Properties

Label 855.2.da.b.289.6
Level $855$
Weight $2$
Character 855.289
Analytic conductor $6.827$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(199,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.da (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 289.6
Character \(\chi\) \(=\) 855.289
Dual form 855.2.da.b.784.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.358233 - 0.984236i) q^{2} +(0.691698 + 0.580404i) q^{4} +(-0.296741 + 2.21629i) q^{5} +(2.37320 + 1.37016i) q^{7} +(2.63320 - 1.52028i) q^{8} +(2.07505 + 1.08601i) q^{10} +(0.416418 + 0.721257i) q^{11} +(-0.601551 - 0.106070i) q^{13} +(2.19872 - 1.84495i) q^{14} +(-0.239424 - 1.35784i) q^{16} +(-1.65483 + 4.54662i) q^{17} +(-4.35537 - 0.175314i) q^{19} +(-1.49160 + 1.36077i) q^{20} +(0.859062 - 0.151476i) q^{22} +(-2.41106 + 2.87338i) q^{23} +(-4.82389 - 1.31533i) q^{25} +(-0.319893 + 0.554071i) q^{26} +(0.846286 + 2.32515i) q^{28} +(3.73543 - 1.35958i) q^{29} +(3.46338 - 5.99875i) q^{31} +(4.56652 + 0.805200i) q^{32} +(3.88213 + 3.25750i) q^{34} +(-3.74091 + 4.85311i) q^{35} +4.33071i q^{37} +(-1.73279 + 4.22391i) q^{38} +(2.58800 + 6.28706i) q^{40} +(-0.923271 - 5.23613i) q^{41} +(6.72257 + 8.01164i) q^{43} +(-0.130585 + 0.740582i) q^{44} +(1.96437 + 3.40239i) q^{46} +(1.16292 + 3.19511i) q^{47} +(0.254704 + 0.441160i) q^{49} +(-3.02267 + 4.27665i) q^{50} +(-0.354529 - 0.422511i) q^{52} +(8.78556 - 10.4702i) q^{53} +(-1.72208 + 0.708876i) q^{55} +8.33212 q^{56} -4.16359i q^{58} +(-9.41315 - 3.42610i) q^{59} +(6.94990 + 5.83166i) q^{61} +(-4.66350 - 5.55774i) q^{62} +(3.80717 - 6.59422i) q^{64} +(0.413587 - 1.30174i) q^{65} +(-3.73984 - 10.2751i) q^{67} +(-3.78352 + 2.18442i) q^{68} +(3.43649 + 5.42048i) q^{70} +(0.519169 - 0.435634i) q^{71} +(6.90688 - 1.21787i) q^{73} +(4.26244 + 1.55140i) q^{74} +(-2.91085 - 2.64914i) q^{76} +2.28224i q^{77} +(-0.604220 - 3.42670i) q^{79} +(3.08042 - 0.127706i) q^{80} +(-5.48434 - 0.967036i) q^{82} +(4.30834 + 2.48742i) q^{83} +(-9.58557 - 5.01676i) q^{85} +(10.2936 - 3.74656i) q^{86} +(2.19302 + 1.26614i) q^{88} +(-1.02256 + 5.79921i) q^{89} +(-1.28227 - 1.07595i) q^{91} +(-3.33544 + 0.588129i) q^{92} +3.56134 q^{94} +(1.68097 - 9.60075i) q^{95} +(-4.25430 + 11.6886i) q^{97} +(0.525449 - 0.0926508i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 18 q^{4} + 6 q^{5} - 15 q^{10} + 12 q^{11} - 6 q^{14} - 42 q^{16} + 12 q^{19} - 42 q^{20} + 12 q^{25} - 12 q^{26} - 42 q^{31} - 36 q^{34} - 6 q^{35} + 66 q^{40} - 6 q^{41} + 6 q^{44} - 6 q^{46} + 12 q^{49}+ \cdots + 63 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.358233 0.984236i 0.253309 0.695960i −0.746233 0.665685i \(-0.768139\pi\)
0.999542 0.0302752i \(-0.00963837\pi\)
\(3\) 0 0
\(4\) 0.691698 + 0.580404i 0.345849 + 0.290202i
\(5\) −0.296741 + 2.21629i −0.132707 + 0.991155i
\(6\) 0 0
\(7\) 2.37320 + 1.37016i 0.896983 + 0.517874i 0.876220 0.481911i \(-0.160057\pi\)
0.0207632 + 0.999784i \(0.493390\pi\)
\(8\) 2.63320 1.52028i 0.930976 0.537499i
\(9\) 0 0
\(10\) 2.07505 + 1.08601i 0.656189 + 0.343427i
\(11\) 0.416418 + 0.721257i 0.125555 + 0.217467i 0.921950 0.387310i \(-0.126596\pi\)
−0.796395 + 0.604777i \(0.793262\pi\)
\(12\) 0 0
\(13\) −0.601551 0.106070i −0.166840 0.0294185i 0.0896039 0.995977i \(-0.471440\pi\)
−0.256444 + 0.966559i \(0.582551\pi\)
\(14\) 2.19872 1.84495i 0.587633 0.493083i
\(15\) 0 0
\(16\) −0.239424 1.35784i −0.0598561 0.339461i
\(17\) −1.65483 + 4.54662i −0.401356 + 1.10272i 0.560259 + 0.828317i \(0.310701\pi\)
−0.961616 + 0.274400i \(0.911521\pi\)
\(18\) 0 0
\(19\) −4.35537 0.175314i −0.999191 0.0402198i
\(20\) −1.49160 + 1.36077i −0.333532 + 0.304278i
\(21\) 0 0
\(22\) 0.859062 0.151476i 0.183153 0.0322947i
\(23\) −2.41106 + 2.87338i −0.502740 + 0.599142i −0.956410 0.292028i \(-0.905670\pi\)
0.453670 + 0.891170i \(0.350114\pi\)
\(24\) 0 0
\(25\) −4.82389 1.31533i −0.964778 0.263066i
\(26\) −0.319893 + 0.554071i −0.0627362 + 0.108662i
\(27\) 0 0
\(28\) 0.846286 + 2.32515i 0.159933 + 0.439412i
\(29\) 3.73543 1.35958i 0.693651 0.252468i 0.0289533 0.999581i \(-0.490783\pi\)
0.664698 + 0.747112i \(0.268560\pi\)
\(30\) 0 0
\(31\) 3.46338 5.99875i 0.622042 1.07741i −0.367063 0.930196i \(-0.619637\pi\)
0.989105 0.147212i \(-0.0470300\pi\)
\(32\) 4.56652 + 0.805200i 0.807254 + 0.142341i
\(33\) 0 0
\(34\) 3.88213 + 3.25750i 0.665780 + 0.558656i
\(35\) −3.74091 + 4.85311i −0.632329 + 0.820325i
\(36\) 0 0
\(37\) 4.33071i 0.711965i 0.934493 + 0.355982i \(0.115854\pi\)
−0.934493 + 0.355982i \(0.884146\pi\)
\(38\) −1.73279 + 4.22391i −0.281095 + 0.685209i
\(39\) 0 0
\(40\) 2.58800 + 6.28706i 0.409198 + 0.994072i
\(41\) −0.923271 5.23613i −0.144191 0.817746i −0.968013 0.250899i \(-0.919274\pi\)
0.823823 0.566848i \(-0.191837\pi\)
\(42\) 0 0
\(43\) 6.72257 + 8.01164i 1.02518 + 1.22176i 0.974811 + 0.223034i \(0.0715960\pi\)
0.0503713 + 0.998731i \(0.483960\pi\)
\(44\) −0.130585 + 0.740582i −0.0196864 + 0.111647i
\(45\) 0 0
\(46\) 1.96437 + 3.40239i 0.289631 + 0.501655i
\(47\) 1.16292 + 3.19511i 0.169630 + 0.466054i 0.995156 0.0983098i \(-0.0313436\pi\)
−0.825526 + 0.564364i \(0.809121\pi\)
\(48\) 0 0
\(49\) 0.254704 + 0.441160i 0.0363862 + 0.0630228i
\(50\) −3.02267 + 4.27665i −0.427470 + 0.604810i
\(51\) 0 0
\(52\) −0.354529 0.422511i −0.0491643 0.0585917i
\(53\) 8.78556 10.4702i 1.20679 1.43820i 0.339346 0.940662i \(-0.389794\pi\)
0.867444 0.497535i \(-0.165761\pi\)
\(54\) 0 0
\(55\) −1.72208 + 0.708876i −0.232206 + 0.0955848i
\(56\) 8.33212 1.11343
\(57\) 0 0
\(58\) 4.16359i 0.546706i
\(59\) −9.41315 3.42610i −1.22549 0.446041i −0.353437 0.935458i \(-0.614987\pi\)
−0.872050 + 0.489417i \(0.837210\pi\)
\(60\) 0 0
\(61\) 6.94990 + 5.83166i 0.889844 + 0.746668i 0.968179 0.250260i \(-0.0805159\pi\)
−0.0783350 + 0.996927i \(0.524960\pi\)
\(62\) −4.66350 5.55774i −0.592265 0.705833i
\(63\) 0 0
\(64\) 3.80717 6.59422i 0.475897 0.824277i
\(65\) 0.413587 1.30174i 0.0512991 0.161461i
\(66\) 0 0
\(67\) −3.73984 10.2751i −0.456894 1.25531i −0.927785 0.373115i \(-0.878290\pi\)
0.470891 0.882191i \(-0.343933\pi\)
\(68\) −3.78352 + 2.18442i −0.458819 + 0.264899i
\(69\) 0 0
\(70\) 3.43649 + 5.42048i 0.410739 + 0.647871i
\(71\) 0.519169 0.435634i 0.0616140 0.0517003i −0.611461 0.791275i \(-0.709418\pi\)
0.673075 + 0.739575i \(0.264973\pi\)
\(72\) 0 0
\(73\) 6.90688 1.21787i 0.808389 0.142541i 0.245846 0.969309i \(-0.420934\pi\)
0.562543 + 0.826768i \(0.309823\pi\)
\(74\) 4.26244 + 1.55140i 0.495499 + 0.180347i
\(75\) 0 0
\(76\) −2.91085 2.64914i −0.333897 0.303877i
\(77\) 2.28224i 0.260086i
\(78\) 0 0
\(79\) −0.604220 3.42670i −0.0679801 0.385534i −0.999747 0.0224781i \(-0.992844\pi\)
0.931767 0.363056i \(-0.118267\pi\)
\(80\) 3.08042 0.127706i 0.344402 0.0142779i
\(81\) 0 0
\(82\) −5.48434 0.967036i −0.605644 0.106791i
\(83\) 4.30834 + 2.48742i 0.472902 + 0.273030i 0.717454 0.696606i \(-0.245307\pi\)
−0.244552 + 0.969636i \(0.578641\pi\)
\(84\) 0 0
\(85\) −9.58557 5.01676i −1.03970 0.544145i
\(86\) 10.2936 3.74656i 1.10999 0.404002i
\(87\) 0 0
\(88\) 2.19302 + 1.26614i 0.233777 + 0.134971i
\(89\) −1.02256 + 5.79921i −0.108391 + 0.614716i 0.881421 + 0.472332i \(0.156588\pi\)
−0.989812 + 0.142383i \(0.954523\pi\)
\(90\) 0 0
\(91\) −1.28227 1.07595i −0.134418 0.112790i
\(92\) −3.33544 + 0.588129i −0.347744 + 0.0613167i
\(93\) 0 0
\(94\) 3.56134 0.367324
\(95\) 1.68097 9.60075i 0.172464 0.985016i
\(96\) 0 0
\(97\) −4.25430 + 11.6886i −0.431959 + 1.18680i 0.512649 + 0.858598i \(0.328664\pi\)
−0.944608 + 0.328200i \(0.893558\pi\)
\(98\) 0.525449 0.0926508i 0.0530783 0.00935914i
\(99\) 0 0
\(100\) −2.57325 3.70961i −0.257325 0.370961i
\(101\) 3.08004 17.4678i 0.306475 1.73811i −0.310003 0.950736i \(-0.600330\pi\)
0.616478 0.787372i \(-0.288559\pi\)
\(102\) 0 0
\(103\) 4.51935 2.60925i 0.445305 0.257097i −0.260541 0.965463i \(-0.583901\pi\)
0.705845 + 0.708366i \(0.250567\pi\)
\(104\) −1.74526 + 0.635222i −0.171137 + 0.0622887i
\(105\) 0 0
\(106\) −7.15790 12.3979i −0.695237 1.20419i
\(107\) −13.1524 7.59356i −1.27149 0.734097i −0.296225 0.955118i \(-0.595728\pi\)
−0.975269 + 0.221021i \(0.929061\pi\)
\(108\) 0 0
\(109\) −3.00487 + 2.52138i −0.287814 + 0.241505i −0.775251 0.631654i \(-0.782376\pi\)
0.487437 + 0.873158i \(0.337932\pi\)
\(110\) 0.0807951 + 1.94888i 0.00770351 + 0.185818i
\(111\) 0 0
\(112\) 1.29227 3.55048i 0.122108 0.335489i
\(113\) 3.97342i 0.373788i 0.982380 + 0.186894i \(0.0598421\pi\)
−0.982380 + 0.186894i \(0.940158\pi\)
\(114\) 0 0
\(115\) −5.65279 6.19625i −0.527126 0.577803i
\(116\) 3.37289 + 1.22763i 0.313165 + 0.113983i
\(117\) 0 0
\(118\) −6.74420 + 8.03742i −0.620853 + 0.739904i
\(119\) −10.1569 + 8.52262i −0.931078 + 0.781267i
\(120\) 0 0
\(121\) 5.15319 8.92559i 0.468472 0.811417i
\(122\) 8.22942 4.75126i 0.745056 0.430158i
\(123\) 0 0
\(124\) 5.87731 2.13917i 0.527798 0.192103i
\(125\) 4.34660 10.3008i 0.388772 0.921334i
\(126\) 0 0
\(127\) 9.04543 + 1.59495i 0.802652 + 0.141529i 0.559901 0.828559i \(-0.310839\pi\)
0.242751 + 0.970089i \(0.421950\pi\)
\(128\) 0.834749 + 0.994815i 0.0737821 + 0.0879301i
\(129\) 0 0
\(130\) −1.13306 0.873392i −0.0993757 0.0766016i
\(131\) −3.51355 1.27883i −0.306980 0.111732i 0.183936 0.982938i \(-0.441116\pi\)
−0.490917 + 0.871206i \(0.663338\pi\)
\(132\) 0 0
\(133\) −10.0959 6.38363i −0.875429 0.553531i
\(134\) −11.4529 −0.989379
\(135\) 0 0
\(136\) 2.55462 + 14.4880i 0.219057 + 1.24233i
\(137\) 1.51913 1.81043i 0.129788 0.154675i −0.697237 0.716841i \(-0.745587\pi\)
0.827025 + 0.562166i \(0.190032\pi\)
\(138\) 0 0
\(139\) −0.424186 + 2.40568i −0.0359790 + 0.204047i −0.997498 0.0706903i \(-0.977480\pi\)
0.961519 + 0.274737i \(0.0885909\pi\)
\(140\) −5.40434 + 1.18565i −0.456750 + 0.100205i
\(141\) 0 0
\(142\) −0.242784 0.667043i −0.0203740 0.0559770i
\(143\) −0.173993 0.478042i −0.0145500 0.0399759i
\(144\) 0 0
\(145\) 1.90478 + 8.68223i 0.158183 + 0.721020i
\(146\) 1.27560 7.23428i 0.105569 0.598713i
\(147\) 0 0
\(148\) −2.51356 + 2.99555i −0.206613 + 0.246232i
\(149\) 2.47773 + 14.0519i 0.202984 + 1.15118i 0.900581 + 0.434687i \(0.143141\pi\)
−0.697598 + 0.716490i \(0.745748\pi\)
\(150\) 0 0
\(151\) 2.34319 0.190686 0.0953432 0.995444i \(-0.469605\pi\)
0.0953432 + 0.995444i \(0.469605\pi\)
\(152\) −11.7351 + 6.15974i −0.951841 + 0.499621i
\(153\) 0 0
\(154\) 2.24627 + 0.817575i 0.181009 + 0.0658820i
\(155\) 12.2673 + 9.45594i 0.985330 + 0.759519i
\(156\) 0 0
\(157\) −10.3969 12.3906i −0.829765 0.988875i −0.999994 0.00347076i \(-0.998895\pi\)
0.170229 0.985405i \(-0.445549\pi\)
\(158\) −3.58914 0.632862i −0.285536 0.0503478i
\(159\) 0 0
\(160\) −3.13963 + 9.88179i −0.248210 + 0.781224i
\(161\) −9.65891 + 3.51556i −0.761229 + 0.277065i
\(162\) 0 0
\(163\) 13.8787 8.01289i 1.08707 0.627618i 0.154273 0.988028i \(-0.450697\pi\)
0.932794 + 0.360410i \(0.117363\pi\)
\(164\) 2.40044 4.15769i 0.187443 0.324661i
\(165\) 0 0
\(166\) 3.99160 3.34935i 0.309809 0.259960i
\(167\) 4.87006 5.80391i 0.376856 0.449120i −0.543963 0.839109i \(-0.683077\pi\)
0.920819 + 0.389989i \(0.127521\pi\)
\(168\) 0 0
\(169\) −11.8654 4.31865i −0.912722 0.332204i
\(170\) −8.37155 + 7.63730i −0.642069 + 0.585754i
\(171\) 0 0
\(172\) 9.44344i 0.720056i
\(173\) −3.03100 + 8.32761i −0.230443 + 0.633136i −0.999985 0.00545960i \(-0.998262\pi\)
0.769542 + 0.638596i \(0.220484\pi\)
\(174\) 0 0
\(175\) −9.64581 9.73106i −0.729155 0.735599i
\(176\) 0.879653 0.738116i 0.0663063 0.0556376i
\(177\) 0 0
\(178\) 5.34148 + 3.08391i 0.400361 + 0.231149i
\(179\) −2.73273 4.73323i −0.204254 0.353778i 0.745641 0.666348i \(-0.232143\pi\)
−0.949895 + 0.312570i \(0.898810\pi\)
\(180\) 0 0
\(181\) −17.6816 + 6.43559i −1.31427 + 0.478354i −0.901617 0.432536i \(-0.857619\pi\)
−0.412650 + 0.910890i \(0.635397\pi\)
\(182\) −1.51834 + 0.876613i −0.112547 + 0.0649789i
\(183\) 0 0
\(184\) −1.98044 + 11.2317i −0.146000 + 0.828009i
\(185\) −9.59812 1.28510i −0.705668 0.0944826i
\(186\) 0 0
\(187\) −3.96838 + 0.699733i −0.290197 + 0.0511695i
\(188\) −1.05006 + 2.88502i −0.0765835 + 0.210411i
\(189\) 0 0
\(190\) −8.84723 5.09377i −0.641845 0.369541i
\(191\) 17.2606 1.24893 0.624465 0.781053i \(-0.285317\pi\)
0.624465 + 0.781053i \(0.285317\pi\)
\(192\) 0 0
\(193\) 7.36067 1.29789i 0.529833 0.0934238i 0.0976691 0.995219i \(-0.468861\pi\)
0.432164 + 0.901795i \(0.357750\pi\)
\(194\) 9.98032 + 8.37448i 0.716545 + 0.601253i
\(195\) 0 0
\(196\) −0.0798727 + 0.452980i −0.00570519 + 0.0323557i
\(197\) 10.5724 + 6.10400i 0.753255 + 0.434892i 0.826869 0.562395i \(-0.190120\pi\)
−0.0736138 + 0.997287i \(0.523453\pi\)
\(198\) 0 0
\(199\) −7.29002 + 2.65335i −0.516776 + 0.188091i −0.587224 0.809424i \(-0.699779\pi\)
0.0704481 + 0.997515i \(0.477557\pi\)
\(200\) −14.7019 + 3.87012i −1.03958 + 0.273659i
\(201\) 0 0
\(202\) −16.0890 9.28901i −1.13202 0.653573i
\(203\) 10.7277 + 1.89159i 0.752940 + 0.132764i
\(204\) 0 0
\(205\) 11.8788 0.492460i 0.829648 0.0343949i
\(206\) −0.949137 5.38282i −0.0661295 0.375039i
\(207\) 0 0
\(208\) 0.842208i 0.0583966i
\(209\) −1.68721 3.21434i −0.116707 0.222341i
\(210\) 0 0
\(211\) −9.45058 3.43973i −0.650605 0.236801i −0.00442979 0.999990i \(-0.501410\pi\)
−0.646175 + 0.763190i \(0.723632\pi\)
\(212\) 12.1539 2.14306i 0.834734 0.147186i
\(213\) 0 0
\(214\) −12.1855 + 10.2248i −0.832983 + 0.698956i
\(215\) −19.7510 + 12.5218i −1.34701 + 0.853978i
\(216\) 0 0
\(217\) 16.4386 9.49081i 1.11592 0.644278i
\(218\) 1.40519 + 3.86074i 0.0951718 + 0.261482i
\(219\) 0 0
\(220\) −1.60260 0.509175i −0.108047 0.0343286i
\(221\) 1.47773 2.55950i 0.0994027 0.172170i
\(222\) 0 0
\(223\) −18.2046 21.6954i −1.21907 1.45283i −0.852731 0.522350i \(-0.825056\pi\)
−0.366339 0.930482i \(-0.619389\pi\)
\(224\) 9.73398 + 8.16778i 0.650379 + 0.545733i
\(225\) 0 0
\(226\) 3.91079 + 1.42341i 0.260142 + 0.0946839i
\(227\) 15.8786i 1.05390i 0.849897 + 0.526949i \(0.176664\pi\)
−0.849897 + 0.526949i \(0.823336\pi\)
\(228\) 0 0
\(229\) −11.3865 −0.752438 −0.376219 0.926531i \(-0.622776\pi\)
−0.376219 + 0.926531i \(0.622776\pi\)
\(230\) −8.12359 + 3.34399i −0.535654 + 0.220496i
\(231\) 0 0
\(232\) 7.76917 9.25894i 0.510071 0.607879i
\(233\) −10.1973 12.1527i −0.668050 0.796151i 0.320467 0.947260i \(-0.396160\pi\)
−0.988517 + 0.151109i \(0.951716\pi\)
\(234\) 0 0
\(235\) −7.42638 + 1.62926i −0.484443 + 0.106281i
\(236\) −4.52253 7.83325i −0.294392 0.509901i
\(237\) 0 0
\(238\) 4.74975 + 13.0498i 0.307881 + 0.845895i
\(239\) −10.4324 18.0695i −0.674817 1.16882i −0.976522 0.215416i \(-0.930889\pi\)
0.301705 0.953401i \(-0.402444\pi\)
\(240\) 0 0
\(241\) 4.93664 27.9971i 0.317997 1.80345i −0.236902 0.971533i \(-0.576132\pi\)
0.554899 0.831917i \(-0.312757\pi\)
\(242\) −6.93885 8.26940i −0.446046 0.531577i
\(243\) 0 0
\(244\) 1.42252 + 8.06750i 0.0910673 + 0.516469i
\(245\) −1.05332 + 0.433587i −0.0672941 + 0.0277009i
\(246\) 0 0
\(247\) 2.60138 + 0.567434i 0.165522 + 0.0361049i
\(248\) 21.0612i 1.33739i
\(249\) 0 0
\(250\) −8.58135 7.96818i −0.542732 0.503952i
\(251\) −19.0083 15.9499i −1.19979 1.00675i −0.999636 0.0269823i \(-0.991410\pi\)
−0.200157 0.979764i \(-0.564145\pi\)
\(252\) 0 0
\(253\) −3.07645 0.542462i −0.193415 0.0341043i
\(254\) 4.81018 8.33148i 0.301818 0.522763i
\(255\) 0 0
\(256\) 15.5885 5.67373i 0.974279 0.354608i
\(257\) −1.86135 5.11403i −0.116108 0.319004i 0.868003 0.496559i \(-0.165403\pi\)
−0.984111 + 0.177555i \(0.943181\pi\)
\(258\) 0 0
\(259\) −5.93379 + 10.2776i −0.368708 + 0.638620i
\(260\) 1.04161 0.660362i 0.0645979 0.0409539i
\(261\) 0 0
\(262\) −2.51734 + 3.00005i −0.155522 + 0.185344i
\(263\) 19.2231 3.38955i 1.18535 0.209009i 0.453992 0.891006i \(-0.349999\pi\)
0.731355 + 0.681997i \(0.238888\pi\)
\(264\) 0 0
\(265\) 20.5980 + 22.5783i 1.26533 + 1.38697i
\(266\) −9.89970 + 7.64996i −0.606990 + 0.469049i
\(267\) 0 0
\(268\) 3.37688 9.27790i 0.206276 0.566738i
\(269\) 3.22722 + 18.3025i 0.196767 + 1.11592i 0.909880 + 0.414872i \(0.136174\pi\)
−0.713113 + 0.701049i \(0.752715\pi\)
\(270\) 0 0
\(271\) 1.44946 1.21624i 0.0880485 0.0738815i −0.597701 0.801719i \(-0.703919\pi\)
0.685749 + 0.727838i \(0.259475\pi\)
\(272\) 6.56980 + 1.15843i 0.398353 + 0.0702403i
\(273\) 0 0
\(274\) −1.23769 2.14374i −0.0747715 0.129508i
\(275\) −1.06006 4.02699i −0.0639241 0.242837i
\(276\) 0 0
\(277\) −5.87068 + 3.38944i −0.352735 + 0.203652i −0.665889 0.746051i \(-0.731948\pi\)
0.313154 + 0.949702i \(0.398614\pi\)
\(278\) 2.21580 + 1.27929i 0.132895 + 0.0767269i
\(279\) 0 0
\(280\) −2.47249 + 18.4664i −0.147759 + 1.10358i
\(281\) 9.41170 + 7.89735i 0.561455 + 0.471116i 0.878798 0.477194i \(-0.158346\pi\)
−0.317343 + 0.948311i \(0.602791\pi\)
\(282\) 0 0
\(283\) −8.77851 + 24.1188i −0.521829 + 1.43371i 0.346654 + 0.937993i \(0.387318\pi\)
−0.868483 + 0.495719i \(0.834905\pi\)
\(284\) 0.611952 0.0363126
\(285\) 0 0
\(286\) −0.532837 −0.0315073
\(287\) 4.98326 13.6914i 0.294152 0.808177i
\(288\) 0 0
\(289\) −4.91052 4.12042i −0.288854 0.242377i
\(290\) 9.22772 + 1.23551i 0.541871 + 0.0725516i
\(291\) 0 0
\(292\) 5.48433 + 3.16638i 0.320946 + 0.185298i
\(293\) −24.3458 + 14.0560i −1.42229 + 0.821162i −0.996495 0.0836552i \(-0.973341\pi\)
−0.425800 + 0.904817i \(0.640007\pi\)
\(294\) 0 0
\(295\) 10.3865 19.8456i 0.604726 1.15546i
\(296\) 6.58388 + 11.4036i 0.382680 + 0.662822i
\(297\) 0 0
\(298\) 14.7180 + 2.59518i 0.852591 + 0.150335i
\(299\) 1.75515 1.47275i 0.101503 0.0851712i
\(300\) 0 0
\(301\) 4.97669 + 28.2242i 0.286852 + 1.62682i
\(302\) 0.839409 2.30626i 0.0483025 0.132710i
\(303\) 0 0
\(304\) 0.804733 + 5.95588i 0.0461546 + 0.341593i
\(305\) −14.9870 + 13.6725i −0.858152 + 0.782886i
\(306\) 0 0
\(307\) 2.53762 0.447450i 0.144829 0.0255373i −0.100763 0.994910i \(-0.532128\pi\)
0.245593 + 0.969373i \(0.421017\pi\)
\(308\) −1.32462 + 1.57862i −0.0754774 + 0.0899504i
\(309\) 0 0
\(310\) 13.7014 8.68645i 0.778188 0.493357i
\(311\) 7.31837 12.6758i 0.414987 0.718778i −0.580440 0.814303i \(-0.697120\pi\)
0.995427 + 0.0955246i \(0.0304529\pi\)
\(312\) 0 0
\(313\) 0.511007 + 1.40398i 0.0288838 + 0.0793577i 0.953296 0.302036i \(-0.0976664\pi\)
−0.924413 + 0.381394i \(0.875444\pi\)
\(314\) −15.9198 + 5.79432i −0.898405 + 0.326993i
\(315\) 0 0
\(316\) 1.57093 2.72094i 0.0883719 0.153065i
\(317\) −5.55662 0.979782i −0.312091 0.0550301i 0.0154089 0.999881i \(-0.495095\pi\)
−0.327500 + 0.944851i \(0.606206\pi\)
\(318\) 0 0
\(319\) 2.53611 + 2.12805i 0.141995 + 0.119148i
\(320\) 13.4850 + 10.3946i 0.753832 + 0.581075i
\(321\) 0 0
\(322\) 10.7660i 0.599968i
\(323\) 8.00451 19.5121i 0.445383 1.08568i
\(324\) 0 0
\(325\) 2.76230 + 1.30291i 0.153225 + 0.0722723i
\(326\) −2.91476 16.5304i −0.161434 0.915536i
\(327\) 0 0
\(328\) −10.3915 12.3841i −0.573776 0.683800i
\(329\) −1.61798 + 9.17601i −0.0892021 + 0.505890i
\(330\) 0 0
\(331\) −15.9460 27.6193i −0.876472 1.51809i −0.855186 0.518321i \(-0.826557\pi\)
−0.0212866 0.999773i \(-0.506776\pi\)
\(332\) 1.53636 + 4.22113i 0.0843189 + 0.231664i
\(333\) 0 0
\(334\) −3.96780 6.87244i −0.217109 0.376043i
\(335\) 23.8824 5.23952i 1.30484 0.286265i
\(336\) 0 0
\(337\) 9.85896 + 11.7495i 0.537052 + 0.640033i 0.964524 0.263995i \(-0.0850402\pi\)
−0.427472 + 0.904029i \(0.640596\pi\)
\(338\) −8.50114 + 10.1313i −0.462401 + 0.551068i
\(339\) 0 0
\(340\) −3.71857 9.03359i −0.201668 0.489915i
\(341\) 5.76886 0.312401
\(342\) 0 0
\(343\) 17.7864i 0.960373i
\(344\) 29.8818 + 10.8761i 1.61112 + 0.586399i
\(345\) 0 0
\(346\) 7.11053 + 5.96644i 0.382264 + 0.320758i
\(347\) 0.0531571 + 0.0633501i 0.00285362 + 0.00340081i 0.767469 0.641086i \(-0.221516\pi\)
−0.764616 + 0.644486i \(0.777071\pi\)
\(348\) 0 0
\(349\) −2.32166 + 4.02124i −0.124276 + 0.215252i −0.921450 0.388498i \(-0.872994\pi\)
0.797174 + 0.603750i \(0.206327\pi\)
\(350\) −13.0331 + 6.00777i −0.696649 + 0.321129i
\(351\) 0 0
\(352\) 1.32082 + 3.62893i 0.0704001 + 0.193423i
\(353\) 3.45892 1.99701i 0.184100 0.106290i −0.405118 0.914265i \(-0.632769\pi\)
0.589218 + 0.807974i \(0.299436\pi\)
\(354\) 0 0
\(355\) 0.811433 + 1.27990i 0.0430664 + 0.0679300i
\(356\) −4.07319 + 3.41781i −0.215878 + 0.181144i
\(357\) 0 0
\(358\) −5.63757 + 0.994055i −0.297955 + 0.0525374i
\(359\) −28.3973 10.3358i −1.49875 0.545502i −0.543017 0.839722i \(-0.682718\pi\)
−0.955738 + 0.294220i \(0.904940\pi\)
\(360\) 0 0
\(361\) 18.9385 + 1.52712i 0.996765 + 0.0803746i
\(362\) 19.7084i 1.03585i
\(363\) 0 0
\(364\) −0.262456 1.48846i −0.0137564 0.0780167i
\(365\) 0.649594 + 15.6690i 0.0340013 + 0.820155i
\(366\) 0 0
\(367\) 17.8643 + 3.14996i 0.932511 + 0.164427i 0.619208 0.785227i \(-0.287454\pi\)
0.313302 + 0.949653i \(0.398565\pi\)
\(368\) 4.47887 + 2.58588i 0.233477 + 0.134798i
\(369\) 0 0
\(370\) −4.70320 + 8.98645i −0.244508 + 0.467183i
\(371\) 35.1958 12.8102i 1.82727 0.665074i
\(372\) 0 0
\(373\) −21.8369 12.6075i −1.13067 0.652794i −0.186568 0.982442i \(-0.559736\pi\)
−0.944104 + 0.329648i \(0.893070\pi\)
\(374\) −0.732902 + 4.15649i −0.0378975 + 0.214927i
\(375\) 0 0
\(376\) 7.91966 + 6.64538i 0.408425 + 0.342710i
\(377\) −2.39126 + 0.421644i −0.123156 + 0.0217158i
\(378\) 0 0
\(379\) 27.5634 1.41584 0.707918 0.706294i \(-0.249634\pi\)
0.707918 + 0.706294i \(0.249634\pi\)
\(380\) 6.73503 5.66518i 0.345500 0.290618i
\(381\) 0 0
\(382\) 6.18330 16.9885i 0.316365 0.869206i
\(383\) −18.0453 + 3.18187i −0.922072 + 0.162586i −0.614480 0.788932i \(-0.710634\pi\)
−0.307592 + 0.951518i \(0.599523\pi\)
\(384\) 0 0
\(385\) −5.05812 0.677236i −0.257785 0.0345152i
\(386\) 1.35941 7.70959i 0.0691921 0.392408i
\(387\) 0 0
\(388\) −9.72680 + 5.61577i −0.493803 + 0.285098i
\(389\) 6.75172 2.45743i 0.342326 0.124596i −0.165136 0.986271i \(-0.552806\pi\)
0.507461 + 0.861674i \(0.330584\pi\)
\(390\) 0 0
\(391\) −9.07429 15.7171i −0.458906 0.794849i
\(392\) 1.34137 + 0.774441i 0.0677495 + 0.0391152i
\(393\) 0 0
\(394\) 9.79517 8.21913i 0.493474 0.414074i
\(395\) 7.77387 0.322283i 0.391146 0.0162158i
\(396\) 0 0
\(397\) −4.00993 + 11.0172i −0.201252 + 0.552937i −0.998728 0.0504142i \(-0.983946\pi\)
0.797476 + 0.603351i \(0.206168\pi\)
\(398\) 8.12562i 0.407301i
\(399\) 0 0
\(400\) −0.631056 + 6.86500i −0.0315528 + 0.343250i
\(401\) 36.8475 + 13.4114i 1.84008 + 0.669734i 0.989623 + 0.143686i \(0.0458954\pi\)
0.850455 + 0.526048i \(0.176327\pi\)
\(402\) 0 0
\(403\) −2.71969 + 3.24120i −0.135477 + 0.161456i
\(404\) 12.2688 10.2948i 0.610396 0.512183i
\(405\) 0 0
\(406\) 5.70480 9.88101i 0.283125 0.490386i
\(407\) −3.12355 + 1.80339i −0.154829 + 0.0893905i
\(408\) 0 0
\(409\) 8.34099 3.03587i 0.412436 0.150114i −0.127465 0.991843i \(-0.540684\pi\)
0.539901 + 0.841729i \(0.318462\pi\)
\(410\) 3.77066 11.8679i 0.186220 0.586115i
\(411\) 0 0
\(412\) 4.64044 + 0.818235i 0.228618 + 0.0403115i
\(413\) −17.6449 21.0284i −0.868249 1.03474i
\(414\) 0 0
\(415\) −6.79132 + 8.81042i −0.333373 + 0.432487i
\(416\) −2.66159 0.968738i −0.130495 0.0474963i
\(417\) 0 0
\(418\) −3.76809 + 0.509128i −0.184303 + 0.0249022i
\(419\) −7.80196 −0.381151 −0.190575 0.981673i \(-0.561035\pi\)
−0.190575 + 0.981673i \(0.561035\pi\)
\(420\) 0 0
\(421\) 6.00077 + 34.0320i 0.292459 + 1.65862i 0.677352 + 0.735659i \(0.263127\pi\)
−0.384893 + 0.922961i \(0.625762\pi\)
\(422\) −6.77101 + 8.06938i −0.329608 + 0.392811i
\(423\) 0 0
\(424\) 7.21648 40.9267i 0.350463 1.98758i
\(425\) 13.9630 19.7557i 0.677307 0.958294i
\(426\) 0 0
\(427\) 8.50314 + 23.3622i 0.411496 + 1.13058i
\(428\) −4.69018 12.8862i −0.226709 0.622877i
\(429\) 0 0
\(430\) 5.24894 + 23.9254i 0.253126 + 1.15378i
\(431\) −0.493077 + 2.79638i −0.0237507 + 0.134697i −0.994377 0.105893i \(-0.966230\pi\)
0.970627 + 0.240590i \(0.0773409\pi\)
\(432\) 0 0
\(433\) −14.0467 + 16.7402i −0.675040 + 0.804481i −0.989461 0.144803i \(-0.953745\pi\)
0.314421 + 0.949284i \(0.398190\pi\)
\(434\) −3.45237 19.5794i −0.165719 0.939839i
\(435\) 0 0
\(436\) −3.54188 −0.169625
\(437\) 11.0048 12.0920i 0.526430 0.578437i
\(438\) 0 0
\(439\) 30.6114 + 11.1416i 1.46100 + 0.531761i 0.945641 0.325212i \(-0.105436\pi\)
0.515361 + 0.856973i \(0.327658\pi\)
\(440\) −3.45690 + 4.48465i −0.164801 + 0.213798i
\(441\) 0 0
\(442\) −1.98978 2.37133i −0.0946442 0.112793i
\(443\) 7.64381 + 1.34781i 0.363169 + 0.0640364i 0.352255 0.935904i \(-0.385415\pi\)
0.0109135 + 0.999940i \(0.496526\pi\)
\(444\) 0 0
\(445\) −12.5493 3.98715i −0.594894 0.189009i
\(446\) −27.8749 + 10.1456i −1.31991 + 0.480409i
\(447\) 0 0
\(448\) 18.0703 10.4329i 0.853743 0.492909i
\(449\) −11.4911 + 19.9031i −0.542296 + 0.939285i 0.456475 + 0.889736i \(0.349112\pi\)
−0.998772 + 0.0495489i \(0.984222\pi\)
\(450\) 0 0
\(451\) 3.39213 2.84633i 0.159729 0.134029i
\(452\) −2.30619 + 2.74841i −0.108474 + 0.129274i
\(453\) 0 0
\(454\) 15.6283 + 5.68822i 0.733470 + 0.266961i
\(455\) 2.76512 2.52260i 0.129631 0.118261i
\(456\) 0 0
\(457\) 3.38866i 0.158515i 0.996854 + 0.0792573i \(0.0252549\pi\)
−0.996854 + 0.0792573i \(0.974745\pi\)
\(458\) −4.07900 + 11.2070i −0.190599 + 0.523667i
\(459\) 0 0
\(460\) −0.313700 7.56684i −0.0146263 0.352806i
\(461\) 8.31382 6.97612i 0.387213 0.324910i −0.428313 0.903630i \(-0.640892\pi\)
0.815526 + 0.578720i \(0.196448\pi\)
\(462\) 0 0
\(463\) 6.33213 + 3.65586i 0.294279 + 0.169902i 0.639870 0.768483i \(-0.278988\pi\)
−0.345591 + 0.938385i \(0.612322\pi\)
\(464\) −2.74045 4.74660i −0.127222 0.220355i
\(465\) 0 0
\(466\) −15.6142 + 5.68309i −0.723313 + 0.263264i
\(467\) 9.38929 5.42091i 0.434484 0.250850i −0.266771 0.963760i \(-0.585957\pi\)
0.701255 + 0.712910i \(0.252623\pi\)
\(468\) 0 0
\(469\) 5.20325 29.5091i 0.240264 1.36260i
\(470\) −1.05680 + 7.89296i −0.0487464 + 0.364075i
\(471\) 0 0
\(472\) −29.9953 + 5.28898i −1.38065 + 0.243445i
\(473\) −2.97906 + 8.18489i −0.136977 + 0.376342i
\(474\) 0 0
\(475\) 20.7792 + 6.57445i 0.953417 + 0.301656i
\(476\) −11.9720 −0.548738
\(477\) 0 0
\(478\) −21.5219 + 3.79489i −0.984388 + 0.173574i
\(479\) 2.64084 + 2.21593i 0.120663 + 0.101249i 0.701123 0.713041i \(-0.252683\pi\)
−0.580459 + 0.814289i \(0.697127\pi\)
\(480\) 0 0
\(481\) 0.459357 2.60515i 0.0209449 0.118784i
\(482\) −25.7873 14.8883i −1.17458 0.678143i
\(483\) 0 0
\(484\) 8.74490 3.18288i 0.397495 0.144677i
\(485\) −24.6429 12.8973i −1.11898 0.585635i
\(486\) 0 0
\(487\) −23.3802 13.4986i −1.05946 0.611680i −0.134177 0.990957i \(-0.542839\pi\)
−0.925283 + 0.379278i \(0.876172\pi\)
\(488\) 27.1662 + 4.79014i 1.22976 + 0.216839i
\(489\) 0 0
\(490\) 0.0494187 + 1.19204i 0.00223251 + 0.0538509i
\(491\) −0.0423665 0.240272i −0.00191197 0.0108433i 0.983837 0.179067i \(-0.0573080\pi\)
−0.985749 + 0.168224i \(0.946197\pi\)
\(492\) 0 0
\(493\) 19.2334i 0.866231i
\(494\) 1.49039 2.35710i 0.0670558 0.106051i
\(495\) 0 0
\(496\) −8.97458 3.26648i −0.402971 0.146669i
\(497\) 1.82898 0.322498i 0.0820409 0.0144660i
\(498\) 0 0
\(499\) 2.48864 2.08821i 0.111407 0.0934813i −0.585383 0.810757i \(-0.699056\pi\)
0.696789 + 0.717276i \(0.254611\pi\)
\(500\) 8.98518 4.60228i 0.401829 0.205820i
\(501\) 0 0
\(502\) −22.5078 + 12.9949i −1.00457 + 0.579991i
\(503\) −2.43705 6.69573i −0.108663 0.298548i 0.873429 0.486951i \(-0.161891\pi\)
−0.982092 + 0.188403i \(0.939669\pi\)
\(504\) 0 0
\(505\) 37.7997 + 12.0097i 1.68206 + 0.534423i
\(506\) −1.63600 + 2.83363i −0.0727289 + 0.125970i
\(507\) 0 0
\(508\) 5.33099 + 6.35323i 0.236524 + 0.281879i
\(509\) 1.32543 + 1.11216i 0.0587485 + 0.0492958i 0.671689 0.740833i \(-0.265569\pi\)
−0.612941 + 0.790129i \(0.710014\pi\)
\(510\) 0 0
\(511\) 18.0600 + 6.57332i 0.798929 + 0.290787i
\(512\) 14.7780i 0.653100i
\(513\) 0 0
\(514\) −5.70021 −0.251426
\(515\) 4.44177 + 10.7905i 0.195728 + 0.475484i
\(516\) 0 0
\(517\) −1.82023 + 2.16927i −0.0800537 + 0.0954042i
\(518\) 7.98993 + 9.52203i 0.351058 + 0.418374i
\(519\) 0 0
\(520\) −0.889947 4.05650i −0.0390267 0.177889i
\(521\) 6.40164 + 11.0880i 0.280461 + 0.485773i 0.971498 0.237046i \(-0.0761794\pi\)
−0.691037 + 0.722819i \(0.742846\pi\)
\(522\) 0 0
\(523\) 2.98119 + 8.19075i 0.130358 + 0.358157i 0.987650 0.156674i \(-0.0500771\pi\)
−0.857292 + 0.514830i \(0.827855\pi\)
\(524\) −1.68808 2.92384i −0.0737441 0.127729i
\(525\) 0 0
\(526\) 3.55023 20.1343i 0.154797 0.877898i
\(527\) 21.5427 + 25.6736i 0.938416 + 1.11836i
\(528\) 0 0
\(529\) 1.55076 + 8.79481i 0.0674244 + 0.382383i
\(530\) 29.6013 12.1850i 1.28580 0.529284i
\(531\) 0 0
\(532\) −3.27826 10.2753i −0.142131 0.445489i
\(533\) 3.24773i 0.140675i
\(534\) 0 0
\(535\) 20.7324 26.8963i 0.896340 1.16283i
\(536\) −25.4688 21.3708i −1.10008 0.923080i
\(537\) 0 0
\(538\) 19.1701 + 3.38020i 0.826480 + 0.145731i
\(539\) −0.212126 + 0.367414i −0.00913693 + 0.0158256i
\(540\) 0 0
\(541\) −10.3511 + 3.76748i −0.445027 + 0.161977i −0.554806 0.831979i \(-0.687208\pi\)
0.109780 + 0.993956i \(0.464985\pi\)
\(542\) −0.677825 1.86231i −0.0291151 0.0799931i
\(543\) 0 0
\(544\) −11.2178 + 19.4297i −0.480958 + 0.833043i
\(545\) −4.69645 7.40785i −0.201174 0.317318i
\(546\) 0 0
\(547\) 11.8246 14.0921i 0.505585 0.602533i −0.451525 0.892259i \(-0.649120\pi\)
0.957110 + 0.289726i \(0.0935642\pi\)
\(548\) 2.10156 0.370562i 0.0897741 0.0158296i
\(549\) 0 0
\(550\) −4.34326 0.399248i −0.185197 0.0170240i
\(551\) −16.5075 + 5.26662i −0.703244 + 0.224366i
\(552\) 0 0
\(553\) 3.26122 8.96012i 0.138681 0.381023i
\(554\) 1.23294 + 6.99234i 0.0523825 + 0.297076i
\(555\) 0 0
\(556\) −1.68967 + 1.41780i −0.0716581 + 0.0601283i
\(557\) −0.199028 0.0350939i −0.00843307 0.00148698i 0.169430 0.985542i \(-0.445807\pi\)
−0.177863 + 0.984055i \(0.556918\pi\)
\(558\) 0 0
\(559\) −3.19418 5.53248i −0.135099 0.233999i
\(560\) 7.48542 + 3.91761i 0.316317 + 0.165549i
\(561\) 0 0
\(562\) 11.1444 6.43424i 0.470100 0.271412i
\(563\) 5.85758 + 3.38187i 0.246867 + 0.142529i 0.618329 0.785919i \(-0.287810\pi\)
−0.371462 + 0.928448i \(0.621143\pi\)
\(564\) 0 0
\(565\) −8.80626 1.17908i −0.370482 0.0496043i
\(566\) 20.5938 + 17.2803i 0.865623 + 0.726344i
\(567\) 0 0
\(568\) 0.704789 1.93639i 0.0295723 0.0812492i
\(569\) 7.15701 0.300038 0.150019 0.988683i \(-0.452067\pi\)
0.150019 + 0.988683i \(0.452067\pi\)
\(570\) 0 0
\(571\) −18.3153 −0.766471 −0.383236 0.923651i \(-0.625190\pi\)
−0.383236 + 0.923651i \(0.625190\pi\)
\(572\) 0.157107 0.431647i 0.00656896 0.0180481i
\(573\) 0 0
\(574\) −11.6904 9.80941i −0.487948 0.409437i
\(575\) 15.4101 10.6895i 0.642646 0.445785i
\(576\) 0 0
\(577\) 18.6883 + 10.7897i 0.778006 + 0.449182i 0.835723 0.549151i \(-0.185049\pi\)
−0.0577173 + 0.998333i \(0.518382\pi\)
\(578\) −5.81457 + 3.35704i −0.241854 + 0.139635i
\(579\) 0 0
\(580\) −3.72167 + 7.11102i −0.154534 + 0.295269i
\(581\) 6.81636 + 11.8063i 0.282790 + 0.489807i
\(582\) 0 0
\(583\) 11.2102 + 1.97666i 0.464278 + 0.0818648i
\(584\) 16.3357 13.7073i 0.675975 0.567210i
\(585\) 0 0
\(586\) 5.11301 + 28.9973i 0.211216 + 1.19787i
\(587\) −9.89913 + 27.1976i −0.408581 + 1.12257i 0.549356 + 0.835588i \(0.314873\pi\)
−0.957937 + 0.286978i \(0.907349\pi\)
\(588\) 0 0
\(589\) −16.1360 + 25.5196i −0.664872 + 1.05152i
\(590\) −15.8120 17.3321i −0.650969 0.713553i
\(591\) 0 0
\(592\) 5.88043 1.03688i 0.241684 0.0426154i
\(593\) −11.4565 + 13.6533i −0.470461 + 0.560674i −0.948137 0.317863i \(-0.897035\pi\)
0.477676 + 0.878536i \(0.341479\pi\)
\(594\) 0 0
\(595\) −15.8746 25.0396i −0.650797 1.02652i
\(596\) −6.44194 + 11.1578i −0.263872 + 0.457040i
\(597\) 0 0
\(598\) −0.820779 2.25507i −0.0335642 0.0922167i
\(599\) 8.03512 2.92455i 0.328306 0.119494i −0.172608 0.984991i \(-0.555219\pi\)
0.500914 + 0.865497i \(0.332997\pi\)
\(600\) 0 0
\(601\) 2.09514 3.62889i 0.0854627 0.148026i −0.820126 0.572184i \(-0.806096\pi\)
0.905588 + 0.424158i \(0.139430\pi\)
\(602\) 29.5621 + 5.21260i 1.20486 + 0.212450i
\(603\) 0 0
\(604\) 1.62078 + 1.36000i 0.0659487 + 0.0553375i
\(605\) 18.2525 + 14.0696i 0.742071 + 0.572009i
\(606\) 0 0
\(607\) 7.59458i 0.308254i 0.988051 + 0.154127i \(0.0492566\pi\)
−0.988051 + 0.154127i \(0.950743\pi\)
\(608\) −19.7477 4.30752i −0.800876 0.174693i
\(609\) 0 0
\(610\) 8.08815 + 19.6487i 0.327480 + 0.795551i
\(611\) −0.360654 2.04537i −0.0145905 0.0827469i
\(612\) 0 0
\(613\) −11.5348 13.7466i −0.465885 0.555220i 0.481030 0.876704i \(-0.340263\pi\)
−0.946915 + 0.321484i \(0.895818\pi\)
\(614\) 0.468661 2.65791i 0.0189136 0.107264i
\(615\) 0 0
\(616\) 3.46964 + 6.00960i 0.139796 + 0.242134i
\(617\) 13.8805 + 38.1365i 0.558809 + 1.53532i 0.821367 + 0.570400i \(0.193212\pi\)
−0.262558 + 0.964916i \(0.584566\pi\)
\(618\) 0 0
\(619\) −12.7804 22.1363i −0.513688 0.889733i −0.999874 0.0158781i \(-0.994946\pi\)
0.486186 0.873855i \(-0.338388\pi\)
\(620\) 2.99697 + 13.6606i 0.120361 + 0.548624i
\(621\) 0 0
\(622\) −9.85430 11.7439i −0.395121 0.470887i
\(623\) −10.3726 + 12.3616i −0.415570 + 0.495257i
\(624\) 0 0
\(625\) 21.5398 + 12.6900i 0.861592 + 0.507601i
\(626\) 1.56491 0.0625463
\(627\) 0 0
\(628\) 14.6049i 0.582801i
\(629\) −19.6901 7.16661i −0.785096 0.285751i
\(630\) 0 0
\(631\) 3.55051 + 2.97923i 0.141344 + 0.118601i 0.710718 0.703477i \(-0.248370\pi\)
−0.569375 + 0.822078i \(0.692815\pi\)
\(632\) −6.80057 8.10461i −0.270512 0.322384i
\(633\) 0 0
\(634\) −2.95490 + 5.11804i −0.117354 + 0.203263i
\(635\) −6.21903 + 19.5740i −0.246795 + 0.776771i
\(636\) 0 0
\(637\) −0.106424 0.292397i −0.00421666 0.0115852i
\(638\) 3.00302 1.73379i 0.118891 0.0686415i
\(639\) 0 0
\(640\) −2.45250 + 1.55484i −0.0969438 + 0.0614606i
\(641\) −17.7783 + 14.9178i −0.702201 + 0.589217i −0.922399 0.386239i \(-0.873774\pi\)
0.220198 + 0.975455i \(0.429330\pi\)
\(642\) 0 0
\(643\) 15.0138 2.64733i 0.592086 0.104401i 0.130426 0.991458i \(-0.458365\pi\)
0.461659 + 0.887057i \(0.347254\pi\)
\(644\) −8.72149 3.17436i −0.343675 0.125087i
\(645\) 0 0
\(646\) −16.3370 14.8682i −0.642773 0.584982i
\(647\) 17.6749i 0.694872i −0.937704 0.347436i \(-0.887052\pi\)
0.937704 0.347436i \(-0.112948\pi\)
\(648\) 0 0
\(649\) −1.44870 8.21599i −0.0568664 0.322506i
\(650\) 2.27192 2.25201i 0.0891119 0.0883312i
\(651\) 0 0
\(652\) 14.2506 + 2.51277i 0.558097 + 0.0984075i
\(653\) 5.94488 + 3.43228i 0.232641 + 0.134315i 0.611790 0.791020i \(-0.290450\pi\)
−0.379149 + 0.925336i \(0.623783\pi\)
\(654\) 0 0
\(655\) 3.87687 7.40757i 0.151482 0.289438i
\(656\) −6.88879 + 2.50731i −0.268962 + 0.0978941i
\(657\) 0 0
\(658\) 8.45175 + 4.87962i 0.329484 + 0.190227i
\(659\) 4.75738 26.9804i 0.185321 1.05101i −0.740221 0.672364i \(-0.765279\pi\)
0.925542 0.378645i \(-0.123610\pi\)
\(660\) 0 0
\(661\) 21.8707 + 18.3517i 0.850673 + 0.713800i 0.959938 0.280213i \(-0.0904051\pi\)
−0.109265 + 0.994013i \(0.534850\pi\)
\(662\) −32.8963 + 5.80051i −1.27855 + 0.225443i
\(663\) 0 0
\(664\) 15.1263 0.587014
\(665\) 17.1439 20.4812i 0.664811 0.794229i
\(666\) 0 0
\(667\) −5.09971 + 14.0113i −0.197462 + 0.542521i
\(668\) 6.73722 1.18795i 0.260671 0.0459633i
\(669\) 0 0
\(670\) 3.39855 25.3829i 0.131297 0.980628i
\(671\) −1.31206 + 7.44107i −0.0506516 + 0.287259i
\(672\) 0 0
\(673\) −39.1173 + 22.5844i −1.50786 + 0.870565i −0.507904 + 0.861414i \(0.669580\pi\)
−0.999958 + 0.00915115i \(0.997087\pi\)
\(674\) 15.0960 5.49451i 0.581478 0.211641i
\(675\) 0 0
\(676\) −5.70071 9.87392i −0.219258 0.379766i
\(677\) −40.6710 23.4814i −1.56311 0.902463i −0.996940 0.0781759i \(-0.975090\pi\)
−0.566172 0.824287i \(-0.691576\pi\)
\(678\) 0 0
\(679\) −26.1116 + 21.9102i −1.00207 + 0.840838i
\(680\) −32.8676 + 1.36260i −1.26041 + 0.0522532i
\(681\) 0 0
\(682\) 2.06659 5.67792i 0.0791339 0.217419i
\(683\) 19.4215i 0.743142i 0.928405 + 0.371571i \(0.121181\pi\)
−0.928405 + 0.371571i \(0.878819\pi\)
\(684\) 0 0
\(685\) 3.56165 + 3.90406i 0.136084 + 0.149167i
\(686\) −17.5060 6.37166i −0.668382 0.243271i
\(687\) 0 0
\(688\) 9.26901 11.0464i 0.353378 0.421139i
\(689\) −6.39554 + 5.36650i −0.243651 + 0.204447i
\(690\) 0 0
\(691\) 8.93344 15.4732i 0.339844 0.588627i −0.644559 0.764555i \(-0.722959\pi\)
0.984403 + 0.175927i \(0.0562923\pi\)
\(692\) −6.92991 + 4.00099i −0.263436 + 0.152095i
\(693\) 0 0
\(694\) 0.0813941 0.0296250i 0.00308968 0.00112455i
\(695\) −5.20581 1.65398i −0.197468 0.0627392i
\(696\) 0 0
\(697\) 25.3346 + 4.46716i 0.959615 + 0.169206i
\(698\) 3.12615 + 3.72561i 0.118327 + 0.141016i
\(699\) 0 0
\(700\) −1.02405 12.3294i −0.0387053 0.466008i
\(701\) 4.04522 + 1.47234i 0.152786 + 0.0556096i 0.417281 0.908777i \(-0.362983\pi\)
−0.264495 + 0.964387i \(0.585205\pi\)
\(702\) 0 0
\(703\) 0.759235 18.8619i 0.0286351 0.711389i
\(704\) 6.34150 0.239004
\(705\) 0 0
\(706\) −0.726431 4.11979i −0.0273396 0.155050i
\(707\) 31.2432 37.2343i 1.17502 1.40034i
\(708\) 0 0
\(709\) −6.10059 + 34.5982i −0.229112 + 1.29936i 0.625553 + 0.780182i \(0.284873\pi\)
−0.854665 + 0.519179i \(0.826238\pi\)
\(710\) 1.55041 0.340140i 0.0581857 0.0127652i
\(711\) 0 0
\(712\) 6.12382 + 16.8251i 0.229500 + 0.630545i
\(713\) 8.88632 + 24.4150i 0.332795 + 0.914347i
\(714\) 0 0
\(715\) 1.11111 0.243764i 0.0415532 0.00911627i
\(716\) 0.856958 4.86005i 0.0320260 0.181629i
\(717\) 0 0
\(718\) −20.3457 + 24.2471i −0.759295 + 0.904893i
\(719\) 5.10577 + 28.9563i 0.190413 + 1.07989i 0.918801 + 0.394722i \(0.129159\pi\)
−0.728388 + 0.685165i \(0.759730\pi\)
\(720\) 0 0
\(721\) 14.3004 0.532574
\(722\) 8.28745 18.0929i 0.308427 0.673349i
\(723\) 0 0
\(724\) −15.9656 5.81100i −0.593357 0.215964i
\(725\) −19.8076 + 1.64516i −0.735635 + 0.0610997i
\(726\) 0 0
\(727\) 14.4993 + 17.2796i 0.537749 + 0.640864i 0.964681 0.263419i \(-0.0848503\pi\)
−0.426933 + 0.904283i \(0.640406\pi\)
\(728\) −5.01220 0.883786i −0.185765 0.0327553i
\(729\) 0 0
\(730\) 15.6547 + 4.97381i 0.579408 + 0.184089i
\(731\) −47.5506 + 17.3070i −1.75872 + 0.640123i
\(732\) 0 0
\(733\) −32.8225 + 18.9501i −1.21233 + 0.699938i −0.963266 0.268550i \(-0.913456\pi\)
−0.249062 + 0.968488i \(0.580122\pi\)
\(734\) 9.49990 16.4543i 0.350648 0.607340i
\(735\) 0 0
\(736\) −13.3238 + 11.1800i −0.491121 + 0.412099i
\(737\) 5.85367 6.97613i 0.215623 0.256969i
\(738\) 0 0
\(739\) −24.4523 8.89989i −0.899491 0.327388i −0.149442 0.988770i \(-0.547748\pi\)
−0.750049 + 0.661383i \(0.769970\pi\)
\(740\) −5.89312 6.45968i −0.216635 0.237463i
\(741\) 0 0
\(742\) 39.2300i 1.44018i
\(743\) 17.2335 47.3487i 0.632237 1.73706i −0.0426041 0.999092i \(-0.513565\pi\)
0.674841 0.737964i \(-0.264212\pi\)
\(744\) 0 0
\(745\) −31.8784 + 1.32159i −1.16793 + 0.0484192i
\(746\) −20.2315 + 16.9762i −0.740728 + 0.621544i
\(747\) 0 0
\(748\) −3.15105 1.81926i −0.115214 0.0665187i
\(749\) −20.8089 36.0420i −0.760339 1.31695i
\(750\) 0 0
\(751\) −25.5462 + 9.29806i −0.932195 + 0.339291i −0.763079 0.646305i \(-0.776313\pi\)
−0.169116 + 0.985596i \(0.554091\pi\)
\(752\) 4.06002 2.34405i 0.148054 0.0854789i
\(753\) 0 0
\(754\) −0.441631 + 2.50461i −0.0160832 + 0.0912126i
\(755\) −0.695323 + 5.19320i −0.0253054 + 0.189000i
\(756\) 0 0
\(757\) −32.3985 + 5.71273i −1.17754 + 0.207633i −0.727969 0.685610i \(-0.759536\pi\)
−0.449575 + 0.893243i \(0.648424\pi\)
\(758\) 9.87411 27.1289i 0.358644 0.985366i
\(759\) 0 0
\(760\) −10.1695 27.8362i −0.368886 1.00973i
\(761\) −3.47213 −0.125865 −0.0629323 0.998018i \(-0.520045\pi\)
−0.0629323 + 0.998018i \(0.520045\pi\)
\(762\) 0 0
\(763\) −10.5858 + 1.86657i −0.383233 + 0.0675743i
\(764\) 11.9391 + 10.0181i 0.431941 + 0.362442i
\(765\) 0 0
\(766\) −3.33270 + 18.9007i −0.120415 + 0.682910i
\(767\) 5.29909 + 3.05943i 0.191339 + 0.110470i
\(768\) 0 0
\(769\) −29.7634 + 10.8330i −1.07330 + 0.390648i −0.817408 0.576059i \(-0.804590\pi\)
−0.255887 + 0.966707i \(0.582368\pi\)
\(770\) −2.47854 + 4.73577i −0.0893205 + 0.170665i
\(771\) 0 0
\(772\) 5.84466 + 3.37442i 0.210354 + 0.121448i
\(773\) −34.5358 6.08960i −1.24217 0.219028i −0.486323 0.873779i \(-0.661662\pi\)
−0.755844 + 0.654752i \(0.772773\pi\)
\(774\) 0 0
\(775\) −24.5973 + 24.3818i −0.883562 + 0.875821i
\(776\) 6.56750 + 37.2461i 0.235759 + 1.33706i
\(777\) 0 0
\(778\) 7.52562i 0.269807i
\(779\) 3.10322 + 22.9672i 0.111184 + 0.822884i
\(780\) 0 0
\(781\) 0.530395 + 0.193048i 0.0189790 + 0.00690780i
\(782\) −18.7201 + 3.30085i −0.669428 + 0.118038i
\(783\) 0 0
\(784\) 0.538043 0.451472i 0.0192158 0.0161240i
\(785\) 30.5463 19.3658i 1.09024 0.691195i
\(786\) 0 0
\(787\) 36.5314 21.0914i 1.30221 0.751829i 0.321424 0.946936i \(-0.395839\pi\)
0.980782 + 0.195107i \(0.0625054\pi\)
\(788\) 3.77015 + 10.3584i 0.134306 + 0.369003i
\(789\) 0 0
\(790\) 2.46765 7.76678i 0.0877951 0.276330i
\(791\) −5.44425 + 9.42971i −0.193575 + 0.335282i
\(792\) 0 0
\(793\) −3.56216 4.24522i −0.126496 0.150752i
\(794\) 9.40703 + 7.89343i 0.333843 + 0.280127i
\(795\) 0 0
\(796\) −6.58251 2.39584i −0.233311 0.0849182i
\(797\) 20.4194i 0.723291i 0.932316 + 0.361646i \(0.117785\pi\)
−0.932316 + 0.361646i \(0.882215\pi\)
\(798\) 0 0
\(799\) −16.4514 −0.582008
\(800\) −20.9693 9.89068i −0.741375 0.349688i
\(801\) 0 0
\(802\) 26.4000 31.4623i 0.932216 1.11097i
\(803\) 3.75454 + 4.47449i 0.132495 + 0.157901i
\(804\) 0 0
\(805\) −4.92530 22.4502i −0.173594 0.791265i
\(806\) 2.21582 + 3.83792i 0.0780491 + 0.135185i
\(807\) 0 0
\(808\) −18.4455 50.6786i −0.648910 1.78287i
\(809\) −14.2768 24.7282i −0.501946 0.869396i −0.999997 0.00224865i \(-0.999284\pi\)
0.498051 0.867148i \(-0.334049\pi\)
\(810\) 0 0
\(811\) −0.279849 + 1.58710i −0.00982681 + 0.0557306i −0.989327 0.145713i \(-0.953452\pi\)
0.979500 + 0.201444i \(0.0645634\pi\)
\(812\) 6.32248 + 7.53483i 0.221875 + 0.264421i
\(813\) 0 0
\(814\) 0.655998 + 3.72035i 0.0229927 + 0.130398i
\(815\) 13.6405 + 33.1371i 0.477806 + 1.16074i
\(816\) 0 0
\(817\) −27.8747 36.0723i −0.975213 1.26201i
\(818\) 9.29706i 0.325064i
\(819\) 0 0
\(820\) 8.50234 + 6.55384i 0.296915 + 0.228870i
\(821\) 6.16578 + 5.17371i 0.215187 + 0.180564i 0.744010 0.668169i \(-0.232922\pi\)
−0.528822 + 0.848733i \(0.677366\pi\)
\(822\) 0 0
\(823\) 36.7750 + 6.48442i 1.28189 + 0.226033i 0.772784 0.634669i \(-0.218863\pi\)
0.509110 + 0.860701i \(0.329975\pi\)
\(824\) 7.93356 13.7413i 0.276379 0.478702i
\(825\) 0 0
\(826\) −27.0179 + 9.83370i −0.940072 + 0.342158i
\(827\) −3.73836 10.2711i −0.129996 0.357160i 0.857570 0.514367i \(-0.171973\pi\)
−0.987566 + 0.157207i \(0.949751\pi\)
\(828\) 0 0
\(829\) 16.8187 29.1309i 0.584139 1.01176i −0.410843 0.911706i \(-0.634766\pi\)
0.994982 0.100052i \(-0.0319010\pi\)
\(830\) 6.23867 + 9.84045i 0.216547 + 0.341567i
\(831\) 0 0
\(832\) −2.98966 + 3.56293i −0.103648 + 0.123523i
\(833\) −2.42728 + 0.427995i −0.0841002 + 0.0148291i
\(834\) 0 0
\(835\) 11.4180 + 12.5157i 0.395136 + 0.433124i
\(836\) 0.698579 3.20262i 0.0241609 0.110765i
\(837\) 0 0
\(838\) −2.79492 + 7.67897i −0.0965488 + 0.265266i
\(839\) 2.40910 + 13.6627i 0.0831714 + 0.471689i 0.997736 + 0.0672492i \(0.0214222\pi\)
−0.914565 + 0.404439i \(0.867467\pi\)
\(840\) 0 0
\(841\) −10.1104 + 8.48360i −0.348633 + 0.292538i
\(842\) 35.6452 + 6.28522i 1.22842 + 0.216603i
\(843\) 0 0
\(844\) −4.54052 7.86440i −0.156291 0.270704i
\(845\) 13.0923 25.0156i 0.450390 0.860564i
\(846\) 0 0
\(847\) 24.4591 14.1214i 0.840423 0.485219i
\(848\) −16.3204 9.42259i −0.560445 0.323573i
\(849\) 0 0
\(850\) −14.4423 20.8201i −0.495367 0.714123i
\(851\) −12.4438 10.4416i −0.426568 0.357933i
\(852\) 0 0
\(853\) 10.1059 27.7657i 0.346019 0.950680i −0.637591 0.770375i \(-0.720069\pi\)
0.983611 0.180305i \(-0.0577086\pi\)
\(854\) 26.0400 0.891071
\(855\) 0 0
\(856\) −46.1773 −1.57831
\(857\) −1.46586 + 4.02741i −0.0500727 + 0.137574i −0.962208 0.272316i \(-0.912210\pi\)
0.912135 + 0.409889i \(0.134433\pi\)
\(858\) 0 0
\(859\) 26.7935 + 22.4824i 0.914181 + 0.767089i 0.972910 0.231185i \(-0.0742603\pi\)
−0.0587290 + 0.998274i \(0.518705\pi\)
\(860\) −20.9294 2.80226i −0.713687 0.0955563i
\(861\) 0 0
\(862\) 2.57566 + 1.48706i 0.0877273 + 0.0506494i
\(863\) 17.3470 10.0153i 0.590498 0.340924i −0.174797 0.984605i \(-0.555927\pi\)
0.765294 + 0.643681i \(0.222593\pi\)
\(864\) 0 0
\(865\) −17.5570 9.18872i −0.596955 0.312426i
\(866\) 11.4443 + 19.8221i 0.388893 + 0.673583i
\(867\) 0 0
\(868\) 16.8790 + 2.97623i 0.572911 + 0.101020i
\(869\) 2.21992 1.86274i 0.0753058 0.0631891i
\(870\) 0 0
\(871\) 1.15983 + 6.57770i 0.0392992 + 0.222877i
\(872\) −4.07921 + 11.2075i −0.138139 + 0.379535i
\(873\) 0 0
\(874\) −7.95907 15.1630i −0.269220 0.512898i
\(875\) 24.4292 18.4903i 0.825857 0.625087i
\(876\) 0 0
\(877\) −44.8994 + 7.91697i −1.51614 + 0.267337i −0.868916 0.494959i \(-0.835183\pi\)
−0.647228 + 0.762297i \(0.724072\pi\)
\(878\) 21.9320 26.1376i 0.740170 0.882100i
\(879\) 0 0
\(880\) 1.37485 + 2.16860i 0.0463462 + 0.0731033i
\(881\) −8.63649 + 14.9588i −0.290971 + 0.503976i −0.974040 0.226378i \(-0.927312\pi\)
0.683069 + 0.730354i \(0.260645\pi\)
\(882\) 0 0
\(883\) −12.0368 33.0707i −0.405069 1.11292i −0.959750 0.280856i \(-0.909382\pi\)
0.554680 0.832063i \(-0.312840\pi\)
\(884\) 2.50768 0.912722i 0.0843425 0.0306982i
\(885\) 0 0
\(886\) 4.06483 7.04049i 0.136561 0.236530i
\(887\) −3.11307 0.548919i −0.104527 0.0184309i 0.121140 0.992635i \(-0.461345\pi\)
−0.225667 + 0.974205i \(0.572456\pi\)
\(888\) 0 0
\(889\) 19.2812 + 16.1789i 0.646671 + 0.542622i
\(890\) −8.41988 + 10.9232i −0.282235 + 0.366145i
\(891\) 0 0
\(892\) 25.5727i 0.856237i
\(893\) −4.50482 14.1198i −0.150748 0.472500i
\(894\) 0 0
\(895\) 11.3011 4.65198i 0.377755 0.155498i
\(896\) 0.617962 + 3.50464i 0.0206447 + 0.117082i
\(897\) 0 0
\(898\) 15.4729 + 18.4399i 0.516337 + 0.615346i
\(899\) 4.78140 27.1167i 0.159469 0.904391i
\(900\) 0 0
\(901\) 33.0655 + 57.2711i 1.10157 + 1.90798i
\(902\) −1.58629 4.35830i −0.0528178 0.145116i
\(903\) 0 0
\(904\) 6.04071 + 10.4628i 0.200911 + 0.347988i
\(905\) −9.01627 41.0974i −0.299711 1.36612i
\(906\) 0 0
\(907\) −10.2405 12.2041i −0.340029 0.405230i 0.568749 0.822511i \(-0.307428\pi\)
−0.908778 + 0.417281i \(0.862983\pi\)
\(908\) −9.21597 + 10.9832i −0.305843 + 0.364489i
\(909\) 0 0
\(910\) −1.49227 3.62521i −0.0494684 0.120174i
\(911\) −0.0577380 −0.00191294 −0.000956472 1.00000i \(-0.500304\pi\)
−0.000956472 1.00000i \(0.500304\pi\)
\(912\) 0 0
\(913\) 4.14323i 0.137121i
\(914\) 3.33524 + 1.21393i 0.110320 + 0.0401532i
\(915\) 0 0
\(916\) −7.87599 6.60874i −0.260230 0.218359i
\(917\) −6.58614 7.84905i −0.217493 0.259199i
\(918\) 0 0
\(919\) 25.0245 43.3436i 0.825481 1.42977i −0.0760708 0.997102i \(-0.524238\pi\)
0.901551 0.432672i \(-0.142429\pi\)
\(920\) −24.3049 7.72214i −0.801310 0.254591i
\(921\) 0 0
\(922\) −3.88787 10.6818i −0.128040 0.351788i
\(923\) −0.358514 + 0.206988i −0.0118006 + 0.00681310i
\(924\) 0 0
\(925\) 5.69632 20.8909i 0.187294 0.686888i
\(926\) 5.86660 4.92267i 0.192789 0.161769i
\(927\) 0 0
\(928\) 18.1526 3.20080i 0.595889 0.105071i
\(929\) 15.9606 + 5.80920i 0.523652 + 0.190594i 0.590302 0.807183i \(-0.299009\pi\)
−0.0666498 + 0.997776i \(0.521231\pi\)
\(930\) 0 0
\(931\) −1.03199 1.96607i −0.0338220 0.0644353i
\(932\) 14.3246i 0.469218i
\(933\) 0 0
\(934\) −1.97190 11.1832i −0.0645227 0.365926i
\(935\) −0.373228 9.00273i −0.0122059 0.294421i
\(936\) 0 0
\(937\) −33.1807 5.85065i −1.08397 0.191132i −0.396997 0.917820i \(-0.629948\pi\)
−0.686968 + 0.726687i \(0.741059\pi\)
\(938\) −27.1799 15.6923i −0.887456 0.512373i
\(939\) 0 0
\(940\) −6.08244 3.18334i −0.198387 0.103829i
\(941\) −25.5345 + 9.29380i −0.832401 + 0.302969i −0.722844 0.691011i \(-0.757166\pi\)
−0.109557 + 0.993980i \(0.534943\pi\)
\(942\) 0 0
\(943\) 17.2715 + 9.97169i 0.562436 + 0.324723i
\(944\) −2.39838 + 13.6019i −0.0780605 + 0.442703i
\(945\) 0 0
\(946\) 6.98867 + 5.86419i 0.227221 + 0.190661i
\(947\) −32.7904 + 5.78183i −1.06554 + 0.187884i −0.678815 0.734309i \(-0.737506\pi\)
−0.386729 + 0.922193i \(0.626395\pi\)
\(948\) 0 0
\(949\) −4.28402 −0.139065
\(950\) 13.9146 18.0965i 0.451450 0.587128i
\(951\) 0 0
\(952\) −13.7883 + 37.8830i −0.446881 + 1.22780i
\(953\) 29.9466 5.28039i 0.970065 0.171049i 0.333906 0.942606i \(-0.391633\pi\)
0.636159 + 0.771558i \(0.280522\pi\)
\(954\) 0 0
\(955\) −5.12192 + 38.2544i −0.165742 + 1.23788i
\(956\) 3.27151 18.5536i 0.105808 0.600068i
\(957\) 0 0
\(958\) 3.12704 1.80540i 0.101030 0.0583297i
\(959\) 6.08578 2.21504i 0.196520 0.0715274i
\(960\) 0 0
\(961\) −8.49003 14.7052i −0.273872 0.474360i
\(962\) −2.39952 1.38536i −0.0773637 0.0446660i
\(963\) 0 0
\(964\) 19.6643 16.5003i 0.633344 0.531438i
\(965\) 0.692274 + 16.6985i 0.0222851 + 0.537545i
\(966\) 0 0
\(967\) −20.1511 + 55.3648i −0.648017 + 1.78041i −0.0230823 + 0.999734i \(0.507348\pi\)
−0.624934 + 0.780677i \(0.714874\pi\)
\(968\) 31.3371i 1.00721i
\(969\) 0 0
\(970\) −21.5219 + 19.6342i −0.691025 + 0.630417i
\(971\) −38.4033 13.9777i −1.23242 0.448564i −0.357995 0.933724i \(-0.616539\pi\)
−0.874426 + 0.485159i \(0.838762\pi\)
\(972\) 0 0
\(973\) −4.30285 + 5.12794i −0.137943 + 0.164394i
\(974\) −21.6614 + 18.1761i −0.694075 + 0.582398i
\(975\) 0 0
\(976\) 6.25450 10.8331i 0.200202 0.346760i
\(977\) 31.1276 17.9716i 0.995862 0.574961i 0.0888405 0.996046i \(-0.471684\pi\)
0.907021 + 0.421085i \(0.138351\pi\)
\(978\) 0 0
\(979\) −4.60853 + 1.67737i −0.147289 + 0.0536089i
\(980\) −0.980235 0.311439i −0.0313125 0.00994856i
\(981\) 0 0
\(982\) −0.251662 0.0443747i −0.00803085 0.00141606i
\(983\) −6.47067 7.71144i −0.206382 0.245957i 0.652918 0.757429i \(-0.273545\pi\)
−0.859300 + 0.511472i \(0.829100\pi\)
\(984\) 0 0
\(985\) −16.6655 + 21.6203i −0.531008 + 0.688880i
\(986\) 18.9303 + 6.89005i 0.602862 + 0.219424i
\(987\) 0 0
\(988\) 1.47003 + 1.90235i 0.0467680 + 0.0605217i
\(989\) −39.2290 −1.24741
\(990\) 0 0
\(991\) −3.13089 17.7562i −0.0994561 0.564043i −0.993290 0.115646i \(-0.963106\pi\)
0.893834 0.448397i \(-0.148005\pi\)
\(992\) 20.6458 24.6047i 0.655504 0.781200i
\(993\) 0 0
\(994\) 0.337786 1.91568i 0.0107139 0.0607616i
\(995\) −3.71735 16.9442i −0.117848 0.537166i
\(996\) 0 0
\(997\) −6.40419 17.5954i −0.202823 0.557251i 0.796024 0.605265i \(-0.206933\pi\)
−0.998847 + 0.0480143i \(0.984711\pi\)
\(998\) −1.16378 3.19747i −0.0368390 0.101214i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.da.b.289.6 48
3.2 odd 2 95.2.p.a.4.3 48
5.4 even 2 inner 855.2.da.b.289.3 48
15.2 even 4 475.2.l.f.251.3 48
15.8 even 4 475.2.l.f.251.6 48
15.14 odd 2 95.2.p.a.4.6 yes 48
19.5 even 9 inner 855.2.da.b.784.3 48
57.5 odd 18 95.2.p.a.24.6 yes 48
57.29 even 18 1805.2.b.l.1084.16 24
57.47 odd 18 1805.2.b.k.1084.9 24
95.24 even 18 inner 855.2.da.b.784.6 48
285.29 even 18 1805.2.b.l.1084.9 24
285.47 even 36 9025.2.a.cu.1.16 24
285.62 even 36 475.2.l.f.176.3 48
285.104 odd 18 1805.2.b.k.1084.16 24
285.119 odd 18 95.2.p.a.24.3 yes 48
285.143 odd 36 9025.2.a.ct.1.16 24
285.218 even 36 9025.2.a.cu.1.9 24
285.233 even 36 475.2.l.f.176.6 48
285.257 odd 36 9025.2.a.ct.1.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.4.3 48 3.2 odd 2
95.2.p.a.4.6 yes 48 15.14 odd 2
95.2.p.a.24.3 yes 48 285.119 odd 18
95.2.p.a.24.6 yes 48 57.5 odd 18
475.2.l.f.176.3 48 285.62 even 36
475.2.l.f.176.6 48 285.233 even 36
475.2.l.f.251.3 48 15.2 even 4
475.2.l.f.251.6 48 15.8 even 4
855.2.da.b.289.3 48 5.4 even 2 inner
855.2.da.b.289.6 48 1.1 even 1 trivial
855.2.da.b.784.3 48 19.5 even 9 inner
855.2.da.b.784.6 48 95.24 even 18 inner
1805.2.b.k.1084.9 24 57.47 odd 18
1805.2.b.k.1084.16 24 285.104 odd 18
1805.2.b.l.1084.9 24 285.29 even 18
1805.2.b.l.1084.16 24 57.29 even 18
9025.2.a.ct.1.9 24 285.257 odd 36
9025.2.a.ct.1.16 24 285.143 odd 36
9025.2.a.cu.1.9 24 285.218 even 36
9025.2.a.cu.1.16 24 285.47 even 36