Properties

Label 468.2.k.a.61.9
Level $468$
Weight $2$
Character 468.61
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(61,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.61"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 61.9
Character \(\chi\) \(=\) 468.61
Dual form 468.2.k.a.445.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.583701 - 1.63073i) q^{3} +(-1.31191 - 2.27229i) q^{5} +3.59326 q^{7} +(-2.31859 - 1.90372i) q^{9} +(-2.37768 - 4.11827i) q^{11} +(-3.08055 + 1.87356i) q^{13} +(-4.47127 + 0.813035i) q^{15} +(0.733833 + 1.27104i) q^{17} +(2.78567 + 4.82492i) q^{19} +(2.09739 - 5.85965i) q^{21} +3.41298 q^{23} +(-0.942208 + 1.63195i) q^{25} +(-4.45782 + 2.66979i) q^{27} +(-1.91852 - 3.32297i) q^{29} +(-4.73573 - 8.20253i) q^{31} +(-8.10366 + 1.47353i) q^{33} +(-4.71403 - 8.16494i) q^{35} +(2.14495 - 3.71516i) q^{37} +(1.25715 + 6.11715i) q^{39} +7.34975 q^{41} -2.56292 q^{43} +(-1.28404 + 7.76602i) q^{45} +(-3.88207 + 6.72393i) q^{47} +5.91152 q^{49} +(2.50106 - 0.454782i) q^{51} +1.77064 q^{53} +(-6.23861 + 10.8056i) q^{55} +(9.49415 - 1.72637i) q^{57} +(4.39658 - 7.61510i) q^{59} +6.37216 q^{61} +(-8.33128 - 6.84057i) q^{63} +(8.29867 + 4.54197i) q^{65} +4.24650 q^{67} +(1.99216 - 5.56567i) q^{69} +(4.76526 + 8.25367i) q^{71} +11.1926 q^{73} +(2.11131 + 2.48906i) q^{75} +(-8.54363 - 14.7980i) q^{77} +(-5.06674 + 8.77586i) q^{79} +(1.75169 + 8.82789i) q^{81} +(-4.51894 + 7.82703i) q^{83} +(1.92544 - 3.33497i) q^{85} +(-6.53873 + 1.18897i) q^{87} +(6.36777 - 11.0293i) q^{89} +(-11.0692 + 6.73218i) q^{91} +(-16.1404 + 2.93490i) q^{93} +(7.30908 - 12.6597i) q^{95} +12.0858 q^{97} +(-2.32717 + 14.0750i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - 4 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} + 8 q^{23} - 14 q^{25} - 13 q^{29} + 2 q^{31} - 25 q^{33} + 3 q^{35} - q^{37} - 3 q^{39} - 8 q^{41} - 4 q^{43}+ \cdots - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.583701 1.63073i 0.337000 0.941505i
\(4\) 0 0
\(5\) −1.31191 2.27229i −0.586703 1.01620i −0.994661 0.103199i \(-0.967092\pi\)
0.407957 0.913001i \(-0.366241\pi\)
\(6\) 0 0
\(7\) 3.59326 1.35812 0.679062 0.734081i \(-0.262387\pi\)
0.679062 + 0.734081i \(0.262387\pi\)
\(8\) 0 0
\(9\) −2.31859 1.90372i −0.772862 0.634574i
\(10\) 0 0
\(11\) −2.37768 4.11827i −0.716898 1.24170i −0.962223 0.272264i \(-0.912228\pi\)
0.245324 0.969441i \(-0.421106\pi\)
\(12\) 0 0
\(13\) −3.08055 + 1.87356i −0.854391 + 0.519631i
\(14\) 0 0
\(15\) −4.47127 + 0.813035i −1.15448 + 0.209925i
\(16\) 0 0
\(17\) 0.733833 + 1.27104i 0.177981 + 0.308272i 0.941189 0.337881i \(-0.109710\pi\)
−0.763208 + 0.646153i \(0.776377\pi\)
\(18\) 0 0
\(19\) 2.78567 + 4.82492i 0.639076 + 1.10691i 0.985636 + 0.168884i \(0.0540164\pi\)
−0.346560 + 0.938028i \(0.612650\pi\)
\(20\) 0 0
\(21\) 2.09739 5.85965i 0.457688 1.27868i
\(22\) 0 0
\(23\) 3.41298 0.711656 0.355828 0.934551i \(-0.384199\pi\)
0.355828 + 0.934551i \(0.384199\pi\)
\(24\) 0 0
\(25\) −0.942208 + 1.63195i −0.188442 + 0.326390i
\(26\) 0 0
\(27\) −4.45782 + 2.66979i −0.857909 + 0.513802i
\(28\) 0 0
\(29\) −1.91852 3.32297i −0.356260 0.617061i 0.631073 0.775724i \(-0.282615\pi\)
−0.987333 + 0.158663i \(0.949282\pi\)
\(30\) 0 0
\(31\) −4.73573 8.20253i −0.850563 1.47322i −0.880701 0.473672i \(-0.842928\pi\)
0.0301382 0.999546i \(-0.490405\pi\)
\(32\) 0 0
\(33\) −8.10366 + 1.47353i −1.41067 + 0.256509i
\(34\) 0 0
\(35\) −4.71403 8.16494i −0.796816 1.38013i
\(36\) 0 0
\(37\) 2.14495 3.71516i 0.352628 0.610769i −0.634081 0.773266i \(-0.718621\pi\)
0.986709 + 0.162497i \(0.0519548\pi\)
\(38\) 0 0
\(39\) 1.25715 + 6.11715i 0.201306 + 0.979528i
\(40\) 0 0
\(41\) 7.34975 1.14784 0.573919 0.818912i \(-0.305422\pi\)
0.573919 + 0.818912i \(0.305422\pi\)
\(42\) 0 0
\(43\) −2.56292 −0.390841 −0.195421 0.980720i \(-0.562607\pi\)
−0.195421 + 0.980720i \(0.562607\pi\)
\(44\) 0 0
\(45\) −1.28404 + 7.76602i −0.191413 + 1.15769i
\(46\) 0 0
\(47\) −3.88207 + 6.72393i −0.566257 + 0.980787i 0.430674 + 0.902508i \(0.358276\pi\)
−0.996931 + 0.0782791i \(0.975057\pi\)
\(48\) 0 0
\(49\) 5.91152 0.844503
\(50\) 0 0
\(51\) 2.50106 0.454782i 0.350219 0.0636822i
\(52\) 0 0
\(53\) 1.77064 0.243216 0.121608 0.992578i \(-0.461195\pi\)
0.121608 + 0.992578i \(0.461195\pi\)
\(54\) 0 0
\(55\) −6.23861 + 10.8056i −0.841213 + 1.45702i
\(56\) 0 0
\(57\) 9.49415 1.72637i 1.25753 0.228664i
\(58\) 0 0
\(59\) 4.39658 7.61510i 0.572386 0.991401i −0.423935 0.905693i \(-0.639351\pi\)
0.996320 0.0857084i \(-0.0273153\pi\)
\(60\) 0 0
\(61\) 6.37216 0.815872 0.407936 0.913011i \(-0.366249\pi\)
0.407936 + 0.913011i \(0.366249\pi\)
\(62\) 0 0
\(63\) −8.33128 6.84057i −1.04964 0.861830i
\(64\) 0 0
\(65\) 8.29867 + 4.54197i 1.02932 + 0.563362i
\(66\) 0 0
\(67\) 4.24650 0.518792 0.259396 0.965771i \(-0.416476\pi\)
0.259396 + 0.965771i \(0.416476\pi\)
\(68\) 0 0
\(69\) 1.99216 5.56567i 0.239828 0.670027i
\(70\) 0 0
\(71\) 4.76526 + 8.25367i 0.565532 + 0.979531i 0.997000 + 0.0774024i \(0.0246626\pi\)
−0.431468 + 0.902128i \(0.642004\pi\)
\(72\) 0 0
\(73\) 11.1926 1.31000 0.654999 0.755630i \(-0.272669\pi\)
0.654999 + 0.755630i \(0.272669\pi\)
\(74\) 0 0
\(75\) 2.11131 + 2.48906i 0.243793 + 0.287412i
\(76\) 0 0
\(77\) −8.54363 14.7980i −0.973638 1.68639i
\(78\) 0 0
\(79\) −5.06674 + 8.77586i −0.570053 + 0.987361i 0.426507 + 0.904484i \(0.359744\pi\)
−0.996560 + 0.0828765i \(0.973589\pi\)
\(80\) 0 0
\(81\) 1.75169 + 8.82789i 0.194632 + 0.980876i
\(82\) 0 0
\(83\) −4.51894 + 7.82703i −0.496018 + 0.859129i −0.999989 0.00459172i \(-0.998538\pi\)
0.503971 + 0.863720i \(0.331872\pi\)
\(84\) 0 0
\(85\) 1.92544 3.33497i 0.208844 0.361728i
\(86\) 0 0
\(87\) −6.53873 + 1.18897i −0.701025 + 0.127471i
\(88\) 0 0
\(89\) 6.36777 11.0293i 0.674983 1.16910i −0.301491 0.953469i \(-0.597484\pi\)
0.976474 0.215635i \(-0.0691822\pi\)
\(90\) 0 0
\(91\) −11.0692 + 6.73218i −1.16037 + 0.705724i
\(92\) 0 0
\(93\) −16.1404 + 2.93490i −1.67368 + 0.304335i
\(94\) 0 0
\(95\) 7.30908 12.6597i 0.749896 1.29886i
\(96\) 0 0
\(97\) 12.0858 1.22713 0.613565 0.789644i \(-0.289735\pi\)
0.613565 + 0.789644i \(0.289735\pi\)
\(98\) 0 0
\(99\) −2.32717 + 14.0750i −0.233890 + 1.41459i
\(100\) 0 0
\(101\) 2.17557 + 3.76821i 0.216478 + 0.374950i 0.953729 0.300669i \(-0.0972098\pi\)
−0.737251 + 0.675619i \(0.763876\pi\)
\(102\) 0 0
\(103\) 4.23722 + 7.33908i 0.417505 + 0.723141i 0.995688 0.0927669i \(-0.0295711\pi\)
−0.578182 + 0.815908i \(0.696238\pi\)
\(104\) 0 0
\(105\) −16.0664 + 2.92145i −1.56792 + 0.285104i
\(106\) 0 0
\(107\) 8.89600 15.4083i 0.860009 1.48958i −0.0119108 0.999929i \(-0.503791\pi\)
0.871919 0.489649i \(-0.162875\pi\)
\(108\) 0 0
\(109\) 18.5220 1.77409 0.887043 0.461686i \(-0.152755\pi\)
0.887043 + 0.461686i \(0.152755\pi\)
\(110\) 0 0
\(111\) −4.80644 5.66639i −0.456207 0.537830i
\(112\) 0 0
\(113\) −6.52440 + 11.3006i −0.613764 + 1.06307i 0.376836 + 0.926280i \(0.377012\pi\)
−0.990600 + 0.136790i \(0.956321\pi\)
\(114\) 0 0
\(115\) −4.47752 7.75529i −0.417531 0.723185i
\(116\) 0 0
\(117\) 10.7093 + 1.52050i 0.990071 + 0.140571i
\(118\) 0 0
\(119\) 2.63685 + 4.56716i 0.241720 + 0.418671i
\(120\) 0 0
\(121\) −5.80676 + 10.0576i −0.527887 + 0.914327i
\(122\) 0 0
\(123\) 4.29006 11.9855i 0.386821 1.08070i
\(124\) 0 0
\(125\) −8.17472 −0.731169
\(126\) 0 0
\(127\) −3.10087 + 5.37087i −0.275158 + 0.476588i −0.970175 0.242406i \(-0.922063\pi\)
0.695017 + 0.718993i \(0.255397\pi\)
\(128\) 0 0
\(129\) −1.49598 + 4.17944i −0.131713 + 0.367979i
\(130\) 0 0
\(131\) −2.10548 3.64680i −0.183957 0.318623i 0.759268 0.650779i \(-0.225557\pi\)
−0.943225 + 0.332156i \(0.892224\pi\)
\(132\) 0 0
\(133\) 10.0096 + 17.3372i 0.867945 + 1.50332i
\(134\) 0 0
\(135\) 11.9148 + 6.62695i 1.02546 + 0.570357i
\(136\) 0 0
\(137\) −1.16586 −0.0996064 −0.0498032 0.998759i \(-0.515859\pi\)
−0.0498032 + 0.998759i \(0.515859\pi\)
\(138\) 0 0
\(139\) 3.74423 6.48520i 0.317582 0.550067i −0.662401 0.749149i \(-0.730463\pi\)
0.979983 + 0.199082i \(0.0637960\pi\)
\(140\) 0 0
\(141\) 8.69898 + 10.2554i 0.732587 + 0.863659i
\(142\) 0 0
\(143\) 15.0404 + 8.23180i 1.25774 + 0.688378i
\(144\) 0 0
\(145\) −5.03385 + 8.71888i −0.418038 + 0.724063i
\(146\) 0 0
\(147\) 3.45056 9.64011i 0.284597 0.795103i
\(148\) 0 0
\(149\) −2.07188 + 3.58861i −0.169735 + 0.293990i −0.938327 0.345750i \(-0.887625\pi\)
0.768591 + 0.639740i \(0.220958\pi\)
\(150\) 0 0
\(151\) −0.375131 + 0.649747i −0.0305278 + 0.0528756i −0.880886 0.473329i \(-0.843052\pi\)
0.850358 + 0.526205i \(0.176385\pi\)
\(152\) 0 0
\(153\) 0.718243 4.34402i 0.0580665 0.351193i
\(154\) 0 0
\(155\) −12.4257 + 21.5219i −0.998056 + 1.72868i
\(156\) 0 0
\(157\) 0.905461 + 1.56830i 0.0722637 + 0.125164i 0.899893 0.436111i \(-0.143644\pi\)
−0.827629 + 0.561275i \(0.810311\pi\)
\(158\) 0 0
\(159\) 1.03352 2.88744i 0.0819638 0.228989i
\(160\) 0 0
\(161\) 12.2637 0.966517
\(162\) 0 0
\(163\) −11.8289 20.4883i −0.926513 1.60477i −0.789110 0.614252i \(-0.789458\pi\)
−0.137402 0.990515i \(-0.543875\pi\)
\(164\) 0 0
\(165\) 13.9796 + 16.4807i 1.08831 + 1.28302i
\(166\) 0 0
\(167\) 2.86253 0.221509 0.110755 0.993848i \(-0.464673\pi\)
0.110755 + 0.993848i \(0.464673\pi\)
\(168\) 0 0
\(169\) 5.97957 11.5432i 0.459967 0.887936i
\(170\) 0 0
\(171\) 2.72649 16.4901i 0.208500 1.26103i
\(172\) 0 0
\(173\) −22.0544 −1.67677 −0.838384 0.545081i \(-0.816499\pi\)
−0.838384 + 0.545081i \(0.816499\pi\)
\(174\) 0 0
\(175\) −3.38560 + 5.86403i −0.255927 + 0.443279i
\(176\) 0 0
\(177\) −9.85191 11.6146i −0.740515 0.873006i
\(178\) 0 0
\(179\) −12.9994 + 22.5157i −0.971624 + 1.68290i −0.280968 + 0.959717i \(0.590656\pi\)
−0.690655 + 0.723184i \(0.742678\pi\)
\(180\) 0 0
\(181\) −15.0145 −1.11602 −0.558009 0.829835i \(-0.688435\pi\)
−0.558009 + 0.829835i \(0.688435\pi\)
\(182\) 0 0
\(183\) 3.71944 10.3913i 0.274949 0.768147i
\(184\) 0 0
\(185\) −11.2559 −0.827552
\(186\) 0 0
\(187\) 3.48965 6.04424i 0.255188 0.441999i
\(188\) 0 0
\(189\) −16.0181 + 9.59326i −1.16515 + 0.697807i
\(190\) 0 0
\(191\) −24.5054 −1.77315 −0.886574 0.462587i \(-0.846921\pi\)
−0.886574 + 0.462587i \(0.846921\pi\)
\(192\) 0 0
\(193\) 12.1382 0.873729 0.436864 0.899527i \(-0.356089\pi\)
0.436864 + 0.899527i \(0.356089\pi\)
\(194\) 0 0
\(195\) 12.2507 10.8818i 0.877290 0.779260i
\(196\) 0 0
\(197\) −0.295155 + 0.511223i −0.0210289 + 0.0364231i −0.876348 0.481678i \(-0.840028\pi\)
0.855319 + 0.518101i \(0.173361\pi\)
\(198\) 0 0
\(199\) 2.11664 + 3.66613i 0.150045 + 0.259885i 0.931244 0.364397i \(-0.118725\pi\)
−0.781199 + 0.624282i \(0.785392\pi\)
\(200\) 0 0
\(201\) 2.47868 6.92491i 0.174833 0.488445i
\(202\) 0 0
\(203\) −6.89374 11.9403i −0.483846 0.838046i
\(204\) 0 0
\(205\) −9.64220 16.7008i −0.673441 1.16643i
\(206\) 0 0
\(207\) −7.91329 6.49737i −0.550012 0.451598i
\(208\) 0 0
\(209\) 13.2469 22.9443i 0.916305 1.58709i
\(210\) 0 0
\(211\) −23.9269 −1.64720 −0.823598 0.567174i \(-0.808037\pi\)
−0.823598 + 0.567174i \(0.808037\pi\)
\(212\) 0 0
\(213\) 16.2410 2.95320i 1.11282 0.202350i
\(214\) 0 0
\(215\) 3.36231 + 5.82370i 0.229308 + 0.397173i
\(216\) 0 0
\(217\) −17.0167 29.4738i −1.15517 2.00081i
\(218\) 0 0
\(219\) 6.53314 18.2522i 0.441469 1.23337i
\(220\) 0 0
\(221\) −4.64197 2.54061i −0.312253 0.170900i
\(222\) 0 0
\(223\) 0.546447 + 0.946475i 0.0365928 + 0.0633806i 0.883742 0.467975i \(-0.155016\pi\)
−0.847149 + 0.531355i \(0.821683\pi\)
\(224\) 0 0
\(225\) 5.29137 1.99012i 0.352758 0.132675i
\(226\) 0 0
\(227\) 25.4767 1.69095 0.845473 0.534018i \(-0.179318\pi\)
0.845473 + 0.534018i \(0.179318\pi\)
\(228\) 0 0
\(229\) 6.27227 + 10.8639i 0.414483 + 0.717906i 0.995374 0.0960758i \(-0.0306291\pi\)
−0.580891 + 0.813981i \(0.697296\pi\)
\(230\) 0 0
\(231\) −29.1185 + 5.29478i −1.91586 + 0.348371i
\(232\) 0 0
\(233\) 11.3418 0.743024 0.371512 0.928428i \(-0.378839\pi\)
0.371512 + 0.928428i \(0.378839\pi\)
\(234\) 0 0
\(235\) 20.3717 1.32890
\(236\) 0 0
\(237\) 11.3536 + 13.3850i 0.737497 + 0.869448i
\(238\) 0 0
\(239\) 0.387292 + 0.670809i 0.0250518 + 0.0433910i 0.878280 0.478148i \(-0.158692\pi\)
−0.853228 + 0.521539i \(0.825358\pi\)
\(240\) 0 0
\(241\) −8.76586 −0.564659 −0.282329 0.959318i \(-0.591107\pi\)
−0.282329 + 0.959318i \(0.591107\pi\)
\(242\) 0 0
\(243\) 15.4184 + 2.29631i 0.989091 + 0.147308i
\(244\) 0 0
\(245\) −7.75537 13.4327i −0.495472 0.858183i
\(246\) 0 0
\(247\) −17.6211 9.64429i −1.12121 0.613651i
\(248\) 0 0
\(249\) 10.1261 + 11.9378i 0.641716 + 0.756530i
\(250\) 0 0
\(251\) 9.59084 + 16.6118i 0.605368 + 1.04853i 0.991993 + 0.126292i \(0.0403075\pi\)
−0.386625 + 0.922237i \(0.626359\pi\)
\(252\) 0 0
\(253\) −8.11499 14.0556i −0.510185 0.883666i
\(254\) 0 0
\(255\) −4.31456 5.08651i −0.270188 0.318530i
\(256\) 0 0
\(257\) −13.0282 −0.812679 −0.406340 0.913722i \(-0.633195\pi\)
−0.406340 + 0.913722i \(0.633195\pi\)
\(258\) 0 0
\(259\) 7.70737 13.3496i 0.478913 0.829501i
\(260\) 0 0
\(261\) −1.87776 + 11.3569i −0.116231 + 0.702977i
\(262\) 0 0
\(263\) 8.93275 + 15.4720i 0.550817 + 0.954043i 0.998216 + 0.0597084i \(0.0190171\pi\)
−0.447399 + 0.894334i \(0.647650\pi\)
\(264\) 0 0
\(265\) −2.32292 4.02341i −0.142696 0.247156i
\(266\) 0 0
\(267\) −14.2690 16.8220i −0.873248 1.02949i
\(268\) 0 0
\(269\) −0.348659 0.603895i −0.0212581 0.0368201i 0.855201 0.518297i \(-0.173434\pi\)
−0.876459 + 0.481477i \(0.840101\pi\)
\(270\) 0 0
\(271\) 2.09858 3.63485i 0.127480 0.220801i −0.795220 0.606321i \(-0.792645\pi\)
0.922700 + 0.385520i \(0.125978\pi\)
\(272\) 0 0
\(273\) 4.51728 + 21.9805i 0.273398 + 1.33032i
\(274\) 0 0
\(275\) 8.96109 0.540374
\(276\) 0 0
\(277\) −25.6951 −1.54387 −0.771934 0.635703i \(-0.780710\pi\)
−0.771934 + 0.635703i \(0.780710\pi\)
\(278\) 0 0
\(279\) −4.63513 + 28.0338i −0.277498 + 1.67834i
\(280\) 0 0
\(281\) 6.73980 11.6737i 0.402063 0.696393i −0.591912 0.806003i \(-0.701627\pi\)
0.993975 + 0.109609i \(0.0349600\pi\)
\(282\) 0 0
\(283\) 16.5550 0.984093 0.492046 0.870569i \(-0.336249\pi\)
0.492046 + 0.870569i \(0.336249\pi\)
\(284\) 0 0
\(285\) −16.3783 19.3086i −0.970166 1.14375i
\(286\) 0 0
\(287\) 26.4096 1.55891
\(288\) 0 0
\(289\) 7.42298 12.8570i 0.436646 0.756293i
\(290\) 0 0
\(291\) 7.05451 19.7088i 0.413543 1.15535i
\(292\) 0 0
\(293\) 6.33554 10.9735i 0.370126 0.641077i −0.619458 0.785029i \(-0.712648\pi\)
0.989585 + 0.143952i \(0.0459811\pi\)
\(294\) 0 0
\(295\) −23.0716 −1.34328
\(296\) 0 0
\(297\) 21.5942 + 12.0106i 1.25302 + 0.696925i
\(298\) 0 0
\(299\) −10.5139 + 6.39442i −0.608032 + 0.369799i
\(300\) 0 0
\(301\) −9.20923 −0.530811
\(302\) 0 0
\(303\) 7.41483 1.34828i 0.425971 0.0774566i
\(304\) 0 0
\(305\) −8.35970 14.4794i −0.478675 0.829089i
\(306\) 0 0
\(307\) 9.08603 0.518567 0.259284 0.965801i \(-0.416514\pi\)
0.259284 + 0.965801i \(0.416514\pi\)
\(308\) 0 0
\(309\) 14.4413 2.62595i 0.821540 0.149385i
\(310\) 0 0
\(311\) 2.40367 + 4.16327i 0.136299 + 0.236077i 0.926093 0.377295i \(-0.123146\pi\)
−0.789794 + 0.613373i \(0.789812\pi\)
\(312\) 0 0
\(313\) 6.54378 11.3342i 0.369877 0.640645i −0.619669 0.784863i \(-0.712733\pi\)
0.989546 + 0.144218i \(0.0460666\pi\)
\(314\) 0 0
\(315\) −4.61388 + 27.9053i −0.259963 + 1.57229i
\(316\) 0 0
\(317\) −2.99255 + 5.18325i −0.168078 + 0.291120i −0.937744 0.347327i \(-0.887090\pi\)
0.769666 + 0.638447i \(0.220423\pi\)
\(318\) 0 0
\(319\) −9.12327 + 15.8020i −0.510805 + 0.884740i
\(320\) 0 0
\(321\) −19.9343 23.5009i −1.11262 1.31169i
\(322\) 0 0
\(323\) −4.08843 + 7.08137i −0.227486 + 0.394018i
\(324\) 0 0
\(325\) −0.155037 6.79259i −0.00859992 0.376785i
\(326\) 0 0
\(327\) 10.8113 30.2045i 0.597867 1.67031i
\(328\) 0 0
\(329\) −13.9493 + 24.1608i −0.769048 + 1.33203i
\(330\) 0 0
\(331\) −25.3034 −1.39080 −0.695401 0.718622i \(-0.744773\pi\)
−0.695401 + 0.718622i \(0.744773\pi\)
\(332\) 0 0
\(333\) −12.0459 + 4.53054i −0.660111 + 0.248272i
\(334\) 0 0
\(335\) −5.57102 9.64929i −0.304377 0.527197i
\(336\) 0 0
\(337\) 8.81119 + 15.2614i 0.479976 + 0.831343i 0.999736 0.0229694i \(-0.00731203\pi\)
−0.519760 + 0.854312i \(0.673979\pi\)
\(338\) 0 0
\(339\) 14.6200 + 17.2357i 0.794047 + 0.936116i
\(340\) 0 0
\(341\) −22.5202 + 39.0060i −1.21953 + 2.11230i
\(342\) 0 0
\(343\) −3.91120 −0.211185
\(344\) 0 0
\(345\) −15.2604 + 2.77487i −0.821590 + 0.149394i
\(346\) 0 0
\(347\) −1.28436 + 2.22458i −0.0689482 + 0.119422i −0.898439 0.439099i \(-0.855298\pi\)
0.829490 + 0.558521i \(0.188631\pi\)
\(348\) 0 0
\(349\) −4.56802 7.91204i −0.244520 0.423522i 0.717476 0.696583i \(-0.245297\pi\)
−0.961997 + 0.273061i \(0.911964\pi\)
\(350\) 0 0
\(351\) 8.73054 16.5764i 0.466002 0.884784i
\(352\) 0 0
\(353\) 3.18965 + 5.52464i 0.169768 + 0.294047i 0.938338 0.345718i \(-0.112365\pi\)
−0.768570 + 0.639766i \(0.779031\pi\)
\(354\) 0 0
\(355\) 12.5032 21.6561i 0.663600 1.14939i
\(356\) 0 0
\(357\) 8.98696 1.63415i 0.475640 0.0864883i
\(358\) 0 0
\(359\) −25.3664 −1.33879 −0.669394 0.742907i \(-0.733446\pi\)
−0.669394 + 0.742907i \(0.733446\pi\)
\(360\) 0 0
\(361\) −6.01989 + 10.4268i −0.316836 + 0.548776i
\(362\) 0 0
\(363\) 13.0119 + 15.3399i 0.682945 + 0.805136i
\(364\) 0 0
\(365\) −14.6837 25.4329i −0.768580 1.33122i
\(366\) 0 0
\(367\) 4.81583 + 8.34126i 0.251384 + 0.435410i 0.963907 0.266239i \(-0.0857809\pi\)
−0.712523 + 0.701649i \(0.752448\pi\)
\(368\) 0 0
\(369\) −17.0410 13.9919i −0.887121 0.728388i
\(370\) 0 0
\(371\) 6.36237 0.330318
\(372\) 0 0
\(373\) 16.8973 29.2670i 0.874909 1.51539i 0.0180502 0.999837i \(-0.494254\pi\)
0.856859 0.515550i \(-0.172413\pi\)
\(374\) 0 0
\(375\) −4.77159 + 13.3308i −0.246404 + 0.688399i
\(376\) 0 0
\(377\) 12.1359 + 6.64213i 0.625030 + 0.342087i
\(378\) 0 0
\(379\) −12.7091 + 22.0129i −0.652825 + 1.13073i 0.329610 + 0.944117i \(0.393083\pi\)
−0.982434 + 0.186608i \(0.940250\pi\)
\(380\) 0 0
\(381\) 6.94848 + 8.19168i 0.355981 + 0.419672i
\(382\) 0 0
\(383\) −14.6179 + 25.3189i −0.746938 + 1.29373i 0.202346 + 0.979314i \(0.435144\pi\)
−0.949284 + 0.314420i \(0.898190\pi\)
\(384\) 0 0
\(385\) −22.4169 + 38.8273i −1.14247 + 1.97882i
\(386\) 0 0
\(387\) 5.94235 + 4.87908i 0.302066 + 0.248018i
\(388\) 0 0
\(389\) −14.2989 + 24.7664i −0.724981 + 1.25570i 0.234000 + 0.972236i \(0.424818\pi\)
−0.958982 + 0.283468i \(0.908515\pi\)
\(390\) 0 0
\(391\) 2.50456 + 4.33802i 0.126661 + 0.219383i
\(392\) 0 0
\(393\) −7.17594 + 1.30484i −0.361978 + 0.0658205i
\(394\) 0 0
\(395\) 26.5884 1.33781
\(396\) 0 0
\(397\) 13.8398 + 23.9712i 0.694597 + 1.20308i 0.970316 + 0.241840i \(0.0777508\pi\)
−0.275719 + 0.961238i \(0.588916\pi\)
\(398\) 0 0
\(399\) 34.1150 6.20331i 1.70788 0.310554i
\(400\) 0 0
\(401\) −20.2569 −1.01158 −0.505790 0.862657i \(-0.668799\pi\)
−0.505790 + 0.862657i \(0.668799\pi\)
\(402\) 0 0
\(403\) 29.9566 + 16.3956i 1.49224 + 0.816725i
\(404\) 0 0
\(405\) 17.7615 15.5617i 0.882575 0.773269i
\(406\) 0 0
\(407\) −20.4001 −1.01119
\(408\) 0 0
\(409\) 7.80735 13.5227i 0.386049 0.668656i −0.605865 0.795567i \(-0.707173\pi\)
0.991914 + 0.126911i \(0.0405063\pi\)
\(410\) 0 0
\(411\) −0.680515 + 1.90121i −0.0335673 + 0.0937799i
\(412\) 0 0
\(413\) 15.7980 27.3630i 0.777371 1.34645i
\(414\) 0 0
\(415\) 23.7137 1.16406
\(416\) 0 0
\(417\) −8.39012 9.89126i −0.410866 0.484377i
\(418\) 0 0
\(419\) 26.5606 1.29757 0.648785 0.760972i \(-0.275278\pi\)
0.648785 + 0.760972i \(0.275278\pi\)
\(420\) 0 0
\(421\) −3.31325 + 5.73872i −0.161478 + 0.279688i −0.935399 0.353594i \(-0.884959\pi\)
0.773921 + 0.633282i \(0.218293\pi\)
\(422\) 0 0
\(423\) 21.8014 8.19965i 1.06002 0.398681i
\(424\) 0 0
\(425\) −2.76569 −0.134156
\(426\) 0 0
\(427\) 22.8968 1.10806
\(428\) 0 0
\(429\) 22.2030 19.7220i 1.07197 0.952185i
\(430\) 0 0
\(431\) −19.3047 + 33.4367i −0.929874 + 1.61059i −0.146344 + 0.989234i \(0.546751\pi\)
−0.783529 + 0.621355i \(0.786583\pi\)
\(432\) 0 0
\(433\) −0.943893 1.63487i −0.0453606 0.0785668i 0.842454 0.538769i \(-0.181110\pi\)
−0.887814 + 0.460202i \(0.847777\pi\)
\(434\) 0 0
\(435\) 11.2799 + 13.2981i 0.540830 + 0.637594i
\(436\) 0 0
\(437\) 9.50743 + 16.4674i 0.454802 + 0.787740i
\(438\) 0 0
\(439\) 1.51096 + 2.61706i 0.0721143 + 0.124906i 0.899828 0.436245i \(-0.143692\pi\)
−0.827713 + 0.561151i \(0.810359\pi\)
\(440\) 0 0
\(441\) −13.7064 11.2539i −0.652684 0.535899i
\(442\) 0 0
\(443\) −0.0108117 + 0.0187264i −0.000513680 + 0.000889719i −0.866282 0.499555i \(-0.833497\pi\)
0.865768 + 0.500445i \(0.166830\pi\)
\(444\) 0 0
\(445\) −33.4157 −1.58406
\(446\) 0 0
\(447\) 4.64270 + 5.47336i 0.219592 + 0.258881i
\(448\) 0 0
\(449\) 7.43393 + 12.8759i 0.350829 + 0.607653i 0.986395 0.164393i \(-0.0525665\pi\)
−0.635566 + 0.772047i \(0.719233\pi\)
\(450\) 0 0
\(451\) −17.4754 30.2683i −0.822884 1.42528i
\(452\) 0 0
\(453\) 0.840600 + 0.990997i 0.0394948 + 0.0465611i
\(454\) 0 0
\(455\) 29.8193 + 16.3205i 1.39795 + 0.765116i
\(456\) 0 0
\(457\) −1.67396 2.89938i −0.0783045 0.135627i 0.824214 0.566278i \(-0.191617\pi\)
−0.902519 + 0.430651i \(0.858284\pi\)
\(458\) 0 0
\(459\) −6.66470 3.70687i −0.311082 0.173022i
\(460\) 0 0
\(461\) 14.0776 0.655659 0.327830 0.944737i \(-0.393683\pi\)
0.327830 + 0.944737i \(0.393683\pi\)
\(462\) 0 0
\(463\) −15.2927 26.4878i −0.710713 1.23099i −0.964590 0.263755i \(-0.915039\pi\)
0.253877 0.967237i \(-0.418294\pi\)
\(464\) 0 0
\(465\) 27.8437 + 32.8254i 1.29122 + 1.52224i
\(466\) 0 0
\(467\) 22.0857 1.02200 0.511002 0.859579i \(-0.329274\pi\)
0.511002 + 0.859579i \(0.329274\pi\)
\(468\) 0 0
\(469\) 15.2588 0.704585
\(470\) 0 0
\(471\) 3.08601 0.561145i 0.142196 0.0258562i
\(472\) 0 0
\(473\) 6.09381 + 10.5548i 0.280194 + 0.485309i
\(474\) 0 0
\(475\) −10.4987 −0.481714
\(476\) 0 0
\(477\) −4.10538 3.37080i −0.187972 0.154339i
\(478\) 0 0
\(479\) −11.7282 20.3139i −0.535876 0.928164i −0.999120 0.0419336i \(-0.986648\pi\)
0.463245 0.886230i \(-0.346685\pi\)
\(480\) 0 0
\(481\) 0.352945 + 15.4634i 0.0160929 + 0.705072i
\(482\) 0 0
\(483\) 7.15835 19.9989i 0.325716 0.909981i
\(484\) 0 0
\(485\) −15.8555 27.4626i −0.719962 1.24701i
\(486\) 0 0
\(487\) −4.07543 7.05885i −0.184675 0.319867i 0.758792 0.651333i \(-0.225790\pi\)
−0.943467 + 0.331466i \(0.892457\pi\)
\(488\) 0 0
\(489\) −40.3155 + 7.33079i −1.82313 + 0.331510i
\(490\) 0 0
\(491\) −11.1953 −0.505236 −0.252618 0.967566i \(-0.581292\pi\)
−0.252618 + 0.967566i \(0.581292\pi\)
\(492\) 0 0
\(493\) 2.81575 4.87702i 0.126815 0.219650i
\(494\) 0 0
\(495\) 35.0356 13.1771i 1.57473 0.592267i
\(496\) 0 0
\(497\) 17.1228 + 29.6576i 0.768064 + 1.33033i
\(498\) 0 0
\(499\) −0.839515 1.45408i −0.0375818 0.0650936i 0.846623 0.532194i \(-0.178632\pi\)
−0.884205 + 0.467100i \(0.845299\pi\)
\(500\) 0 0
\(501\) 1.67086 4.66803i 0.0746486 0.208552i
\(502\) 0 0
\(503\) −7.55237 13.0811i −0.336743 0.583257i 0.647075 0.762427i \(-0.275992\pi\)
−0.983818 + 0.179170i \(0.942659\pi\)
\(504\) 0 0
\(505\) 5.70831 9.88708i 0.254016 0.439969i
\(506\) 0 0
\(507\) −15.3336 16.4888i −0.680987 0.732295i
\(508\) 0 0
\(509\) 31.9139 1.41456 0.707279 0.706935i \(-0.249922\pi\)
0.707279 + 0.706935i \(0.249922\pi\)
\(510\) 0 0
\(511\) 40.2180 1.77914
\(512\) 0 0
\(513\) −25.2996 14.0715i −1.11700 0.621271i
\(514\) 0 0
\(515\) 11.1177 19.2564i 0.489904 0.848538i
\(516\) 0 0
\(517\) 36.9213 1.62380
\(518\) 0 0
\(519\) −12.8732 + 35.9649i −0.565070 + 1.57868i
\(520\) 0 0
\(521\) −15.5056 −0.679315 −0.339657 0.940549i \(-0.610311\pi\)
−0.339657 + 0.940549i \(0.610311\pi\)
\(522\) 0 0
\(523\) −20.4667 + 35.4494i −0.894948 + 1.55009i −0.0610783 + 0.998133i \(0.519454\pi\)
−0.833869 + 0.551962i \(0.813879\pi\)
\(524\) 0 0
\(525\) 7.58650 + 8.94385i 0.331102 + 0.390342i
\(526\) 0 0
\(527\) 6.95048 12.0386i 0.302768 0.524409i
\(528\) 0 0
\(529\) −11.3516 −0.493546
\(530\) 0 0
\(531\) −24.6909 + 9.28640i −1.07149 + 0.402996i
\(532\) 0 0
\(533\) −22.6413 + 13.7702i −0.980702 + 0.596453i
\(534\) 0 0
\(535\) −46.6829 −2.01828
\(536\) 0 0
\(537\) 29.1293 + 34.3410i 1.25702 + 1.48193i
\(538\) 0 0
\(539\) −14.0557 24.3452i −0.605423 1.04862i
\(540\) 0 0
\(541\) 12.7245 0.547069 0.273534 0.961862i \(-0.411807\pi\)
0.273534 + 0.961862i \(0.411807\pi\)
\(542\) 0 0
\(543\) −8.76398 + 24.4847i −0.376098 + 1.05074i
\(544\) 0 0
\(545\) −24.2992 42.0874i −1.04086 1.80283i
\(546\) 0 0
\(547\) −2.72430 + 4.71863i −0.116483 + 0.201754i −0.918371 0.395719i \(-0.870495\pi\)
0.801889 + 0.597473i \(0.203829\pi\)
\(548\) 0 0
\(549\) −14.7744 12.1308i −0.630557 0.517731i
\(550\) 0 0
\(551\) 10.6887 18.5134i 0.455355 0.788698i
\(552\) 0 0
\(553\) −18.2061 + 31.5339i −0.774203 + 1.34096i
\(554\) 0 0
\(555\) −6.57009 + 18.3554i −0.278885 + 0.779144i
\(556\) 0 0
\(557\) −6.49410 + 11.2481i −0.275164 + 0.476598i −0.970176 0.242400i \(-0.922065\pi\)
0.695013 + 0.718997i \(0.255399\pi\)
\(558\) 0 0
\(559\) 7.89520 4.80177i 0.333931 0.203093i
\(560\) 0 0
\(561\) −7.81964 9.21871i −0.330146 0.389214i
\(562\) 0 0
\(563\) 10.2194 17.7005i 0.430696 0.745987i −0.566237 0.824242i \(-0.691601\pi\)
0.996933 + 0.0782548i \(0.0249348\pi\)
\(564\) 0 0
\(565\) 34.2377 1.44039
\(566\) 0 0
\(567\) 6.29427 + 31.7209i 0.264335 + 1.33215i
\(568\) 0 0
\(569\) 5.93957 + 10.2876i 0.249000 + 0.431280i 0.963248 0.268612i \(-0.0865649\pi\)
−0.714249 + 0.699892i \(0.753232\pi\)
\(570\) 0 0
\(571\) 8.04840 + 13.9402i 0.336815 + 0.583381i 0.983832 0.179095i \(-0.0573169\pi\)
−0.647017 + 0.762476i \(0.723984\pi\)
\(572\) 0 0
\(573\) −14.3038 + 39.9618i −0.597551 + 1.66943i
\(574\) 0 0
\(575\) −3.21574 + 5.56982i −0.134106 + 0.232278i
\(576\) 0 0
\(577\) 8.72062 0.363044 0.181522 0.983387i \(-0.441898\pi\)
0.181522 + 0.983387i \(0.441898\pi\)
\(578\) 0 0
\(579\) 7.08509 19.7942i 0.294446 0.822620i
\(580\) 0 0
\(581\) −16.2377 + 28.1246i −0.673655 + 1.16680i
\(582\) 0 0
\(583\) −4.21002 7.29197i −0.174361 0.302002i
\(584\) 0 0
\(585\) −10.5945 26.3293i −0.438030 1.08858i
\(586\) 0 0
\(587\) 10.6070 + 18.3719i 0.437800 + 0.758291i 0.997520 0.0703906i \(-0.0224246\pi\)
−0.559720 + 0.828682i \(0.689091\pi\)
\(588\) 0 0
\(589\) 26.3844 45.6991i 1.08715 1.88300i
\(590\) 0 0
\(591\) 0.661386 + 0.779720i 0.0272058 + 0.0320734i
\(592\) 0 0
\(593\) 2.20452 0.0905286 0.0452643 0.998975i \(-0.485587\pi\)
0.0452643 + 0.998975i \(0.485587\pi\)
\(594\) 0 0
\(595\) 6.91862 11.9834i 0.283636 0.491272i
\(596\) 0 0
\(597\) 7.21396 1.31175i 0.295248 0.0536865i
\(598\) 0 0
\(599\) −13.5519 23.4726i −0.553715 0.959063i −0.998002 0.0631787i \(-0.979876\pi\)
0.444287 0.895885i \(-0.353457\pi\)
\(600\) 0 0
\(601\) −7.31500 12.6699i −0.298385 0.516818i 0.677382 0.735632i \(-0.263115\pi\)
−0.975767 + 0.218814i \(0.929781\pi\)
\(602\) 0 0
\(603\) −9.84588 8.08415i −0.400955 0.329212i
\(604\) 0 0
\(605\) 30.4717 1.23885
\(606\) 0 0
\(607\) −18.3416 + 31.7685i −0.744461 + 1.28944i 0.205985 + 0.978555i \(0.433960\pi\)
−0.950446 + 0.310889i \(0.899373\pi\)
\(608\) 0 0
\(609\) −23.4954 + 4.27229i −0.952080 + 0.173122i
\(610\) 0 0
\(611\) −0.638781 27.9867i −0.0258423 1.13222i
\(612\) 0 0
\(613\) −4.48301 + 7.76481i −0.181067 + 0.313618i −0.942244 0.334927i \(-0.891288\pi\)
0.761177 + 0.648544i \(0.224622\pi\)
\(614\) 0 0
\(615\) −32.8627 + 5.97561i −1.32515 + 0.240960i
\(616\) 0 0
\(617\) −4.22083 + 7.31069i −0.169924 + 0.294317i −0.938393 0.345570i \(-0.887686\pi\)
0.768469 + 0.639887i \(0.221019\pi\)
\(618\) 0 0
\(619\) −0.643084 + 1.11385i −0.0258477 + 0.0447695i −0.878660 0.477448i \(-0.841562\pi\)
0.852812 + 0.522218i \(0.174895\pi\)
\(620\) 0 0
\(621\) −15.2145 + 9.11196i −0.610536 + 0.365650i
\(622\) 0 0
\(623\) 22.8811 39.6312i 0.916710 1.58779i
\(624\) 0 0
\(625\) 15.4355 + 26.7351i 0.617421 + 1.06940i
\(626\) 0 0
\(627\) −29.6838 34.9947i −1.18546 1.39755i
\(628\) 0 0
\(629\) 6.29615 0.251044
\(630\) 0 0
\(631\) 8.83740 + 15.3068i 0.351811 + 0.609355i 0.986567 0.163358i \(-0.0522326\pi\)
−0.634756 + 0.772713i \(0.718899\pi\)
\(632\) 0 0
\(633\) −13.9662 + 39.0184i −0.555105 + 1.55084i
\(634\) 0 0
\(635\) 16.2722 0.645744
\(636\) 0 0
\(637\) −18.2107 + 11.0756i −0.721535 + 0.438830i
\(638\) 0 0
\(639\) 4.66403 28.2086i 0.184506 1.11591i
\(640\) 0 0
\(641\) 21.2243 0.838311 0.419156 0.907914i \(-0.362326\pi\)
0.419156 + 0.907914i \(0.362326\pi\)
\(642\) 0 0
\(643\) −9.91286 + 17.1696i −0.390925 + 0.677102i −0.992572 0.121660i \(-0.961178\pi\)
0.601647 + 0.798762i \(0.294511\pi\)
\(644\) 0 0
\(645\) 11.4595 2.08374i 0.451217 0.0820473i
\(646\) 0 0
\(647\) 0.739188 1.28031i 0.0290605 0.0503342i −0.851129 0.524956i \(-0.824082\pi\)
0.880190 + 0.474622i \(0.157415\pi\)
\(648\) 0 0
\(649\) −41.8147 −1.64137
\(650\) 0 0
\(651\) −57.9967 + 10.5459i −2.27307 + 0.413324i
\(652\) 0 0
\(653\) −11.1411 −0.435983 −0.217992 0.975951i \(-0.569951\pi\)
−0.217992 + 0.975951i \(0.569951\pi\)
\(654\) 0 0
\(655\) −5.52440 + 9.56855i −0.215856 + 0.373874i
\(656\) 0 0
\(657\) −25.9511 21.3076i −1.01245 0.831290i
\(658\) 0 0
\(659\) 4.47743 0.174416 0.0872079 0.996190i \(-0.472206\pi\)
0.0872079 + 0.996190i \(0.472206\pi\)
\(660\) 0 0
\(661\) −12.5177 −0.486882 −0.243441 0.969916i \(-0.578276\pi\)
−0.243441 + 0.969916i \(0.578276\pi\)
\(662\) 0 0
\(663\) −6.85258 + 6.08686i −0.266132 + 0.236394i
\(664\) 0 0
\(665\) 26.2634 45.4896i 1.01845 1.76401i
\(666\) 0 0
\(667\) −6.54787 11.3413i −0.253535 0.439135i
\(668\) 0 0
\(669\) 1.86241 0.338652i 0.0720049 0.0130931i
\(670\) 0 0
\(671\) −15.1510 26.2423i −0.584897 1.01307i
\(672\) 0 0
\(673\) 8.84608 + 15.3219i 0.340991 + 0.590614i 0.984617 0.174726i \(-0.0559040\pi\)
−0.643626 + 0.765340i \(0.722571\pi\)
\(674\) 0 0
\(675\) −0.156779 9.79046i −0.00603441 0.376835i
\(676\) 0 0
\(677\) −19.1654 + 33.1955i −0.736587 + 1.27581i 0.217437 + 0.976074i \(0.430230\pi\)
−0.954024 + 0.299731i \(0.903103\pi\)
\(678\) 0 0
\(679\) 43.4276 1.66660
\(680\) 0 0
\(681\) 14.8708 41.5457i 0.569849 1.59203i
\(682\) 0 0
\(683\) −23.3906 40.5137i −0.895017 1.55021i −0.833784 0.552091i \(-0.813830\pi\)
−0.0612334 0.998123i \(-0.519503\pi\)
\(684\) 0 0
\(685\) 1.52951 + 2.64918i 0.0584394 + 0.101220i
\(686\) 0 0
\(687\) 21.3772 3.88714i 0.815592 0.148304i
\(688\) 0 0
\(689\) −5.45454 + 3.31739i −0.207801 + 0.126383i
\(690\) 0 0
\(691\) −14.2796 24.7330i −0.543222 0.940888i −0.998716 0.0506495i \(-0.983871\pi\)
0.455494 0.890239i \(-0.349462\pi\)
\(692\) 0 0
\(693\) −8.36213 + 50.5752i −0.317651 + 1.92119i
\(694\) 0 0
\(695\) −19.6484 −0.745305
\(696\) 0 0
\(697\) 5.39349 + 9.34180i 0.204293 + 0.353846i
\(698\) 0 0
\(699\) 6.62020 18.4954i 0.250399 0.699561i
\(700\) 0 0
\(701\) −7.23324 −0.273196 −0.136598 0.990627i \(-0.543617\pi\)
−0.136598 + 0.990627i \(0.543617\pi\)
\(702\) 0 0
\(703\) 23.9005 0.901424
\(704\) 0 0
\(705\) 11.8910 33.2208i 0.447839 1.25117i
\(706\) 0 0
\(707\) 7.81740 + 13.5401i 0.294004 + 0.509229i
\(708\) 0 0
\(709\) 36.8481 1.38386 0.691931 0.721964i \(-0.256760\pi\)
0.691931 + 0.721964i \(0.256760\pi\)
\(710\) 0 0
\(711\) 28.4545 10.7019i 1.06713 0.401353i
\(712\) 0 0
\(713\) −16.1630 27.9951i −0.605308 1.04842i
\(714\) 0 0
\(715\) −1.02654 44.9755i −0.0383905 1.68199i
\(716\) 0 0
\(717\) 1.31997 0.240018i 0.0492953 0.00896364i
\(718\) 0 0
\(719\) 6.09570 + 10.5581i 0.227331 + 0.393749i 0.957016 0.290034i \(-0.0936666\pi\)
−0.729685 + 0.683783i \(0.760333\pi\)
\(720\) 0 0
\(721\) 15.2254 + 26.3712i 0.567024 + 0.982115i
\(722\) 0 0
\(723\) −5.11664 + 14.2948i −0.190290 + 0.531629i
\(724\) 0 0
\(725\) 7.23058 0.268537
\(726\) 0 0
\(727\) 11.3403 19.6420i 0.420589 0.728482i −0.575408 0.817866i \(-0.695157\pi\)
0.995997 + 0.0893849i \(0.0284901\pi\)
\(728\) 0 0
\(729\) 12.7444 23.8029i 0.472015 0.881591i
\(730\) 0 0
\(731\) −1.88075 3.25756i −0.0695622 0.120485i
\(732\) 0 0
\(733\) −9.20420 15.9421i −0.339965 0.588836i 0.644461 0.764637i \(-0.277082\pi\)
−0.984426 + 0.175801i \(0.943749\pi\)
\(734\) 0 0
\(735\) −26.4320 + 4.80627i −0.974958 + 0.177282i
\(736\) 0 0
\(737\) −10.0968 17.4882i −0.371921 0.644187i
\(738\) 0 0
\(739\) −7.08381 + 12.2695i −0.260582 + 0.451341i −0.966397 0.257055i \(-0.917248\pi\)
0.705815 + 0.708396i \(0.250581\pi\)
\(740\) 0 0
\(741\) −26.0127 + 23.1060i −0.955602 + 0.848821i
\(742\) 0 0
\(743\) 27.5447 1.01052 0.505259 0.862968i \(-0.331397\pi\)
0.505259 + 0.862968i \(0.331397\pi\)
\(744\) 0 0
\(745\) 10.8725 0.398337
\(746\) 0 0
\(747\) 25.3781 9.54485i 0.928534 0.349228i
\(748\) 0 0
\(749\) 31.9656 55.3661i 1.16800 2.02303i
\(750\) 0 0
\(751\) −41.2700 −1.50596 −0.752982 0.658041i \(-0.771385\pi\)
−0.752982 + 0.658041i \(0.771385\pi\)
\(752\) 0 0
\(753\) 32.6876 5.94377i 1.19120 0.216603i
\(754\) 0 0
\(755\) 1.96855 0.0716430
\(756\) 0 0
\(757\) 6.86589 11.8921i 0.249545 0.432225i −0.713854 0.700294i \(-0.753052\pi\)
0.963400 + 0.268069i \(0.0863856\pi\)
\(758\) 0 0
\(759\) −27.6576 + 5.02914i −1.00391 + 0.182546i
\(760\) 0 0
\(761\) 14.5962 25.2814i 0.529113 0.916451i −0.470311 0.882501i \(-0.655858\pi\)
0.999424 0.0339496i \(-0.0108086\pi\)
\(762\) 0 0
\(763\) 66.5544 2.40943
\(764\) 0 0
\(765\) −10.8132 + 4.06690i −0.390950 + 0.147039i
\(766\) 0 0
\(767\) 0.723443 + 31.6959i 0.0261220 + 1.14447i
\(768\) 0 0
\(769\) −36.0187 −1.29887 −0.649433 0.760419i \(-0.724994\pi\)
−0.649433 + 0.760419i \(0.724994\pi\)
\(770\) 0 0
\(771\) −7.60460 + 21.2456i −0.273873 + 0.765142i
\(772\) 0 0
\(773\) −26.1726 45.3322i −0.941361 1.63049i −0.762878 0.646543i \(-0.776214\pi\)
−0.178483 0.983943i \(-0.557119\pi\)
\(774\) 0 0
\(775\) 17.8482 0.641126
\(776\) 0 0
\(777\) −17.2708 20.3608i −0.619586 0.730440i
\(778\) 0 0
\(779\) 20.4740 + 35.4620i 0.733556 + 1.27056i
\(780\) 0 0
\(781\) 22.6606 39.2492i 0.810859 1.40445i
\(782\) 0 0
\(783\) 17.4241 + 9.69118i 0.622686 + 0.346335i
\(784\) 0 0
\(785\) 2.37576 4.11494i 0.0847947 0.146869i
\(786\) 0 0
\(787\) −6.70576 + 11.6147i −0.239035 + 0.414020i −0.960438 0.278495i \(-0.910164\pi\)
0.721403 + 0.692516i \(0.243498\pi\)
\(788\) 0 0
\(789\) 30.4447 5.53593i 1.08386 0.197084i
\(790\) 0 0
\(791\) −23.4439 + 40.6060i −0.833568 + 1.44378i
\(792\) 0 0
\(793\) −19.6298 + 11.9386i −0.697073 + 0.423952i
\(794\) 0 0
\(795\) −7.91700 + 1.43959i −0.280787 + 0.0510571i
\(796\) 0 0
\(797\) −10.6034 + 18.3656i −0.375591 + 0.650542i −0.990415 0.138122i \(-0.955893\pi\)
0.614825 + 0.788664i \(0.289227\pi\)
\(798\) 0 0
\(799\) −11.3952 −0.403132
\(800\) 0 0
\(801\) −35.7610 + 13.4499i −1.26355 + 0.475230i
\(802\) 0 0
\(803\) −26.6125 46.0942i −0.939135 1.62663i
\(804\) 0 0
\(805\) −16.0889 27.8668i −0.567059 0.982175i
\(806\) 0 0
\(807\) −1.18830 + 0.216076i −0.0418303 + 0.00760623i
\(808\) 0 0
\(809\) −2.68990 + 4.65903i −0.0945717 + 0.163803i −0.909430 0.415858i \(-0.863481\pi\)
0.814858 + 0.579660i \(0.196815\pi\)
\(810\) 0 0
\(811\) −25.9549 −0.911399 −0.455700 0.890134i \(-0.650611\pi\)
−0.455700 + 0.890134i \(0.650611\pi\)
\(812\) 0 0
\(813\) −4.70253 5.54389i −0.164925 0.194433i
\(814\) 0 0
\(815\) −31.0369 + 53.7575i −1.08718 + 1.88304i
\(816\) 0 0
\(817\) −7.13944 12.3659i −0.249777 0.432627i
\(818\) 0 0
\(819\) 38.4811 + 5.46357i 1.34464 + 0.190912i
\(820\) 0 0
\(821\) 14.7176 + 25.4917i 0.513649 + 0.889666i 0.999875 + 0.0158326i \(0.00503989\pi\)
−0.486226 + 0.873833i \(0.661627\pi\)
\(822\) 0 0
\(823\) −1.92176 + 3.32858i −0.0669883 + 0.116027i −0.897574 0.440863i \(-0.854672\pi\)
0.830586 + 0.556890i \(0.188006\pi\)
\(824\) 0 0
\(825\) 5.23060 14.6132i 0.182106 0.508765i
\(826\) 0 0
\(827\) 7.89362 0.274488 0.137244 0.990537i \(-0.456176\pi\)
0.137244 + 0.990537i \(0.456176\pi\)
\(828\) 0 0
\(829\) −13.9381 + 24.1415i −0.484091 + 0.838470i −0.999833 0.0182738i \(-0.994183\pi\)
0.515742 + 0.856744i \(0.327516\pi\)
\(830\) 0 0
\(831\) −14.9982 + 41.9018i −0.520283 + 1.45356i
\(832\) 0 0
\(833\) 4.33807 + 7.51375i 0.150305 + 0.260336i
\(834\) 0 0
\(835\) −3.75538 6.50451i −0.129960 0.225098i
\(836\) 0 0
\(837\) 43.0101 + 23.9220i 1.48665 + 0.826866i
\(838\) 0 0
\(839\) 1.01813 0.0351496 0.0175748 0.999846i \(-0.494405\pi\)
0.0175748 + 0.999846i \(0.494405\pi\)
\(840\) 0 0
\(841\) 7.13856 12.3643i 0.246157 0.426357i
\(842\) 0 0
\(843\) −15.1026 17.8048i −0.520162 0.613229i
\(844\) 0 0
\(845\) −34.0741 + 1.55626i −1.17218 + 0.0535369i
\(846\) 0 0
\(847\) −20.8652 + 36.1396i −0.716936 + 1.24177i
\(848\) 0 0
\(849\) 9.66317 26.9968i 0.331639 0.926528i
\(850\) 0 0
\(851\) 7.32068 12.6798i 0.250950 0.434658i
\(852\) 0 0
\(853\) 5.26184 9.11377i 0.180162 0.312049i −0.761774 0.647843i \(-0.775671\pi\)
0.941936 + 0.335794i \(0.109005\pi\)
\(854\) 0 0
\(855\) −41.0473 + 15.4382i −1.40379 + 0.527974i
\(856\) 0 0
\(857\) 27.4772 47.5919i 0.938602 1.62571i 0.170522 0.985354i \(-0.445455\pi\)
0.768081 0.640353i \(-0.221212\pi\)
\(858\) 0 0
\(859\) 24.2942 + 42.0789i 0.828909 + 1.43571i 0.898895 + 0.438164i \(0.144371\pi\)
−0.0699862 + 0.997548i \(0.522296\pi\)
\(860\) 0 0
\(861\) 15.4153 43.0670i 0.525352 1.46772i
\(862\) 0 0
\(863\) −36.1609 −1.23093 −0.615466 0.788163i \(-0.711032\pi\)
−0.615466 + 0.788163i \(0.711032\pi\)
\(864\) 0 0
\(865\) 28.9334 + 50.1141i 0.983765 + 1.70393i
\(866\) 0 0
\(867\) −16.6335 19.6095i −0.564904 0.665975i
\(868\) 0 0
\(869\) 48.1884 1.63468
\(870\) 0 0
\(871\) −13.0815 + 7.95606i −0.443251 + 0.269581i
\(872\) 0 0
\(873\) −28.0221 23.0081i −0.948403 0.778705i
\(874\) 0 0
\(875\) −29.3739 −0.993019
\(876\) 0 0
\(877\) 15.0883 26.1337i 0.509495 0.882471i −0.490445 0.871472i \(-0.663166\pi\)
0.999940 0.0109987i \(-0.00350106\pi\)
\(878\) 0 0
\(879\) −14.1968 16.7368i −0.478845 0.564518i
\(880\) 0 0
\(881\) 2.07896 3.60087i 0.0700420 0.121316i −0.828877 0.559430i \(-0.811020\pi\)
0.898919 + 0.438114i \(0.144353\pi\)
\(882\) 0 0
\(883\) −26.0189 −0.875605 −0.437802 0.899071i \(-0.644243\pi\)
−0.437802 + 0.899071i \(0.644243\pi\)
\(884\) 0 0
\(885\) −13.4669 + 37.6237i −0.452686 + 1.26471i
\(886\) 0 0
\(887\) 35.1636 1.18068 0.590339 0.807155i \(-0.298994\pi\)
0.590339 + 0.807155i \(0.298994\pi\)
\(888\) 0 0
\(889\) −11.1422 + 19.2989i −0.373699 + 0.647265i
\(890\) 0 0
\(891\) 32.1906 28.2038i 1.07843 0.944864i
\(892\) 0 0
\(893\) −43.2566 −1.44753
\(894\) 0 0
\(895\) 68.2163 2.28022
\(896\) 0 0
\(897\) 4.29064 + 20.8777i 0.143260 + 0.697087i
\(898\) 0 0
\(899\) −18.1712 + 31.4734i −0.606044 + 1.04970i
\(900\) 0 0
\(901\) 1.29935 + 2.25055i 0.0432877 + 0.0749766i
\(902\) 0 0
\(903\) −5.37544 + 15.0178i −0.178883 + 0.499761i
\(904\) 0 0
\(905\) 19.6977 + 34.1173i 0.654772 + 1.13410i
\(906\) 0 0
\(907\) 11.9678 + 20.7288i 0.397384 + 0.688289i 0.993402 0.114682i \(-0.0365849\pi\)
−0.596019 + 0.802971i \(0.703252\pi\)
\(908\) 0 0
\(909\) 2.12936 12.8786i 0.0706263 0.427156i
\(910\) 0 0
\(911\) 5.01570 8.68744i 0.166177 0.287828i −0.770895 0.636962i \(-0.780191\pi\)
0.937073 + 0.349134i \(0.113524\pi\)
\(912\) 0 0
\(913\) 42.9784 1.42238
\(914\) 0 0
\(915\) −28.4916 + 5.18079i −0.941904 + 0.171272i
\(916\) 0 0
\(917\) −7.56555 13.1039i −0.249836 0.432729i
\(918\) 0 0
\(919\) −26.8145 46.4441i −0.884530 1.53205i −0.846252 0.532783i \(-0.821146\pi\)
−0.0382782 0.999267i \(-0.512187\pi\)
\(920\) 0 0
\(921\) 5.30352 14.8169i 0.174757 0.488233i
\(922\) 0 0
\(923\) −30.1433 16.4979i −0.992180 0.543034i
\(924\) 0 0
\(925\) 4.04198 + 7.00092i 0.132900 + 0.230189i
\(926\) 0 0
\(927\) 4.14720 25.0828i 0.136212 0.823826i
\(928\) 0 0
\(929\) 36.9590 1.21258 0.606292 0.795242i \(-0.292656\pi\)
0.606292 + 0.795242i \(0.292656\pi\)
\(930\) 0 0
\(931\) 16.4675 + 28.5226i 0.539701 + 0.934790i
\(932\) 0 0
\(933\) 8.19221 1.48963i 0.268201 0.0487684i
\(934\) 0 0
\(935\) −18.3124 −0.598879
\(936\) 0 0
\(937\) 15.2960 0.499697 0.249849 0.968285i \(-0.419619\pi\)
0.249849 + 0.968285i \(0.419619\pi\)
\(938\) 0 0
\(939\) −14.6634 17.2869i −0.478522 0.564138i
\(940\) 0 0
\(941\) 8.92739 + 15.4627i 0.291025 + 0.504069i 0.974052 0.226323i \(-0.0726705\pi\)
−0.683028 + 0.730392i \(0.739337\pi\)
\(942\) 0 0
\(943\) 25.0846 0.816866
\(944\) 0 0
\(945\) 42.8130 + 23.8124i 1.39271 + 0.774616i
\(946\) 0 0
\(947\) −8.59070 14.8795i −0.279160 0.483520i 0.692016 0.721882i \(-0.256723\pi\)
−0.971176 + 0.238362i \(0.923389\pi\)
\(948\) 0 0
\(949\) −34.4794 + 20.9700i −1.11925 + 0.680716i
\(950\) 0 0
\(951\) 6.70575 + 7.90553i 0.217449 + 0.256354i
\(952\) 0 0
\(953\) 4.11751 + 7.13174i 0.133379 + 0.231020i 0.924977 0.380023i \(-0.124084\pi\)
−0.791598 + 0.611042i \(0.790750\pi\)
\(954\) 0 0
\(955\) 32.1488 + 55.6834i 1.04031 + 1.80187i
\(956\) 0 0
\(957\) 20.4435 + 24.1012i 0.660846 + 0.779083i
\(958\) 0 0
\(959\) −4.18925 −0.135278
\(960\) 0 0
\(961\) −29.3544 + 50.8432i −0.946915 + 1.64010i
\(962\) 0 0
\(963\) −49.9593 + 18.7900i −1.60992 + 0.605500i
\(964\) 0 0
\(965\) −15.9242 27.5816i −0.512620 0.887883i
\(966\) 0 0
\(967\) 11.5109 + 19.9375i 0.370166 + 0.641146i 0.989591 0.143910i \(-0.0459675\pi\)
−0.619425 + 0.785056i \(0.712634\pi\)
\(968\) 0 0
\(969\) 9.16141 + 10.8005i 0.294307 + 0.346963i
\(970\) 0 0
\(971\) 8.70378 + 15.0754i 0.279318 + 0.483792i 0.971215 0.238203i \(-0.0765584\pi\)
−0.691898 + 0.721996i \(0.743225\pi\)
\(972\) 0 0
\(973\) 13.4540 23.3030i 0.431315 0.747060i
\(974\) 0 0
\(975\) −11.1674 3.71202i −0.357643 0.118880i
\(976\) 0 0
\(977\) 48.7950 1.56109 0.780546 0.625099i \(-0.214941\pi\)
0.780546 + 0.625099i \(0.214941\pi\)
\(978\) 0 0
\(979\) −60.5622 −1.93558
\(980\) 0 0
\(981\) −42.9449 35.2607i −1.37112 1.12579i
\(982\) 0 0
\(983\) 14.7251 25.5046i 0.469657 0.813470i −0.529741 0.848160i \(-0.677711\pi\)
0.999398 + 0.0346892i \(0.0110441\pi\)
\(984\) 0 0
\(985\) 1.54886 0.0493509
\(986\) 0 0
\(987\) 31.2577 + 36.8503i 0.994944 + 1.17296i
\(988\) 0 0
\(989\) −8.74719 −0.278145
\(990\) 0 0
\(991\) 26.0112 45.0527i 0.826273 1.43115i −0.0746703 0.997208i \(-0.523790\pi\)
0.900943 0.433938i \(-0.142876\pi\)
\(992\) 0 0
\(993\) −14.7696 + 41.2632i −0.468700 + 1.30945i
\(994\) 0 0
\(995\) 5.55367 9.61924i 0.176063 0.304951i
\(996\) 0 0
\(997\) 61.7749 1.95643 0.978215 0.207594i \(-0.0665634\pi\)
0.978215 + 0.207594i \(0.0665634\pi\)
\(998\) 0 0
\(999\) 0.356909 + 22.2881i 0.0112921 + 0.705165i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.k.a.61.9 yes 28
3.2 odd 2 1404.2.k.a.1153.12 28
9.4 even 3 468.2.j.a.373.11 yes 28
9.5 odd 6 1404.2.j.a.685.12 28
13.3 even 3 468.2.j.a.133.11 28
39.29 odd 6 1404.2.j.a.289.12 28
117.68 odd 6 1404.2.k.a.1225.12 28
117.94 even 3 inner 468.2.k.a.445.9 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.11 28 13.3 even 3
468.2.j.a.373.11 yes 28 9.4 even 3
468.2.k.a.61.9 yes 28 1.1 even 1 trivial
468.2.k.a.445.9 yes 28 117.94 even 3 inner
1404.2.j.a.289.12 28 39.29 odd 6
1404.2.j.a.685.12 28 9.5 odd 6
1404.2.k.a.1153.12 28 3.2 odd 2
1404.2.k.a.1225.12 28 117.68 odd 6