Properties

Label 468.2.k
Level 468468
Weight 22
Character orbit 468.k
Rep. character χ468(61,)\chi_{468}(61,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 2828
Newform subspaces 11
Sturm bound 168168
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 468=223213 468 = 2^{2} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 468.k (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 117 117
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 1 1
Sturm bound: 168168
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(468,[χ])M_{2}(468, [\chi]).

Total New Old
Modular forms 180 28 152
Cusp forms 156 28 128
Eisenstein series 24 0 24

Trace form

28q4q72q94q11+q134q158q17q19+14q21+8q2314q2513q29+2q3125q33+3q35q373q398q414q43+29q99+O(q100) 28 q - 4 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - 4 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} + 8 q^{23} - 14 q^{25} - 13 q^{29} + 2 q^{31} - 25 q^{33} + 3 q^{35} - q^{37} - 3 q^{39} - 8 q^{41} - 4 q^{43}+ \cdots - 29 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(468,[χ])S_{2}^{\mathrm{new}}(468, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
468.2.k.a 468.k 117.f 2828 3.7373.737 None 468.2.j.a 00 00 00 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}]

Decomposition of S2old(468,[χ])S_{2}^{\mathrm{old}}(468, [\chi]) into lower level spaces

S2old(468,[χ]) S_{2}^{\mathrm{old}}(468, [\chi]) \simeq S2new(117,[χ])S_{2}^{\mathrm{new}}(117, [\chi])3^{\oplus 3}\oplusS2new(234,[χ])S_{2}^{\mathrm{new}}(234, [\chi])2^{\oplus 2}