Properties

Label 1805.2.b.k.1084.9
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1805,2,Mod(1084,1805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1805.1084"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-18,-3,-12,0,0,-12,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.9
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.k.1084.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.04740i q^{2} -0.531453i q^{3} +0.902948 q^{4} +(1.65192 - 1.50704i) q^{5} -0.556645 q^{6} -2.74033i q^{7} -3.04056i q^{8} +2.71756 q^{9} +(-1.57847 - 1.73023i) q^{10} +0.832835 q^{11} -0.479874i q^{12} -0.610831i q^{13} -2.87023 q^{14} +(-0.800919 - 0.877919i) q^{15} -1.37879 q^{16} +4.83841i q^{17} -2.84638i q^{18} +(1.49160 - 1.36077i) q^{20} -1.45636 q^{21} -0.872314i q^{22} -3.75094i q^{23} -1.61591 q^{24} +(0.457688 - 4.97901i) q^{25} -0.639786 q^{26} -3.03861i q^{27} -2.47437i q^{28} +3.97516 q^{29} +(-0.919534 + 0.838884i) q^{30} -6.92676 q^{31} -4.63696i q^{32} -0.442613i q^{33} +5.06777 q^{34} +(-4.12977 - 4.52681i) q^{35} +2.45381 q^{36} +4.33071i q^{37} -0.324628 q^{39} +(-4.58222 - 5.02276i) q^{40} +5.31691 q^{41} +1.52539i q^{42} +10.4585i q^{43} +0.752007 q^{44} +(4.48919 - 4.09546i) q^{45} -3.92874 q^{46} +3.40016i q^{47} +0.732762i q^{48} -0.509407 q^{49} +(-5.21503 - 0.479384i) q^{50} +2.57139 q^{51} -0.551549i q^{52} +13.6679i q^{53} -3.18265 q^{54} +(1.37578 - 1.25511i) q^{55} -8.33212 q^{56} -4.16359i q^{58} -10.0173 q^{59} +(-0.723188 - 0.792715i) q^{60} +9.07245 q^{61} +7.25511i q^{62} -7.44700i q^{63} -7.61435 q^{64} +(-0.920544 - 1.00905i) q^{65} -0.463594 q^{66} +10.9346i q^{67} +4.36883i q^{68} -1.99345 q^{69} +(-4.74139 + 4.32554i) q^{70} -0.677726 q^{71} -8.26288i q^{72} -7.01343i q^{73} +4.53600 q^{74} +(-2.64611 - 0.243240i) q^{75} -2.28224i q^{77} +0.340016i q^{78} -3.47957 q^{79} +(-2.27765 + 2.07788i) q^{80} +6.53779 q^{81} -5.56894i q^{82} +4.97485i q^{83} -1.31501 q^{84} +(7.29166 + 7.99268i) q^{85} +10.9542 q^{86} -2.11261i q^{87} -2.53228i q^{88} +5.88868 q^{89} +(-4.28959 - 4.70199i) q^{90} -1.67388 q^{91} -3.38690i q^{92} +3.68125i q^{93} +3.56134 q^{94} -2.46433 q^{96} -12.4387i q^{97} +0.533555i q^{98} +2.26328 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 18 q^{4} - 3 q^{5} - 12 q^{6} - 12 q^{9} - 6 q^{10} + 12 q^{11} - 24 q^{14} - 9 q^{15} + 6 q^{16} + 21 q^{20} + 6 q^{21} + 42 q^{24} - 3 q^{25} - 12 q^{26} - 36 q^{29} - 18 q^{30} + 42 q^{31} - 6 q^{34}+ \cdots - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.04740i 0.740625i −0.928907 0.370313i \(-0.879251\pi\)
0.928907 0.370313i \(-0.120749\pi\)
\(3\) 0.531453i 0.306835i −0.988161 0.153417i \(-0.950972\pi\)
0.988161 0.153417i \(-0.0490279\pi\)
\(4\) 0.902948 0.451474
\(5\) 1.65192 1.50704i 0.738762 0.673967i
\(6\) −0.556645 −0.227250
\(7\) 2.74033i 1.03575i −0.855457 0.517874i \(-0.826724\pi\)
0.855457 0.517874i \(-0.173276\pi\)
\(8\) 3.04056i 1.07500i
\(9\) 2.71756 0.905853
\(10\) −1.57847 1.73023i −0.499157 0.547146i
\(11\) 0.832835 0.251109 0.125555 0.992087i \(-0.459929\pi\)
0.125555 + 0.992087i \(0.459929\pi\)
\(12\) 0.479874i 0.138528i
\(13\) 0.610831i 0.169414i −0.996406 0.0847071i \(-0.973005\pi\)
0.996406 0.0847071i \(-0.0269954\pi\)
\(14\) −2.87023 −0.767101
\(15\) −0.800919 0.877919i −0.206796 0.226678i
\(16\) −1.37879 −0.344697
\(17\) 4.83841i 1.17349i 0.809773 + 0.586744i \(0.199590\pi\)
−0.809773 + 0.586744i \(0.800410\pi\)
\(18\) 2.84638i 0.670897i
\(19\) 0 0
\(20\) 1.49160 1.36077i 0.333532 0.304278i
\(21\) −1.45636 −0.317803
\(22\) 0.872314i 0.185978i
\(23\) 3.75094i 0.782124i −0.920364 0.391062i \(-0.872108\pi\)
0.920364 0.391062i \(-0.127892\pi\)
\(24\) −1.61591 −0.329847
\(25\) 0.457688 4.97901i 0.0915377 0.995802i
\(26\) −0.639786 −0.125472
\(27\) 3.03861i 0.584781i
\(28\) 2.47437i 0.467613i
\(29\) 3.97516 0.738168 0.369084 0.929396i \(-0.379671\pi\)
0.369084 + 0.929396i \(0.379671\pi\)
\(30\) −0.919534 + 0.838884i −0.167883 + 0.153159i
\(31\) −6.92676 −1.24408 −0.622042 0.782984i \(-0.713697\pi\)
−0.622042 + 0.782984i \(0.713697\pi\)
\(32\) 4.63696i 0.819707i
\(33\) 0.442613i 0.0770490i
\(34\) 5.06777 0.869115
\(35\) −4.12977 4.52681i −0.698059 0.765170i
\(36\) 2.45381 0.408969
\(37\) 4.33071i 0.711965i 0.934493 + 0.355982i \(0.115854\pi\)
−0.934493 + 0.355982i \(0.884146\pi\)
\(38\) 0 0
\(39\) −0.324628 −0.0519821
\(40\) −4.58222 5.02276i −0.724513 0.794168i
\(41\) 5.31691 0.830361 0.415181 0.909739i \(-0.363718\pi\)
0.415181 + 0.909739i \(0.363718\pi\)
\(42\) 1.52539i 0.235373i
\(43\) 10.4585i 1.59490i 0.603385 + 0.797450i \(0.293818\pi\)
−0.603385 + 0.797450i \(0.706182\pi\)
\(44\) 0.752007 0.113369
\(45\) 4.48919 4.09546i 0.669209 0.610514i
\(46\) −3.92874 −0.579261
\(47\) 3.40016i 0.495965i 0.968765 + 0.247982i \(0.0797675\pi\)
−0.968765 + 0.247982i \(0.920232\pi\)
\(48\) 0.732762i 0.105765i
\(49\) −0.509407 −0.0727725
\(50\) −5.21503 0.479384i −0.737516 0.0677951i
\(51\) 2.57139 0.360066
\(52\) 0.551549i 0.0764861i
\(53\) 13.6679i 1.87743i 0.344692 + 0.938716i \(0.387983\pi\)
−0.344692 + 0.938716i \(0.612017\pi\)
\(54\) −3.18265 −0.433104
\(55\) 1.37578 1.25511i 0.185510 0.169239i
\(56\) −8.33212 −1.11343
\(57\) 0 0
\(58\) 4.16359i 0.546706i
\(59\) −10.0173 −1.30414 −0.652068 0.758160i \(-0.726098\pi\)
−0.652068 + 0.758160i \(0.726098\pi\)
\(60\) −0.723188 0.792715i −0.0933631 0.102339i
\(61\) 9.07245 1.16161 0.580804 0.814043i \(-0.302738\pi\)
0.580804 + 0.814043i \(0.302738\pi\)
\(62\) 7.25511i 0.921400i
\(63\) 7.44700i 0.938234i
\(64\) −7.61435 −0.951793
\(65\) −0.920544 1.00905i −0.114179 0.125157i
\(66\) −0.463594 −0.0570645
\(67\) 10.9346i 1.33587i 0.744220 + 0.667935i \(0.232821\pi\)
−0.744220 + 0.667935i \(0.767179\pi\)
\(68\) 4.36883i 0.529799i
\(69\) −1.99345 −0.239983
\(70\) −4.74139 + 4.32554i −0.566705 + 0.517000i
\(71\) −0.677726 −0.0804313 −0.0402157 0.999191i \(-0.512804\pi\)
−0.0402157 + 0.999191i \(0.512804\pi\)
\(72\) 8.26288i 0.973790i
\(73\) 7.01343i 0.820859i −0.911892 0.410430i \(-0.865379\pi\)
0.911892 0.410430i \(-0.134621\pi\)
\(74\) 4.53600 0.527299
\(75\) −2.64611 0.243240i −0.305546 0.0280869i
\(76\) 0 0
\(77\) 2.28224i 0.260086i
\(78\) 0.340016i 0.0384993i
\(79\) −3.47957 −0.391482 −0.195741 0.980656i \(-0.562711\pi\)
−0.195741 + 0.980656i \(0.562711\pi\)
\(80\) −2.27765 + 2.07788i −0.254649 + 0.232315i
\(81\) 6.53779 0.726421
\(82\) 5.56894i 0.614987i
\(83\) 4.97485i 0.546060i 0.962005 + 0.273030i \(0.0880259\pi\)
−0.962005 + 0.273030i \(0.911974\pi\)
\(84\) −1.31501 −0.143480
\(85\) 7.29166 + 7.99268i 0.790891 + 0.866927i
\(86\) 10.9542 1.18122
\(87\) 2.11261i 0.226495i
\(88\) 2.53228i 0.269942i
\(89\) 5.88868 0.624198 0.312099 0.950050i \(-0.398968\pi\)
0.312099 + 0.950050i \(0.398968\pi\)
\(90\) −4.28959 4.70199i −0.452163 0.495633i
\(91\) −1.67388 −0.175470
\(92\) 3.38690i 0.353109i
\(93\) 3.68125i 0.381728i
\(94\) 3.56134 0.367324
\(95\) 0 0
\(96\) −2.46433 −0.251514
\(97\) 12.4387i 1.26296i −0.775391 0.631482i \(-0.782447\pi\)
0.775391 0.631482i \(-0.217553\pi\)
\(98\) 0.533555i 0.0538972i
\(99\) 2.26328 0.227468
\(100\) 0.413269 4.49578i 0.0413269 0.449578i
\(101\) −17.7372 −1.76492 −0.882460 0.470387i \(-0.844114\pi\)
−0.882460 + 0.470387i \(0.844114\pi\)
\(102\) 2.69328i 0.266674i
\(103\) 5.21849i 0.514193i 0.966386 + 0.257097i \(0.0827659\pi\)
−0.966386 + 0.257097i \(0.917234\pi\)
\(104\) −1.85727 −0.182120
\(105\) −2.40579 + 2.19478i −0.234781 + 0.214189i
\(106\) 14.3158 1.39047
\(107\) 15.1871i 1.46819i −0.679044 0.734097i \(-0.737606\pi\)
0.679044 0.734097i \(-0.262394\pi\)
\(108\) 2.74371i 0.264014i
\(109\) −3.92257 −0.375714 −0.187857 0.982196i \(-0.560154\pi\)
−0.187857 + 0.982196i \(0.560154\pi\)
\(110\) −1.31461 1.44099i −0.125343 0.137393i
\(111\) 2.30157 0.218455
\(112\) 3.77834i 0.357019i
\(113\) 3.97342i 0.373788i −0.982380 0.186894i \(-0.940158\pi\)
0.982380 0.186894i \(-0.0598421\pi\)
\(114\) 0 0
\(115\) −5.65279 6.19625i −0.527126 0.577803i
\(116\) 3.58936 0.333264
\(117\) 1.65997i 0.153464i
\(118\) 10.4921i 0.965877i
\(119\) 13.2588 1.21544
\(120\) −2.66936 + 2.43524i −0.243678 + 0.222306i
\(121\) −10.3064 −0.936944
\(122\) 9.50251i 0.860317i
\(123\) 2.82569i 0.254784i
\(124\) −6.25451 −0.561671
\(125\) −6.74748 8.91468i −0.603513 0.797353i
\(126\) −7.80001 −0.694880
\(127\) 9.18497i 0.815034i 0.913198 + 0.407517i \(0.133605\pi\)
−0.913198 + 0.407517i \(0.866395\pi\)
\(128\) 1.29864i 0.114785i
\(129\) 5.55818 0.489371
\(130\) −1.05688 + 0.964181i −0.0926942 + 0.0845642i
\(131\) −3.73904 −0.326682 −0.163341 0.986570i \(-0.552227\pi\)
−0.163341 + 0.986570i \(0.552227\pi\)
\(132\) 0.399656i 0.0347856i
\(133\) 0 0
\(134\) 11.4529 0.989379
\(135\) −4.57930 5.01955i −0.394123 0.432014i
\(136\) 14.7115 1.26150
\(137\) 2.36335i 0.201914i 0.994891 + 0.100957i \(0.0321905\pi\)
−0.994891 + 0.100957i \(0.967809\pi\)
\(138\) 2.08794i 0.177737i
\(139\) −2.44279 −0.207195 −0.103597 0.994619i \(-0.533035\pi\)
−0.103597 + 0.994619i \(0.533035\pi\)
\(140\) −3.72897 4.08747i −0.315156 0.345454i
\(141\) 1.80703 0.152179
\(142\) 0.709852i 0.0595695i
\(143\) 0.508722i 0.0425415i
\(144\) −3.74694 −0.312245
\(145\) 6.56665 5.99070i 0.545330 0.497501i
\(146\) −7.34588 −0.607949
\(147\) 0.270726i 0.0223291i
\(148\) 3.91041i 0.321433i
\(149\) −14.2687 −1.16894 −0.584468 0.811417i \(-0.698697\pi\)
−0.584468 + 0.811417i \(0.698697\pi\)
\(150\) −0.254770 + 2.77154i −0.0208019 + 0.226295i
\(151\) 2.34319 0.190686 0.0953432 0.995444i \(-0.469605\pi\)
0.0953432 + 0.995444i \(0.469605\pi\)
\(152\) 0 0
\(153\) 13.1487i 1.06301i
\(154\) −2.39043 −0.192626
\(155\) −11.4425 + 10.4389i −0.919081 + 0.838471i
\(156\) −0.293122 −0.0234686
\(157\) 16.1747i 1.29088i −0.763809 0.645442i \(-0.776673\pi\)
0.763809 0.645442i \(-0.223327\pi\)
\(158\) 3.64451i 0.289941i
\(159\) 7.26385 0.576061
\(160\) −6.98807 7.65990i −0.552455 0.605568i
\(161\) −10.2788 −0.810083
\(162\) 6.84770i 0.538006i
\(163\) 16.0258i 1.25524i 0.778521 + 0.627618i \(0.215970\pi\)
−0.778521 + 0.627618i \(0.784030\pi\)
\(164\) 4.80089 0.374886
\(165\) −0.667033 0.731162i −0.0519285 0.0569209i
\(166\) 5.21067 0.404426
\(167\) 7.57646i 0.586284i 0.956069 + 0.293142i \(0.0947009\pi\)
−0.956069 + 0.293142i \(0.905299\pi\)
\(168\) 4.42813i 0.341638i
\(169\) 12.6269 0.971299
\(170\) 8.37155 7.63730i 0.642069 0.585754i
\(171\) 0 0
\(172\) 9.44344i 0.720056i
\(173\) 8.86205i 0.673769i 0.941546 + 0.336885i \(0.109373\pi\)
−0.941546 + 0.336885i \(0.890627\pi\)
\(174\) −2.21275 −0.167748
\(175\) −13.6441 1.25422i −1.03140 0.0948099i
\(176\) −1.14830 −0.0865567
\(177\) 5.32370i 0.400154i
\(178\) 6.16782i 0.462297i
\(179\) −5.46546 −0.408508 −0.204254 0.978918i \(-0.565477\pi\)
−0.204254 + 0.978918i \(0.565477\pi\)
\(180\) 4.05351 3.69798i 0.302130 0.275631i
\(181\) 18.8164 1.39861 0.699306 0.714822i \(-0.253492\pi\)
0.699306 + 0.714822i \(0.253492\pi\)
\(182\) 1.75323i 0.129958i
\(183\) 4.82158i 0.356422i
\(184\) −11.4049 −0.840782
\(185\) 6.52654 + 7.15399i 0.479840 + 0.525972i
\(186\) 3.85575 0.282717
\(187\) 4.02960i 0.294674i
\(188\) 3.07017i 0.223915i
\(189\) −8.32680 −0.605686
\(190\) 0 0
\(191\) −17.2606 −1.24893 −0.624465 0.781053i \(-0.714683\pi\)
−0.624465 + 0.781053i \(0.714683\pi\)
\(192\) 4.04667i 0.292043i
\(193\) 7.47422i 0.538006i −0.963139 0.269003i \(-0.913306\pi\)
0.963139 0.269003i \(-0.0866942\pi\)
\(194\) −13.0284 −0.935383
\(195\) −0.536260 + 0.489226i −0.0384024 + 0.0350342i
\(196\) −0.459968 −0.0328549
\(197\) 12.2080i 0.869784i 0.900483 + 0.434892i \(0.143213\pi\)
−0.900483 + 0.434892i \(0.856787\pi\)
\(198\) 2.37056i 0.168469i
\(199\) 7.75788 0.549942 0.274971 0.961453i \(-0.411332\pi\)
0.274971 + 0.961453i \(0.411332\pi\)
\(200\) −15.1389 1.39163i −1.07049 0.0984029i
\(201\) 5.81121 0.409891
\(202\) 18.5780i 1.30715i
\(203\) 10.8932i 0.764556i
\(204\) 2.32183 0.162561
\(205\) 8.78311 8.01276i 0.613439 0.559636i
\(206\) 5.46586 0.380825
\(207\) 10.1934i 0.708489i
\(208\) 0.842208i 0.0583966i
\(209\) 0 0
\(210\) 2.29882 + 2.51983i 0.158634 + 0.173885i
\(211\) 10.0571 0.692359 0.346179 0.938168i \(-0.387479\pi\)
0.346179 + 0.938168i \(0.387479\pi\)
\(212\) 12.3414i 0.847612i
\(213\) 0.360180i 0.0246791i
\(214\) −15.9070 −1.08738
\(215\) 15.7613 + 17.2766i 1.07491 + 1.17825i
\(216\) −9.23907 −0.628639
\(217\) 18.9816i 1.28856i
\(218\) 4.10851i 0.278264i
\(219\) −3.72731 −0.251868
\(220\) 1.24226 1.13330i 0.0837529 0.0764071i
\(221\) 2.95545 0.198805
\(222\) 2.41067i 0.161794i
\(223\) 28.3213i 1.89654i −0.317470 0.948268i \(-0.602833\pi\)
0.317470 0.948268i \(-0.397167\pi\)
\(224\) −12.7068 −0.849009
\(225\) 1.24379 13.5307i 0.0829196 0.902049i
\(226\) −4.16177 −0.276837
\(227\) 15.8786i 1.05390i −0.849897 0.526949i \(-0.823336\pi\)
0.849897 0.526949i \(-0.176664\pi\)
\(228\) 0 0
\(229\) −11.3865 −0.752438 −0.376219 0.926531i \(-0.622776\pi\)
−0.376219 + 0.926531i \(0.622776\pi\)
\(230\) −6.48997 + 5.92075i −0.427936 + 0.390403i
\(231\) −1.21291 −0.0798033
\(232\) 12.0867i 0.793530i
\(233\) 15.8642i 1.03930i 0.854379 + 0.519651i \(0.173938\pi\)
−0.854379 + 0.519651i \(0.826062\pi\)
\(234\) −1.73866 −0.113660
\(235\) 5.12417 + 5.61680i 0.334264 + 0.366400i
\(236\) −9.04506 −0.588783
\(237\) 1.84923i 0.120120i
\(238\) 13.8873i 0.900183i
\(239\) −20.8648 −1.34963 −0.674817 0.737985i \(-0.735778\pi\)
−0.674817 + 0.737985i \(0.735778\pi\)
\(240\) 1.10430 + 1.21047i 0.0712822 + 0.0781352i
\(241\) 28.4290 1.83127 0.915636 0.402008i \(-0.131688\pi\)
0.915636 + 0.402008i \(0.131688\pi\)
\(242\) 10.7949i 0.693925i
\(243\) 12.5904i 0.807673i
\(244\) 8.19195 0.524436
\(245\) −0.841501 + 0.767695i −0.0537615 + 0.0490462i
\(246\) −2.95963 −0.188699
\(247\) 0 0
\(248\) 21.0612i 1.33739i
\(249\) 2.64390 0.167550
\(250\) −9.33726 + 7.06732i −0.590540 + 0.446977i
\(251\) 24.8136 1.56622 0.783109 0.621884i \(-0.213632\pi\)
0.783109 + 0.621884i \(0.213632\pi\)
\(252\) 6.72426i 0.423588i
\(253\) 3.12391i 0.196399i
\(254\) 9.62036 0.603635
\(255\) 4.24773 3.87517i 0.266003 0.242673i
\(256\) −16.5889 −1.03681
\(257\) 5.44223i 0.339477i −0.985489 0.169739i \(-0.945708\pi\)
0.985489 0.169739i \(-0.0542923\pi\)
\(258\) 5.82165i 0.362440i
\(259\) 11.8676 0.737415
\(260\) −0.831204 0.911115i −0.0515491 0.0565050i
\(261\) 10.8027 0.668671
\(262\) 3.91628i 0.241949i
\(263\) 19.5197i 1.20363i 0.798634 + 0.601817i \(0.205556\pi\)
−0.798634 + 0.601817i \(0.794444\pi\)
\(264\) −1.34579 −0.0828276
\(265\) 20.5980 + 22.5783i 1.26533 + 1.38697i
\(266\) 0 0
\(267\) 3.12956i 0.191526i
\(268\) 9.87334i 0.603110i
\(269\) −18.5848 −1.13314 −0.566568 0.824015i \(-0.691729\pi\)
−0.566568 + 0.824015i \(0.691729\pi\)
\(270\) −5.25749 + 4.79637i −0.319961 + 0.291898i
\(271\) 1.89214 0.114939 0.0574696 0.998347i \(-0.481697\pi\)
0.0574696 + 0.998347i \(0.481697\pi\)
\(272\) 6.67115i 0.404498i
\(273\) 0.889588i 0.0538403i
\(274\) 2.47538 0.149543
\(275\) 0.381179 4.14669i 0.0229860 0.250055i
\(276\) −1.79998 −0.108346
\(277\) 6.77887i 0.407303i −0.979043 0.203652i \(-0.934719\pi\)
0.979043 0.203652i \(-0.0652810\pi\)
\(278\) 2.55859i 0.153454i
\(279\) −18.8239 −1.12696
\(280\) −13.7640 + 12.5568i −0.822557 + 0.750413i
\(281\) −12.2861 −0.732927 −0.366464 0.930432i \(-0.619432\pi\)
−0.366464 + 0.930432i \(0.619432\pi\)
\(282\) 1.89268i 0.112708i
\(283\) 25.6667i 1.52572i −0.646561 0.762862i \(-0.723793\pi\)
0.646561 0.762862i \(-0.276207\pi\)
\(284\) −0.611952 −0.0363126
\(285\) 0 0
\(286\) −0.532837 −0.0315073
\(287\) 14.5701i 0.860044i
\(288\) 12.6012i 0.742534i
\(289\) −6.41023 −0.377072
\(290\) −6.27468 6.87792i −0.368462 0.403885i
\(291\) −6.61061 −0.387521
\(292\) 6.33276i 0.370597i
\(293\) 28.1121i 1.64232i 0.570695 + 0.821162i \(0.306674\pi\)
−0.570695 + 0.821162i \(0.693326\pi\)
\(294\) 0.283559 0.0165375
\(295\) −16.5477 + 15.0964i −0.963446 + 0.878944i
\(296\) 13.1678 0.765361
\(297\) 2.53067i 0.146844i
\(298\) 14.9451i 0.865744i
\(299\) −2.29119 −0.132503
\(300\) −2.38930 0.219633i −0.137946 0.0126805i
\(301\) 28.6596 1.65191
\(302\) 2.45427i 0.141227i
\(303\) 9.42651i 0.541539i
\(304\) 0 0
\(305\) 14.9870 13.6725i 0.858152 0.782886i
\(306\) 13.7719 0.787290
\(307\) 2.57676i 0.147064i −0.997293 0.0735319i \(-0.976573\pi\)
0.997293 0.0735319i \(-0.0234271\pi\)
\(308\) 2.06075i 0.117422i
\(309\) 2.77338 0.157772
\(310\) 10.9337 + 11.9849i 0.620993 + 0.680695i
\(311\) 14.6367 0.829974 0.414987 0.909827i \(-0.363786\pi\)
0.414987 + 0.909827i \(0.363786\pi\)
\(312\) 0.987050i 0.0558807i
\(313\) 1.49408i 0.0844507i −0.999108 0.0422253i \(-0.986555\pi\)
0.999108 0.0422253i \(-0.0134447\pi\)
\(314\) −16.9415 −0.956062
\(315\) −11.2229 12.3019i −0.632339 0.693132i
\(316\) −3.14187 −0.176744
\(317\) 5.64234i 0.316905i 0.987367 + 0.158453i \(0.0506505\pi\)
−0.987367 + 0.158453i \(0.949349\pi\)
\(318\) 7.60818i 0.426646i
\(319\) 3.31065 0.185361
\(320\) −12.5783 + 11.4751i −0.703148 + 0.641477i
\(321\) −8.07124 −0.450493
\(322\) 10.7660i 0.599968i
\(323\) 0 0
\(324\) 5.90329 0.327960
\(325\) −3.04133 0.279570i −0.168703 0.0155078i
\(326\) 16.7854 0.929660
\(327\) 2.08466i 0.115282i
\(328\) 16.1663i 0.892637i
\(329\) 9.31757 0.513694
\(330\) −0.765821 + 0.698653i −0.0421570 + 0.0384596i
\(331\) 31.8920 1.75294 0.876472 0.481452i \(-0.159890\pi\)
0.876472 + 0.481452i \(0.159890\pi\)
\(332\) 4.49203i 0.246532i
\(333\) 11.7690i 0.644935i
\(334\) 7.93561 0.434217
\(335\) 16.4788 + 18.0630i 0.900331 + 0.986889i
\(336\) 2.00801 0.109546
\(337\) 15.3378i 0.835504i 0.908561 + 0.417752i \(0.137182\pi\)
−0.908561 + 0.417752i \(0.862818\pi\)
\(338\) 13.2254i 0.719369i
\(339\) −2.11169 −0.114691
\(340\) 6.58399 + 7.21697i 0.357067 + 0.391395i
\(341\) −5.76886 −0.312401
\(342\) 0 0
\(343\) 17.7864i 0.960373i
\(344\) 31.7995 1.71452
\(345\) −3.29302 + 3.00419i −0.177290 + 0.161740i
\(346\) 9.28214 0.499011
\(347\) 0.0826977i 0.00443945i −0.999998 0.00221972i \(-0.999293\pi\)
0.999998 0.00221972i \(-0.000706560\pi\)
\(348\) 1.90758i 0.102257i
\(349\) 4.64333 0.248552 0.124276 0.992248i \(-0.460339\pi\)
0.124276 + 0.992248i \(0.460339\pi\)
\(350\) −1.31367 + 14.2909i −0.0702186 + 0.763880i
\(351\) −1.85608 −0.0990702
\(352\) 3.86183i 0.205836i
\(353\) 3.99402i 0.212580i −0.994335 0.106290i \(-0.966103\pi\)
0.994335 0.106290i \(-0.0338972\pi\)
\(354\) 5.57606 0.296364
\(355\) −1.11955 + 1.02136i −0.0594196 + 0.0542080i
\(356\) 5.31717 0.281809
\(357\) 7.04645i 0.372938i
\(358\) 5.72454i 0.302551i
\(359\) −30.2198 −1.59494 −0.797471 0.603358i \(-0.793829\pi\)
−0.797471 + 0.603358i \(0.793829\pi\)
\(360\) −12.4525 13.6496i −0.656302 0.719399i
\(361\) 0 0
\(362\) 19.7084i 1.03585i
\(363\) 5.47736i 0.287487i
\(364\) −1.51143 −0.0792202
\(365\) −10.5695 11.5856i −0.553232 0.606420i
\(366\) −5.05014 −0.263975
\(367\) 18.1399i 0.946896i 0.880822 + 0.473448i \(0.156991\pi\)
−0.880822 + 0.473448i \(0.843009\pi\)
\(368\) 5.17175i 0.269596i
\(369\) 14.4490 0.752185
\(370\) 7.49311 6.83591i 0.389548 0.355382i
\(371\) 37.4546 1.94455
\(372\) 3.32398i 0.172340i
\(373\) 25.2151i 1.30559i 0.757536 + 0.652794i \(0.226403\pi\)
−0.757536 + 0.652794i \(0.773597\pi\)
\(374\) 4.22061 0.218243
\(375\) −4.73774 + 3.58597i −0.244656 + 0.185179i
\(376\) 10.3384 0.533161
\(377\) 2.42815i 0.125056i
\(378\) 8.72152i 0.448586i
\(379\) 27.5634 1.41584 0.707918 0.706294i \(-0.249634\pi\)
0.707918 + 0.706294i \(0.249634\pi\)
\(380\) 0 0
\(381\) 4.88138 0.250081
\(382\) 18.0788i 0.924990i
\(383\) 18.3237i 0.936296i −0.883650 0.468148i \(-0.844921\pi\)
0.883650 0.468148i \(-0.155079\pi\)
\(384\) −0.690166 −0.0352199
\(385\) −3.43942 3.77009i −0.175289 0.192141i
\(386\) −7.82852 −0.398461
\(387\) 28.4215i 1.44474i
\(388\) 11.2315i 0.570195i
\(389\) 7.18503 0.364296 0.182148 0.983271i \(-0.441695\pi\)
0.182148 + 0.983271i \(0.441695\pi\)
\(390\) 0.512417 + 0.561680i 0.0259472 + 0.0284418i
\(391\) 18.1486 0.917813
\(392\) 1.54888i 0.0782303i
\(393\) 1.98713i 0.100237i
\(394\) 12.7867 0.644184
\(395\) −5.74797 + 5.24383i −0.289212 + 0.263846i
\(396\) 2.04362 0.102696
\(397\) 11.7242i 0.588423i −0.955740 0.294211i \(-0.904943\pi\)
0.955740 0.294211i \(-0.0950570\pi\)
\(398\) 8.12562i 0.407301i
\(399\) 0 0
\(400\) −0.631056 + 6.86500i −0.0315528 + 0.343250i
\(401\) 39.2123 1.95817 0.979085 0.203451i \(-0.0652157\pi\)
0.979085 + 0.203451i \(0.0652157\pi\)
\(402\) 6.08667i 0.303576i
\(403\) 4.23108i 0.210765i
\(404\) −16.0158 −0.796816
\(405\) 10.7999 9.85268i 0.536652 0.489584i
\(406\) −11.4096 −0.566249
\(407\) 3.60677i 0.178781i
\(408\) 7.81845i 0.387071i
\(409\) −8.87630 −0.438905 −0.219452 0.975623i \(-0.570427\pi\)
−0.219452 + 0.975623i \(0.570427\pi\)
\(410\) −8.39259 9.19945i −0.414481 0.454329i
\(411\) 1.25601 0.0619543
\(412\) 4.71203i 0.232145i
\(413\) 27.4506i 1.35076i
\(414\) −10.6766 −0.524725
\(415\) 7.49727 + 8.21806i 0.368027 + 0.403409i
\(416\) −2.83240 −0.138870
\(417\) 1.29823i 0.0635745i
\(418\) 0 0
\(419\) 7.80196 0.381151 0.190575 0.981673i \(-0.438965\pi\)
0.190575 + 0.981673i \(0.438965\pi\)
\(420\) −2.17230 + 1.98177i −0.105997 + 0.0967006i
\(421\) 34.5570 1.68421 0.842104 0.539316i \(-0.181317\pi\)
0.842104 + 0.539316i \(0.181317\pi\)
\(422\) 10.5338i 0.512779i
\(423\) 9.24014i 0.449271i
\(424\) 41.5580 2.01824
\(425\) 24.0905 + 2.21448i 1.16856 + 0.107418i
\(426\) 0.377253 0.0182780
\(427\) 24.8615i 1.20313i
\(428\) 13.7132i 0.662851i
\(429\) −0.270362 −0.0130532
\(430\) 18.0955 16.5084i 0.872643 0.796105i
\(431\) 2.83951 0.136775 0.0683873 0.997659i \(-0.478215\pi\)
0.0683873 + 0.997659i \(0.478215\pi\)
\(432\) 4.18961i 0.201573i
\(433\) 21.8527i 1.05018i 0.851048 + 0.525088i \(0.175967\pi\)
−0.851048 + 0.525088i \(0.824033\pi\)
\(434\) 19.8814 0.954338
\(435\) −3.18378 3.48986i −0.152650 0.167326i
\(436\) −3.54188 −0.169625
\(437\) 0 0
\(438\) 3.90399i 0.186540i
\(439\) −32.5760 −1.55477 −0.777383 0.629027i \(-0.783453\pi\)
−0.777383 + 0.629027i \(0.783453\pi\)
\(440\) −3.81624 4.18313i −0.181932 0.199423i
\(441\) −1.38434 −0.0659212
\(442\) 3.09555i 0.147240i
\(443\) 7.76173i 0.368771i −0.982854 0.184385i \(-0.940971\pi\)
0.982854 0.184385i \(-0.0590295\pi\)
\(444\) 2.07820 0.0986269
\(445\) 9.72763 8.87444i 0.461134 0.420689i
\(446\) −29.6638 −1.40462
\(447\) 7.58313i 0.358670i
\(448\) 20.8658i 0.985817i
\(449\) −22.9821 −1.08459 −0.542296 0.840187i \(-0.682445\pi\)
−0.542296 + 0.840187i \(0.682445\pi\)
\(450\) −14.1721 1.30275i −0.668081 0.0614124i
\(451\) 4.42811 0.208511
\(452\) 3.58779i 0.168756i
\(453\) 1.24530i 0.0585092i
\(454\) −16.6312 −0.780543
\(455\) −2.76512 + 2.52260i −0.129631 + 0.118261i
\(456\) 0 0
\(457\) 3.38866i 0.158515i 0.996854 + 0.0792573i \(0.0252549\pi\)
−0.996854 + 0.0792573i \(0.974745\pi\)
\(458\) 11.9262i 0.557275i
\(459\) 14.7021 0.686234
\(460\) −5.10418 5.59489i −0.237983 0.260863i
\(461\) −10.8529 −0.505471 −0.252735 0.967535i \(-0.581330\pi\)
−0.252735 + 0.967535i \(0.581330\pi\)
\(462\) 1.27040i 0.0591044i
\(463\) 7.31171i 0.339804i −0.985461 0.169902i \(-0.945655\pi\)
0.985461 0.169902i \(-0.0543451\pi\)
\(464\) −5.48090 −0.254445
\(465\) 5.54777 + 6.08114i 0.257272 + 0.282006i
\(466\) 16.6163 0.769733
\(467\) 10.8418i 0.501699i −0.968026 0.250850i \(-0.919290\pi\)
0.968026 0.250850i \(-0.0807100\pi\)
\(468\) 1.49887i 0.0692851i
\(469\) 29.9643 1.38362
\(470\) 5.88305 5.36706i 0.271365 0.247564i
\(471\) −8.59612 −0.396088
\(472\) 30.4580i 1.40194i
\(473\) 8.71018i 0.400494i
\(474\) 1.93688 0.0889640
\(475\) 0 0
\(476\) 11.9720 0.548738
\(477\) 37.1433i 1.70068i
\(478\) 21.8539i 0.999574i
\(479\) −3.44738 −0.157515 −0.0787574 0.996894i \(-0.525095\pi\)
−0.0787574 + 0.996894i \(0.525095\pi\)
\(480\) −4.07088 + 3.71383i −0.185809 + 0.169512i
\(481\) 2.64533 0.120617
\(482\) 29.7766i 1.35629i
\(483\) 5.46270i 0.248561i
\(484\) −9.30613 −0.423006
\(485\) −18.7456 20.5478i −0.851195 0.933029i
\(486\) −13.1872 −0.598183
\(487\) 26.9972i 1.22336i 0.791106 + 0.611680i \(0.209506\pi\)
−0.791106 + 0.611680i \(0.790494\pi\)
\(488\) 27.5853i 1.24873i
\(489\) 8.51695 0.385150
\(490\) 0.804086 + 0.881390i 0.0363249 + 0.0398172i
\(491\) 0.243979 0.0110106 0.00550530 0.999985i \(-0.498248\pi\)
0.00550530 + 0.999985i \(0.498248\pi\)
\(492\) 2.55145i 0.115028i
\(493\) 19.2334i 0.866231i
\(494\) 0 0
\(495\) 3.73876 3.41084i 0.168045 0.153306i
\(496\) 9.55055 0.428832
\(497\) 1.85719i 0.0833065i
\(498\) 2.76923i 0.124092i
\(499\) 3.24868 0.145431 0.0727155 0.997353i \(-0.476833\pi\)
0.0727155 + 0.997353i \(0.476833\pi\)
\(500\) −6.09262 8.04949i −0.272470 0.359984i
\(501\) 4.02653 0.179892
\(502\) 25.9898i 1.15998i
\(503\) 7.12545i 0.317708i −0.987302 0.158854i \(-0.949220\pi\)
0.987302 0.158854i \(-0.0507799\pi\)
\(504\) −22.6430 −1.00860
\(505\) −29.3005 + 26.7306i −1.30386 + 1.18950i
\(506\) −3.27199 −0.145458
\(507\) 6.71060i 0.298028i
\(508\) 8.29355i 0.367967i
\(509\) −1.73022 −0.0766907 −0.0383453 0.999265i \(-0.512209\pi\)
−0.0383453 + 0.999265i \(0.512209\pi\)
\(510\) −4.05887 4.44909i −0.179730 0.197009i
\(511\) −19.2191 −0.850203
\(512\) 14.7780i 0.653100i
\(513\) 0 0
\(514\) −5.70021 −0.251426
\(515\) 7.86445 + 8.62054i 0.346549 + 0.379866i
\(516\) 5.01875 0.220938
\(517\) 2.83178i 0.124541i
\(518\) 12.4301i 0.546149i
\(519\) 4.70977 0.206736
\(520\) −3.06806 + 2.79897i −0.134543 + 0.122743i
\(521\) 12.8033 0.560922 0.280461 0.959865i \(-0.409513\pi\)
0.280461 + 0.959865i \(0.409513\pi\)
\(522\) 11.3148i 0.495235i
\(523\) 8.71641i 0.381142i −0.981673 0.190571i \(-0.938966\pi\)
0.981673 0.190571i \(-0.0610340\pi\)
\(524\) −3.37616 −0.147488
\(525\) −0.666558 + 7.25121i −0.0290910 + 0.316469i
\(526\) 20.4449 0.891441
\(527\) 33.5145i 1.45992i
\(528\) 0.610270i 0.0265586i
\(529\) 8.93048 0.388282
\(530\) 23.6486 21.5744i 1.02723 0.937133i
\(531\) −27.2225 −1.18136
\(532\) 0 0
\(533\) 3.24773i 0.140675i
\(534\) −3.27790 −0.141849
\(535\) −22.8875 25.0879i −0.989514 1.08465i
\(536\) 33.2471 1.43606
\(537\) 2.90463i 0.125344i
\(538\) 19.4658i 0.839230i
\(539\) −0.424253 −0.0182739
\(540\) −4.13487 4.53239i −0.177936 0.195043i
\(541\) 11.0154 0.473588 0.236794 0.971560i \(-0.423903\pi\)
0.236794 + 0.971560i \(0.423903\pi\)
\(542\) 1.98183i 0.0851268i
\(543\) 10.0000i 0.429143i
\(544\) 22.4355 0.961916
\(545\) −6.47978 + 5.91146i −0.277563 + 0.253219i
\(546\) 0.931757 0.0398755
\(547\) 18.3959i 0.786551i −0.919421 0.393275i \(-0.871342\pi\)
0.919421 0.393275i \(-0.128658\pi\)
\(548\) 2.13398i 0.0911591i
\(549\) 24.6549 1.05225
\(550\) −4.34326 0.399248i −0.185197 0.0170240i
\(551\) 0 0
\(552\) 6.06118i 0.257981i
\(553\) 9.53516i 0.405476i
\(554\) −7.10021 −0.301659
\(555\) 3.80201 3.46855i 0.161386 0.147232i
\(556\) −2.20571 −0.0935431
\(557\) 0.202098i 0.00856316i 0.999991 + 0.00428158i \(0.00136287\pi\)
−0.999991 + 0.00428158i \(0.998637\pi\)
\(558\) 19.7162i 0.834653i
\(559\) 6.38835 0.270199
\(560\) 5.69409 + 6.24152i 0.240619 + 0.263752i
\(561\) 2.14154 0.0904161
\(562\) 12.8685i 0.542824i
\(563\) 6.76375i 0.285058i 0.989791 + 0.142529i \(0.0455234\pi\)
−0.989791 + 0.142529i \(0.954477\pi\)
\(564\) 1.63165 0.0687049
\(565\) −5.98809 6.56378i −0.251921 0.276140i
\(566\) −26.8833 −1.12999
\(567\) 17.9157i 0.752389i
\(568\) 2.06066i 0.0864636i
\(569\) −7.15701 −0.300038 −0.150019 0.988683i \(-0.547933\pi\)
−0.150019 + 0.988683i \(0.547933\pi\)
\(570\) 0 0
\(571\) −18.3153 −0.766471 −0.383236 0.923651i \(-0.625190\pi\)
−0.383236 + 0.923651i \(0.625190\pi\)
\(572\) 0.459349i 0.0192064i
\(573\) 9.17318i 0.383215i
\(574\) −15.2607 −0.636971
\(575\) −18.6759 1.71676i −0.778841 0.0715938i
\(576\) −20.6924 −0.862184
\(577\) 21.5794i 0.898364i −0.893440 0.449182i \(-0.851716\pi\)
0.893440 0.449182i \(-0.148284\pi\)
\(578\) 6.71409i 0.279269i
\(579\) −3.97220 −0.165079
\(580\) 5.92934 5.40929i 0.246202 0.224609i
\(581\) 13.6327 0.565581
\(582\) 6.92397i 0.287008i
\(583\) 11.3831i 0.471441i
\(584\) −21.3247 −0.882423
\(585\) −2.50163 2.74214i −0.103430 0.113373i
\(586\) 29.4446 1.21635
\(587\) 28.9431i 1.19461i 0.802014 + 0.597305i \(0.203762\pi\)
−0.802014 + 0.597305i \(0.796238\pi\)
\(588\) 0.244452i 0.0100810i
\(589\) 0 0
\(590\) 15.8120 + 17.3321i 0.650969 + 0.713553i
\(591\) 6.48798 0.266880
\(592\) 5.97114i 0.245412i
\(593\) 17.8231i 0.731907i −0.930633 0.365954i \(-0.880743\pi\)
0.930633 0.365954i \(-0.119257\pi\)
\(594\) −2.65063 −0.108756
\(595\) 21.9026 19.9815i 0.897918 0.819164i
\(596\) −12.8839 −0.527744
\(597\) 4.12295i 0.168741i
\(598\) 2.39980i 0.0981350i
\(599\) 8.55080 0.349376 0.174688 0.984624i \(-0.444108\pi\)
0.174688 + 0.984624i \(0.444108\pi\)
\(600\) −0.739584 + 8.04564i −0.0301934 + 0.328462i
\(601\) −4.19029 −0.170925 −0.0854627 0.996341i \(-0.527237\pi\)
−0.0854627 + 0.996341i \(0.527237\pi\)
\(602\) 30.0182i 1.22345i
\(603\) 29.7153i 1.21010i
\(604\) 2.11578 0.0860899
\(605\) −17.0253 + 15.5321i −0.692178 + 0.631469i
\(606\) 9.87335 0.401077
\(607\) 7.59458i 0.308254i 0.988051 + 0.154127i \(0.0492566\pi\)
−0.988051 + 0.154127i \(0.950743\pi\)
\(608\) 0 0
\(609\) −5.78925 −0.234592
\(610\) −14.3206 15.6974i −0.579825 0.635569i
\(611\) 2.07693 0.0840234
\(612\) 11.8726i 0.479920i
\(613\) 17.9449i 0.724788i −0.932025 0.362394i \(-0.881959\pi\)
0.932025 0.362394i \(-0.118041\pi\)
\(614\) −2.69891 −0.108919
\(615\) −4.25841 4.66781i −0.171716 0.188224i
\(616\) −6.93929 −0.279592
\(617\) 40.5840i 1.63385i 0.576745 + 0.816924i \(0.304323\pi\)
−0.576745 + 0.816924i \(0.695677\pi\)
\(618\) 2.90485i 0.116850i
\(619\) 25.5608 1.02738 0.513688 0.857977i \(-0.328279\pi\)
0.513688 + 0.857977i \(0.328279\pi\)
\(620\) −10.3320 + 9.42576i −0.414941 + 0.378548i
\(621\) −11.3976 −0.457372
\(622\) 15.3306i 0.614700i
\(623\) 16.1369i 0.646512i
\(624\) 0.447594 0.0179181
\(625\) −24.5810 4.55767i −0.983242 0.182307i
\(626\) −1.56491 −0.0625463
\(627\) 0 0
\(628\) 14.6049i 0.582801i
\(629\) −20.9538 −0.835481
\(630\) −12.8850 + 11.7549i −0.513351 + 0.468326i
\(631\) 4.63486 0.184511 0.0922555 0.995735i \(-0.470592\pi\)
0.0922555 + 0.995735i \(0.470592\pi\)
\(632\) 10.5798i 0.420842i
\(633\) 5.34487i 0.212440i
\(634\) 5.90980 0.234708
\(635\) 13.8421 + 15.1728i 0.549306 + 0.602116i
\(636\) 6.55888 0.260077
\(637\) 0.311162i 0.0123287i
\(638\) 3.46758i 0.137283i
\(639\) −1.84176 −0.0728589
\(640\) −1.95710 2.14525i −0.0773610 0.0847985i
\(641\) 23.2079 0.916658 0.458329 0.888783i \(-0.348448\pi\)
0.458329 + 0.888783i \(0.348448\pi\)
\(642\) 8.45384i 0.333646i
\(643\) 15.2454i 0.601219i −0.953747 0.300610i \(-0.902810\pi\)
0.953747 0.300610i \(-0.0971902\pi\)
\(644\) −9.28122 −0.365731
\(645\) 9.18168 8.37638i 0.361528 0.329819i
\(646\) 0 0
\(647\) 17.6749i 0.694872i 0.937704 + 0.347436i \(0.112948\pi\)
−0.937704 + 0.347436i \(0.887052\pi\)
\(648\) 19.8785i 0.780902i
\(649\) −8.34273 −0.327481
\(650\) −0.292823 + 3.18550i −0.0114855 + 0.124946i
\(651\) 10.0878 0.395374
\(652\) 14.4704i 0.566706i
\(653\) 6.86456i 0.268631i 0.990939 + 0.134315i \(0.0428835\pi\)
−0.990939 + 0.134315i \(0.957116\pi\)
\(654\) 2.18348 0.0853809
\(655\) −6.17661 + 5.63487i −0.241340 + 0.220173i
\(656\) −7.33089 −0.286223
\(657\) 19.0594i 0.743578i
\(658\) 9.75924i 0.380455i
\(659\) −27.3966 −1.06722 −0.533611 0.845730i \(-0.679165\pi\)
−0.533611 + 0.845730i \(0.679165\pi\)
\(660\) −0.602296 0.660201i −0.0234444 0.0256983i
\(661\) 28.5502 1.11048 0.555238 0.831692i \(-0.312627\pi\)
0.555238 + 0.831692i \(0.312627\pi\)
\(662\) 33.4038i 1.29828i
\(663\) 1.57068i 0.0610003i
\(664\) 15.1263 0.587014
\(665\) 0 0
\(666\) 12.3268 0.477655
\(667\) 14.9106i 0.577339i
\(668\) 6.84115i 0.264692i
\(669\) −15.0515 −0.581923
\(670\) 18.9193 17.2599i 0.730915 0.666808i
\(671\) 7.55586 0.291691
\(672\) 6.75307i 0.260505i
\(673\) 45.1688i 1.74113i −0.492054 0.870565i \(-0.663754\pi\)
0.492054 0.870565i \(-0.336246\pi\)
\(674\) 16.0649 0.618796
\(675\) −15.1293 1.39074i −0.582326 0.0535295i
\(676\) 11.4014 0.438516
\(677\) 46.9628i 1.80493i −0.430767 0.902463i \(-0.641757\pi\)
0.430767 0.902463i \(-0.358243\pi\)
\(678\) 2.21179i 0.0849432i
\(679\) −34.0863 −1.30811
\(680\) 24.3022 22.1707i 0.931946 0.850207i
\(681\) −8.43871 −0.323372
\(682\) 6.04231i 0.231372i
\(683\) 19.4215i 0.743142i −0.928405 0.371571i \(-0.878819\pi\)
0.928405 0.371571i \(-0.121181\pi\)
\(684\) 0 0
\(685\) 3.56165 + 3.90406i 0.136084 + 0.149167i
\(686\) −18.6295 −0.711277
\(687\) 6.05137i 0.230874i
\(688\) 14.4200i 0.549758i
\(689\) 8.34879 0.318063
\(690\) 3.14660 + 3.44911i 0.119789 + 0.131306i
\(691\) −17.8669 −0.679688 −0.339844 0.940482i \(-0.610374\pi\)
−0.339844 + 0.940482i \(0.610374\pi\)
\(692\) 8.00197i 0.304189i
\(693\) 6.20213i 0.235599i
\(694\) −0.0866178 −0.00328797
\(695\) −4.03530 + 3.68137i −0.153068 + 0.139642i
\(696\) −6.42350 −0.243482
\(697\) 25.7254i 0.974418i
\(698\) 4.86343i 0.184084i
\(699\) 8.43110 0.318894
\(700\) −12.3199 1.13249i −0.465650 0.0428042i
\(701\) 4.30484 0.162591 0.0812957 0.996690i \(-0.474094\pi\)
0.0812957 + 0.996690i \(0.474094\pi\)
\(702\) 1.94406i 0.0733739i
\(703\) 0 0
\(704\) −6.34150 −0.239004
\(705\) 2.98507 2.72325i 0.112424 0.102564i
\(706\) −4.18335 −0.157442
\(707\) 48.6059i 1.82801i
\(708\) 4.80703i 0.180659i
\(709\) −35.1319 −1.31941 −0.659703 0.751526i \(-0.729318\pi\)
−0.659703 + 0.751526i \(0.729318\pi\)
\(710\) 1.06977 + 1.17262i 0.0401479 + 0.0440077i
\(711\) −9.45592 −0.354625
\(712\) 17.9048i 0.671012i
\(713\) 25.9818i 0.973028i
\(714\) −7.38047 −0.276207
\(715\) −0.766662 0.840369i −0.0286715 0.0314280i
\(716\) −4.93502 −0.184431
\(717\) 11.0887i 0.414114i
\(718\) 31.6523i 1.18125i
\(719\) −29.4030 −1.09655 −0.548273 0.836299i \(-0.684715\pi\)
−0.548273 + 0.836299i \(0.684715\pi\)
\(720\) −6.18965 + 5.64677i −0.230675 + 0.210443i
\(721\) 14.3004 0.532574
\(722\) 0 0
\(723\) 15.1087i 0.561898i
\(724\) 16.9902 0.631437
\(725\) 1.81938 19.7923i 0.0675702 0.735069i
\(726\) 5.73700 0.212920
\(727\) 22.5569i 0.836589i 0.908312 + 0.418294i \(0.137372\pi\)
−0.908312 + 0.418294i \(0.862628\pi\)
\(728\) 5.08952i 0.188630i
\(729\) 12.9222 0.478599
\(730\) −12.1348 + 11.0705i −0.449130 + 0.409738i
\(731\) −50.6023 −1.87159
\(732\) 4.35364i 0.160915i
\(733\) 37.9002i 1.39988i −0.714204 0.699938i \(-0.753211\pi\)
0.714204 0.699938i \(-0.246789\pi\)
\(734\) 18.9998 0.701295
\(735\) 0.407994 + 0.447218i 0.0150491 + 0.0164959i
\(736\) −17.3929 −0.641113
\(737\) 9.10669i 0.335449i
\(738\) 15.1339i 0.557087i
\(739\) 26.0215 0.957218 0.478609 0.878028i \(-0.341141\pi\)
0.478609 + 0.878028i \(0.341141\pi\)
\(740\) 5.89312 + 6.45968i 0.216635 + 0.237463i
\(741\) 0 0
\(742\) 39.2300i 1.44018i
\(743\) 50.3874i 1.84854i −0.381744 0.924268i \(-0.624677\pi\)
0.381744 0.924268i \(-0.375323\pi\)
\(744\) 11.1930 0.410357
\(745\) −23.5707 + 21.5034i −0.863565 + 0.787824i
\(746\) 26.4103 0.966951
\(747\) 13.5194i 0.494650i
\(748\) 3.63852i 0.133037i
\(749\) −41.6177 −1.52068
\(750\) 3.75595 + 4.96232i 0.137148 + 0.181198i
\(751\) 27.1857 0.992021 0.496011 0.868316i \(-0.334798\pi\)
0.496011 + 0.868316i \(0.334798\pi\)
\(752\) 4.68811i 0.170958i
\(753\) 13.1873i 0.480570i
\(754\) −2.54325 −0.0926197
\(755\) 3.87077 3.53128i 0.140872 0.128516i
\(756\) −7.51867 −0.273451
\(757\) 32.8983i 1.19571i 0.801605 + 0.597855i \(0.203980\pi\)
−0.801605 + 0.597855i \(0.796020\pi\)
\(758\) 28.8700i 1.04860i
\(759\) −1.66021 −0.0602619
\(760\) 0 0
\(761\) 3.47213 0.125865 0.0629323 0.998018i \(-0.479955\pi\)
0.0629323 + 0.998018i \(0.479955\pi\)
\(762\) 5.11277i 0.185216i
\(763\) 10.7491i 0.389145i
\(764\) −15.5854 −0.563859
\(765\) 19.8155 + 21.7206i 0.716431 + 0.785308i
\(766\) −19.1923 −0.693445
\(767\) 6.11886i 0.220939i
\(768\) 8.81622i 0.318128i
\(769\) 31.6735 1.14218 0.571089 0.820888i \(-0.306521\pi\)
0.571089 + 0.820888i \(0.306521\pi\)
\(770\) −3.94880 + 3.60246i −0.142305 + 0.129824i
\(771\) −2.89229 −0.104163
\(772\) 6.74883i 0.242896i
\(773\) 35.0686i 1.26133i 0.776056 + 0.630665i \(0.217218\pi\)
−0.776056 + 0.630665i \(0.782782\pi\)
\(774\) 29.7687 1.07001
\(775\) −3.17030 + 34.4884i −0.113881 + 1.23886i
\(776\) −37.8207 −1.35768
\(777\) 6.30706i 0.226265i
\(778\) 7.52562i 0.269807i
\(779\) 0 0
\(780\) −0.484215 + 0.441746i −0.0173377 + 0.0158170i
\(781\) −0.564435 −0.0201971
\(782\) 19.0089i 0.679755i
\(783\) 12.0790i 0.431667i
\(784\) 0.702366 0.0250845
\(785\) −24.3759 26.7194i −0.870014 0.953656i
\(786\) 2.08132 0.0742383
\(787\) 42.1829i 1.50366i 0.659358 + 0.751829i \(0.270828\pi\)
−0.659358 + 0.751829i \(0.729172\pi\)
\(788\) 11.0232i 0.392685i
\(789\) 10.3738 0.369316
\(790\) 5.49240 + 6.02044i 0.195411 + 0.214198i
\(791\) −10.8885 −0.387150
\(792\) 6.88162i 0.244528i
\(793\) 5.54174i 0.196793i
\(794\) −12.2800 −0.435801
\(795\) 11.9993 10.9469i 0.425572 0.388246i
\(796\) 7.00496 0.248284
\(797\) 20.4194i 0.723291i −0.932316 0.361646i \(-0.882215\pi\)
0.932316 0.361646i \(-0.117785\pi\)
\(798\) 0 0
\(799\) −16.4514 −0.582008
\(800\) −23.0875 2.12228i −0.816265 0.0750341i
\(801\) 16.0028 0.565432
\(802\) 41.0711i 1.45027i
\(803\) 5.84103i 0.206125i
\(804\) 5.24722 0.185055
\(805\) −16.9798 + 15.4905i −0.598458 + 0.545969i
\(806\) 4.43165 0.156098
\(807\) 9.87696i 0.347685i
\(808\) 53.9310i 1.89729i
\(809\) −28.5536 −1.00389 −0.501946 0.864899i \(-0.667382\pi\)
−0.501946 + 0.864899i \(0.667382\pi\)
\(810\) −10.3197 11.3119i −0.362598 0.397458i
\(811\) −1.61158 −0.0565904 −0.0282952 0.999600i \(-0.509008\pi\)
−0.0282952 + 0.999600i \(0.509008\pi\)
\(812\) 9.83603i 0.345177i
\(813\) 1.00558i 0.0352673i
\(814\) 3.77774 0.132410
\(815\) 24.1514 + 26.4733i 0.845987 + 0.927320i
\(816\) −3.54540 −0.124114
\(817\) 0 0
\(818\) 9.29706i 0.325064i
\(819\) −4.54886 −0.158950
\(820\) 7.93069 7.23511i 0.276952 0.252661i
\(821\) −8.04886 −0.280907 −0.140454 0.990087i \(-0.544856\pi\)
−0.140454 + 0.990087i \(0.544856\pi\)
\(822\) 1.31555i 0.0458849i
\(823\) 37.3423i 1.30167i 0.759219 + 0.650835i \(0.225581\pi\)
−0.759219 + 0.650835i \(0.774419\pi\)
\(824\) 15.8671 0.552757
\(825\) −2.20377 0.202579i −0.0767255 0.00705289i
\(826\) 28.7518 1.00040
\(827\) 10.9302i 0.380082i −0.981776 0.190041i \(-0.939138\pi\)
0.981776 0.190041i \(-0.0608620\pi\)
\(828\) 9.20409i 0.319864i
\(829\) −33.6375 −1.16828 −0.584139 0.811654i \(-0.698568\pi\)
−0.584139 + 0.811654i \(0.698568\pi\)
\(830\) 8.60761 7.85266i 0.298775 0.272570i
\(831\) −3.60265 −0.124975
\(832\) 4.65108i 0.161247i
\(833\) 2.46472i 0.0853976i
\(834\) 1.35977 0.0470849
\(835\) 11.4180 + 12.5157i 0.395136 + 0.433124i
\(836\) 0 0
\(837\) 21.0478i 0.727517i
\(838\) 8.17179i 0.282290i
\(839\) −13.8735 −0.478965 −0.239483 0.970901i \(-0.576978\pi\)
−0.239483 + 0.970901i \(0.576978\pi\)
\(840\) 6.67335 + 7.31493i 0.230253 + 0.252389i
\(841\) −13.1981 −0.455108
\(842\) 36.1951i 1.24737i
\(843\) 6.52948i 0.224887i
\(844\) 9.08103 0.312582
\(845\) 20.8586 19.0292i 0.717558 0.654623i
\(846\) 9.67815 0.332741
\(847\) 28.2429i 0.970437i
\(848\) 18.8452i 0.647146i
\(849\) −13.6406 −0.468145
\(850\) 2.31946 25.2324i 0.0795567 0.865466i
\(851\) 16.2442 0.556845
\(852\) 0.325224i 0.0111420i
\(853\) 29.5477i 1.01169i 0.862624 + 0.505846i \(0.168820\pi\)
−0.862624 + 0.505846i \(0.831180\pi\)
\(854\) −26.0400 −0.891071
\(855\) 0 0
\(856\) −46.1773 −1.57831
\(857\) 4.28588i 0.146403i 0.997317 + 0.0732014i \(0.0233216\pi\)
−0.997317 + 0.0732014i \(0.976678\pi\)
\(858\) 0.283178i 0.00966753i
\(859\) 34.9764 1.19338 0.596689 0.802472i \(-0.296483\pi\)
0.596689 + 0.802472i \(0.296483\pi\)
\(860\) 14.2316 + 15.5998i 0.485294 + 0.531950i
\(861\) −7.74331 −0.263891
\(862\) 2.97412i 0.101299i
\(863\) 20.0305i 0.681848i −0.940091 0.340924i \(-0.889260\pi\)
0.940091 0.340924i \(-0.110740\pi\)
\(864\) −14.0899 −0.479349
\(865\) 13.3554 + 14.6394i 0.454098 + 0.497755i
\(866\) 22.8886 0.777786
\(867\) 3.40674i 0.115699i
\(868\) 17.1394i 0.581750i
\(869\) −2.89791 −0.0983047
\(870\) −3.65529 + 3.33470i −0.123926 + 0.113057i
\(871\) 6.67917 0.226315
\(872\) 11.9268i 0.403892i
\(873\) 33.8030i 1.14406i
\(874\) 0 0
\(875\) −24.4292 + 18.4903i −0.825857 + 0.625087i
\(876\) −3.36556 −0.113712
\(877\) 45.5920i 1.53953i 0.638326 + 0.769766i \(0.279627\pi\)
−0.638326 + 0.769766i \(0.720373\pi\)
\(878\) 34.1202i 1.15150i
\(879\) 14.9402 0.503922
\(880\) −1.89691 + 1.73054i −0.0639448 + 0.0583364i
\(881\) −17.2730 −0.581941 −0.290971 0.956732i \(-0.593978\pi\)
−0.290971 + 0.956732i \(0.593978\pi\)
\(882\) 1.44997i 0.0488229i
\(883\) 35.1932i 1.18434i 0.805812 + 0.592172i \(0.201729\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(884\) 2.66862 0.0897554
\(885\) 8.02301 + 8.79434i 0.269691 + 0.295619i
\(886\) −8.12966 −0.273121
\(887\) 3.16110i 0.106139i 0.998591 + 0.0530697i \(0.0169005\pi\)
−0.998591 + 0.0530697i \(0.983099\pi\)
\(888\) 6.99805i 0.234839i
\(889\) 25.1698 0.844169
\(890\) −9.29512 10.1887i −0.311573 0.341528i
\(891\) 5.44491 0.182411
\(892\) 25.5727i 0.856237i
\(893\) 0 0
\(894\) 7.94259 0.265640
\(895\) −9.02851 + 8.23664i −0.301790 + 0.275321i
\(896\) −3.55870 −0.118888
\(897\) 1.21766i 0.0406565i
\(898\) 24.0715i 0.803277i
\(899\) −27.5350 −0.918343
\(900\) 1.12308 12.2176i 0.0374361 0.407252i
\(901\) −66.1310 −2.20314
\(902\) 4.63801i 0.154429i
\(903\) 15.2312i 0.506864i
\(904\) −12.0814 −0.401822
\(905\) 31.0832 28.3570i 1.03324 0.942619i
\(906\) −1.30433 −0.0433334
\(907\) 15.9313i 0.528991i −0.964387 0.264495i \(-0.914795\pi\)
0.964387 0.264495i \(-0.0852054\pi\)
\(908\) 14.3375i 0.475807i
\(909\) −48.2019 −1.59876
\(910\) 2.64217 + 2.89619i 0.0875872 + 0.0960078i
\(911\) 0.0577380 0.00191294 0.000956472 1.00000i \(-0.499696\pi\)
0.000956472 1.00000i \(0.499696\pi\)
\(912\) 0 0
\(913\) 4.14323i 0.137121i
\(914\) 3.54929 0.117400
\(915\) −7.26630 7.96488i −0.240216 0.263311i
\(916\) −10.2814 −0.339706
\(917\) 10.2462i 0.338360i
\(918\) 15.3990i 0.508242i
\(919\) −50.0489 −1.65096 −0.825481 0.564430i \(-0.809096\pi\)
−0.825481 + 0.564430i \(0.809096\pi\)
\(920\) −18.8400 + 17.1876i −0.621138 + 0.566659i
\(921\) −1.36943 −0.0451242
\(922\) 11.3674i 0.374365i
\(923\) 0.413977i 0.0136262i
\(924\) −1.09519 −0.0360291
\(925\) 21.5626 + 1.98212i 0.708975 + 0.0651716i
\(926\) −7.65831 −0.251668
\(927\) 14.1816i 0.465783i
\(928\) 18.4327i 0.605081i
\(929\) 16.9850 0.557259 0.278629 0.960399i \(-0.410120\pi\)
0.278629 + 0.960399i \(0.410120\pi\)
\(930\) 6.36940 5.81075i 0.208861 0.190542i
\(931\) 0 0
\(932\) 14.3246i 0.469218i
\(933\) 7.77874i 0.254665i
\(934\) −11.3557 −0.371571
\(935\) 6.07275 + 6.65658i 0.198600 + 0.217694i
\(936\) −5.04723 −0.164974
\(937\) 33.6925i 1.10069i −0.834938 0.550344i \(-0.814497\pi\)
0.834938 0.550344i \(-0.185503\pi\)
\(938\) 31.3847i 1.02475i
\(939\) −0.794036 −0.0259124
\(940\) 4.62685 + 5.07168i 0.150911 + 0.165420i
\(941\) −27.1733 −0.885823 −0.442911 0.896565i \(-0.646054\pi\)
−0.442911 + 0.896565i \(0.646054\pi\)
\(942\) 9.00360i 0.293353i
\(943\) 19.9434i 0.649446i
\(944\) 13.8117 0.449532
\(945\) −13.7552 + 12.5488i −0.447458 + 0.408212i
\(946\) 9.12306 0.296616
\(947\) 33.2962i 1.08198i −0.841028 0.540991i \(-0.818049\pi\)
0.841028 0.540991i \(-0.181951\pi\)
\(948\) 1.66975i 0.0542311i
\(949\) −4.28402 −0.139065
\(950\) 0 0
\(951\) 2.99864 0.0972376
\(952\) 40.3142i 1.30659i
\(953\) 30.4086i 0.985030i 0.870304 + 0.492515i \(0.163922\pi\)
−0.870304 + 0.492515i \(0.836078\pi\)
\(954\) 38.9040 1.25956
\(955\) −28.5131 + 26.0123i −0.922662 + 0.841737i
\(956\) −18.8399 −0.609325
\(957\) 1.75946i 0.0568751i
\(958\) 3.61079i 0.116659i
\(959\) 6.47635 0.209132
\(960\) 6.09847 + 6.68478i 0.196827 + 0.215750i
\(961\) 16.9801 0.547744
\(962\) 2.77073i 0.0893319i
\(963\) 41.2719i 1.32997i
\(964\) 25.6699 0.826772
\(965\) −11.2639 12.3468i −0.362598 0.397459i
\(966\) 5.72165 0.184091
\(967\) 58.9180i 1.89467i −0.320239 0.947337i \(-0.603763\pi\)
0.320239 0.947337i \(-0.396237\pi\)
\(968\) 31.3371i 1.00721i
\(969\) 0 0
\(970\) −21.5219 + 19.6342i −0.691025 + 0.630417i
\(971\) −40.8679 −1.31151 −0.655757 0.754972i \(-0.727651\pi\)
−0.655757 + 0.754972i \(0.727651\pi\)
\(972\) 11.3684i 0.364643i
\(973\) 6.69405i 0.214601i
\(974\) 28.2769 0.906051
\(975\) −0.148579 + 1.61633i −0.00475832 + 0.0517639i
\(976\) −12.5090 −0.400403
\(977\) 35.9431i 1.14992i −0.818181 0.574961i \(-0.805017\pi\)
0.818181 0.574961i \(-0.194983\pi\)
\(978\) 8.92068i 0.285252i
\(979\) 4.90430 0.156742
\(980\) −0.759832 + 0.693189i −0.0242719 + 0.0221431i
\(981\) −10.6598 −0.340342
\(982\) 0.255544i 0.00815474i
\(983\) 10.0666i 0.321074i 0.987030 + 0.160537i \(0.0513226\pi\)
−0.987030 + 0.160537i \(0.948677\pi\)
\(984\) −8.59165 −0.273892
\(985\) 18.3979 + 20.1667i 0.586205 + 0.642563i
\(986\) 20.1452 0.641553
\(987\) 4.95185i 0.157619i
\(988\) 0 0
\(989\) 39.2290 1.24741
\(990\) −3.57252 3.91598i −0.113542 0.124458i
\(991\) −18.0301 −0.572745 −0.286372 0.958118i \(-0.592449\pi\)
−0.286372 + 0.958118i \(0.592449\pi\)
\(992\) 32.1191i 1.01978i
\(993\) 16.9491i 0.537864i
\(994\) 1.94523 0.0616989
\(995\) 12.8154 11.6914i 0.406276 0.370642i
\(996\) 2.38730 0.0756446
\(997\) 18.7246i 0.593014i 0.955031 + 0.296507i \(0.0958218\pi\)
−0.955031 + 0.296507i \(0.904178\pi\)
\(998\) 3.40268i 0.107710i
\(999\) 13.1594 0.416344
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.k.1084.9 24
5.2 odd 4 9025.2.a.cu.1.16 24
5.3 odd 4 9025.2.a.cu.1.9 24
5.4 even 2 inner 1805.2.b.k.1084.16 24
19.9 even 9 95.2.p.a.24.6 yes 48
19.17 even 9 95.2.p.a.4.3 48
19.18 odd 2 1805.2.b.l.1084.16 24
57.17 odd 18 855.2.da.b.289.6 48
57.47 odd 18 855.2.da.b.784.3 48
95.9 even 18 95.2.p.a.24.3 yes 48
95.17 odd 36 475.2.l.f.251.3 48
95.18 even 4 9025.2.a.ct.1.16 24
95.28 odd 36 475.2.l.f.176.6 48
95.37 even 4 9025.2.a.ct.1.9 24
95.47 odd 36 475.2.l.f.176.3 48
95.74 even 18 95.2.p.a.4.6 yes 48
95.93 odd 36 475.2.l.f.251.6 48
95.94 odd 2 1805.2.b.l.1084.9 24
285.74 odd 18 855.2.da.b.289.3 48
285.104 odd 18 855.2.da.b.784.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.4.3 48 19.17 even 9
95.2.p.a.4.6 yes 48 95.74 even 18
95.2.p.a.24.3 yes 48 95.9 even 18
95.2.p.a.24.6 yes 48 19.9 even 9
475.2.l.f.176.3 48 95.47 odd 36
475.2.l.f.176.6 48 95.28 odd 36
475.2.l.f.251.3 48 95.17 odd 36
475.2.l.f.251.6 48 95.93 odd 36
855.2.da.b.289.3 48 285.74 odd 18
855.2.da.b.289.6 48 57.17 odd 18
855.2.da.b.784.3 48 57.47 odd 18
855.2.da.b.784.6 48 285.104 odd 18
1805.2.b.k.1084.9 24 1.1 even 1 trivial
1805.2.b.k.1084.16 24 5.4 even 2 inner
1805.2.b.l.1084.9 24 95.94 odd 2
1805.2.b.l.1084.16 24 19.18 odd 2
9025.2.a.ct.1.9 24 95.37 even 4
9025.2.a.ct.1.16 24 95.18 even 4
9025.2.a.cu.1.9 24 5.3 odd 4
9025.2.a.cu.1.16 24 5.2 odd 4