Properties

Label 475.2.l.f.251.6
Level $475$
Weight $2$
Character 475.251
Analytic conductor $3.793$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(101,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 251.6
Character \(\chi\) \(=\) 475.251
Dual form 475.2.l.f.176.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.984236 + 0.358233i) q^{2} +(0.0922859 + 0.523379i) q^{3} +(-0.691698 - 0.580404i) q^{4} +(-0.0966605 + 0.548189i) q^{6} +(1.37016 - 2.37320i) q^{7} +(-1.52028 - 2.63320i) q^{8} +(2.55367 - 0.929459i) q^{9} +(-0.416418 - 0.721257i) q^{11} +(0.239937 - 0.415583i) q^{12} +(0.106070 - 0.601551i) q^{13} +(2.19872 - 1.84495i) q^{14} +(-0.239424 - 1.35784i) q^{16} +(-4.54662 - 1.65483i) q^{17} +2.84638 q^{18} +(4.35537 + 0.175314i) q^{19} +(1.36853 + 0.498103i) q^{21} +(-0.151476 - 0.859062i) q^{22} +(2.87338 + 2.41106i) q^{23} +(1.23786 - 1.03869i) q^{24} +(0.319893 - 0.554071i) q^{26} +(1.51931 + 2.63152i) q^{27} +(-2.32515 + 0.846286i) q^{28} +(3.73543 - 1.35958i) q^{29} +(3.46338 - 5.99875i) q^{31} +(-0.805200 + 4.56652i) q^{32} +(0.339061 - 0.284506i) q^{33} +(-3.88213 - 3.25750i) q^{34} +(-2.30583 - 0.839253i) q^{36} +4.33071 q^{37} +(4.22391 + 1.73279i) q^{38} +0.324628 q^{39} +(0.923271 + 5.23613i) q^{41} +(1.16852 + 0.980503i) q^{42} +(-8.01164 + 6.72257i) q^{43} +(-0.130585 + 0.740582i) q^{44} +(1.96437 + 3.40239i) q^{46} +(-3.19511 + 1.16292i) q^{47} +(0.688571 - 0.250619i) q^{48} +(-0.254704 - 0.441160i) q^{49} +(0.446517 - 2.53232i) q^{51} +(-0.422511 + 0.354529i) q^{52} +(-10.4702 - 8.78556i) q^{53} +(0.552662 + 3.13430i) q^{54} -8.33212 q^{56} +(0.310183 + 2.29569i) q^{57} +4.16359 q^{58} +(-9.41315 - 3.42610i) q^{59} +(6.94990 + 5.83166i) q^{61} +(5.55774 - 4.66350i) q^{62} +(1.29316 - 7.33387i) q^{63} +(-3.80717 + 6.59422i) q^{64} +(0.435636 - 0.158558i) q^{66} +(-10.2751 + 3.73984i) q^{67} +(2.18442 + 3.78352i) q^{68} +(-0.996723 + 1.72638i) q^{69} +(-0.519169 + 0.435634i) q^{71} +(-6.32974 - 5.31128i) q^{72} +(1.21787 + 6.90688i) q^{73} +(4.26244 + 1.55140i) q^{74} +(-2.91085 - 2.64914i) q^{76} -2.28224 q^{77} +(0.319511 + 0.116292i) q^{78} +(0.604220 + 3.42670i) q^{79} +(5.00824 - 4.20241i) q^{81} +(-0.967036 + 5.48434i) q^{82} +(2.48742 - 4.30834i) q^{83} +(-0.657507 - 1.13884i) q^{84} +(-10.2936 + 3.74656i) q^{86} +(1.05630 + 1.82957i) q^{87} +(-1.26614 + 2.19302i) q^{88} +(-1.02256 + 5.79921i) q^{89} +(-1.28227 - 1.07595i) q^{91} +(-0.588129 - 3.33544i) q^{92} +(3.45924 + 1.25906i) q^{93} -3.56134 q^{94} -2.46433 q^{96} +(11.6886 + 4.25430i) q^{97} +(-0.0926508 - 0.525449i) q^{98} +(-1.73377 - 1.45481i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 18 q^{4} - 6 q^{6} + 12 q^{9} - 12 q^{11} - 6 q^{14} - 42 q^{16} - 12 q^{19} - 54 q^{21} - 24 q^{24} + 12 q^{26} - 42 q^{31} + 36 q^{34} + 18 q^{36} + 48 q^{39} + 6 q^{41} + 6 q^{44} - 6 q^{46} - 12 q^{49}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.984236 + 0.358233i 0.695960 + 0.253309i 0.665685 0.746233i \(-0.268139\pi\)
0.0302752 + 0.999542i \(0.490362\pi\)
\(3\) 0.0922859 + 0.523379i 0.0532813 + 0.302173i 0.999790 0.0205059i \(-0.00652769\pi\)
−0.946508 + 0.322679i \(0.895417\pi\)
\(4\) −0.691698 0.580404i −0.345849 0.290202i
\(5\) 0 0
\(6\) −0.0966605 + 0.548189i −0.0394615 + 0.223797i
\(7\) 1.37016 2.37320i 0.517874 0.896983i −0.481911 0.876220i \(-0.660057\pi\)
0.999784 0.0207632i \(-0.00660960\pi\)
\(8\) −1.52028 2.63320i −0.537499 0.930976i
\(9\) 2.55367 0.929459i 0.851223 0.309820i
\(10\) 0 0
\(11\) −0.416418 0.721257i −0.125555 0.217467i 0.796395 0.604777i \(-0.206738\pi\)
−0.921950 + 0.387310i \(0.873404\pi\)
\(12\) 0.239937 0.415583i 0.0692639 0.119969i
\(13\) 0.106070 0.601551i 0.0294185 0.166840i −0.966559 0.256444i \(-0.917449\pi\)
0.995977 + 0.0896039i \(0.0285601\pi\)
\(14\) 2.19872 1.84495i 0.587633 0.493083i
\(15\) 0 0
\(16\) −0.239424 1.35784i −0.0598561 0.339461i
\(17\) −4.54662 1.65483i −1.10272 0.401356i −0.274400 0.961616i \(-0.588479\pi\)
−0.828317 + 0.560259i \(0.810701\pi\)
\(18\) 2.84638 0.670897
\(19\) 4.35537 + 0.175314i 0.999191 + 0.0402198i
\(20\) 0 0
\(21\) 1.36853 + 0.498103i 0.298637 + 0.108695i
\(22\) −0.151476 0.859062i −0.0322947 0.183153i
\(23\) 2.87338 + 2.41106i 0.599142 + 0.502740i 0.891170 0.453670i \(-0.149886\pi\)
−0.292028 + 0.956410i \(0.594330\pi\)
\(24\) 1.23786 1.03869i 0.252677 0.212021i
\(25\) 0 0
\(26\) 0.319893 0.554071i 0.0627362 0.108662i
\(27\) 1.51931 + 2.63152i 0.292391 + 0.506436i
\(28\) −2.32515 + 0.846286i −0.439412 + 0.159933i
\(29\) 3.73543 1.35958i 0.693651 0.252468i 0.0289533 0.999581i \(-0.490783\pi\)
0.664698 + 0.747112i \(0.268560\pi\)
\(30\) 0 0
\(31\) 3.46338 5.99875i 0.622042 1.07741i −0.367063 0.930196i \(-0.619637\pi\)
0.989105 0.147212i \(-0.0470300\pi\)
\(32\) −0.805200 + 4.56652i −0.142341 + 0.807254i
\(33\) 0.339061 0.284506i 0.0590230 0.0495262i
\(34\) −3.88213 3.25750i −0.665780 0.558656i
\(35\) 0 0
\(36\) −2.30583 0.839253i −0.384305 0.139876i
\(37\) 4.33071 0.711965 0.355982 0.934493i \(-0.384146\pi\)
0.355982 + 0.934493i \(0.384146\pi\)
\(38\) 4.22391 + 1.73279i 0.685209 + 0.281095i
\(39\) 0.324628 0.0519821
\(40\) 0 0
\(41\) 0.923271 + 5.23613i 0.144191 + 0.817746i 0.968013 + 0.250899i \(0.0807260\pi\)
−0.823823 + 0.566848i \(0.808163\pi\)
\(42\) 1.16852 + 0.980503i 0.180306 + 0.151295i
\(43\) −8.01164 + 6.72257i −1.22176 + 1.02518i −0.223034 + 0.974811i \(0.571596\pi\)
−0.998731 + 0.0503713i \(0.983960\pi\)
\(44\) −0.130585 + 0.740582i −0.0196864 + 0.111647i
\(45\) 0 0
\(46\) 1.96437 + 3.40239i 0.289631 + 0.501655i
\(47\) −3.19511 + 1.16292i −0.466054 + 0.169630i −0.564364 0.825526i \(-0.690879\pi\)
0.0983098 + 0.995156i \(0.468656\pi\)
\(48\) 0.688571 0.250619i 0.0993867 0.0361738i
\(49\) −0.254704 0.441160i −0.0363862 0.0630228i
\(50\) 0 0
\(51\) 0.446517 2.53232i 0.0625249 0.354596i
\(52\) −0.422511 + 0.354529i −0.0585917 + 0.0491643i
\(53\) −10.4702 8.78556i −1.43820 1.20679i −0.940662 0.339346i \(-0.889794\pi\)
−0.497535 0.867444i \(-0.665761\pi\)
\(54\) 0.552662 + 3.13430i 0.0752077 + 0.426524i
\(55\) 0 0
\(56\) −8.33212 −1.11343
\(57\) 0.310183 + 2.29569i 0.0410848 + 0.304072i
\(58\) 4.16359 0.546706
\(59\) −9.41315 3.42610i −1.22549 0.446041i −0.353437 0.935458i \(-0.614987\pi\)
−0.872050 + 0.489417i \(0.837210\pi\)
\(60\) 0 0
\(61\) 6.94990 + 5.83166i 0.889844 + 0.746668i 0.968179 0.250260i \(-0.0805159\pi\)
−0.0783350 + 0.996927i \(0.524960\pi\)
\(62\) 5.55774 4.66350i 0.705833 0.592265i
\(63\) 1.29316 7.33387i 0.162923 0.923980i
\(64\) −3.80717 + 6.59422i −0.475897 + 0.824277i
\(65\) 0 0
\(66\) 0.435636 0.158558i 0.0536231 0.0195172i
\(67\) −10.2751 + 3.73984i −1.25531 + 0.456894i −0.882191 0.470891i \(-0.843933\pi\)
−0.373115 + 0.927785i \(0.621710\pi\)
\(68\) 2.18442 + 3.78352i 0.264899 + 0.458819i
\(69\) −0.996723 + 1.72638i −0.119991 + 0.207831i
\(70\) 0 0
\(71\) −0.519169 + 0.435634i −0.0616140 + 0.0517003i −0.673075 0.739575i \(-0.735027\pi\)
0.611461 + 0.791275i \(0.290582\pi\)
\(72\) −6.32974 5.31128i −0.745967 0.625940i
\(73\) 1.21787 + 6.90688i 0.142541 + 0.808389i 0.969309 + 0.245846i \(0.0790657\pi\)
−0.826768 + 0.562543i \(0.809823\pi\)
\(74\) 4.26244 + 1.55140i 0.495499 + 0.180347i
\(75\) 0 0
\(76\) −2.91085 2.64914i −0.333897 0.303877i
\(77\) −2.28224 −0.260086
\(78\) 0.319511 + 0.116292i 0.0361775 + 0.0131675i
\(79\) 0.604220 + 3.42670i 0.0679801 + 0.385534i 0.999747 + 0.0224781i \(0.00715559\pi\)
−0.931767 + 0.363056i \(0.881733\pi\)
\(80\) 0 0
\(81\) 5.00824 4.20241i 0.556471 0.466935i
\(82\) −0.967036 + 5.48434i −0.106791 + 0.605644i
\(83\) 2.48742 4.30834i 0.273030 0.472902i −0.696606 0.717454i \(-0.745307\pi\)
0.969636 + 0.244552i \(0.0786408\pi\)
\(84\) −0.657507 1.13884i −0.0717399 0.124257i
\(85\) 0 0
\(86\) −10.2936 + 3.74656i −1.10999 + 0.404002i
\(87\) 1.05630 + 1.82957i 0.113248 + 0.196151i
\(88\) −1.26614 + 2.19302i −0.134971 + 0.233777i
\(89\) −1.02256 + 5.79921i −0.108391 + 0.614716i 0.881421 + 0.472332i \(0.156588\pi\)
−0.989812 + 0.142383i \(0.954523\pi\)
\(90\) 0 0
\(91\) −1.28227 1.07595i −0.134418 0.112790i
\(92\) −0.588129 3.33544i −0.0613167 0.347744i
\(93\) 3.45924 + 1.25906i 0.358707 + 0.130559i
\(94\) −3.56134 −0.367324
\(95\) 0 0
\(96\) −2.46433 −0.251514
\(97\) 11.6886 + 4.25430i 1.18680 + 0.431959i 0.858598 0.512649i \(-0.171336\pi\)
0.328200 + 0.944608i \(0.393558\pi\)
\(98\) −0.0926508 0.525449i −0.00935914 0.0530783i
\(99\) −1.73377 1.45481i −0.174251 0.146214i
\(100\) 0 0
\(101\) −3.08004 + 17.4678i −0.306475 + 1.73811i 0.310003 + 0.950736i \(0.399670\pi\)
−0.616478 + 0.787372i \(0.711441\pi\)
\(102\) 1.34664 2.33245i 0.133337 0.230947i
\(103\) 2.60925 + 4.51935i 0.257097 + 0.445305i 0.965463 0.260541i \(-0.0839008\pi\)
−0.708366 + 0.705845i \(0.750567\pi\)
\(104\) −1.74526 + 0.635222i −0.171137 + 0.0622887i
\(105\) 0 0
\(106\) −7.15790 12.3979i −0.695237 1.20419i
\(107\) 7.59356 13.1524i 0.734097 1.27149i −0.221021 0.975269i \(-0.570939\pi\)
0.955118 0.296225i \(-0.0957277\pi\)
\(108\) 0.476440 2.70203i 0.0458455 0.260003i
\(109\) 3.00487 2.52138i 0.287814 0.241505i −0.487437 0.873158i \(-0.662068\pi\)
0.775251 + 0.631654i \(0.217624\pi\)
\(110\) 0 0
\(111\) 0.399663 + 2.26660i 0.0379344 + 0.215137i
\(112\) −3.55048 1.29227i −0.335489 0.122108i
\(113\) 3.97342 0.373788 0.186894 0.982380i \(-0.440158\pi\)
0.186894 + 0.982380i \(0.440158\pi\)
\(114\) −0.517097 + 2.37062i −0.0484306 + 0.222029i
\(115\) 0 0
\(116\) −3.37289 1.22763i −0.313165 0.113983i
\(117\) −0.288251 1.63475i −0.0266488 0.151133i
\(118\) −8.03742 6.74420i −0.739904 0.620853i
\(119\) −10.1569 + 8.52262i −0.931078 + 0.781267i
\(120\) 0 0
\(121\) 5.15319 8.92559i 0.468472 0.811417i
\(122\) 4.75126 + 8.22942i 0.430158 + 0.745056i
\(123\) −2.65528 + 0.966441i −0.239418 + 0.0871411i
\(124\) −5.87731 + 2.13917i −0.527798 + 0.192103i
\(125\) 0 0
\(126\) 3.90001 6.75501i 0.347440 0.601784i
\(127\) 1.59495 9.04543i 0.141529 0.802652i −0.828559 0.559901i \(-0.810839\pi\)
0.970089 0.242751i \(-0.0780497\pi\)
\(128\) 0.994815 0.834749i 0.0879301 0.0737821i
\(129\) −4.25781 3.57273i −0.374880 0.314561i
\(130\) 0 0
\(131\) 3.51355 + 1.27883i 0.306980 + 0.111732i 0.490917 0.871206i \(-0.336662\pi\)
−0.183936 + 0.982938i \(0.558884\pi\)
\(132\) −0.399656 −0.0347856
\(133\) 6.38363 10.0959i 0.553531 0.875429i
\(134\) −11.4529 −0.989379
\(135\) 0 0
\(136\) 2.55462 + 14.4880i 0.219057 + 1.24233i
\(137\) 1.81043 + 1.51913i 0.154675 + 0.129788i 0.716841 0.697237i \(-0.245587\pi\)
−0.562166 + 0.827025i \(0.690032\pi\)
\(138\) −1.59946 + 1.34210i −0.136155 + 0.114247i
\(139\) 0.424186 2.40568i 0.0359790 0.204047i −0.961519 0.274737i \(-0.911409\pi\)
0.997498 + 0.0706903i \(0.0225202\pi\)
\(140\) 0 0
\(141\) −0.903514 1.56493i −0.0760896 0.131791i
\(142\) −0.667043 + 0.242784i −0.0559770 + 0.0203740i
\(143\) −0.478042 + 0.173993i −0.0399759 + 0.0145500i
\(144\) −1.87347 3.24495i −0.156123 0.270412i
\(145\) 0 0
\(146\) −1.27560 + 7.23428i −0.105569 + 0.598713i
\(147\) 0.207388 0.174019i 0.0171051 0.0143529i
\(148\) −2.99555 2.51356i −0.246232 0.206613i
\(149\) 2.47773 + 14.0519i 0.202984 + 1.15118i 0.900581 + 0.434687i \(0.143141\pi\)
−0.697598 + 0.716490i \(0.745748\pi\)
\(150\) 0 0
\(151\) 2.34319 0.190686 0.0953432 0.995444i \(-0.469605\pi\)
0.0953432 + 0.995444i \(0.469605\pi\)
\(152\) −6.15974 11.7351i −0.499621 0.951841i
\(153\) −13.1487 −1.06301
\(154\) −2.24627 0.817575i −0.181009 0.0658820i
\(155\) 0 0
\(156\) −0.224545 0.188415i −0.0179780 0.0150853i
\(157\) −12.3906 + 10.3969i −0.988875 + 0.829765i −0.985405 0.170229i \(-0.945549\pi\)
−0.00347076 + 0.999994i \(0.501105\pi\)
\(158\) −0.632862 + 3.58914i −0.0503478 + 0.285536i
\(159\) 3.63193 6.29068i 0.288031 0.498884i
\(160\) 0 0
\(161\) 9.65891 3.51556i 0.761229 0.277065i
\(162\) 6.43473 2.34205i 0.505560 0.184009i
\(163\) 8.01289 + 13.8787i 0.627618 + 1.08707i 0.988028 + 0.154273i \(0.0493034\pi\)
−0.360410 + 0.932794i \(0.617363\pi\)
\(164\) 2.40044 4.15769i 0.187443 0.324661i
\(165\) 0 0
\(166\) 3.99160 3.34935i 0.309809 0.259960i
\(167\) 5.80391 + 4.87006i 0.449120 + 0.376856i 0.839109 0.543963i \(-0.183077\pi\)
−0.389989 + 0.920819i \(0.627521\pi\)
\(168\) −0.768937 4.36086i −0.0593248 0.336448i
\(169\) 11.8654 + 4.31865i 0.912722 + 0.332204i
\(170\) 0 0
\(171\) 11.2851 3.60045i 0.862995 0.275333i
\(172\) 9.44344 0.720056
\(173\) 8.32761 + 3.03100i 0.633136 + 0.230443i 0.638596 0.769542i \(-0.279516\pi\)
−0.00545960 + 0.999985i \(0.501738\pi\)
\(174\) 0.384240 + 2.17914i 0.0291292 + 0.165200i
\(175\) 0 0
\(176\) −0.879653 + 0.738116i −0.0663063 + 0.0556376i
\(177\) 0.924452 5.24283i 0.0694860 0.394075i
\(178\) −3.08391 + 5.34148i −0.231149 + 0.400361i
\(179\) −2.73273 4.73323i −0.204254 0.353778i 0.745641 0.666348i \(-0.232143\pi\)
−0.949895 + 0.312570i \(0.898810\pi\)
\(180\) 0 0
\(181\) −17.6816 + 6.43559i −1.31427 + 0.478354i −0.901617 0.432536i \(-0.857619\pi\)
−0.412650 + 0.910890i \(0.635397\pi\)
\(182\) −0.876613 1.51834i −0.0649789 0.112547i
\(183\) −2.41079 + 4.17561i −0.178211 + 0.308670i
\(184\) 1.98044 11.2317i 0.146000 0.828009i
\(185\) 0 0
\(186\) 2.95368 + 2.47843i 0.216574 + 0.181727i
\(187\) 0.699733 + 3.96838i 0.0511695 + 0.290197i
\(188\) 2.88502 + 1.05006i 0.210411 + 0.0765835i
\(189\) 8.32680 0.605686
\(190\) 0 0
\(191\) −17.2606 −1.24893 −0.624465 0.781053i \(-0.714683\pi\)
−0.624465 + 0.781053i \(0.714683\pi\)
\(192\) −3.80262 1.38404i −0.274431 0.0998846i
\(193\) 1.29789 + 7.36067i 0.0934238 + 0.529833i 0.995219 + 0.0976691i \(0.0311387\pi\)
−0.901795 + 0.432164i \(0.857750\pi\)
\(194\) 9.98032 + 8.37448i 0.716545 + 0.601253i
\(195\) 0 0
\(196\) −0.0798727 + 0.452980i −0.00570519 + 0.0323557i
\(197\) −6.10400 + 10.5724i −0.434892 + 0.753255i −0.997287 0.0736138i \(-0.976547\pi\)
0.562395 + 0.826869i \(0.309880\pi\)
\(198\) −1.18528 2.05297i −0.0842343 0.145898i
\(199\) 7.29002 2.65335i 0.516776 0.188091i −0.0704481 0.997515i \(-0.522443\pi\)
0.587224 + 0.809424i \(0.300221\pi\)
\(200\) 0 0
\(201\) −2.90560 5.03265i −0.204945 0.354976i
\(202\) −9.28901 + 16.0890i −0.653573 + 1.13202i
\(203\) 1.89159 10.7277i 0.132764 0.752940i
\(204\) −1.77862 + 1.49244i −0.124529 + 0.104492i
\(205\) 0 0
\(206\) 0.949137 + 5.38282i 0.0661295 + 0.375039i
\(207\) 9.57865 + 3.48634i 0.665762 + 0.242318i
\(208\) −0.842208 −0.0583966
\(209\) −1.68721 3.21434i −0.116707 0.222341i
\(210\) 0 0
\(211\) −9.45058 3.43973i −0.650605 0.236801i −0.00442979 0.999990i \(-0.501410\pi\)
−0.646175 + 0.763190i \(0.723632\pi\)
\(212\) 2.14306 + 12.1539i 0.147186 + 0.834734i
\(213\) −0.275914 0.231519i −0.0189053 0.0158634i
\(214\) 12.1855 10.2248i 0.832983 0.698956i
\(215\) 0 0
\(216\) 4.61954 8.00127i 0.314320 0.544418i
\(217\) −9.49081 16.4386i −0.644278 1.11592i
\(218\) 3.86074 1.40519i 0.261482 0.0951718i
\(219\) −3.50252 + 1.27481i −0.236679 + 0.0861440i
\(220\) 0 0
\(221\) −1.47773 + 2.55950i −0.0994027 + 0.172170i
\(222\) −0.418609 + 2.37405i −0.0280952 + 0.159336i
\(223\) 21.6954 18.2046i 1.45283 1.21907i 0.522350 0.852731i \(-0.325056\pi\)
0.930482 0.366339i \(-0.119389\pi\)
\(224\) 9.73398 + 8.16778i 0.650379 + 0.545733i
\(225\) 0 0
\(226\) 3.91079 + 1.42341i 0.260142 + 0.0946839i
\(227\) −15.8786 −1.05390 −0.526949 0.849897i \(-0.676664\pi\)
−0.526949 + 0.849897i \(0.676664\pi\)
\(228\) 1.11787 1.76796i 0.0740330 0.117086i
\(229\) 11.3865 0.752438 0.376219 0.926531i \(-0.377224\pi\)
0.376219 + 0.926531i \(0.377224\pi\)
\(230\) 0 0
\(231\) −0.210619 1.19448i −0.0138577 0.0785909i
\(232\) −9.25894 7.76917i −0.607879 0.510071i
\(233\) −12.1527 + 10.1973i −0.796151 + 0.668050i −0.947260 0.320467i \(-0.896160\pi\)
0.151109 + 0.988517i \(0.451716\pi\)
\(234\) 0.301914 1.71224i 0.0197368 0.111933i
\(235\) 0 0
\(236\) 4.52253 + 7.83325i 0.294392 + 0.509901i
\(237\) −1.73770 + 0.632473i −0.112876 + 0.0410835i
\(238\) −13.0498 + 4.74975i −0.845895 + 0.307881i
\(239\) −10.4324 18.0695i −0.674817 1.16882i −0.976522 0.215416i \(-0.930889\pi\)
0.301705 0.953401i \(-0.402444\pi\)
\(240\) 0 0
\(241\) 4.93664 27.9971i 0.317997 1.80345i −0.236902 0.971533i \(-0.576132\pi\)
0.554899 0.831917i \(-0.312757\pi\)
\(242\) 8.26940 6.93885i 0.531577 0.446046i
\(243\) 9.64478 + 8.09293i 0.618713 + 0.519162i
\(244\) −1.42252 8.06750i −0.0910673 0.516469i
\(245\) 0 0
\(246\) −2.95963 −0.188699
\(247\) 0.567434 2.60138i 0.0361049 0.165522i
\(248\) −21.0612 −1.33739
\(249\) 2.48445 + 0.904266i 0.157446 + 0.0573056i
\(250\) 0 0
\(251\) 19.0083 + 15.9499i 1.19979 + 1.00675i 0.999636 + 0.0269823i \(0.00858979\pi\)
0.200157 + 0.979764i \(0.435855\pi\)
\(252\) −5.15108 + 4.32227i −0.324487 + 0.272277i
\(253\) 0.542462 3.07645i 0.0341043 0.193415i
\(254\) 4.81018 8.33148i 0.301818 0.522763i
\(255\) 0 0
\(256\) 15.5885 5.67373i 0.974279 0.354608i
\(257\) 5.11403 1.86135i 0.319004 0.116108i −0.177555 0.984111i \(-0.556819\pi\)
0.496559 + 0.868003i \(0.334597\pi\)
\(258\) −2.91083 5.04170i −0.181220 0.313882i
\(259\) 5.93379 10.2776i 0.368708 0.638620i
\(260\) 0 0
\(261\) 8.27536 6.94385i 0.512232 0.429814i
\(262\) 3.00005 + 2.51734i 0.185344 + 0.155522i
\(263\) −3.38955 19.2231i −0.209009 1.18535i −0.891006 0.453992i \(-0.849999\pi\)
0.681997 0.731355i \(-0.261112\pi\)
\(264\) −1.26463 0.460287i −0.0778325 0.0283287i
\(265\) 0 0
\(266\) 9.89970 7.64996i 0.606990 0.469049i
\(267\) −3.12956 −0.191526
\(268\) 9.27790 + 3.37688i 0.566738 + 0.206276i
\(269\) 3.22722 + 18.3025i 0.196767 + 1.11592i 0.909880 + 0.414872i \(0.136174\pi\)
−0.713113 + 0.701049i \(0.752715\pi\)
\(270\) 0 0
\(271\) 1.44946 1.21624i 0.0880485 0.0738815i −0.597701 0.801719i \(-0.703919\pi\)
0.685749 + 0.727838i \(0.259475\pi\)
\(272\) −1.15843 + 6.56980i −0.0702403 + 0.398353i
\(273\) 0.444794 0.770406i 0.0269202 0.0466271i
\(274\) 1.23769 + 2.14374i 0.0747715 + 0.129508i
\(275\) 0 0
\(276\) 1.69143 0.615629i 0.101812 0.0370565i
\(277\) 3.38944 + 5.87068i 0.203652 + 0.352735i 0.949702 0.313154i \(-0.101386\pi\)
−0.746051 + 0.665889i \(0.768052\pi\)
\(278\) 1.27929 2.21580i 0.0767269 0.132895i
\(279\) 3.26873 18.5379i 0.195694 1.10984i
\(280\) 0 0
\(281\) −9.41170 7.89735i −0.561455 0.471116i 0.317343 0.948311i \(-0.397209\pi\)
−0.878798 + 0.477194i \(0.841654\pi\)
\(282\) −0.328661 1.86393i −0.0195715 0.110995i
\(283\) −24.1188 8.77851i −1.43371 0.521829i −0.495719 0.868483i \(-0.665095\pi\)
−0.937993 + 0.346654i \(0.887318\pi\)
\(284\) 0.611952 0.0363126
\(285\) 0 0
\(286\) −0.532837 −0.0315073
\(287\) 13.6914 + 4.98326i 0.808177 + 0.294152i
\(288\) 2.18818 + 12.4098i 0.128940 + 0.731253i
\(289\) 4.91052 + 4.12042i 0.288854 + 0.242377i
\(290\) 0 0
\(291\) −1.14792 + 6.51018i −0.0672923 + 0.381634i
\(292\) 3.16638 5.48433i 0.185298 0.320946i
\(293\) 14.0560 + 24.3458i 0.821162 + 1.42229i 0.904817 + 0.425800i \(0.140007\pi\)
−0.0836552 + 0.996495i \(0.526659\pi\)
\(294\) 0.266459 0.0969830i 0.0155402 0.00565616i
\(295\) 0 0
\(296\) −6.58388 11.4036i −0.382680 0.662822i
\(297\) 1.26533 2.19162i 0.0734220 0.127171i
\(298\) −2.59518 + 14.7180i −0.150335 + 0.852591i
\(299\) 1.75515 1.47275i 0.101503 0.0851712i
\(300\) 0 0
\(301\) 4.97669 + 28.2242i 0.286852 + 1.62682i
\(302\) 2.30626 + 0.839409i 0.132710 + 0.0483025i
\(303\) −9.42651 −0.541539
\(304\) −0.804733 5.95588i −0.0461546 0.341593i
\(305\) 0 0
\(306\) −12.9414 4.71028i −0.739810 0.269269i
\(307\) −0.447450 2.53762i −0.0255373 0.144829i 0.969373 0.245593i \(-0.0789826\pi\)
−0.994910 + 0.100763i \(0.967872\pi\)
\(308\) 1.57862 + 1.32462i 0.0899504 + 0.0754774i
\(309\) −2.12454 + 1.78270i −0.120861 + 0.101414i
\(310\) 0 0
\(311\) −7.31837 + 12.6758i −0.414987 + 0.718778i −0.995427 0.0955246i \(-0.969547\pi\)
0.580440 + 0.814303i \(0.302880\pi\)
\(312\) −0.493525 0.854810i −0.0279403 0.0483941i
\(313\) −1.40398 + 0.511007i −0.0793577 + 0.0288838i −0.381394 0.924413i \(-0.624556\pi\)
0.302036 + 0.953296i \(0.402334\pi\)
\(314\) −15.9198 + 5.79432i −0.898405 + 0.326993i
\(315\) 0 0
\(316\) 1.57093 2.72094i 0.0883719 0.153065i
\(317\) 0.979782 5.55662i 0.0550301 0.312091i −0.944851 0.327500i \(-0.893794\pi\)
0.999881 + 0.0154089i \(0.00490501\pi\)
\(318\) 5.82820 4.89044i 0.326829 0.274242i
\(319\) −2.53611 2.12805i −0.141995 0.119148i
\(320\) 0 0
\(321\) 7.58449 + 2.76053i 0.423325 + 0.154078i
\(322\) 10.7660 0.599968
\(323\) −19.5121 8.00451i −1.08568 0.445383i
\(324\) −5.90329 −0.327960
\(325\) 0 0
\(326\) 2.91476 + 16.5304i 0.161434 + 0.915536i
\(327\) 1.59694 + 1.34000i 0.0883113 + 0.0741019i
\(328\) 12.3841 10.3915i 0.683800 0.573776i
\(329\) −1.61798 + 9.17601i −0.0892021 + 0.505890i
\(330\) 0 0
\(331\) −15.9460 27.6193i −0.876472 1.51809i −0.855186 0.518321i \(-0.826557\pi\)
−0.0212866 0.999773i \(-0.506776\pi\)
\(332\) −4.22113 + 1.53636i −0.231664 + 0.0843189i
\(333\) 11.0592 4.02522i 0.606041 0.220581i
\(334\) 3.96780 + 6.87244i 0.217109 + 0.376043i
\(335\) 0 0
\(336\) 0.348687 1.97750i 0.0190224 0.107882i
\(337\) 11.7495 9.85896i 0.640033 0.537052i −0.263995 0.964524i \(-0.585040\pi\)
0.904029 + 0.427472i \(0.140596\pi\)
\(338\) 10.1313 + 8.50114i 0.551068 + 0.462401i
\(339\) 0.366691 + 2.07961i 0.0199159 + 0.112949i
\(340\) 0 0
\(341\) −5.76886 −0.312401
\(342\) 12.3970 + 0.499010i 0.670355 + 0.0269834i
\(343\) 17.7864 0.960373
\(344\) 29.8818 + 10.8761i 1.61112 + 0.586399i
\(345\) 0 0
\(346\) 7.11053 + 5.96644i 0.382264 + 0.320758i
\(347\) −0.0633501 + 0.0531571i −0.00340081 + 0.00285362i −0.644486 0.764616i \(-0.722929\pi\)
0.641086 + 0.767469i \(0.278484\pi\)
\(348\) 0.331247 1.87860i 0.0177567 0.100703i
\(349\) 2.32166 4.02124i 0.124276 0.215252i −0.797174 0.603750i \(-0.793673\pi\)
0.921450 + 0.388498i \(0.127006\pi\)
\(350\) 0 0
\(351\) 1.74415 0.634817i 0.0930956 0.0338840i
\(352\) 3.62893 1.32082i 0.193423 0.0704001i
\(353\) −1.99701 3.45892i −0.106290 0.184100i 0.807974 0.589218i \(-0.200564\pi\)
−0.914265 + 0.405118i \(0.867231\pi\)
\(354\) 2.78803 4.82901i 0.148182 0.256659i
\(355\) 0 0
\(356\) 4.07319 3.41781i 0.215878 0.181144i
\(357\) −5.39790 4.52937i −0.285687 0.239720i
\(358\) −0.994055 5.63757i −0.0525374 0.297955i
\(359\) −28.3973 10.3358i −1.49875 0.545502i −0.543017 0.839722i \(-0.682718\pi\)
−0.955738 + 0.294220i \(0.904940\pi\)
\(360\) 0 0
\(361\) 18.9385 + 1.52712i 0.996765 + 0.0803746i
\(362\) −19.7084 −1.03585
\(363\) 5.14704 + 1.87337i 0.270149 + 0.0983263i
\(364\) 0.262456 + 1.48846i 0.0137564 + 0.0780167i
\(365\) 0 0
\(366\) −3.86863 + 3.24617i −0.202217 + 0.169680i
\(367\) 3.14996 17.8643i 0.164427 0.932511i −0.785227 0.619208i \(-0.787454\pi\)
0.949653 0.313302i \(-0.101435\pi\)
\(368\) 2.58588 4.47887i 0.134798 0.233477i
\(369\) 7.22450 + 12.5132i 0.376092 + 0.651411i
\(370\) 0 0
\(371\) −35.1958 + 12.8102i −1.82727 + 0.665074i
\(372\) −1.66199 2.87865i −0.0861701 0.149251i
\(373\) 12.6075 21.8369i 0.652794 1.13067i −0.329648 0.944104i \(-0.606930\pi\)
0.982442 0.186568i \(-0.0597365\pi\)
\(374\) −0.732902 + 4.15649i −0.0378975 + 0.214927i
\(375\) 0 0
\(376\) 7.91966 + 6.64538i 0.408425 + 0.342710i
\(377\) −0.421644 2.39126i −0.0217158 0.123156i
\(378\) 8.19554 + 2.98293i 0.421533 + 0.153426i
\(379\) −27.5634 −1.41584 −0.707918 0.706294i \(-0.750366\pi\)
−0.707918 + 0.706294i \(0.750366\pi\)
\(380\) 0 0
\(381\) 4.88138 0.250081
\(382\) −16.9885 6.18330i −0.869206 0.316365i
\(383\) 3.18187 + 18.0453i 0.162586 + 0.922072i 0.951518 + 0.307592i \(0.0995230\pi\)
−0.788932 + 0.614480i \(0.789366\pi\)
\(384\) 0.528698 + 0.443630i 0.0269800 + 0.0226389i
\(385\) 0 0
\(386\) −1.35941 + 7.70959i −0.0691921 + 0.392408i
\(387\) −14.2107 + 24.6137i −0.722372 + 1.25119i
\(388\) −5.61577 9.72680i −0.285098 0.493803i
\(389\) 6.75172 2.45743i 0.342326 0.124596i −0.165136 0.986271i \(-0.552806\pi\)
0.507461 + 0.861674i \(0.330584\pi\)
\(390\) 0 0
\(391\) −9.07429 15.7171i −0.458906 0.794849i
\(392\) −0.774441 + 1.34137i −0.0391152 + 0.0677495i
\(393\) −0.345061 + 1.95694i −0.0174060 + 0.0987144i
\(394\) −9.79517 + 8.21913i −0.493474 + 0.414074i
\(395\) 0 0
\(396\) 0.354871 + 2.01257i 0.0178330 + 0.101136i
\(397\) 11.0172 + 4.00993i 0.552937 + 0.201252i 0.603351 0.797476i \(-0.293832\pi\)
−0.0504142 + 0.998728i \(0.516054\pi\)
\(398\) 8.12562 0.407301
\(399\) 5.87312 + 2.40935i 0.294024 + 0.120618i
\(400\) 0 0
\(401\) −36.8475 13.4114i −1.84008 0.669734i −0.989623 0.143686i \(-0.954105\pi\)
−0.850455 0.526048i \(-0.823673\pi\)
\(402\) −1.05694 5.99420i −0.0527154 0.298964i
\(403\) −3.24120 2.71969i −0.161456 0.135477i
\(404\) 12.2688 10.2948i 0.610396 0.512183i
\(405\) 0 0
\(406\) 5.70480 9.88101i 0.283125 0.490386i
\(407\) −1.80339 3.12355i −0.0893905 0.154829i
\(408\) −7.34694 + 2.67407i −0.363728 + 0.132386i
\(409\) −8.34099 + 3.03587i −0.412436 + 0.150114i −0.539901 0.841729i \(-0.681538\pi\)
0.127465 + 0.991843i \(0.459316\pi\)
\(410\) 0 0
\(411\) −0.628004 + 1.08773i −0.0309772 + 0.0536540i
\(412\) 0.818235 4.64044i 0.0403115 0.228618i
\(413\) −21.0284 + 17.6449i −1.03474 + 0.868249i
\(414\) 8.17873 + 6.86277i 0.401963 + 0.337287i
\(415\) 0 0
\(416\) 2.66159 + 0.968738i 0.130495 + 0.0474963i
\(417\) 1.29823 0.0635745
\(418\) −0.509128 3.76809i −0.0249022 0.184303i
\(419\) −7.80196 −0.381151 −0.190575 0.981673i \(-0.561035\pi\)
−0.190575 + 0.981673i \(0.561035\pi\)
\(420\) 0 0
\(421\) 6.00077 + 34.0320i 0.292459 + 1.65862i 0.677352 + 0.735659i \(0.263127\pi\)
−0.384893 + 0.922961i \(0.625762\pi\)
\(422\) −8.06938 6.77101i −0.392811 0.329608i
\(423\) −7.07836 + 5.93945i −0.344161 + 0.288786i
\(424\) −7.21648 + 40.9267i −0.350463 + 1.98758i
\(425\) 0 0
\(426\) −0.188627 0.326711i −0.00913899 0.0158292i
\(427\) 23.3622 8.50314i 1.13058 0.411496i
\(428\) −12.8862 + 4.69018i −0.622877 + 0.226709i
\(429\) −0.135181 0.234140i −0.00652660 0.0113044i
\(430\) 0 0
\(431\) 0.493077 2.79638i 0.0237507 0.134697i −0.970627 0.240590i \(-0.922659\pi\)
0.994377 + 0.105893i \(0.0337702\pi\)
\(432\) 3.20943 2.69303i 0.154414 0.129568i
\(433\) −16.7402 14.0467i −0.804481 0.675040i 0.144803 0.989461i \(-0.453745\pi\)
−0.949284 + 0.314421i \(0.898190\pi\)
\(434\) −3.45237 19.5794i −0.165719 0.939839i
\(435\) 0 0
\(436\) −3.54188 −0.169625
\(437\) 12.0920 + 11.0048i 0.578437 + 0.526430i
\(438\) −3.90399 −0.186540
\(439\) −30.6114 11.1416i −1.46100 0.531761i −0.515361 0.856973i \(-0.672342\pi\)
−0.945641 + 0.325212i \(0.894564\pi\)
\(440\) 0 0
\(441\) −1.06047 0.889839i −0.0504985 0.0423733i
\(442\) −2.37133 + 1.98978i −0.112793 + 0.0946442i
\(443\) 1.34781 7.64381i 0.0640364 0.363169i −0.935904 0.352255i \(-0.885415\pi\)
0.999940 0.0109135i \(-0.00347393\pi\)
\(444\) 1.03910 1.79977i 0.0493134 0.0854134i
\(445\) 0 0
\(446\) 27.8749 10.1456i 1.31991 0.480409i
\(447\) −7.12581 + 2.59358i −0.337039 + 0.122672i
\(448\) 10.4329 + 18.0703i 0.492909 + 0.853743i
\(449\) −11.4911 + 19.9031i −0.542296 + 0.939285i 0.456475 + 0.889736i \(0.349112\pi\)
−0.998772 + 0.0495489i \(0.984222\pi\)
\(450\) 0 0
\(451\) 3.39213 2.84633i 0.159729 0.134029i
\(452\) −2.74841 2.30619i −0.129274 0.108474i
\(453\) 0.216244 + 1.22638i 0.0101600 + 0.0576203i
\(454\) −15.6283 5.68822i −0.733470 0.266961i
\(455\) 0 0
\(456\) 5.57344 4.30686i 0.261000 0.201687i
\(457\) 3.38866 0.158515 0.0792573 0.996854i \(-0.474745\pi\)
0.0792573 + 0.996854i \(0.474745\pi\)
\(458\) 11.2070 + 4.07900i 0.523667 + 0.190599i
\(459\) −2.55299 14.4787i −0.119163 0.675808i
\(460\) 0 0
\(461\) −8.31382 + 6.97612i −0.387213 + 0.324910i −0.815526 0.578720i \(-0.803552\pi\)
0.428313 + 0.903630i \(0.359108\pi\)
\(462\) 0.220603 1.25110i 0.0102634 0.0582064i
\(463\) −3.65586 + 6.33213i −0.169902 + 0.294279i −0.938385 0.345591i \(-0.887678\pi\)
0.768483 + 0.639870i \(0.221012\pi\)
\(464\) −2.74045 4.74660i −0.127222 0.220355i
\(465\) 0 0
\(466\) −15.6142 + 5.68309i −0.723313 + 0.263264i
\(467\) 5.42091 + 9.38929i 0.250850 + 0.434484i 0.963760 0.266771i \(-0.0859567\pi\)
−0.712910 + 0.701255i \(0.752623\pi\)
\(468\) −0.749433 + 1.29806i −0.0346425 + 0.0600026i
\(469\) −5.20325 + 29.5091i −0.240264 + 1.36260i
\(470\) 0 0
\(471\) −6.58501 5.52548i −0.303421 0.254601i
\(472\) 5.28898 + 29.9953i 0.243445 + 1.38065i
\(473\) 8.18489 + 2.97906i 0.376342 + 0.136977i
\(474\) −1.93688 −0.0889640
\(475\) 0 0
\(476\) 11.9720 0.548738
\(477\) −34.9033 12.7038i −1.59811 0.581666i
\(478\) −3.79489 21.5219i −0.173574 0.984388i
\(479\) 2.64084 + 2.21593i 0.120663 + 0.101249i 0.701123 0.713041i \(-0.252683\pi\)
−0.580459 + 0.814289i \(0.697127\pi\)
\(480\) 0 0
\(481\) 0.459357 2.60515i 0.0209449 0.118784i
\(482\) 14.8883 25.7873i 0.678143 1.17458i
\(483\) 2.73135 + 4.73084i 0.124281 + 0.215261i
\(484\) −8.74490 + 3.18288i −0.397495 + 0.144677i
\(485\) 0 0
\(486\) 6.59359 + 11.4204i 0.299091 + 0.518042i
\(487\) −13.4986 + 23.3802i −0.611680 + 1.05946i 0.379278 + 0.925283i \(0.376172\pi\)
−0.990957 + 0.134177i \(0.957161\pi\)
\(488\) 4.79014 27.1662i 0.216839 1.22976i
\(489\) −6.52436 + 5.47459i −0.295042 + 0.247570i
\(490\) 0 0
\(491\) 0.0423665 + 0.240272i 0.00191197 + 0.0108433i 0.985749 0.168224i \(-0.0538032\pi\)
−0.983837 + 0.179067i \(0.942692\pi\)
\(492\) 2.39758 + 0.872646i 0.108091 + 0.0393419i
\(493\) −19.2334 −0.866231
\(494\) 1.49039 2.35710i 0.0670558 0.106051i
\(495\) 0 0
\(496\) −8.97458 3.26648i −0.402971 0.146669i
\(497\) 0.322498 + 1.82898i 0.0144660 + 0.0820409i
\(498\) 2.12135 + 1.78002i 0.0950600 + 0.0797648i
\(499\) −2.48864 + 2.08821i −0.111407 + 0.0934813i −0.696789 0.717276i \(-0.745389\pi\)
0.585383 + 0.810757i \(0.300944\pi\)
\(500\) 0 0
\(501\) −2.01327 + 3.48708i −0.0899462 + 0.155791i
\(502\) 12.9949 + 22.5078i 0.579991 + 1.00457i
\(503\) −6.69573 + 2.43705i −0.298548 + 0.108663i −0.486951 0.873429i \(-0.661891\pi\)
0.188403 + 0.982092i \(0.439669\pi\)
\(504\) −21.2775 + 7.74437i −0.947774 + 0.344962i
\(505\) 0 0
\(506\) 1.63600 2.83363i 0.0727289 0.125970i
\(507\) −1.16528 + 6.60865i −0.0517520 + 0.293500i
\(508\) −6.35323 + 5.33099i −0.281879 + 0.236524i
\(509\) 1.32543 + 1.11216i 0.0587485 + 0.0492958i 0.671689 0.740833i \(-0.265569\pi\)
−0.612941 + 0.790129i \(0.710014\pi\)
\(510\) 0 0
\(511\) 18.0600 + 6.57332i 0.798929 + 0.290787i
\(512\) 14.7780 0.653100
\(513\) 6.15580 + 11.7276i 0.271785 + 0.517786i
\(514\) 5.70021 0.251426
\(515\) 0 0
\(516\) 0.871496 + 4.94250i 0.0383655 + 0.217581i
\(517\) 2.16927 + 1.82023i 0.0954042 + 0.0800537i
\(518\) 9.52203 7.98993i 0.418374 0.351058i
\(519\) −0.817842 + 4.63821i −0.0358993 + 0.203595i
\(520\) 0 0
\(521\) −6.40164 11.0880i −0.280461 0.485773i 0.691037 0.722819i \(-0.257154\pi\)
−0.971498 + 0.237046i \(0.923821\pi\)
\(522\) 10.6324 3.86989i 0.465369 0.169380i
\(523\) −8.19075 + 2.98119i −0.358157 + 0.130358i −0.514830 0.857292i \(-0.672145\pi\)
0.156674 + 0.987650i \(0.449923\pi\)
\(524\) −1.68808 2.92384i −0.0737441 0.127729i
\(525\) 0 0
\(526\) 3.55023 20.1343i 0.154797 0.877898i
\(527\) −25.6736 + 21.5427i −1.11836 + 0.938416i
\(528\) −0.467494 0.392274i −0.0203451 0.0170715i
\(529\) −1.55076 8.79481i −0.0674244 0.382383i
\(530\) 0 0
\(531\) −27.2225 −1.18136
\(532\) −10.2753 + 3.27826i −0.445489 + 0.142131i
\(533\) 3.24773 0.140675
\(534\) −3.08022 1.12111i −0.133294 0.0485151i
\(535\) 0 0
\(536\) 25.4688 + 21.3708i 1.10008 + 0.923080i
\(537\) 2.22508 1.86706i 0.0960193 0.0805697i
\(538\) −3.38020 + 19.1701i −0.145731 + 0.826480i
\(539\) −0.212126 + 0.367414i −0.00913693 + 0.0158256i
\(540\) 0 0
\(541\) −10.3511 + 3.76748i −0.445027 + 0.161977i −0.554806 0.831979i \(-0.687208\pi\)
0.109780 + 0.993956i \(0.464985\pi\)
\(542\) 1.86231 0.677825i 0.0799931 0.0291151i
\(543\) −5.00002 8.66029i −0.214571 0.371649i
\(544\) 11.2178 19.4297i 0.480958 0.833043i
\(545\) 0 0
\(546\) 0.713767 0.598922i 0.0305464 0.0256315i
\(547\) −14.0921 11.8246i −0.602533 0.505585i 0.289726 0.957110i \(-0.406436\pi\)
−0.892259 + 0.451525i \(0.850880\pi\)
\(548\) −0.370562 2.10156i −0.0158296 0.0897741i
\(549\) 23.1680 + 8.43248i 0.988788 + 0.359889i
\(550\) 0 0
\(551\) 16.5075 5.26662i 0.703244 0.224366i
\(552\) 6.06118 0.257981
\(553\) 8.96012 + 3.26122i 0.381023 + 0.138681i
\(554\) 1.23294 + 6.99234i 0.0523825 + 0.297076i
\(555\) 0 0
\(556\) −1.68967 + 1.41780i −0.0716581 + 0.0601283i
\(557\) 0.0350939 0.199028i 0.00148698 0.00843307i −0.984055 0.177863i \(-0.943082\pi\)
0.985542 + 0.169430i \(0.0541927\pi\)
\(558\) 9.85809 17.0747i 0.417326 0.722830i
\(559\) 3.19418 + 5.53248i 0.135099 + 0.233999i
\(560\) 0 0
\(561\) −2.01239 + 0.732451i −0.0849633 + 0.0309241i
\(562\) −6.43424 11.1444i −0.271412 0.470100i
\(563\) 3.38187 5.85758i 0.142529 0.246867i −0.785919 0.618329i \(-0.787810\pi\)
0.928448 + 0.371462i \(0.121143\pi\)
\(564\) −0.283333 + 1.60686i −0.0119305 + 0.0676611i
\(565\) 0 0
\(566\) −20.5938 17.2803i −0.865623 0.726344i
\(567\) −3.11103 17.6435i −0.130651 0.740958i
\(568\) 1.93639 + 0.704789i 0.0812492 + 0.0295723i
\(569\) 7.15701 0.300038 0.150019 0.988683i \(-0.452067\pi\)
0.150019 + 0.988683i \(0.452067\pi\)
\(570\) 0 0
\(571\) −18.3153 −0.766471 −0.383236 0.923651i \(-0.625190\pi\)
−0.383236 + 0.923651i \(0.625190\pi\)
\(572\) 0.431647 + 0.157107i 0.0180481 + 0.00656896i
\(573\) −1.59291 9.03382i −0.0665446 0.377393i
\(574\) 11.6904 + 9.80941i 0.487948 + 0.409437i
\(575\) 0 0
\(576\) −3.59320 + 20.3781i −0.149717 + 0.849086i
\(577\) 10.7897 18.6883i 0.449182 0.778006i −0.549151 0.835723i \(-0.685049\pi\)
0.998333 + 0.0577173i \(0.0183822\pi\)
\(578\) 3.35704 + 5.81457i 0.139635 + 0.241854i
\(579\) −3.73265 + 1.35857i −0.155124 + 0.0564603i
\(580\) 0 0
\(581\) −6.81636 11.8063i −0.282790 0.489807i
\(582\) −3.46199 + 5.99634i −0.143504 + 0.248556i
\(583\) −1.97666 + 11.2102i −0.0818648 + 0.464278i
\(584\) 16.3357 13.7073i 0.675975 0.567210i
\(585\) 0 0
\(586\) 5.11301 + 28.9973i 0.211216 + 1.19787i
\(587\) −27.1976 9.89913i −1.12257 0.408581i −0.286978 0.957937i \(-0.592651\pi\)
−0.835588 + 0.549356i \(0.814873\pi\)
\(588\) −0.244452 −0.0100810
\(589\) 16.1360 25.5196i 0.664872 1.05152i
\(590\) 0 0
\(591\) −6.09671 2.21902i −0.250785 0.0912783i
\(592\) −1.03688 5.88043i −0.0426154 0.241684i
\(593\) 13.6533 + 11.4565i 0.560674 + 0.470461i 0.878536 0.477676i \(-0.158521\pi\)
−0.317863 + 0.948137i \(0.602965\pi\)
\(594\) 2.03050 1.70379i 0.0833123 0.0699073i
\(595\) 0 0
\(596\) 6.44194 11.1578i 0.263872 0.457040i
\(597\) 2.06147 + 3.57058i 0.0843706 + 0.146134i
\(598\) 2.25507 0.820779i 0.0922167 0.0335642i
\(599\) 8.03512 2.92455i 0.328306 0.119494i −0.172608 0.984991i \(-0.555219\pi\)
0.500914 + 0.865497i \(0.332997\pi\)
\(600\) 0 0
\(601\) 2.09514 3.62889i 0.0854627 0.148026i −0.820126 0.572184i \(-0.806096\pi\)
0.905588 + 0.424158i \(0.139430\pi\)
\(602\) −5.21260 + 29.5621i −0.212450 + 1.20486i
\(603\) −22.7632 + 19.1006i −0.926991 + 0.777838i
\(604\) −1.62078 1.36000i −0.0659487 0.0553375i
\(605\) 0 0
\(606\) −9.27791 3.37688i −0.376889 0.137177i
\(607\) 7.59458 0.308254 0.154127 0.988051i \(-0.450743\pi\)
0.154127 + 0.988051i \(0.450743\pi\)
\(608\) −4.30752 + 19.7477i −0.174693 + 0.800876i
\(609\) 5.78925 0.234592
\(610\) 0 0
\(611\) 0.360654 + 2.04537i 0.0145905 + 0.0827469i
\(612\) 9.09491 + 7.63153i 0.367640 + 0.308486i
\(613\) 13.7466 11.5348i 0.555220 0.465885i −0.321484 0.946915i \(-0.604182\pi\)
0.876704 + 0.481030i \(0.159737\pi\)
\(614\) 0.468661 2.65791i 0.0189136 0.107264i
\(615\) 0 0
\(616\) 3.46964 + 6.00960i 0.139796 + 0.242134i
\(617\) −38.1365 + 13.8805i −1.53532 + 0.558809i −0.964916 0.262558i \(-0.915434\pi\)
−0.570400 + 0.821367i \(0.693212\pi\)
\(618\) −2.72967 + 0.993517i −0.109803 + 0.0399651i
\(619\) 12.7804 + 22.1363i 0.513688 + 0.889733i 0.999874 + 0.0158781i \(0.00505438\pi\)
−0.486186 + 0.873855i \(0.661612\pi\)
\(620\) 0 0
\(621\) −1.97918 + 11.2245i −0.0794218 + 0.450423i
\(622\) −11.7439 + 9.85430i −0.470887 + 0.395121i
\(623\) 12.3616 + 10.3726i 0.495257 + 0.415570i
\(624\) −0.0777239 0.440794i −0.00311145 0.0176459i
\(625\) 0 0
\(626\) −1.56491 −0.0625463
\(627\) 1.52662 1.17969i 0.0609672 0.0471122i
\(628\) 14.6049 0.582801
\(629\) −19.6901 7.16661i −0.785096 0.285751i
\(630\) 0 0
\(631\) 3.55051 + 2.97923i 0.141344 + 0.118601i 0.710718 0.703477i \(-0.248370\pi\)
−0.569375 + 0.822078i \(0.692815\pi\)
\(632\) 8.10461 6.80057i 0.322384 0.270512i
\(633\) 0.928128 5.26367i 0.0368898 0.209212i
\(634\) 2.95490 5.11804i 0.117354 0.203263i
\(635\) 0 0
\(636\) −6.16333 + 2.24327i −0.244392 + 0.0889514i
\(637\) −0.292397 + 0.106424i −0.0115852 + 0.00421666i
\(638\) −1.73379 3.00302i −0.0686415 0.118891i
\(639\) −0.920880 + 1.59501i −0.0364295 + 0.0630977i
\(640\) 0 0
\(641\) 17.7783 14.9178i 0.702201 0.589217i −0.220198 0.975455i \(-0.570670\pi\)
0.922399 + 0.386239i \(0.126226\pi\)
\(642\) 6.47602 + 5.43402i 0.255588 + 0.214464i
\(643\) 2.64733 + 15.0138i 0.104401 + 0.592086i 0.991458 + 0.130426i \(0.0416346\pi\)
−0.887057 + 0.461659i \(0.847254\pi\)
\(644\) −8.72149 3.17436i −0.343675 0.125087i
\(645\) 0 0
\(646\) −16.3370 14.8682i −0.642773 0.584982i
\(647\) 17.6749 0.694872 0.347436 0.937704i \(-0.387052\pi\)
0.347436 + 0.937704i \(0.387052\pi\)
\(648\) −18.6797 6.79885i −0.733808 0.267084i
\(649\) 1.44870 + 8.21599i 0.0568664 + 0.322506i
\(650\) 0 0
\(651\) 7.72773 6.48434i 0.302874 0.254141i
\(652\) 2.51277 14.2506i 0.0984075 0.558097i
\(653\) 3.43228 5.94488i 0.134315 0.232641i −0.791020 0.611790i \(-0.790450\pi\)
0.925336 + 0.379149i \(0.123783\pi\)
\(654\) 1.09174 + 1.89095i 0.0426905 + 0.0739420i
\(655\) 0 0
\(656\) 6.88879 2.50731i 0.268962 0.0978941i
\(657\) 9.52969 + 16.5059i 0.371789 + 0.643957i
\(658\) −4.87962 + 8.45175i −0.190227 + 0.329484i
\(659\) 4.75738 26.9804i 0.185321 1.05101i −0.740221 0.672364i \(-0.765279\pi\)
0.925542 0.378645i \(-0.123610\pi\)
\(660\) 0 0
\(661\) 21.8707 + 18.3517i 0.850673 + 0.713800i 0.959938 0.280213i \(-0.0904051\pi\)
−0.109265 + 0.994013i \(0.534850\pi\)
\(662\) −5.80051 32.8963i −0.225443 1.27855i
\(663\) −1.47596 0.537206i −0.0573216 0.0208633i
\(664\) −15.1263 −0.587014
\(665\) 0 0
\(666\) 12.3268 0.477655
\(667\) 14.0113 + 5.09971i 0.542521 + 0.197462i
\(668\) −1.18795 6.73722i −0.0459633 0.260671i
\(669\) 11.5301 + 9.67489i 0.445779 + 0.374053i
\(670\) 0 0
\(671\) 1.31206 7.44107i 0.0506516 0.287259i
\(672\) −3.37654 + 5.84833i −0.130253 + 0.225604i
\(673\) −22.5844 39.1173i −0.870565 1.50786i −0.861414 0.507904i \(-0.830420\pi\)
−0.00915115 0.999958i \(-0.502913\pi\)
\(674\) 15.0960 5.49451i 0.581478 0.211641i
\(675\) 0 0
\(676\) −5.70071 9.87392i −0.219258 0.379766i
\(677\) 23.4814 40.6710i 0.902463 1.56311i 0.0781759 0.996940i \(-0.475090\pi\)
0.824287 0.566172i \(-0.191576\pi\)
\(678\) −0.384073 + 2.17819i −0.0147502 + 0.0836527i
\(679\) 26.1116 21.9102i 1.00207 0.840838i
\(680\) 0 0
\(681\) −1.46537 8.31051i −0.0561530 0.318459i
\(682\) −5.67792 2.06659i −0.217419 0.0791339i
\(683\) 19.4215 0.743142 0.371571 0.928405i \(-0.378819\pi\)
0.371571 + 0.928405i \(0.378819\pi\)
\(684\) −9.89561 4.05951i −0.378368 0.155219i
\(685\) 0 0
\(686\) 17.5060 + 6.37166i 0.668382 + 0.243271i
\(687\) 1.05081 + 5.95943i 0.0400909 + 0.227367i
\(688\) 11.0464 + 9.26901i 0.421139 + 0.353378i
\(689\) −6.39554 + 5.36650i −0.243651 + 0.204447i
\(690\) 0 0
\(691\) 8.93344 15.4732i 0.339844 0.588627i −0.644559 0.764555i \(-0.722959\pi\)
0.984403 + 0.175927i \(0.0562923\pi\)
\(692\) −4.00099 6.92991i −0.152095 0.263436i
\(693\) −5.82809 + 2.12125i −0.221391 + 0.0805797i
\(694\) −0.0813941 + 0.0296250i −0.00308968 + 0.00112455i
\(695\) 0 0
\(696\) 3.21175 5.56292i 0.121741 0.210862i
\(697\) 4.46716 25.3346i 0.169206 0.959615i
\(698\) 3.72561 3.12615i 0.141016 0.118327i
\(699\) −6.45860 5.41941i −0.244287 0.204981i
\(700\) 0 0
\(701\) −4.04522 1.47234i −0.152786 0.0556096i 0.264495 0.964387i \(-0.414795\pi\)
−0.417281 + 0.908777i \(0.637017\pi\)
\(702\) 1.94406 0.0733739
\(703\) 18.8619 + 0.759235i 0.711389 + 0.0286351i
\(704\) 6.34150 0.239004
\(705\) 0 0
\(706\) −0.726431 4.11979i −0.0273396 0.155050i
\(707\) 37.2343 + 31.2432i 1.40034 + 1.17502i
\(708\) −3.68240 + 3.08990i −0.138393 + 0.116125i
\(709\) 6.10059 34.5982i 0.229112 1.29936i −0.625553 0.780182i \(-0.715127\pi\)
0.854665 0.519179i \(-0.173762\pi\)
\(710\) 0 0
\(711\) 4.72796 + 8.18907i 0.177312 + 0.307114i
\(712\) 16.8251 6.12382i 0.630545 0.229500i
\(713\) 24.4150 8.88632i 0.914347 0.332795i
\(714\) −3.69024 6.39168i −0.138104 0.239203i
\(715\) 0 0
\(716\) −0.856958 + 4.86005i −0.0320260 + 0.181629i
\(717\) 8.49442 7.12767i 0.317230 0.266188i
\(718\) −24.2471 20.3457i −0.904893 0.759295i
\(719\) 5.10577 + 28.9563i 0.190413 + 1.07989i 0.918801 + 0.394722i \(0.129159\pi\)
−0.728388 + 0.685165i \(0.759730\pi\)
\(720\) 0 0
\(721\) 14.3004 0.532574
\(722\) 18.0929 + 8.28745i 0.673349 + 0.308427i
\(723\) 15.1087 0.561898
\(724\) 15.9656 + 5.81100i 0.593357 + 0.215964i
\(725\) 0 0
\(726\) 4.39480 + 3.68767i 0.163106 + 0.136862i
\(727\) 17.2796 14.4993i 0.640864 0.537749i −0.263419 0.964681i \(-0.584850\pi\)
0.904283 + 0.426933i \(0.140406\pi\)
\(728\) −0.883786 + 5.01220i −0.0327553 + 0.185765i
\(729\) 6.46109 11.1909i 0.239300 0.414479i
\(730\) 0 0
\(731\) 47.5506 17.3070i 1.75872 0.640123i
\(732\) 4.09108 1.48903i 0.151211 0.0550362i
\(733\) −18.9501 32.8225i −0.699938 1.21233i −0.968488 0.249062i \(-0.919878\pi\)
0.268550 0.963266i \(-0.413456\pi\)
\(734\) 9.49990 16.4543i 0.350648 0.607340i
\(735\) 0 0
\(736\) −13.3238 + 11.1800i −0.491121 + 0.412099i
\(737\) 6.97613 + 5.85367i 0.256969 + 0.215623i
\(738\) 2.62798 + 14.9040i 0.0967372 + 0.548624i
\(739\) 24.4523 + 8.89989i 0.899491 + 0.327388i 0.750049 0.661383i \(-0.230030\pi\)
0.149442 + 0.988770i \(0.452252\pi\)
\(740\) 0 0
\(741\) 1.41388 + 0.0569119i 0.0519401 + 0.00209071i
\(742\) −39.2300 −1.44018
\(743\) −47.3487 17.2335i −1.73706 0.632237i −0.737964 0.674841i \(-0.764212\pi\)
−0.999092 + 0.0426041i \(0.986435\pi\)
\(744\) −1.94365 11.0230i −0.0712577 0.404123i
\(745\) 0 0
\(746\) 20.2315 16.9762i 0.740728 0.621544i
\(747\) 2.34763 13.3140i 0.0858951 0.487135i
\(748\) 1.81926 3.15105i 0.0665187 0.115214i
\(749\) −20.8089 36.0420i −0.760339 1.31695i
\(750\) 0 0
\(751\) −25.5462 + 9.29806i −0.932195 + 0.339291i −0.763079 0.646305i \(-0.776313\pi\)
−0.169116 + 0.985596i \(0.554091\pi\)
\(752\) 2.34405 + 4.06002i 0.0854789 + 0.148054i
\(753\) −6.59363 + 11.4205i −0.240285 + 0.416186i
\(754\) 0.441631 2.50461i 0.0160832 0.0912126i
\(755\) 0 0
\(756\) −5.75963 4.83291i −0.209476 0.175771i
\(757\) 5.71273 + 32.3985i 0.207633 + 1.17754i 0.893243 + 0.449575i \(0.148424\pi\)
−0.685610 + 0.727969i \(0.740464\pi\)
\(758\) −27.1289 9.87411i −0.985366 0.358644i
\(759\) 1.66021 0.0602619
\(760\) 0 0
\(761\) 3.47213 0.125865 0.0629323 0.998018i \(-0.479955\pi\)
0.0629323 + 0.998018i \(0.479955\pi\)
\(762\) 4.80443 + 1.74867i 0.174046 + 0.0633476i
\(763\) −1.86657 10.5858i −0.0675743 0.383233i
\(764\) 11.9391 + 10.0181i 0.431941 + 0.362442i
\(765\) 0 0
\(766\) −3.33270 + 18.9007i −0.120415 + 0.682910i
\(767\) −3.05943 + 5.29909i −0.110470 + 0.191339i
\(768\) 4.40811 + 7.63507i 0.159064 + 0.275507i
\(769\) 29.7634 10.8330i 1.07330 0.390648i 0.255887 0.966707i \(-0.417632\pi\)
0.817408 + 0.576059i \(0.195410\pi\)
\(770\) 0 0
\(771\) 1.44615 + 2.50480i 0.0520817 + 0.0902081i
\(772\) 3.37442 5.84466i 0.121448 0.210354i
\(773\) −6.08960 + 34.5358i −0.219028 + 1.24217i 0.654752 + 0.755844i \(0.272773\pi\)
−0.873779 + 0.486323i \(0.838338\pi\)
\(774\) −22.8042 + 19.1350i −0.819679 + 0.687792i
\(775\) 0 0
\(776\) −6.56750 37.2461i −0.235759 1.33706i
\(777\) 5.92670 + 2.15714i 0.212619 + 0.0773870i
\(778\) 7.52562 0.269807
\(779\) 3.10322 + 22.9672i 0.111184 + 0.822884i
\(780\) 0 0
\(781\) 0.530395 + 0.193048i 0.0189790 + 0.00690780i
\(782\) −3.30085 18.7201i −0.118038 0.669428i
\(783\) 9.25302 + 7.76421i 0.330676 + 0.277470i
\(784\) −0.538043 + 0.451472i −0.0192158 + 0.0161240i
\(785\) 0 0
\(786\) −1.04066 + 1.80248i −0.0371191 + 0.0642922i
\(787\) −21.0914 36.5314i −0.751829 1.30221i −0.946936 0.321424i \(-0.895839\pi\)
0.195107 0.980782i \(-0.437495\pi\)
\(788\) 10.3584 3.77015i 0.369003 0.134306i
\(789\) 9.74816 3.54804i 0.347044 0.126314i
\(790\) 0 0
\(791\) 5.44425 9.42971i 0.193575 0.335282i
\(792\) −1.19498 + 6.77708i −0.0424618 + 0.240813i
\(793\) 4.24522 3.56216i 0.150752 0.126496i
\(794\) 9.40703 + 7.89343i 0.333843 + 0.280127i
\(795\) 0 0
\(796\) −6.58251 2.39584i −0.233311 0.0849182i
\(797\) −20.4194 −0.723291 −0.361646 0.932316i \(-0.617785\pi\)
−0.361646 + 0.932316i \(0.617785\pi\)
\(798\) 4.91743 + 4.47531i 0.174075 + 0.158424i
\(799\) 16.4514 0.582008
\(800\) 0 0
\(801\) 2.77886 + 15.7597i 0.0981862 + 0.556842i
\(802\) −31.4623 26.4000i −1.11097 0.932216i
\(803\) 4.47449 3.75454i 0.157901 0.132495i
\(804\) −0.911169 + 5.16750i −0.0321345 + 0.182244i
\(805\) 0 0
\(806\) −2.21582 3.83792i −0.0780491 0.135185i
\(807\) −9.28131 + 3.37812i −0.326717 + 0.118915i
\(808\) 50.6786 18.4455i 1.78287 0.648910i
\(809\) −14.2768 24.7282i −0.501946 0.869396i −0.999997 0.00224865i \(-0.999284\pi\)
0.498051 0.867148i \(-0.334049\pi\)
\(810\) 0 0
\(811\) −0.279849 + 1.58710i −0.00982681 + 0.0557306i −0.989327 0.145713i \(-0.953452\pi\)
0.979500 + 0.201444i \(0.0645634\pi\)
\(812\) −7.53483 + 6.32248i −0.264421 + 0.221875i
\(813\) 0.770321 + 0.646376i 0.0270163 + 0.0226694i
\(814\) −0.655998 3.72035i −0.0229927 0.130398i
\(815\) 0 0
\(816\) −3.54540 −0.124114
\(817\) −36.0723 + 27.8747i −1.26201 + 0.975213i
\(818\) −9.29706 −0.325064
\(819\) −4.27453 1.55580i −0.149364 0.0543642i
\(820\) 0 0
\(821\) −6.16578 5.17371i −0.215187 0.180564i 0.528822 0.848733i \(-0.322634\pi\)
−0.744010 + 0.668169i \(0.767078\pi\)
\(822\) −1.00777 + 0.845617i −0.0351499 + 0.0294943i
\(823\) −6.48442 + 36.7750i −0.226033 + 1.28189i 0.634669 + 0.772784i \(0.281137\pi\)
−0.860701 + 0.509110i \(0.829975\pi\)
\(824\) 7.93356 13.7413i 0.276379 0.478702i
\(825\) 0 0
\(826\) −27.0179 + 9.83370i −0.940072 + 0.342158i
\(827\) 10.2711 3.73836i 0.357160 0.129996i −0.157207 0.987566i \(-0.550249\pi\)
0.514367 + 0.857570i \(0.328027\pi\)
\(828\) −4.60205 7.97098i −0.159932 0.277011i
\(829\) −16.8187 + 29.1309i −0.584139 + 1.01176i 0.410843 + 0.911706i \(0.365234\pi\)
−0.994982 + 0.100052i \(0.968099\pi\)
\(830\) 0 0
\(831\) −2.75979 + 2.31574i −0.0957361 + 0.0803322i
\(832\) 3.56293 + 2.98966i 0.123523 + 0.103648i
\(833\) 0.427995 + 2.42728i 0.0148291 + 0.0841002i
\(834\) 1.27776 + 0.465068i 0.0442454 + 0.0161040i
\(835\) 0 0
\(836\) −0.698579 + 3.20262i −0.0241609 + 0.110765i
\(837\) 21.0478 0.727517
\(838\) −7.67897 2.79492i −0.265266 0.0965488i
\(839\) 2.40910 + 13.6627i 0.0831714 + 0.471689i 0.997736 + 0.0672492i \(0.0214222\pi\)
−0.914565 + 0.404439i \(0.867467\pi\)
\(840\) 0 0
\(841\) −10.1104 + 8.48360i −0.348633 + 0.292538i
\(842\) −6.28522 + 35.6452i −0.216603 + 1.22842i
\(843\) 3.26474 5.65470i 0.112444 0.194758i
\(844\) 4.54052 + 7.86440i 0.156291 + 0.270704i
\(845\) 0 0
\(846\) −9.09448 + 3.31012i −0.312675 + 0.113804i
\(847\) −14.1214 24.4591i −0.485219 0.840423i
\(848\) −9.42259 + 16.3204i −0.323573 + 0.560445i
\(849\) 2.36867 13.4334i 0.0812925 0.461033i
\(850\) 0 0
\(851\) 12.4438 + 10.4416i 0.426568 + 0.357933i
\(852\) 0.0564745 + 0.320283i 0.00193478 + 0.0109727i
\(853\) 27.7657 + 10.1059i 0.950680 + 0.346019i 0.770375 0.637591i \(-0.220069\pi\)
0.180305 + 0.983611i \(0.442291\pi\)
\(854\) 26.0400 0.891071
\(855\) 0 0
\(856\) −46.1773 −1.57831
\(857\) −4.02741 1.46586i −0.137574 0.0500727i 0.272316 0.962208i \(-0.412210\pi\)
−0.409889 + 0.912135i \(0.634433\pi\)
\(858\) −0.0491733 0.278876i −0.00167875 0.00952066i
\(859\) −26.7935 22.4824i −0.914181 0.767089i 0.0587290 0.998274i \(-0.481295\pi\)
−0.972910 + 0.231185i \(0.925740\pi\)
\(860\) 0 0
\(861\) −1.34461 + 7.62567i −0.0458243 + 0.259882i
\(862\) 1.48706 2.57566i 0.0506494 0.0877273i
\(863\) −10.0153 17.3470i −0.340924 0.590498i 0.643681 0.765294i \(-0.277407\pi\)
−0.984605 + 0.174797i \(0.944073\pi\)
\(864\) −13.2402 + 4.81904i −0.450441 + 0.163947i
\(865\) 0 0
\(866\) −11.4443 19.8221i −0.388893 0.673583i
\(867\) −1.70337 + 2.95032i −0.0578494 + 0.100198i
\(868\) −2.97623 + 16.8790i −0.101020 + 0.572911i
\(869\) 2.21992 1.86274i 0.0753058 0.0631891i
\(870\) 0 0
\(871\) 1.15983 + 6.57770i 0.0392992 + 0.222877i
\(872\) −11.2075 4.07921i −0.379535 0.138139i
\(873\) 33.8030 1.14406
\(874\) 7.95907 + 15.1630i 0.269220 + 0.512898i
\(875\) 0 0
\(876\) 3.16260 + 1.15109i 0.106854 + 0.0388917i
\(877\) 7.91697 + 44.8994i 0.267337 + 1.51614i 0.762297 + 0.647228i \(0.224072\pi\)
−0.494959 + 0.868916i \(0.664817\pi\)
\(878\) −26.1376 21.9320i −0.882100 0.740170i
\(879\) −11.4449 + 9.60340i −0.386027 + 0.323915i
\(880\) 0 0
\(881\) 8.63649 14.9588i 0.290971 0.503976i −0.683069 0.730354i \(-0.739355\pi\)
0.974040 + 0.226378i \(0.0726885\pi\)
\(882\) −0.724983 1.25571i −0.0244114 0.0422819i
\(883\) 33.0707 12.0368i 1.11292 0.405069i 0.280856 0.959750i \(-0.409382\pi\)
0.832063 + 0.554680i \(0.187160\pi\)
\(884\) 2.50768 0.912722i 0.0843425 0.0306982i
\(885\) 0 0
\(886\) 4.06483 7.04049i 0.136561 0.236530i
\(887\) 0.548919 3.11307i 0.0184309 0.104527i −0.974205 0.225667i \(-0.927544\pi\)
0.992635 + 0.121140i \(0.0386550\pi\)
\(888\) 5.36082 4.49826i 0.179897 0.150952i
\(889\) −19.2812 16.1789i −0.646671 0.542622i
\(890\) 0 0
\(891\) −5.11654 1.86227i −0.171410 0.0623883i
\(892\) −25.5727 −0.856237
\(893\) −14.1198 + 4.50482i −0.472500 + 0.150748i
\(894\) −7.94259 −0.265640
\(895\) 0 0
\(896\) −0.617962 3.50464i −0.0206447 0.117082i
\(897\) 0.932781 + 0.782696i 0.0311447 + 0.0261335i
\(898\) −18.4399 + 15.4729i −0.615346 + 0.516337i
\(899\) 4.78140 27.1167i 0.159469 0.904391i
\(900\) 0 0
\(901\) 33.0655 + 57.2711i 1.10157 + 1.90798i
\(902\) 4.35830 1.58629i 0.145116 0.0528178i
\(903\) −14.3127 + 5.20939i −0.476297 + 0.173358i
\(904\) −6.04071 10.4628i −0.200911 0.347988i
\(905\) 0 0
\(906\) −0.226494 + 1.28451i −0.00752476 + 0.0426751i
\(907\) −12.2041 + 10.2405i −0.405230 + 0.340029i −0.822511 0.568749i \(-0.807428\pi\)
0.417281 + 0.908778i \(0.362983\pi\)
\(908\) 10.9832 + 9.21597i 0.364489 + 0.305843i
\(909\) 8.37018 + 47.4697i 0.277621 + 1.57447i
\(910\) 0 0
\(911\) 0.0577380 0.00191294 0.000956472 1.00000i \(-0.499696\pi\)
0.000956472 1.00000i \(0.499696\pi\)
\(912\) 3.04292 0.970824i 0.100761 0.0321472i
\(913\) −4.14323 −0.137121
\(914\) 3.33524 + 1.21393i 0.110320 + 0.0401532i
\(915\) 0 0
\(916\) −7.87599 6.60874i −0.260230 0.218359i
\(917\) 7.84905 6.58614i 0.259199 0.217493i
\(918\) 2.67400 15.1650i 0.0882553 0.500521i
\(919\) −25.0245 + 43.3436i −0.825481 + 1.42977i 0.0760708 + 0.997102i \(0.475762\pi\)
−0.901551 + 0.432672i \(0.857571\pi\)
\(920\) 0 0
\(921\) 1.28684 0.468372i 0.0424029 0.0154334i
\(922\) −10.6818 + 3.88787i −0.351788 + 0.128040i
\(923\) 0.206988 + 0.358514i 0.00681310 + 0.0118006i
\(924\) −0.547595 + 0.948463i −0.0180146 + 0.0312021i
\(925\) 0 0
\(926\) −5.86660 + 4.92267i −0.192789 + 0.161769i
\(927\) 10.8637 + 9.11573i 0.356811 + 0.299400i
\(928\) 3.20080 + 18.1526i 0.105071 + 0.595889i
\(929\) 15.9606 + 5.80920i 0.523652 + 0.190594i 0.590302 0.807183i \(-0.299009\pi\)
−0.0666498 + 0.997776i \(0.521231\pi\)
\(930\) 0 0
\(931\) −1.03199 1.96607i −0.0338220 0.0644353i
\(932\) 14.3246 0.469218
\(933\) −7.30963 2.66049i −0.239306 0.0871004i
\(934\) 1.97190 + 11.1832i 0.0645227 + 0.365926i
\(935\) 0 0
\(936\) −3.86640 + 3.24430i −0.126377 + 0.106043i
\(937\) −5.85065 + 33.1807i −0.191132 + 1.08397i 0.726687 + 0.686968i \(0.241059\pi\)
−0.917820 + 0.396997i \(0.870052\pi\)
\(938\) −15.6923 + 27.1799i −0.512373 + 0.887456i
\(939\) −0.397018 0.687655i −0.0129562 0.0224408i
\(940\) 0 0
\(941\) 25.5345 9.29380i 0.832401 0.302969i 0.109557 0.993980i \(-0.465057\pi\)
0.722844 + 0.691011i \(0.242834\pi\)
\(942\) −4.50180 7.79734i −0.146676 0.254051i
\(943\) −9.97169 + 17.2715i −0.324723 + 0.562436i
\(944\) −2.39838 + 13.6019i −0.0780605 + 0.442703i
\(945\) 0 0
\(946\) 6.98867 + 5.86419i 0.227221 + 0.190661i
\(947\) −5.78183 32.7904i −0.187884 1.06554i −0.922193 0.386729i \(-0.873605\pi\)
0.734309 0.678815i \(-0.237506\pi\)
\(948\) 1.56906 + 0.571090i 0.0509606 + 0.0185481i
\(949\) 4.28402 0.139065
\(950\) 0 0
\(951\) 2.99864 0.0972376
\(952\) 37.8830 + 13.7883i 1.22780 + 0.446881i
\(953\) −5.28039 29.9466i −0.171049 0.970065i −0.942606 0.333906i \(-0.891633\pi\)
0.771558 0.636159i \(-0.219478\pi\)
\(954\) −29.8022 25.0070i −0.964882 0.809632i
\(955\) 0 0
\(956\) −3.27151 + 18.5536i −0.105808 + 0.600068i
\(957\) 0.879728 1.52373i 0.0284376 0.0492553i
\(958\) 1.80540 + 3.12704i 0.0583297 + 0.101030i
\(959\) 6.08578 2.21504i 0.196520 0.0715274i
\(960\) 0 0
\(961\) −8.49003 14.7052i −0.273872 0.474360i
\(962\) 1.38536 2.39952i 0.0446660 0.0773637i
\(963\) 7.16679 40.6449i 0.230946 1.30976i
\(964\) −19.6643 + 16.5003i −0.633344 + 0.531438i
\(965\) 0 0
\(966\) 0.993554 + 5.63472i 0.0319671 + 0.181294i
\(967\) 55.3648 + 20.1511i 1.78041 + 0.648017i 0.999734 + 0.0230823i \(0.00734797\pi\)
0.780677 + 0.624934i \(0.214874\pi\)
\(968\) −31.3371 −1.00721
\(969\) 2.38870 10.9509i 0.0767361 0.351795i
\(970\) 0 0
\(971\) 38.4033 + 13.9777i 1.23242 + 0.448564i 0.874426 0.485159i \(-0.161238\pi\)
0.357995 + 0.933724i \(0.383461\pi\)
\(972\) −1.97411 11.1957i −0.0633196 0.359103i
\(973\) −5.12794 4.30285i −0.164394 0.137943i
\(974\) −21.6614 + 18.1761i −0.694075 + 0.582398i
\(975\) 0 0
\(976\) 6.25450 10.8331i 0.200202 0.346760i
\(977\) 17.9716 + 31.1276i 0.574961 + 0.995862i 0.996046 + 0.0888405i \(0.0283161\pi\)
−0.421085 + 0.907021i \(0.638351\pi\)
\(978\) −8.38270 + 3.05105i −0.268049 + 0.0975619i
\(979\) 4.60853 1.67737i 0.147289 0.0536089i
\(980\) 0 0
\(981\) 5.32991 9.23167i 0.170171 0.294745i
\(982\) −0.0443747 + 0.251662i −0.00141606 + 0.00803085i
\(983\) −7.71144 + 6.47067i −0.245957 + 0.206382i −0.757429 0.652918i \(-0.773545\pi\)
0.511472 + 0.859300i \(0.329100\pi\)
\(984\) 6.58159 + 5.52261i 0.209813 + 0.176054i
\(985\) 0 0
\(986\) −18.9303 6.89005i −0.602862 0.219424i
\(987\) −4.95185 −0.157619
\(988\) −1.90235 + 1.47003i −0.0605217 + 0.0467680i
\(989\) −39.2290 −1.24741
\(990\) 0 0
\(991\) −3.13089 17.7562i −0.0994561 0.564043i −0.993290 0.115646i \(-0.963106\pi\)
0.893834 0.448397i \(-0.148005\pi\)
\(992\) 24.6047 + 20.6458i 0.781200 + 0.655504i
\(993\) 12.9838 10.8947i 0.412028 0.345732i
\(994\) −0.337786 + 1.91568i −0.0107139 + 0.0607616i
\(995\) 0 0
\(996\) −1.19365 2.06746i −0.0378223 0.0655101i
\(997\) −17.5954 + 6.40419i −0.557251 + 0.202823i −0.605265 0.796024i \(-0.706933\pi\)
0.0480143 + 0.998847i \(0.484711\pi\)
\(998\) −3.19747 + 1.16378i −0.101214 + 0.0368390i
\(999\) 6.57968 + 11.3963i 0.208172 + 0.360564i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.l.f.251.6 48
5.2 odd 4 95.2.p.a.4.3 48
5.3 odd 4 95.2.p.a.4.6 yes 48
5.4 even 2 inner 475.2.l.f.251.3 48
15.2 even 4 855.2.da.b.289.6 48
15.8 even 4 855.2.da.b.289.3 48
19.5 even 9 inner 475.2.l.f.176.6 48
19.9 even 9 9025.2.a.cu.1.9 24
19.10 odd 18 9025.2.a.ct.1.16 24
95.9 even 18 9025.2.a.cu.1.16 24
95.24 even 18 inner 475.2.l.f.176.3 48
95.28 odd 36 1805.2.b.k.1084.16 24
95.29 odd 18 9025.2.a.ct.1.9 24
95.43 odd 36 95.2.p.a.24.3 yes 48
95.47 odd 36 1805.2.b.k.1084.9 24
95.48 even 36 1805.2.b.l.1084.9 24
95.62 odd 36 95.2.p.a.24.6 yes 48
95.67 even 36 1805.2.b.l.1084.16 24
285.62 even 36 855.2.da.b.784.3 48
285.233 even 36 855.2.da.b.784.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.4.3 48 5.2 odd 4
95.2.p.a.4.6 yes 48 5.3 odd 4
95.2.p.a.24.3 yes 48 95.43 odd 36
95.2.p.a.24.6 yes 48 95.62 odd 36
475.2.l.f.176.3 48 95.24 even 18 inner
475.2.l.f.176.6 48 19.5 even 9 inner
475.2.l.f.251.3 48 5.4 even 2 inner
475.2.l.f.251.6 48 1.1 even 1 trivial
855.2.da.b.289.3 48 15.8 even 4
855.2.da.b.289.6 48 15.2 even 4
855.2.da.b.784.3 48 285.62 even 36
855.2.da.b.784.6 48 285.233 even 36
1805.2.b.k.1084.9 24 95.47 odd 36
1805.2.b.k.1084.16 24 95.28 odd 36
1805.2.b.l.1084.9 24 95.48 even 36
1805.2.b.l.1084.16 24 95.67 even 36
9025.2.a.ct.1.9 24 95.29 odd 18
9025.2.a.ct.1.16 24 19.10 odd 18
9025.2.a.cu.1.9 24 19.9 even 9
9025.2.a.cu.1.16 24 95.9 even 18