^{72} - 8q^{73} + 70q^{74} + 14q^{75} - 40q^{76} - 90q^{77} - 16q^{78} + 26q^{79} - 103q^{80} + 16q^{81} - 30q^{82} - 80q^{83} - 52q^{84} - 128q^{85} + 90q^{86} + 4q^{87} - 293q^{88} - 36q^{89} + 16q^{91} - 174q^{92} + 32q^{93} + 57q^{94} - 85q^{95} - 50q^{96} - 8q^{97} - 193q^{98} - 26q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/483\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$346$$ $$442$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{4}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.620909 1.79400i −0.439049 1.26855i −0.920040 0.391824i $$-0.871844\pi$$
0.480991 0.876725i $$-0.340277\pi$$
$$3$$ −0.888835 0.458227i −0.513169 0.264557i
$$4$$ −1.26080 + 0.991503i −0.630399 + 0.495752i
$$5$$ −3.16803 0.302510i −1.41679 0.135287i −0.641610 0.767031i $$-0.721733\pi$$
−0.775177 + 0.631744i $$0.782339\pi$$
$$6$$ −0.270172 + 1.87909i −0.110297 + 0.767134i
$$7$$ 1.40046 2.24471i 0.529325 0.848419i
$$8$$ −0.632491 0.406478i −0.223619 0.143712i
$$9$$ 0.580057 + 0.814576i 0.193352 + 0.271525i
$$10$$ 1.42436 + 5.87128i 0.450421 + 1.85666i
$$11$$ −0.842932 + 2.43549i −0.254154 + 0.734328i 0.743680 + 0.668536i $$0.233079\pi$$
−0.997833 + 0.0657925i $$0.979042\pi$$
$$12$$ 1.57498 0.303552i 0.454656 0.0876278i
$$13$$ −3.50062 1.02787i −0.970897 0.285081i −0.242436 0.970168i $$-0.577946\pi$$
−0.728462 + 0.685086i $$0.759764\pi$$
$$14$$ −4.89656 1.11867i −1.30866 0.298977i
$$15$$ 2.67724 + 1.72056i 0.691261 + 0.444246i
$$16$$ −1.09280 + 4.50457i −0.273199 + 1.12614i
$$17$$ −1.43410 + 0.574128i −0.347821 + 0.139247i −0.538993 0.842310i $$-0.681195\pi$$
0.191172 + 0.981556i $$0.438771\pi$$
$$18$$ 1.10119 1.54640i 0.259552 0.364490i
$$19$$ 2.71924 + 1.08862i 0.623837 + 0.249747i 0.661975 0.749526i $$-0.269718\pi$$
−0.0381382 + 0.999272i $$0.512143\pi$$
$$20$$ 4.29419 2.75971i 0.960210 0.617090i
$$21$$ −2.27336 + 1.35345i −0.496089 + 0.295346i
$$22$$ 4.89265 1.04312
$$23$$ 2.95904 3.77413i 0.617003 0.786961i
$$24$$ 0.375922 + 0.651116i 0.0767348 + 0.132908i
$$25$$ 5.03527 + 0.970470i 1.00705 + 0.194094i
$$26$$ 0.329561 + 6.91833i 0.0646321 + 1.35680i
$$27$$ −0.142315 0.989821i −0.0273885 0.190491i
$$28$$ 0.459933 + 4.21868i 0.0869192 + 0.797257i
$$29$$ −1.35096 + 9.39616i −0.250868 + 1.74482i 0.342161 + 0.939641i $$0.388841\pi$$
−0.593028 + 0.805182i $$0.702068\pi$$
$$30$$ 1.42436 5.87128i 0.260051 1.07194i
$$31$$ −0.0236884 + 0.497280i −0.00425456 + 0.0893141i −0.999996 0.00287728i $$-0.999084\pi$$
0.995741 + 0.0921914i $$0.0293872\pi$$
$$32$$ 7.26285 0.693518i 1.28390 0.122598i
$$33$$ 1.86523 1.77850i 0.324696 0.309597i
$$34$$ 1.92043 + 2.21630i 0.329352 + 0.380092i
$$35$$ −5.11575 + 6.68765i −0.864720 + 1.13042i
$$36$$ −1.53899 0.451888i −0.256498 0.0753147i
$$37$$ 4.33020 + 6.08092i 0.711881 + 0.999697i 0.999124 + 0.0418396i $$0.0133218\pi$$
−0.287243 + 0.957858i $$0.592739\pi$$
$$38$$ 0.264582 5.55425i 0.0429208 0.901019i
$$39$$ 2.64048 + 2.51769i 0.422815 + 0.403153i
$$40$$ 1.88079 + 1.47907i 0.297379 + 0.233861i
$$41$$ −3.04181 6.66063i −0.475050 1.04022i −0.983795 0.179298i $$-0.942618\pi$$
0.508745 0.860917i $$-0.330110\pi$$
$$42$$ 3.83963 + 3.23805i 0.592468 + 0.499641i
$$43$$ 2.95900 1.90163i 0.451243 0.289996i −0.295213 0.955432i $$-0.595390\pi$$
0.746455 + 0.665435i $$0.231754\pi$$
$$44$$ −1.35203 3.90643i −0.203826 0.588917i
$$45$$ −1.59122 2.75608i −0.237205 0.410852i
$$46$$ −8.60808 2.96513i −1.26919 0.437184i
$$47$$ −4.58771 + 7.94615i −0.669186 + 1.15906i 0.308946 + 0.951080i $$0.400024\pi$$
−0.978132 + 0.207985i $$0.933309\pi$$
$$48$$ 3.03543 3.50307i 0.438127 0.505625i
$$49$$ −3.07742 6.28725i −0.439631 0.898179i
$$50$$ −1.38543 9.63585i −0.195929 1.36272i
$$51$$ 1.53776 + 0.146838i 0.215330 + 0.0205615i
$$52$$ 5.43272 2.17493i 0.753383 0.301609i
$$53$$ −5.25639 5.01196i −0.722021 0.688445i 0.237086 0.971489i $$-0.423808\pi$$
−0.959107 + 0.283043i $$0.908656\pi$$
$$54$$ −1.68737 + 0.869902i −0.229623 + 0.118379i
$$55$$ 3.40720 7.46072i 0.459426 1.00600i
$$56$$ −1.79820 + 0.850501i −0.240295 + 0.113653i
$$57$$ −1.91812 2.21363i −0.254062 0.293203i
$$58$$ 17.6955 3.41053i 2.32354 0.447825i
$$59$$ −0.828341 3.41447i −0.107841 0.444526i 0.892133 0.451773i $$-0.149208\pi$$
−0.999974 + 0.00724715i $$0.997693\pi$$
$$60$$ −5.08140 + 0.485215i −0.656006 + 0.0626410i
$$61$$ −8.94618 + 4.61208i −1.14544 + 0.590516i −0.923141 0.384462i $$-0.874387\pi$$
−0.222300 + 0.974978i $$0.571357\pi$$
$$62$$ 0.906828 0.266269i 0.115167 0.0338162i
$$63$$ 2.64083 0.161275i 0.332713 0.0203188i
$$64$$ −1.90265 4.16622i −0.237831 0.520777i
$$65$$ 10.7791 + 4.31532i 1.33699 + 0.535249i
$$66$$ −4.34877 2.24194i −0.535296 0.275964i
$$67$$ −4.79805 0.924749i −0.586176 0.112976i −0.112464 0.993656i $$-0.535874\pi$$
−0.473712 + 0.880680i $$0.657086\pi$$
$$68$$ 1.23886 2.14578i 0.150234 0.260214i
$$69$$ −4.35951 + 1.99867i −0.524823 + 0.240611i
$$70$$ 15.1741 + 5.02524i 1.81365 + 0.600631i
$$71$$ −0.887049 + 1.02371i −0.105273 + 0.121492i −0.805941 0.591996i $$-0.798340\pi$$
0.700668 + 0.713488i $$0.252886\pi$$
$$72$$ −0.0357742 0.750992i −0.00421603 0.0885053i
$$73$$ −6.13279 + 4.82288i −0.717788 + 0.564475i −0.908860 0.417101i $$-0.863046\pi$$
0.191072 + 0.981576i $$0.438804\pi$$
$$74$$ 8.22050 11.5441i 0.955614 1.34197i
$$75$$ −4.03084 3.16988i −0.465441 0.366027i
$$76$$ −4.50779 + 1.32361i −0.517079 + 0.151828i
$$77$$ 4.28647 + 5.30295i 0.488489 + 0.604327i
$$78$$ 2.87724 6.30027i 0.325783 0.713365i
$$79$$ −5.24501 + 5.00111i −0.590110 + 0.562668i −0.925182 0.379524i $$-0.876088\pi$$
0.335072 + 0.942192i $$0.391239\pi$$
$$80$$ 4.82470 13.9400i 0.539417 1.55854i
$$81$$ −0.327068 + 0.945001i −0.0363409 + 0.105000i
$$82$$ −10.0605 + 9.59264i −1.11099 + 1.05933i
$$83$$ −0.967975 + 2.11957i −0.106249 + 0.232653i −0.955288 0.295678i $$-0.904455\pi$$
0.849039 + 0.528331i $$0.177182\pi$$
$$84$$ 1.52431 3.96047i 0.166316 0.432123i
$$85$$ 4.71696 1.38503i 0.511627 0.150227i
$$86$$ −5.24879 4.12770i −0.565992 0.445101i
$$87$$ 5.50635 7.73259i 0.590343 0.829021i
$$88$$ 1.52312 1.19779i 0.162365 0.127685i
$$89$$ 0.309384 + 6.49478i 0.0327947 + 0.688445i 0.954079 + 0.299555i $$0.0968382\pi$$
−0.921284 + 0.388890i $$0.872859\pi$$
$$90$$ −3.95639 + 4.56592i −0.417041 + 0.481291i
$$91$$ −7.20976 + 6.41837i −0.755788 + 0.672828i
$$92$$ 0.0113038 + 7.69232i 0.00117850 + 0.801980i
$$93$$ 0.248922 0.431145i 0.0258120 0.0447077i
$$94$$ 17.1039 + 3.29651i 1.76414 + 0.340009i
$$95$$ −8.28533 4.27138i −0.850057 0.438235i
$$96$$ −6.77326 2.71161i −0.691293 0.276752i
$$97$$ −6.82291 14.9401i −0.692762 1.51694i −0.848532 0.529143i $$-0.822513\pi$$
0.155771 0.987793i $$-0.450214\pi$$
$$98$$ −9.36853 + 9.42469i −0.946364 + 0.952038i
$$99$$ −2.47284 + 0.726092i −0.248530 + 0.0729750i
$$100$$ −7.31069 + 3.76892i −0.731069 + 0.376892i
$$101$$ 1.92328 0.183651i 0.191374 0.0182740i 0.00107111 0.999999i $$-0.499659\pi$$
0.190303 + 0.981725i $$0.439053\pi$$
$$102$$ −0.691382 2.84992i −0.0684571 0.282184i
$$103$$ −8.04430 + 1.55041i −0.792628 + 0.152767i −0.569466 0.822015i $$-0.692850\pi$$
−0.223162 + 0.974781i $$0.571638\pi$$
$$104$$ 1.79630 + 2.07305i 0.176142 + 0.203279i
$$105$$ 7.61152 3.60005i 0.742809 0.351328i
$$106$$ −5.72771 + 12.5419i −0.556324 + 1.21818i
$$107$$ −12.1821 + 6.28028i −1.17768 + 0.607138i −0.932087 0.362234i $$-0.882014\pi$$
−0.245596 + 0.969372i $$0.578984\pi$$
$$108$$ 1.16084 + 1.10686i 0.111702 + 0.106508i
$$109$$ −13.4772 + 5.39546i −1.29088 + 0.516791i −0.912583 0.408892i $$-0.865915\pi$$
−0.378299 + 0.925683i $$0.623491\pi$$
$$110$$ −15.5001 1.48008i −1.47788 0.141120i
$$111$$ −1.06240 7.38915i −0.100839 0.701347i
$$112$$ 8.58102 + 8.76149i 0.810830 + 0.827883i
$$113$$ 6.10042 7.04026i 0.573879 0.662292i −0.392398 0.919795i $$-0.628355\pi$$
0.966277 + 0.257504i $$0.0829000\pi$$
$$114$$ −2.78027 + 4.81558i −0.260397 + 0.451020i
$$115$$ −10.5161 + 11.0614i −0.980628 + 1.03148i
$$116$$ −7.61303 13.1862i −0.706852 1.22430i
$$117$$ −1.19328 3.44775i −0.110318 0.318744i
$$118$$ −5.61123 + 3.60612i −0.516555 + 0.331970i
$$119$$ −0.719656 + 4.02318i −0.0659708 + 0.368805i
$$120$$ −0.993964 2.17648i −0.0907361 0.198684i
$$121$$ 3.42550 + 2.69384i 0.311409 + 0.244895i
$$122$$ 13.8288 + 13.1858i 1.25200 + 1.19378i
$$123$$ −0.348411 + 7.31404i −0.0314151 + 0.659484i
$$124$$ −0.463188 0.650457i −0.0415955 0.0584128i
$$125$$ −0.390679 0.114714i −0.0349434 0.0102603i
$$126$$ −1.92904 4.63751i −0.171853 0.413142i
$$127$$ 0.00169518 + 0.00195634i 0.000150423 + 0.000173597i 0.755825 0.654774i $$-0.227236\pi$$
−0.755674 + 0.654948i $$0.772691\pi$$
$$128$$ 4.26773 4.06928i 0.377218 0.359677i
$$129$$ −3.50144 + 0.334347i −0.308285 + 0.0294376i
$$130$$ 1.04881 22.0172i 0.0919865 1.93103i
$$131$$ 3.39385 13.9896i 0.296522 1.22228i −0.607335 0.794446i $$-0.707762\pi$$
0.903857 0.427834i $$-0.140723\pi$$
$$132$$ −0.588300 + 4.09171i −0.0512049 + 0.356138i
$$133$$ 6.25183 4.57933i 0.542102 0.397078i
$$134$$ 1.32016 + 9.18189i 0.114044 + 0.793195i
$$135$$ 0.151427 + 3.17884i 0.0130327 + 0.273591i
$$136$$ 1.14043 + 0.219799i 0.0977909 + 0.0188476i
$$137$$ −10.1359 17.5559i −0.865971 1.49990i −0.866080 0.499905i $$-0.833368\pi$$
0.000109725 1.00000i $$-0.499965\pi$$
$$138$$ 6.29247 + 6.57996i 0.535651 + 0.560124i
$$139$$ −14.8276 −1.25766 −0.628832 0.777541i $$-0.716467\pi$$
−0.628832 + 0.777541i $$0.716467\pi$$
$$140$$ −0.180888 13.5041i −0.0152878 1.14130i
$$141$$ 7.71886 4.96061i 0.650045 0.417759i
$$142$$ 2.38731 + 0.955735i 0.200339 + 0.0802035i
$$143$$ 5.45417 7.65930i 0.456100 0.640503i
$$144$$ −4.30320 + 1.72274i −0.358600 + 0.143562i
$$145$$ 7.12233 29.3587i 0.591478 2.43810i
$$146$$ 12.4601 + 8.00764i 1.03121 + 0.662717i
$$147$$ −0.145669 + 6.99848i −0.0120146 + 0.577225i
$$148$$ −11.4888 3.37341i −0.944371 0.277292i
$$149$$ 19.6202 3.78149i 1.60735 0.309792i 0.694941 0.719067i $$-0.255430\pi$$
0.912411 + 0.409275i $$0.134218\pi$$
$$150$$ −3.18399 + 9.19953i −0.259971 + 0.751138i
$$151$$ 3.16485 + 13.0457i 0.257552 + 1.06164i 0.942806 + 0.333341i $$0.108176\pi$$
−0.685254 + 0.728304i $$0.740309\pi$$
$$152$$ −1.27740 1.79385i −0.103611 0.145501i
$$153$$ −1.29953 0.835159i −0.105061 0.0675186i
$$154$$ 6.85197 10.9826i 0.552148 0.885001i
$$155$$ 0.225478 1.56823i 0.0181108 0.125964i
$$156$$ −5.82540 0.556259i −0.466406 0.0445363i
$$157$$ −17.0632 + 13.4187i −1.36179 + 1.07093i −0.372030 + 0.928221i $$0.621338\pi$$
−0.989765 + 0.142706i $$0.954420\pi$$
$$158$$ 12.2287 + 6.30431i 0.972859 + 0.501544i
$$159$$ 2.37545 + 6.86342i 0.188386 + 0.544305i
$$160$$ −23.2187 −1.83560
$$161$$ −4.32779 11.9277i −0.341078 0.940035i
$$162$$ 1.89841 0.149153
$$163$$ −2.38537 6.89209i −0.186837 0.539830i 0.812215 0.583358i $$-0.198261\pi$$
−0.999052 + 0.0435280i $$0.986140\pi$$
$$164$$ 10.4391 + 5.38175i 0.815160 + 0.420244i
$$165$$ −6.44714 + 5.07009i −0.501909 + 0.394706i
$$166$$ 4.40353 + 0.420486i 0.341780 + 0.0326361i
$$167$$ −2.11442 + 14.7061i −0.163619 + 1.13800i 0.728121 + 0.685448i $$0.240394\pi$$
−0.891740 + 0.452547i $$0.850515\pi$$
$$168$$ 1.98803 + 0.0680283i 0.153380 + 0.00524850i
$$169$$ 0.261521 + 0.168069i 0.0201170 + 0.0129284i
$$170$$ −5.41354 7.60225i −0.415200 0.583066i
$$171$$ 0.690551 + 2.84649i 0.0528078 + 0.217677i
$$172$$ −1.84523 + 5.33143i −0.140697 + 0.406518i
$$173$$ −3.74263 + 0.721332i −0.284547 + 0.0548419i −0.329528 0.944146i $$-0.606889\pi$$
0.0449808 + 0.998988i $$0.485677\pi$$
$$174$$ −17.2912 5.07716i −1.31084 0.384898i
$$175$$ 9.23013 9.94361i 0.697732 0.751666i
$$176$$ −10.0497 6.45855i −0.757524 0.486831i
$$177$$ −0.828341 + 3.41447i −0.0622619 + 0.256647i
$$178$$ 11.4595 4.58770i 0.858928 0.343863i
$$179$$ −12.4860 + 17.5341i −0.933246 + 1.31056i 0.0172594 + 0.999851i $$0.494506\pi$$
−0.950505 + 0.310709i $$0.899433\pi$$
$$180$$ 4.73887 + 1.89716i 0.353214 + 0.141406i
$$181$$ 7.28731 4.68327i 0.541662 0.348105i −0.241027 0.970518i $$-0.577484\pi$$
0.782688 + 0.622414i $$0.213848\pi$$
$$182$$ 15.9912 + 8.94908i 1.18534 + 0.663350i
$$183$$ 10.0651 0.744030
$$184$$ −3.40567 + 1.18432i −0.251069 + 0.0873093i
$$185$$ −11.8787 20.5745i −0.873338 1.51267i
$$186$$ −0.928033 0.178864i −0.0680466 0.0131149i
$$187$$ −0.189433 3.97670i −0.0138527 0.290805i
$$188$$ −2.09445 14.5672i −0.152754 1.06242i
$$189$$ −2.42117 1.06675i −0.176114 0.0775948i
$$190$$ −2.51842 + 17.5160i −0.182706 + 1.27075i
$$191$$ −1.08773 + 4.48369i −0.0787055 + 0.324428i −0.997530 0.0702372i $$-0.977624\pi$$
0.918825 + 0.394666i $$0.129140\pi$$
$$192$$ −0.217931 + 4.57493i −0.0157278 + 0.330167i
$$193$$ 6.48118 0.618878i 0.466526 0.0445478i 0.140853 0.990030i $$-0.455015\pi$$
0.325672 + 0.945483i $$0.394409\pi$$
$$194$$ −22.5661 + 21.5167i −1.62015 + 1.54481i
$$195$$ −7.60349 8.77489i −0.544497 0.628383i
$$196$$ 10.1138 + 4.87569i 0.722416 + 0.348264i
$$197$$ 24.4429 + 7.17707i 1.74148 + 0.511345i 0.989083 0.147362i $$-0.0470782\pi$$
0.752399 + 0.658707i $$0.228896\pi$$
$$198$$ 2.83802 + 3.98544i 0.201689 + 0.283233i
$$199$$ 0.376062 7.89451i 0.0266583 0.559627i −0.945545 0.325490i $$-0.894471\pi$$
0.972204 0.234137i $$-0.0752263\pi$$
$$200$$ −2.79029 2.66054i −0.197304 0.188129i
$$201$$ 3.84094 + 3.02055i 0.270919 + 0.213053i
$$202$$ −1.52366 3.33634i −0.107204 0.234744i
$$203$$ 19.1996 + 16.1915i 1.34755 + 1.13642i
$$204$$ −2.08440 + 1.33956i −0.145937 + 0.0937881i
$$205$$ 7.62163 + 22.0213i 0.532318 + 1.53803i
$$206$$ 7.77622 + 13.4688i 0.541795 + 0.938416i
$$207$$ 4.79073 + 0.221155i 0.332979 + 0.0153713i
$$208$$ 8.45560 14.6455i 0.586291 1.01549i
$$209$$ −4.94346 + 5.70506i −0.341946 + 0.394627i
$$210$$ −11.1845 11.4198i −0.771807 0.788039i
$$211$$ −2.66843 18.5593i −0.183702 1.27768i −0.847914 0.530133i $$-0.822142\pi$$
0.664212 0.747544i $$-0.268767\pi$$
$$212$$ 11.5966 + 1.10734i 0.796459 + 0.0760526i
$$213$$ 1.25753 0.503439i 0.0861646 0.0344951i
$$214$$ 18.8308 + 17.9551i 1.28724 + 1.22739i
$$215$$ −9.94946 + 5.12930i −0.678548 + 0.349816i
$$216$$ −0.312327 + 0.683901i −0.0212512 + 0.0465336i
$$217$$ 1.08307 + 0.749595i 0.0735238 + 0.0508858i
$$218$$ 18.0476 + 20.8280i 1.22234 + 1.41065i
$$219$$ 7.66101 1.47654i 0.517683 0.0997752i
$$220$$ 3.10154 + 12.7847i 0.209106 + 0.861945i
$$221$$ 5.61038 0.535726i 0.377395 0.0360369i
$$222$$ −12.5965 + 6.49394i −0.845420 + 0.435844i
$$223$$ 9.04432 2.65565i 0.605652 0.177836i 0.0354933 0.999370i $$-0.488700\pi$$
0.570159 + 0.821534i $$0.306882\pi$$
$$224$$ 8.61459 17.2742i 0.575587 1.15418i
$$225$$ 2.13022 + 4.66454i 0.142015 + 0.310969i
$$226$$ −16.4180 6.57278i −1.09211 0.437215i
$$227$$ 0.460039 + 0.237167i 0.0305339 + 0.0157413i 0.473426 0.880834i $$-0.343017\pi$$
−0.442892 + 0.896575i $$0.646047\pi$$
$$228$$ 4.61319 + 0.889120i 0.305516 + 0.0588834i
$$229$$ 11.4654 19.8587i 0.757655 1.31230i −0.186389 0.982476i $$-0.559678\pi$$
0.944044 0.329821i $$-0.106988\pi$$
$$230$$ 26.3737 + 11.9977i 1.73903 + 0.791102i
$$231$$ −1.38002 6.67762i −0.0907984 0.439355i
$$232$$ 4.67380 5.39385i 0.306850 0.354124i
$$233$$ −0.197929 4.15503i −0.0129667 0.272205i −0.996035 0.0889645i $$-0.971644\pi$$
0.983068 0.183241i $$-0.0586588\pi$$
$$234$$ −5.44434 + 4.28148i −0.355908 + 0.279889i
$$235$$ 16.9378 23.7858i 1.10490 1.55162i
$$236$$ 4.42983 + 3.48365i 0.288357 + 0.226767i
$$237$$ 6.95359 2.04176i 0.451684 0.132626i
$$238$$ 7.66443 1.20697i 0.496811 0.0782362i
$$239$$ 8.02607 17.5746i 0.519163 1.13681i −0.450592 0.892730i $$-0.648787\pi$$
0.969755 0.244079i $$-0.0784855\pi$$
$$240$$ −10.6761 + 10.1796i −0.689137 + 0.657091i
$$241$$ 5.14856 14.8758i 0.331648 0.958234i −0.648715 0.761031i $$-0.724693\pi$$
0.980363 0.197202i $$-0.0631855\pi$$
$$242$$ 2.70583 7.81797i 0.173937 0.502558i
$$243$$ 0.723734 0.690079i 0.0464276 0.0442686i
$$244$$ 6.70644 14.6851i 0.429336 0.940115i
$$245$$ 7.84739 + 20.8492i 0.501352 + 1.33200i
$$246$$ 13.3377 3.91630i 0.850381 0.249694i
$$247$$ −8.40007 6.60589i −0.534484 0.420322i
$$248$$ 0.217116 0.304897i 0.0137869 0.0193610i
$$249$$ 1.83161 1.44040i 0.116074 0.0912814i
$$250$$ 0.0367798 + 0.772104i 0.00232616 + 0.0488321i
$$251$$ −15.0134 + 17.3263i −0.947635 + 1.09363i 0.0478642 + 0.998854i $$0.484759\pi$$
−0.995499 + 0.0947747i $$0.969787\pi$$
$$252$$ −3.16965 + 2.82173i −0.199669 + 0.177752i
$$253$$ 6.69759 + 10.3881i 0.421074 + 0.653092i
$$254$$ 0.00245712 0.00425586i 0.000154174 0.000267037i
$$255$$ −4.82726 0.930378i −0.302295 0.0582625i
$$256$$ −18.0921 9.32712i −1.13076 0.582945i
$$257$$ 25.4818 + 10.2014i 1.58951 + 0.636344i 0.986848 0.161653i $$-0.0516825\pi$$
0.602662 + 0.797997i $$0.294107\pi$$
$$258$$ 2.77389 + 6.07398i 0.172695 + 0.378149i
$$259$$ 19.7142 1.20394i 1.22498 0.0748093i
$$260$$ −17.8690 + 5.24680i −1.10819 + 0.325393i
$$261$$ −8.43752 + 4.34984i −0.522269 + 0.269249i
$$262$$ −27.2047 + 2.59773i −1.68071 + 0.160488i
$$263$$ −5.42934 22.3800i −0.334787 1.38001i −0.851725 0.523989i $$-0.824443\pi$$
0.516937 0.856023i $$-0.327072\pi$$
$$264$$ −1.90266 + 0.366709i −0.117101 + 0.0225694i
$$265$$ 15.1362 + 17.4682i 0.929812 + 1.07306i
$$266$$ −12.0971 8.37242i −0.741723 0.513346i
$$267$$ 2.70109 5.91455i 0.165304 0.361965i
$$268$$ 6.96627 3.59136i 0.425533 0.219377i
$$269$$ 8.83399 + 8.42320i 0.538618 + 0.513571i 0.909832 0.414976i $$-0.136210\pi$$
−0.371214 + 0.928547i $$0.621058\pi$$
$$270$$ 5.60881 2.24543i 0.341341 0.136652i
$$271$$ −5.64228 0.538772i −0.342744 0.0327281i −0.0777350 0.996974i $$-0.524769\pi$$
−0.265009 + 0.964246i $$0.585375\pi$$
$$272$$ −1.01902 7.08742i −0.0617870 0.429738i
$$273$$ 9.34936 2.40117i 0.565849 0.145325i
$$274$$ −25.2018 + 29.0845i −1.52250 + 1.75706i
$$275$$ −6.60797 + 11.4453i −0.398475 + 0.690179i
$$276$$ 3.51478 6.84239i 0.211565 0.411863i
$$277$$ 13.2937 + 23.0254i 0.798744 + 1.38347i 0.920434 + 0.390897i $$0.127835\pi$$
−0.121691 + 0.992568i $$0.538832\pi$$
$$278$$ 9.20662 + 26.6008i 0.552176 + 1.59541i
$$279$$ −0.418813 + 0.269155i −0.0250737 + 0.0161139i
$$280$$ 5.95405 2.15044i 0.355823 0.128513i
$$281$$ −10.7964 23.6409i −0.644061 1.41030i −0.896658 0.442725i $$-0.854012\pi$$
0.252597 0.967572i $$-0.418715\pi$$
$$282$$ −13.6920 10.7675i −0.815349 0.641197i
$$283$$ 2.07813 + 1.98150i 0.123532 + 0.117788i 0.749327 0.662200i $$-0.230377\pi$$
−0.625795 + 0.779987i $$0.715225\pi$$
$$284$$ 0.103379 2.17020i 0.00613444 0.128778i
$$285$$ 5.40703 + 7.59311i 0.320285 + 0.449777i
$$286$$ −17.1273 5.02904i −1.01276 0.297373i
$$287$$ −19.2111 2.49999i −1.13399 0.147570i
$$288$$ 4.77779 + 5.51386i 0.281534 + 0.324907i
$$289$$ −10.5765 + 10.0846i −0.622144 + 0.593213i
$$290$$ −57.0917 + 5.45160i −3.35254 + 0.320129i
$$291$$ −0.781501 + 16.4057i −0.0458124 + 0.961721i
$$292$$ 2.95031 12.1614i 0.172654 0.711689i
$$293$$ 0.481436 3.34846i 0.0281258 0.195619i −0.970914 0.239428i $$-0.923040\pi$$
0.999040 + 0.0438087i $$0.0139492\pi$$
$$294$$ 12.6457 4.08409i 0.737513 0.238189i
$$295$$ 1.59130 + 11.0677i 0.0926490 + 0.644388i
$$296$$ −0.267059 5.60626i −0.0155225 0.325857i
$$297$$ 2.53066 + 0.487746i 0.146844 + 0.0283019i
$$298$$ −18.9664 32.8507i −1.09869 1.90299i
$$299$$ −14.2378 + 10.1703i −0.823395 + 0.588162i
$$300$$ 8.22502 0.474872
$$301$$ −0.124644 9.30524i −0.00718438 0.536345i
$$302$$ 21.4389 13.7779i 1.23367 0.792832i
$$303$$ −1.79364 0.718064i −0.103042 0.0412517i
$$304$$ −7.87535 + 11.0594i −0.451682 + 0.634299i
$$305$$ 29.7370 11.9049i 1.70274 0.681672i
$$306$$ −0.691382 + 2.84992i −0.0395237 + 0.162919i
$$307$$ 7.49349 + 4.81577i 0.427676 + 0.274851i 0.736721 0.676197i $$-0.236373\pi$$
−0.309045 + 0.951047i $$0.600009\pi$$
$$308$$ −10.6623 2.43590i −0.607539 0.138798i
$$309$$ 7.86050 + 2.30805i 0.447168 + 0.131300i
$$310$$ −2.95341 + 0.569223i −0.167742 + 0.0323297i
$$311$$ −5.32597 + 15.3884i −0.302008 + 0.872594i 0.687251 + 0.726420i $$0.258817\pi$$
−0.989259 + 0.146174i $$0.953304\pi$$
$$312$$ −0.646694 2.66571i −0.0366119 0.150916i
$$313$$ −6.39686 8.98313i −0.361572 0.507757i 0.593216 0.805043i $$-0.297858\pi$$
−0.954788 + 0.297286i $$0.903918\pi$$
$$314$$ 34.6678 + 22.2797i 1.95642 + 1.25731i
$$315$$ −8.41503 0.287954i −0.474133 0.0162243i
$$316$$ 1.65429 11.5058i 0.0930610 0.647253i
$$317$$ −12.8454 1.22659i −0.721472 0.0688922i −0.272141 0.962257i $$-0.587732\pi$$
−0.449331 + 0.893365i $$0.648338\pi$$
$$318$$ 10.8380 8.52313i 0.607767 0.477953i
$$319$$ −21.7455 11.2106i −1.21751 0.627672i
$$320$$ 4.76733 + 13.7743i 0.266502 + 0.770006i
$$321$$ 13.7056 0.764974
$$322$$ −18.7111 + 15.1701i −1.04273 + 0.845395i
$$323$$ −4.52468 −0.251760
$$324$$ −0.524604 1.51574i −0.0291447 0.0842080i
$$325$$ −16.6291 8.57288i −0.922414 0.475538i
$$326$$ −10.8833 + 8.55872i −0.602770 + 0.474024i
$$327$$ 14.4514 + 1.37994i 0.799162 + 0.0763107i
$$328$$ −0.783479 + 5.44921i −0.0432604 + 0.300883i
$$329$$ 11.4119 + 21.4263i 0.629156 + 1.18127i
$$330$$ 13.0988 + 8.41810i 0.721066 + 0.463401i
$$331$$ 2.25523 + 3.16703i 0.123959 + 0.174076i 0.871892 0.489698i $$-0.162893\pi$$
−0.747933 + 0.663774i $$0.768954\pi$$
$$332$$ −0.881138 3.63210i −0.0483587 0.199337i
$$333$$ −2.44161 + 7.05456i −0.133799 + 0.386588i
$$334$$ 27.6957 5.33790i 1.51544 0.292077i
$$335$$ 14.9206 + 4.38110i 0.815202 + 0.239365i
$$336$$ −3.61237 11.7196i −0.197071 0.639355i
$$337$$ −2.65967 1.70927i −0.144882 0.0931097i 0.466192 0.884684i $$-0.345626\pi$$
−0.611073 + 0.791574i $$0.709262\pi$$
$$338$$ 0.139135 0.573523i 0.00756796 0.0311956i
$$339$$ −8.64830 + 3.46226i −0.469711 + 0.188044i
$$340$$ −4.57388 + 6.42312i −0.248054 + 0.348343i
$$341$$ −1.19115 0.476866i −0.0645046 0.0258237i
$$342$$ 4.67783 3.00626i 0.252948 0.162560i
$$343$$ −18.4228 1.89716i −0.994740 0.102437i
$$344$$ −2.64451 −0.142582
$$345$$ 14.4157 5.01305i 0.776114 0.269894i
$$346$$ 3.61790 + 6.26639i 0.194500 + 0.336883i
$$347$$ −14.6930 2.83185i −0.788762 0.152021i −0.221065 0.975259i $$-0.570953\pi$$
−0.567697 + 0.823238i $$0.692165\pi$$
$$348$$ 0.724485 + 15.2088i 0.0388365 + 0.815278i
$$349$$ −1.80168 12.5310i −0.0964418 0.670767i −0.979491 0.201487i $$-0.935423\pi$$
0.883049 0.469280i $$-0.155487\pi$$
$$350$$ −23.5699 10.3848i −1.25986 0.555089i
$$351$$ −0.519222 + 3.61127i −0.0277140 + 0.192755i
$$352$$ −4.43303 + 18.2732i −0.236281 + 0.973964i
$$353$$ −0.804454 + 16.8876i −0.0428168 + 0.898835i 0.870645 + 0.491911i $$0.163702\pi$$
−0.913462 + 0.406924i $$0.866601\pi$$
$$354$$ 6.63988 0.634031i 0.352905 0.0336984i
$$355$$ 3.11988 2.97480i 0.165586 0.157886i
$$356$$ −6.82966 7.88185i −0.361971 0.417737i
$$357$$ 2.48319 3.24618i 0.131424 0.171806i
$$358$$ 39.2088 + 11.5127i 2.07225 + 0.608468i
$$359$$ −6.33141 8.89122i −0.334159 0.469261i 0.612973 0.790104i $$-0.289973\pi$$
−0.947132 + 0.320843i $$0.896034\pi$$
$$360$$ −0.113849 + 2.38999i −0.00600038 + 0.125964i
$$361$$ −7.54176 7.19106i −0.396935 0.378477i
$$362$$ −12.9265 10.1655i −0.679404 0.534289i
$$363$$ −1.81031 3.96403i −0.0950168 0.208058i
$$364$$ 2.72623 15.2408i 0.142893 0.798833i
$$365$$ 20.8878 13.4238i 1.09332 0.702634i
$$366$$ −6.24949 18.0567i −0.326666 0.943839i
$$367$$ 10.8960 + 18.8725i 0.568769 + 0.985137i 0.996688 + 0.0813198i $$0.0259135\pi$$
−0.427919 + 0.903817i $$0.640753\pi$$
$$368$$ 13.7672 + 17.4536i 0.717665 + 0.909831i
$$369$$ 3.66117 6.34132i 0.190593 0.330116i
$$370$$ −29.5350 + 34.0852i −1.53545 + 1.77201i
$$371$$ −18.6117 + 4.78000i −0.966274 + 0.248165i
$$372$$ 0.113642 + 0.790395i 0.00589204 + 0.0409800i
$$373$$ −18.4623 1.76294i −0.955943 0.0912815i −0.394589 0.918858i $$-0.629113\pi$$
−0.561354 + 0.827576i $$0.689719\pi$$
$$374$$ −7.01657 + 2.80901i −0.362818 + 0.145250i
$$375$$ 0.294684 + 0.280981i 0.0152174 + 0.0145098i
$$376$$ 6.13162 3.16107i 0.316214 0.163020i
$$377$$ 14.3873 31.5038i 0.740983 1.62253i
$$378$$ −0.410428 + 5.00592i −0.0211101 + 0.257477i
$$379$$ −11.7913 13.6079i −0.605678 0.698989i 0.367244 0.930125i $$-0.380301\pi$$
−0.972922 + 0.231135i $$0.925756\pi$$
$$380$$ 14.6812 2.82957i 0.753131 0.145154i
$$381$$ −0.000610288 0.00251564i −3.12660e−5 0.000128880i
$$382$$ 8.71912 0.832575i 0.446109 0.0425982i
$$383$$ −31.7085 + 16.3469i −1.62023 + 0.835287i −0.621581 + 0.783350i $$0.713509\pi$$
−0.998650 + 0.0519368i $$0.983461\pi$$
$$384$$ −5.65796 + 1.66133i −0.288732 + 0.0847793i
$$385$$ −11.9755 18.0966i −0.610327 0.922289i
$$386$$ −5.13449 11.2430i −0.261339 0.572252i
$$387$$ 3.26541 + 1.30727i 0.165990 + 0.0664524i
$$388$$ 23.4155 + 12.0715i 1.18874 + 0.612838i
$$389$$ −12.2013 2.35161i −0.618632 0.119232i −0.129700 0.991553i $$-0.541401\pi$$
−0.488932 + 0.872322i $$0.662613\pi$$
$$390$$ −11.0211 + 19.0891i −0.558074 + 0.966612i
$$391$$ −2.07674 + 7.11136i −0.105025 + 0.359637i
$$392$$ −0.609187 + 5.22753i −0.0307686 + 0.264030i
$$393$$ −9.42699 + 10.8793i −0.475529 + 0.548790i
$$394$$ −2.30114 48.3068i −0.115930 2.43366i
$$395$$ 18.1292 14.2570i 0.912181 0.717347i
$$396$$ 2.39783 3.36729i 0.120496 0.169212i
$$397$$ 15.9820 + 12.5684i 0.802113 + 0.630789i 0.932702 0.360648i $$-0.117444\pi$$
−0.130589 + 0.991437i $$0.541687\pi$$
$$398$$ −14.3962 + 4.22712i −0.721619 + 0.211886i
$$399$$ −7.65521 + 1.20552i −0.383240 + 0.0603514i
$$400$$ −9.87408 + 21.6212i −0.493704 + 1.08106i
$$401$$ 1.44809 1.38075i 0.0723143 0.0689515i −0.653060 0.757306i $$-0.726515\pi$$
0.725374 + 0.688355i $$0.241667\pi$$
$$402$$ 3.03398 8.76612i 0.151321 0.437214i
$$403$$ 0.594066 1.71644i 0.0295925 0.0855020i
$$404$$ −2.24278 + 2.13849i −0.111583 + 0.106394i
$$405$$ 1.32203 2.89485i 0.0656924 0.143846i
$$406$$ 17.1263 44.4976i 0.849962 2.20838i
$$407$$ −18.4601 + 5.42038i −0.915033 + 0.268678i
$$408$$ −0.912935 0.717940i −0.0451970 0.0355433i
$$409$$ 13.7131 19.2574i 0.678072 0.952218i −0.321914 0.946769i $$-0.604326\pi$$
0.999985 0.00544927i $$-0.00173457\pi$$
$$410$$ 34.7738 27.3464i 1.71735 1.35054i
$$411$$ 0.964573 + 20.2489i 0.0475789 + 0.998804i
$$412$$ 8.60500 9.93070i 0.423938 0.489251i
$$413$$ −8.82454 2.92245i −0.434227 0.143804i
$$414$$ −2.57786 8.73188i −0.126695 0.429149i
$$415$$ 3.70777 6.42204i 0.182007 0.315246i
$$416$$ −26.1373 5.03755i −1.28149 0.246986i
$$417$$ 13.1793 + 6.79442i 0.645395 + 0.332724i
$$418$$ 13.3043 + 5.32624i 0.650735 + 0.260515i
$$419$$ 1.17223 + 2.56684i 0.0572674 + 0.125398i 0.936102 0.351728i $$-0.114406\pi$$
−0.878835 + 0.477126i $$0.841679\pi$$
$$420$$ −6.02714 + 12.0858i −0.294094 + 0.589726i
$$421$$ −31.4616 + 9.23795i −1.53334 + 0.450230i −0.936072 0.351809i $$-0.885567\pi$$
−0.597272 + 0.802039i $$0.703749\pi$$
$$422$$ −31.6386 + 16.3108i −1.54014 + 0.793999i
$$423$$ −9.13387 + 0.872179i −0.444104 + 0.0424068i
$$424$$ 1.28737 + 5.30663i 0.0625204 + 0.257713i
$$425$$ −7.77827 + 1.49914i −0.377302 + 0.0727189i
$$426$$ −1.68398 1.94342i −0.0815892 0.0941590i
$$427$$ −2.17602 + 26.5406i −0.105305 + 1.28439i
$$428$$ 9.13219 19.9967i 0.441421 0.966578i
$$429$$ −8.35755 + 4.30862i −0.403506 + 0.208022i
$$430$$ 15.3797 + 14.6645i 0.741674 + 0.707185i
$$431$$ 8.34214 3.33969i 0.401827 0.160867i −0.161941 0.986800i $$-0.551775\pi$$
0.563768 + 0.825933i $$0.309351\pi$$
$$432$$ 4.61424 + 0.440607i 0.222003 + 0.0211987i
$$433$$ 0.356831 + 2.48182i 0.0171482 + 0.119268i 0.996598 0.0824221i $$-0.0262656\pi$$
−0.979449 + 0.201691i $$0.935356\pi$$
$$434$$ 0.672283 2.40846i 0.0322706 0.115610i
$$435$$ −19.7835 + 22.8314i −0.948546 + 1.09468i
$$436$$ 11.6424 20.1653i 0.557571 0.965741i
$$437$$ 12.1549 7.04150i 0.581450 0.336841i
$$438$$ −7.40570 12.8270i −0.353858 0.612900i
$$439$$ 10.3592 + 29.9310i 0.494419 + 1.42853i 0.865961 + 0.500112i $$0.166708\pi$$
−0.371542 + 0.928416i $$0.621171\pi$$
$$440$$ −5.18764 + 3.33389i −0.247311 + 0.158937i
$$441$$ 3.33637 6.15375i 0.158875 0.293036i
$$442$$ −4.44463 9.73238i −0.211409 0.462922i
$$443$$ −12.9916 10.2167i −0.617252 0.485412i 0.259894 0.965637i $$-0.416313\pi$$
−0.877145 + 0.480225i $$0.840555\pi$$
$$444$$ 8.66584 + 8.26286i 0.411263 + 0.392138i
$$445$$ 0.984598 20.6693i 0.0466744 0.979817i
$$446$$ −10.3799 14.5766i −0.491504 0.690221i
$$447$$ −19.1719 5.62939i −0.906802 0.266261i
$$448$$ −12.0165 1.56374i −0.567727 0.0738798i
$$449$$ 19.2339 + 22.1971i 0.907703 + 1.04755i 0.998663 + 0.0516905i $$0.0164609\pi$$
−0.0909602 + 0.995855i $$0.528994\pi$$
$$450$$ 7.04551 6.71788i 0.332128 0.316684i
$$451$$ 18.7859 1.79384i 0.884595 0.0844686i
$$452$$ −0.710962 + 14.9249i −0.0334408 + 0.702010i
$$453$$ 3.16485 13.0457i 0.148698 0.612941i
$$454$$ 0.139834 0.972568i 0.00656274 0.0456449i
$$455$$ 24.7824 18.1526i 1.16182 0.851005i
$$456$$ 0.313405 + 2.17978i 0.0146765 + 0.102077i
$$457$$ 0.455352 + 9.55902i 0.0213005 + 0.447152i 0.984175 + 0.177201i $$0.0567044\pi$$
−0.962874 + 0.269951i $$0.912993\pi$$
$$458$$ −42.7454 8.23850i −1.99736 0.384960i
$$459$$ 0.772378 + 1.33780i 0.0360515 + 0.0624431i
$$460$$ 2.29120 24.3729i 0.106828 1.13639i
$$461$$ 8.09333 0.376944 0.188472 0.982079i $$-0.439647\pi$$
0.188472 + 0.982079i $$0.439647\pi$$
$$462$$ −11.1228 + 6.62195i −0.517479 + 0.308081i
$$463$$ 20.3159 13.0563i 0.944162 0.606776i 0.0245900 0.999698i $$-0.492172\pi$$
0.919572 + 0.392922i $$0.128536\pi$$
$$464$$ −40.8493 16.3536i −1.89638 0.759197i
$$465$$ −0.919019 + 1.29058i −0.0426185 + 0.0598493i
$$466$$ −7.33123 + 2.93498i −0.339613 + 0.135960i
$$467$$ 5.40507 22.2800i 0.250117 1.03100i −0.698762 0.715354i $$-0.746265\pi$$
0.948879 0.315641i $$-0.102220\pi$$
$$468$$ 4.92293 + 3.16378i 0.227563 + 0.146246i
$$469$$ −8.79528 + 9.47515i −0.406128 + 0.437522i
$$470$$ −53.1886 15.6176i −2.45341 0.720385i
$$471$$ 21.3152 4.10817i 0.982153 0.189294i
$$472$$ −0.863986 + 2.49632i −0.0397682 + 0.114903i
$$473$$ 2.13718 + 8.80956i 0.0982674 + 0.405064i
$$474$$ −7.98046 11.2070i −0.366555 0.514754i
$$475$$ 12.6357 + 8.12044i 0.579764 + 0.372591i
$$476$$ −3.08166 5.78597i −0.141248 0.265199i
$$477$$ 1.03362 7.18895i 0.0473260 0.329159i
$$478$$ −36.5123 3.48650i −1.67004 0.159469i
$$479$$ 10.2078 8.02750i 0.466406 0.366786i −0.357125 0.934057i $$-0.616243\pi$$
0.823531 + 0.567271i $$0.192001\pi$$
$$480$$ 20.6376 + 10.6394i 0.941974 + 0.485622i
$$481$$ −8.90798 25.7379i −0.406169 1.17355i
$$482$$ −29.8839 −1.36118
$$483$$ −1.61890 + 12.5849i −0.0736625 + 0.572632i
$$484$$ −6.98981 −0.317719
$$485$$ 17.0957 + 49.3947i 0.776275 + 2.24290i
$$486$$ −1.68737 0.869902i −0.0765409 0.0394596i
$$487$$ −5.23754 + 4.11884i −0.237335 + 0.186643i −0.729742 0.683723i $$-0.760360\pi$$
0.492406 + 0.870365i $$0.336117\pi$$
$$488$$ 7.53309 + 0.719323i 0.341007 + 0.0325622i
$$489$$ −1.03793 + 7.21897i −0.0469369 + 0.326453i
$$490$$ 32.5309 27.0237i 1.46959 1.22080i
$$491$$ −22.3232 14.3463i −1.00743 0.647437i −0.0707050 0.997497i $$-0.522525\pi$$
−0.936727 + 0.350060i $$0.886161\pi$$
$$492$$ −6.81261 9.56698i −0.307136 0.431313i
$$493$$ −3.45718 14.2507i −0.155703 0.641818i
$$494$$ −6.63528 + 19.1714i −0.298535 + 0.862561i
$$495$$ 8.05369 1.55222i 0.361987 0.0697672i
$$496$$ −2.21415 0.650132i −0.0994181 0.0291918i
$$497$$ 1.05565 + 3.42483i 0.0473523 + 0.153625i
$$498$$ −3.72134 2.39156i −0.166757 0.107168i
$$499$$ −7.78675 + 32.0974i −0.348583 + 1.43688i 0.480127 + 0.877199i $$0.340591\pi$$
−0.828710 + 0.559679i $$0.810924\pi$$
$$500$$ 0.606306 0.242728i 0.0271148 0.0108551i
$$501$$ 8.61812 12.1025i 0.385029 0.540698i
$$502$$ 40.4054 + 16.1759i 1.80338 + 0.721964i
$$503$$ −29.6030 + 19.0247i −1.31993 + 0.848268i −0.995231 0.0975494i $$-0.968900\pi$$
−0.324700 + 0.945817i $$0.605263\pi$$
$$504$$ −1.73586 0.971433i −0.0773213 0.0432711i
$$505$$ −6.14859 −0.273608
$$506$$ 14.4776 18.4655i 0.643607 0.820892i
$$507$$ −0.155435 0.269221i −0.00690311 0.0119565i
$$508$$ −0.00407700 0.000785777i −0.000180888 3.48632e-5i
$$509$$ −0.855622 17.9617i −0.0379248 0.796140i −0.935083 0.354430i $$-0.884675\pi$$
0.897158 0.441710i $$-0.145628\pi$$
$$510$$ 1.32819 + 9.23778i 0.0588133 + 0.409056i
$$511$$ 2.23721 + 20.5206i 0.0989684 + 0.907776i
$$512$$ −3.82089 + 26.5749i −0.168861 + 1.17445i
$$513$$ 0.690551 2.84649i 0.0304886 0.125676i
$$514$$ 2.47937 52.0484i 0.109360 2.29576i
$$515$$ 25.9536 2.47827i 1.14365 0.109206i
$$516$$ 4.08310 3.89323i 0.179749 0.171390i
$$517$$ −15.4857 17.8714i −0.681058 0.785983i
$$518$$ −14.4006 34.6197i −0.632725 1.52110i
$$519$$ 3.65711 + 1.07383i 0.160529 + 0.0471357i
$$520$$ −5.06363 7.11088i −0.222055 0.311833i
$$521$$ −0.0627227 + 1.31671i −0.00274793 + 0.0576862i −0.999825 0.0187190i $$-0.994041\pi$$
0.997077 + 0.0764052i $$0.0243442\pi$$
$$522$$ 13.0426 + 12.4360i 0.570857 + 0.544311i
$$523$$ −14.2330 11.1930i −0.622367 0.489435i 0.256473 0.966551i $$-0.417440\pi$$
−0.878840 + 0.477116i $$0.841682\pi$$
$$524$$ 9.59180 + 21.0031i 0.419020 + 0.917526i
$$525$$ −12.7605 + 4.60874i −0.556913 + 0.201142i
$$526$$ −36.7787 + 23.6362i −1.60363 + 1.03059i
$$527$$ −0.251531 0.726751i −0.0109569 0.0316578i
$$528$$ 5.97305 + 10.3456i 0.259943 + 0.450235i
$$529$$ −5.48812 22.3356i −0.238614 0.971114i
$$530$$ 21.9396 38.0006i 0.952997 1.65064i
$$531$$ 2.30086 2.65533i 0.0998487 0.115232i
$$532$$ −3.34188 + 11.9723i −0.144889 + 0.519066i
$$533$$ 3.80192 + 26.4429i 0.164679 + 1.14537i
$$534$$ −12.2878 1.17335i −0.531747 0.0507756i
$$535$$ 40.4930 16.2109i 1.75066 0.700860i
$$536$$ 2.65884 + 2.53520i 0.114844 + 0.109504i
$$537$$ 19.1326 9.86352i 0.825631 0.425642i
$$538$$ 9.62610 21.0782i 0.415011 0.908746i
$$539$$ 17.9066 2.19530i 0.771292 0.0945581i
$$540$$ −3.34275 3.85774i −0.143849 0.166010i
$$541$$ 11.0662 2.13284i 0.475775 0.0916981i 0.0542740 0.998526i $$-0.482716\pi$$
0.421501 + 0.906828i $$0.361503\pi$$
$$542$$ 2.53678 + 10.4568i 0.108964 + 0.449157i
$$543$$ −8.62322 + 0.823418i −0.370058 + 0.0353362i
$$544$$ −10.0175 + 5.16438i −0.429497 + 0.221421i
$$545$$ 44.3284 13.0160i 1.89882 0.557544i
$$546$$ −10.1128 15.2818i −0.432788 0.654002i
$$547$$ −6.93692 15.1897i −0.296601 0.649466i 0.701393 0.712775i $$-0.252562\pi$$
−0.997994 + 0.0633089i $$0.979835\pi$$
$$548$$ 30.1861 + 12.0847i 1.28949 + 0.516233i
$$549$$ −8.94618 4.61208i −0.381814 0.196839i
$$550$$ 24.6359 + 4.74817i 1.05048 + 0.202463i
$$551$$ −13.9024 + 24.0797i −0.592264 + 1.02583i
$$552$$ 3.56977 + 0.507902i 0.151939 + 0.0216177i
$$553$$ 3.88058 + 18.7774i 0.165019 + 0.798495i
$$554$$ 33.0534 38.1457i 1.40431 1.62065i
$$555$$ 1.13042 + 23.7305i 0.0479837 + 1.00730i
$$556$$ 18.6947 14.7017i 0.792831 0.623489i
$$557$$ −4.40651 + 6.18807i −0.186710 + 0.262197i −0.897312 0.441397i $$-0.854483\pi$$
0.710602 + 0.703594i $$0.248423\pi$$
$$558$$ 0.742908 + 0.584229i 0.0314498 + 0.0247324i
$$559$$ −12.3130 + 3.61541i −0.520783 + 0.152916i
$$560$$ −24.5345 30.3525i −1.03677 1.28263i
$$561$$ −1.65385 + 3.62143i −0.0698257 + 0.152897i
$$562$$ −35.7081 + 34.0476i −1.50626 + 1.43621i
$$563$$ 1.70657 4.93082i 0.0719235 0.207809i −0.903309 0.428990i $$-0.858870\pi$$
0.975233 + 0.221180i $$0.0709909\pi$$
$$564$$ −4.81347 + 13.9076i −0.202683 + 0.585615i
$$565$$ −21.4561 + 20.4583i −0.902664 + 0.860688i
$$566$$ 2.26447 4.95850i 0.0951828 0.208421i
$$567$$ 1.66320 + 2.05761i 0.0698480 + 0.0864114i
$$568$$ 0.977165 0.286922i 0.0410009 0.0120390i
$$569$$ 21.1772 + 16.6539i 0.887792 + 0.698168i 0.954054 0.299635i $$-0.0968648\pi$$
−0.0662616 + 0.997802i $$0.521107\pi$$
$$570$$ 10.2648 14.4148i 0.429944 0.603771i
$$571$$ −14.7755 + 11.6196i −0.618336 + 0.486265i −0.877505 0.479567i $$-0.840794\pi$$
0.259169 + 0.965832i $$0.416551\pi$$
$$572$$ 0.717618 + 15.0647i 0.0300051 + 0.629885i
$$573$$ 3.02136 3.48683i 0.126219 0.145665i
$$574$$ 7.44336 + 36.0169i 0.310680 + 1.50332i
$$575$$ 18.5623 16.1321i 0.774100 0.672756i
$$576$$ 2.29006 3.96650i 0.0954190 0.165271i
$$577$$ 20.4040 + 3.93255i 0.849429 + 0.163714i 0.595347 0.803469i $$-0.297015\pi$$
0.254082 + 0.967183i $$0.418227\pi$$
$$578$$ 24.6588 + 12.7125i 1.02567 + 0.528771i
$$579$$ −6.04429 2.41977i −0.251192 0.100562i
$$580$$ 20.1294 + 44.0772i 0.835827 + 1.83021i
$$581$$ 3.40220 + 5.14120i 0.141147 + 0.213293i
$$582$$ 29.9171 8.78445i 1.24010 0.364127i
$$583$$ 16.6374 8.57716i 0.689049 0.355230i
$$584$$ 5.83932 0.557588i 0.241633 0.0230732i
$$585$$ 2.73736 + 11.2836i 0.113176 + 0.466518i
$$586$$ −6.30607 + 1.21539i −0.260501 + 0.0502075i
$$587$$ 20.1542 + 23.2592i 0.831852 + 0.960008i 0.999667 0.0258104i $$-0.00821663\pi$$
−0.167815 + 0.985818i $$0.553671\pi$$
$$588$$ −6.75536 8.96811i −0.278586 0.369839i
$$589$$ −0.605763 + 1.32644i −0.0249600 + 0.0546549i
$$590$$ 18.8674 9.72684i 0.776760 0.400448i
$$591$$ −18.4370 17.5796i −0.758395 0.723128i
$$592$$ −32.1240 + 12.8605i −1.32029 + 0.528563i
$$593$$ 35.6212 + 3.40141i 1.46279 + 0.139679i 0.795876 0.605460i $$-0.207011\pi$$
0.666909 + 0.745139i $$0.267617\pi$$
$$594$$ −0.696297 4.84285i −0.0285694 0.198705i
$$595$$ 3.49695 12.5279i 0.143361 0.513593i
$$596$$ −20.9878 + 24.2212i −0.859694 + 0.992140i
$$597$$ −3.95173 + 6.84460i −0.161734 + 0.280131i
$$598$$ 27.0859 + 19.2278i 1.10762 + 0.786284i
$$599$$ 8.95674 + 15.5135i 0.365962 + 0.633865i 0.988930 0.148382i $$-0.0474066\pi$$
−0.622968 + 0.782248i $$0.714073\pi$$
$$600$$ 1.26098 + 3.64337i 0.0514794 + 0.148740i
$$601$$ −29.7973 + 19.1495i −1.21546 + 0.781126i −0.981564 0.191136i $$-0.938783\pi$$
−0.233893 + 0.972262i $$0.575146\pi$$
$$602$$ −16.6162 + 6.00132i −0.677226 + 0.244596i
$$603$$ −2.02987 4.44479i −0.0826625 0.181006i
$$604$$ −16.9251 13.3100i −0.688673 0.541578i
$$605$$ −10.0372 9.57042i −0.408069 0.389093i
$$606$$ −0.174521 + 3.66364i −0.00708941 + 0.148825i
$$607$$ −26.3572 37.0136i −1.06981 1.50233i −0.849994 0.526792i $$-0.823395\pi$$
−0.219813 0.975542i $$-0.570545\pi$$
$$608$$ 20.5044 + 6.02064i 0.831564 + 0.244169i
$$609$$ −9.64596 23.1893i −0.390874 0.939680i
$$610$$ −39.8213 45.9563i −1.61232 1.86072i
$$611$$ 24.2275 23.1009i 0.980139 0.934561i
$$612$$ 2.46651 0.235523i 0.0997028 0.00952046i
$$613$$ 1.76535 37.0592i 0.0713017 1.49681i −0.625884 0.779916i $$-0.715262\pi$$
0.697186 0.716890i $$-0.254435\pi$$
$$614$$ 3.98672 16.4335i 0.160891 0.663201i
$$615$$ 3.31635 23.0657i 0.133728 0.930099i
$$616$$ −0.555627 5.09642i −0.0223869 0.205341i
$$617$$ −5.34837 37.1987i −0.215317 1.49756i −0.755017 0.655706i $$-0.772371\pi$$
0.539699 0.841858i $$-0.318538\pi$$
$$618$$ −0.740014 15.5348i −0.0297677 0.624902i
$$619$$ 21.2060 + 4.08712i 0.852342 + 0.164275i 0.596668 0.802488i $$-0.296491\pi$$
0.255673 + 0.966763i $$0.417703\pi$$
$$620$$ 1.27063 + 2.20079i 0.0510296 + 0.0883858i
$$621$$ −4.15683 2.39181i −0.166808 0.0959800i
$$622$$ 30.9137 1.23953
$$623$$ 15.0121 + 8.40121i 0.601449 + 0.336587i
$$624$$ −14.2266 + 9.14289i −0.569520 + 0.366008i
$$625$$ −22.6001 9.04772i −0.904004 0.361909i
$$626$$ −12.1439 + 17.0537i −0.485366 + 0.681602i
$$627$$ 7.00813 2.80563i 0.279878 0.112046i
$$628$$ 8.20865 33.8365i 0.327561 1.35022i
$$629$$ −9.70118 6.23457i −0.386812 0.248589i
$$630$$ 4.70838 + 15.2753i 0.187586 + 0.608584i
$$631$$ 11.1742 + 3.28104i 0.444838 + 0.130616i 0.496477 0.868050i $$-0.334627\pi$$
−0.0516398 + 0.998666i $$0.516445\pi$$
$$632$$ 5.35026 1.03118i 0.212822 0.0410181i
$$633$$ −6.13259 + 17.7189i −0.243748 + 0.704265i
$$634$$ 5.77535 + 23.8063i 0.229369 + 0.945470i
$$635$$ −0.00477857 0.00671056i −0.000189632 0.000266301i
$$636$$ −9.80008 6.29813i −0.388598 0.249737i
$$637$$ 4.31036 + 25.1725i 0.170783 + 0.997370i
$$638$$ −6.60980 + 45.9722i −0.261684 + 1.82006i
$$639$$ −1.34843 0.128759i −0.0533430 0.00509364i
$$640$$ −14.7513 + 11.6006i −0.583097 + 0.458553i
$$641$$ −39.2181 20.2183i −1.54902 0.798575i −0.549697 0.835364i $$-0.685257\pi$$
−0.999323 + 0.0367890i $$0.988287\pi$$
$$642$$ −8.50995 24.5879i −0.335861 0.970407i
$$643$$ 14.0642 0.554639 0.277320 0.960778i $$-0.410554\pi$$
0.277320 + 0.960778i $$0.410554\pi$$
$$644$$ 17.2828 + 10.7474i 0.681039 + 0.423508i
$$645$$ 11.1938 0.440756
$$646$$ 2.80941 + 8.11727i 0.110535 + 0.319370i
$$647$$ 8.75746 + 4.51479i 0.344291 + 0.177495i 0.621696 0.783259i $$-0.286444\pi$$
−0.277405 + 0.960753i $$0.589474\pi$$
$$648$$ 0.590989 0.464759i 0.0232163 0.0182575i
$$649$$ 9.01414 + 0.860746i 0.353836 + 0.0337873i
$$650$$ −5.05460 + 35.1555i −0.198258 + 1.37891i
$$651$$ −0.619189 1.16256i −0.0242679 0.0455643i
$$652$$ 9.84100 + 6.32443i 0.385403 + 0.247684i
$$653$$ −6.46279 9.07571i −0.252908 0.355160i 0.668530 0.743686i $$-0.266924\pi$$
−0.921438 + 0.388525i $$0.872985\pi$$
$$654$$ −6.49737 26.7825i −0.254067 1.04728i
$$655$$ −14.9838 + 43.2929i −0.585467 + 1.69159i
$$656$$ 33.3273 6.42332i 1.30121 0.250788i
$$657$$ −7.48596 2.19808i −0.292055 0.0857552i
$$658$$ 31.3531 33.7767i 1.22227 1.31675i
$$659$$ 25.5981 + 16.4509i 0.997162 + 0.640837i 0.934040 0.357169i $$-0.116258\pi$$
0.0631221 + 0.998006i $$0.479894\pi$$
$$660$$ 3.10154 12.7847i 0.120727 0.497644i
$$661$$ −44.0084 + 17.6183i −1.71173 + 0.685273i −0.999855 0.0170348i $$-0.994577\pi$$
−0.711874 + 0.702308i $$0.752153\pi$$
$$662$$ 4.28136 6.01232i 0.166400 0.233676i
$$663$$ −5.23219 2.09465i −0.203201 0.0813496i
$$664$$ 1.47379 0.947149i 0.0571943 0.0367565i
$$665$$ −21.1913 + 12.6162i −0.821763 + 0.489236i
$$666$$ 14.1719 0.549150
$$667$$ 31.4648 + 32.9024i 1.21832 + 1.27398i
$$668$$ −11.9153 20.6379i −0.461018 0.798506i
$$669$$ −9.25580 1.78391i −0.357850 0.0689699i
$$670$$ −1.40468 29.4879i −0.0542676 1.13922i
$$671$$ −3.69165 25.6760i −0.142515 0.991212i
$$672$$ −15.5725 + 11.4065i −0.600720 + 0.440015i
$$673$$ 2.69375 18.7355i 0.103837 0.722199i −0.869686 0.493606i $$-0.835678\pi$$
0.973522 0.228593i $$-0.0734124\pi$$
$$674$$ −1.41501 + 5.83275i −0.0545041 + 0.224669i
$$675$$ 0.243997 5.12213i 0.00939146 0.197151i
$$676$$ −0.496366 + 0.0473972i −0.0190910 + 0.00182297i
$$677$$ −0.910290 + 0.867960i −0.0349853 + 0.0333584i −0.707370 0.706843i $$-0.750119\pi$$
0.672385 + 0.740202i $$0.265270\pi$$
$$678$$ 11.5811 + 13.3653i 0.444769 + 0.513291i
$$679$$ −43.0914 5.60759i −1.65369 0.215200i
$$680$$ −3.54642 1.04132i −0.135999 0.0399329i
$$681$$ −0.300223 0.421604i −0.0115046 0.0161559i
$$682$$ −0.115899 + 2.43302i −0.00443800 + 0.0931651i
$$683$$ −19.2285 18.3344i −0.735760 0.701545i 0.226399 0.974035i $$-0.427305\pi$$
−0.962159 + 0.272489i $$0.912153\pi$$
$$684$$ −3.69295 2.90417i −0.141203 0.111044i
$$685$$ 26.8001 + 58.6840i 1.02398 + 2.24220i
$$686$$ 8.03541 + 34.2285i 0.306793 + 1.30685i
$$687$$ −19.2906 + 12.3973i −0.735983 + 0.472987i
$$688$$ 5.33245 + 15.4071i 0.203298 + 0.587390i
$$689$$ 13.2490 + 22.9479i 0.504745 + 0.874244i
$$690$$ −17.9442 22.7491i −0.683126 0.866043i
$$691$$ −14.2987 + 24.7660i −0.543947 + 0.942145i 0.454725 + 0.890632i $$0.349738\pi$$
−0.998672 + 0.0515127i $$0.983596\pi$$
$$692$$ 4.00350 4.62028i 0.152190 0.175637i
$$693$$ −1.83326 + 6.56767i −0.0696397 + 0.249485i
$$694$$ 4.04270 + 28.1176i 0.153459 + 1.06733i
$$695$$ 46.9745 + 4.48552i 1.78184 + 0.170145i
$$696$$ −6.62585 + 2.65259i −0.251152 + 0.100546i
$$697$$ 8.18631 + 7.80564i 0.310079 + 0.295660i
$$698$$ −21.3619 + 11.0128i −0.808558 + 0.416841i
$$699$$ −1.72802 + 3.78384i −0.0653597 + 0.143118i
$$700$$ −1.77821 + 21.6886i −0.0672102 + 0.819752i
$$701$$ 4.55214 + 5.25345i 0.171932 + 0.198420i 0.835175 0.549984i $$-0.185366\pi$$
−0.663243 + 0.748404i $$0.730821\pi$$
$$702$$ 6.80101 1.31079i 0.256687 0.0494725i
$$703$$ 5.15506 + 21.2494i 0.194427 + 0.801438i
$$704$$ 11.7506 1.12205i 0.442867 0.0422887i
$$705$$ −25.9542 + 13.3803i −0.977493 + 0.503932i
$$706$$ 30.7958 9.04246i 1.15901 0.340317i
$$707$$ 2.28124 4.57441i 0.0857950 0.172038i
$$708$$ −2.34108 5.12626i −0.0879833 0.192657i
$$709$$ 35.1679 + 14.0791i 1.32076 + 0.528752i 0.921604 0.388131i $$-0.126879\pi$$
0.399155 + 0.916883i $$0.369303\pi$$
$$710$$ −7.27395 3.74998i −0.272987 0.140734i
$$711$$ −7.11618 1.37153i −0.266878 0.0514365i
$$712$$ 2.44430 4.23365i 0.0916039 0.158663i
$$713$$ 1.80670 + 1.56088i 0.0676616 + 0.0584553i
$$714$$ −7.36548 2.43925i −0.275646 0.0912866i
$$715$$ −19.5960 + 22.6150i −0.732849 + 0.845752i
$$716$$ −1.64281 34.4869i −0.0613947 1.28883i
$$717$$ −15.1870 + 11.9432i −0.567169 + 0.446027i
$$718$$ −12.0196 + 16.8792i −0.448568 + 0.629926i
$$719$$ −1.91361 1.50488i −0.0713655 0.0561225i 0.581839 0.813304i $$-0.302333\pi$$
−0.653205 + 0.757182i $$0.726576\pi$$
$$720$$ 14.1538 4.15594i 0.527482 0.154883i
$$721$$ −7.78551 + 20.2284i −0.289948 + 0.753344i
$$722$$ −8.21800 + 17.9949i −0.305842 + 0.669701i
$$723$$ −11.3927 + 10.8629i −0.423699 + 0.403996i
$$724$$ −4.54436 + 13.1301i −0.168890 + 0.487975i
$$725$$ −15.9212 + 46.0012i −0.591297 + 1.70844i
$$726$$ −5.98743 + 5.70901i −0.222215 + 0.211881i
$$727$$ 3.63519 7.95996i 0.134822 0.295219i −0.830165 0.557518i $$-0.811754\pi$$
0.964986 + 0.262300i $$0.0844809\pi$$
$$728$$ 7.16903 1.12896i 0.265702 0.0418419i
$$729$$ −0.959493 + 0.281733i −0.0355368 + 0.0104345i
$$730$$ −37.0517 29.1378i −1.37135 1.07844i
$$731$$ −3.15172 + 4.42598i −0.116571 + 0.163701i
$$732$$ −12.6900 + 9.97954i −0.469036 + 0.368854i
$$733$$ −0.976038 20.4896i −0.0360508 0.756800i −0.942444 0.334364i $$-0.891478\pi$$
0.906393 0.422435i $$-0.138825\pi$$
$$734$$ 27.0918 31.2656i 0.999977 1.15403i
$$735$$ 2.57860 22.1274i 0.0951130 0.816180i
$$736$$ 18.8736 29.4631i 0.695692 1.08602i
$$737$$ 6.29665 10.9061i 0.231940 0.401732i
$$738$$ −13.6496 2.63074i −0.502448 0.0968389i
$$739$$ 12.2949 + 6.33849i 0.452277 + 0.233165i 0.669286 0.743005i $$-0.266600\pi$$
−0.217009 + 0.976170i $$0.569630\pi$$
$$740$$ 35.3763 + 14.1625i 1.30046 + 0.520625i
$$741$$ 4.43929 + 9.72068i 0.163081 + 0.357098i
$$742$$ 20.1315 + 30.4215i 0.739051 + 1.11681i
$$743$$ −43.5011 + 12.7731i −1.59590 + 0.468598i −0.954402 0.298526i $$-0.903505\pi$$
−0.641498 + 0.767124i $$0.721687\pi$$
$$744$$ −0.332692 + 0.171515i −0.0121971 + 0.00628803i
$$745$$ −63.3015 + 6.04456i −2.31919 + 0.221456i
$$746$$ 8.30072 + 34.2160i 0.303911 + 1.25274i
$$747$$ −2.28803 + 0.440982i −0.0837147 + 0.0161347i
$$748$$ 4.18174 + 4.82599i 0.152900 + 0.176456i
$$749$$ −2.96310 + 36.1404i −0.108269 + 1.32054i
$$750$$ 0.321107 0.703127i 0.0117252 0.0256746i
$$751$$ 20.5302 10.5840i 0.749157 0.386217i −0.0409701 0.999160i $$-0.513045\pi$$
0.790127 + 0.612943i $$0.210015\pi$$
$$752$$ −30.7806 29.3492i −1.12245 1.07026i
$$753$$ 21.2838 8.52074i 0.775624 0.310513i
$$754$$ −65.4509 6.24981i −2.38358 0.227605i
$$755$$ −6.07990 42.2866i −0.221270 1.53897i
$$756$$ 4.11029 1.05563i 0.149490 0.0383930i
$$757$$ −10.6921 + 12.3394i −0.388611 + 0.448481i −0.916021 0.401130i $$-0.868618\pi$$
0.527410 + 0.849611i $$0.323163\pi$$
$$758$$ −17.0912 + 29.6028i −0.620780 + 1.07522i
$$759$$ −1.19297 12.3023i −0.0433021 0.446545i
$$760$$ 3.50418 + 6.06941i 0.127110 + 0.220161i
$$761$$ −12.6569 36.5698i −0.458813 1.32565i −0.902970 0.429705i $$-0.858618\pi$$
0.444156 0.895949i $$-0.353504\pi$$
$$762$$ −0.00413413 + 0.00265684i −0.000149764 + 9.62472e-5i
$$763$$ −6.76308 + 37.8085i −0.244840 + 1.36876i
$$764$$ −3.07418 6.73152i −0.111220 0.243538i
$$765$$ 3.86432 + 3.03893i 0.139715 + 0.109873i
$$766$$ 49.0144 + 46.7352i 1.77096 + 1.68861i
$$767$$ −0.609939 + 12.8042i −0.0220236 + 0.462332i
$$768$$ 11.8070 + 16.5806i 0.426047 + 0.598299i
$$769$$ −18.4555 5.41903i −0.665524 0.195415i −0.0685149 0.997650i $$-0.521826\pi$$
−0.597009 + 0.802235i $$0.703644\pi$$
$$770$$ −25.0296 + 32.7204i −0.902005 + 1.17916i
$$771$$ −17.9746 20.7438i −0.647338 0.747068i
$$772$$ −7.55785 + 7.20639i −0.272013 + 0.259364i
$$773$$