Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [475,2,Mod(101,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 14]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.101");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.l (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{9})\) |
Twist minimal: | no (minimal twist has level 95) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 | −2.05812 | + | 1.72697i | −2.01713 | − | 0.734175i | 0.906145 | − | 5.13900i | 0 | 5.41939 | − | 1.97250i | 1.39152 | − | 2.41018i | 4.32326 | + | 7.48810i | 1.23166 | + | 1.03349i | 0 | ||||
101.2 | −1.36714 | + | 1.14717i | 2.24001 | + | 0.815296i | 0.205786 | − | 1.16707i | 0 | −3.99769 | + | 1.45504i | 2.11955 | − | 3.67118i | −0.727188 | − | 1.25953i | 2.05480 | + | 1.72418i | 0 | ||||
101.3 | −1.24028 | + | 1.04072i | 1.11689 | + | 0.406515i | 0.107903 | − | 0.611947i | 0 | −1.80832 | + | 0.658176i | −1.11595 | + | 1.93288i | −1.11604 | − | 1.93303i | −1.21594 | − | 1.02030i | 0 | ||||
101.4 | −0.344240 | + | 0.288852i | −1.83883 | − | 0.669279i | −0.312230 | + | 1.77075i | 0 | 0.826320 | − | 0.300756i | 1.03040 | − | 1.78470i | −0.853374 | − | 1.47809i | 0.635222 | + | 0.533015i | 0 | ||||
101.5 | 0.344240 | − | 0.288852i | 1.83883 | + | 0.669279i | −0.312230 | + | 1.77075i | 0 | 0.826320 | − | 0.300756i | −1.03040 | + | 1.78470i | 0.853374 | + | 1.47809i | 0.635222 | + | 0.533015i | 0 | ||||
101.6 | 1.24028 | − | 1.04072i | −1.11689 | − | 0.406515i | 0.107903 | − | 0.611947i | 0 | −1.80832 | + | 0.658176i | 1.11595 | − | 1.93288i | 1.11604 | + | 1.93303i | −1.21594 | − | 1.02030i | 0 | ||||
101.7 | 1.36714 | − | 1.14717i | −2.24001 | − | 0.815296i | 0.205786 | − | 1.16707i | 0 | −3.99769 | + | 1.45504i | −2.11955 | + | 3.67118i | 0.727188 | + | 1.25953i | 2.05480 | + | 1.72418i | 0 | ||||
101.8 | 2.05812 | − | 1.72697i | 2.01713 | + | 0.734175i | 0.906145 | − | 5.13900i | 0 | 5.41939 | − | 1.97250i | −1.39152 | + | 2.41018i | −4.32326 | − | 7.48810i | 1.23166 | + | 1.03349i | 0 | ||||
176.1 | −2.22798 | + | 0.810919i | −0.396806 | + | 2.25040i | 2.77422 | − | 2.32785i | 0 | −0.940815 | − | 5.33563i | 0.818386 | + | 1.41749i | −1.92225 | + | 3.32944i | −2.08777 | − | 0.759885i | 0 | ||||
176.2 | −2.18443 | + | 0.795068i | 0.199449 | − | 1.13113i | 2.60752 | − | 2.18797i | 0 | 0.463643 | + | 2.62945i | 0.0716510 | + | 0.124103i | −1.63174 | + | 2.82626i | 1.57940 | + | 0.574856i | 0 | ||||
176.3 | −0.984236 | + | 0.358233i | −0.0922859 | + | 0.523379i | −0.691698 | + | 0.580404i | 0 | −0.0966605 | − | 0.548189i | −1.37016 | − | 2.37320i | 1.52028 | − | 2.63320i | 2.55367 | + | 0.929459i | 0 | ||||
176.4 | −0.234689 | + | 0.0854197i | −0.399662 | + | 2.26659i | −1.48431 | + | 1.24548i | 0 | −0.0998158 | − | 0.566083i | 1.98021 | + | 3.42983i | 0.491712 | − | 0.851670i | −2.15864 | − | 0.785682i | 0 | ||||
176.5 | 0.234689 | − | 0.0854197i | 0.399662 | − | 2.26659i | −1.48431 | + | 1.24548i | 0 | −0.0998158 | − | 0.566083i | −1.98021 | − | 3.42983i | −0.491712 | + | 0.851670i | −2.15864 | − | 0.785682i | 0 | ||||
176.6 | 0.984236 | − | 0.358233i | 0.0922859 | − | 0.523379i | −0.691698 | + | 0.580404i | 0 | −0.0966605 | − | 0.548189i | 1.37016 | + | 2.37320i | −1.52028 | + | 2.63320i | 2.55367 | + | 0.929459i | 0 | ||||
176.7 | 2.18443 | − | 0.795068i | −0.199449 | + | 1.13113i | 2.60752 | − | 2.18797i | 0 | 0.463643 | + | 2.62945i | −0.0716510 | − | 0.124103i | 1.63174 | − | 2.82626i | 1.57940 | + | 0.574856i | 0 | ||||
176.8 | 2.22798 | − | 0.810919i | 0.396806 | − | 2.25040i | 2.77422 | − | 2.32785i | 0 | −0.940815 | − | 5.33563i | −0.818386 | − | 1.41749i | 1.92225 | − | 3.32944i | −2.08777 | − | 0.759885i | 0 | ||||
226.1 | −0.340658 | + | 1.93197i | −0.143793 | − | 0.120656i | −1.73706 | − | 0.632239i | 0 | 0.282088 | − | 0.236700i | 0.338534 | + | 0.586358i | −0.148561 | + | 0.257316i | −0.514826 | − | 2.91972i | 0 | ||||
226.2 | −0.256855 | + | 1.45670i | 1.90225 | + | 1.59617i | −0.176607 | − | 0.0642796i | 0 | −2.81374 | + | 2.36101i | 1.62494 | + | 2.81448i | −1.34017 | + | 2.32124i | 0.549824 | + | 3.11821i | 0 | ||||
226.3 | −0.212126 | + | 1.20303i | −0.616222 | − | 0.517072i | 0.477108 | + | 0.173653i | 0 | 0.752768 | − | 0.631647i | −1.89590 | − | 3.28379i | −1.53170 | + | 2.65299i | −0.408578 | − | 2.31716i | 0 | ||||
226.4 | −0.0424530 | + | 0.240763i | −2.09771 | − | 1.76019i | 1.82322 | + | 0.663598i | 0 | 0.512843 | − | 0.430326i | 0.970136 | + | 1.68032i | −0.481648 | + | 0.834240i | 0.781184 | + | 4.43031i | 0 | ||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.e | even | 9 | 1 | inner |
95.p | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.l.f | 48 | |
5.b | even | 2 | 1 | inner | 475.2.l.f | 48 | |
5.c | odd | 4 | 2 | 95.2.p.a | ✓ | 48 | |
15.e | even | 4 | 2 | 855.2.da.b | 48 | ||
19.e | even | 9 | 1 | inner | 475.2.l.f | 48 | |
19.e | even | 9 | 1 | 9025.2.a.cu | 24 | ||
19.f | odd | 18 | 1 | 9025.2.a.ct | 24 | ||
95.o | odd | 18 | 1 | 9025.2.a.ct | 24 | ||
95.p | even | 18 | 1 | inner | 475.2.l.f | 48 | |
95.p | even | 18 | 1 | 9025.2.a.cu | 24 | ||
95.q | odd | 36 | 2 | 95.2.p.a | ✓ | 48 | |
95.q | odd | 36 | 2 | 1805.2.b.k | 24 | ||
95.r | even | 36 | 2 | 1805.2.b.l | 24 | ||
285.bi | even | 36 | 2 | 855.2.da.b | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.p.a | ✓ | 48 | 5.c | odd | 4 | 2 | |
95.2.p.a | ✓ | 48 | 95.q | odd | 36 | 2 | |
475.2.l.f | 48 | 1.a | even | 1 | 1 | trivial | |
475.2.l.f | 48 | 5.b | even | 2 | 1 | inner | |
475.2.l.f | 48 | 19.e | even | 9 | 1 | inner | |
475.2.l.f | 48 | 95.p | even | 18 | 1 | inner | |
855.2.da.b | 48 | 15.e | even | 4 | 2 | ||
855.2.da.b | 48 | 285.bi | even | 36 | 2 | ||
1805.2.b.k | 24 | 95.q | odd | 36 | 2 | ||
1805.2.b.l | 24 | 95.r | even | 36 | 2 | ||
9025.2.a.ct | 24 | 19.f | odd | 18 | 1 | ||
9025.2.a.ct | 24 | 95.o | odd | 18 | 1 | ||
9025.2.a.cu | 24 | 19.e | even | 9 | 1 | ||
9025.2.a.cu | 24 | 95.p | even | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{48} - 9 T_{2}^{46} + 78 T_{2}^{44} - 181 T_{2}^{42} - 255 T_{2}^{40} + 10179 T_{2}^{38} + \cdots + 361 \)
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).