Properties

Label 468.2.j.a.133.11
Level $468$
Weight $2$
Character 468.133
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(133,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.133"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.11
Character \(\chi\) \(=\) 468.133
Dual form 468.2.j.a.373.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12041 + 1.32087i) q^{3} +(-1.31191 - 2.27229i) q^{5} +(-1.79663 - 3.11185i) q^{7} +(-0.489378 + 2.95982i) q^{9} +4.75537 q^{11} +(3.16282 - 1.73106i) q^{13} +(1.53152 - 4.27875i) q^{15} +(0.733833 - 1.27104i) q^{17} +(2.78567 - 4.82492i) q^{19} +(2.09739 - 5.85965i) q^{21} +(-1.70649 + 2.95573i) q^{23} +(-0.942208 + 1.63195i) q^{25} +(-4.45782 + 2.66979i) q^{27} +3.83704 q^{29} +(-4.73573 - 8.20253i) q^{31} +(5.32794 + 6.28121i) q^{33} +(-4.71403 + 8.16494i) q^{35} +(2.14495 + 3.71516i) q^{37} +(5.83014 + 2.23818i) q^{39} +(-3.67488 + 6.36507i) q^{41} +(1.28146 + 2.21955i) q^{43} +(7.36759 - 2.77100i) q^{45} +(-3.88207 + 6.72393i) q^{47} +(-2.95576 + 5.11952i) q^{49} +(2.50106 - 0.454782i) q^{51} +1.77064 q^{53} +(-6.23861 - 10.8056i) q^{55} +(9.49415 - 1.72637i) q^{57} -8.79316 q^{59} +(-3.18608 - 5.51845i) q^{61} +(10.0897 - 3.79482i) q^{63} +(-8.08280 - 4.91587i) q^{65} +(-2.12325 + 3.67758i) q^{67} +(-5.81609 + 1.05757i) q^{69} +(4.76526 - 8.25367i) q^{71} +11.1926 q^{73} +(-3.21125 + 0.583919i) q^{75} +(-8.54363 - 14.7980i) q^{77} +(-5.06674 + 8.77586i) q^{79} +(-8.52102 - 2.89694i) q^{81} +(-4.51894 + 7.82703i) q^{83} -3.85089 q^{85} +(4.29905 + 5.06822i) q^{87} +(6.36777 + 11.0293i) q^{89} +(-11.0692 - 6.73218i) q^{91} +(5.52850 - 15.4454i) q^{93} -14.6182 q^{95} +(-6.04292 - 10.4666i) q^{97} +(-2.32717 + 14.0750i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{7} - 2 q^{9} + 8 q^{11} + q^{13} - 10 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} - 4 q^{23} - 14 q^{25} + 26 q^{29} + 2 q^{31} + 8 q^{33} + 3 q^{35} - q^{37} - 12 q^{39} + 4 q^{41} + 2 q^{43}+ \cdots - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.12041 + 1.32087i 0.646867 + 0.762603i
\(4\) 0 0
\(5\) −1.31191 2.27229i −0.586703 1.01620i −0.994661 0.103199i \(-0.967092\pi\)
0.407957 0.913001i \(-0.366241\pi\)
\(6\) 0 0
\(7\) −1.79663 3.11185i −0.679062 1.17617i −0.975264 0.221045i \(-0.929053\pi\)
0.296201 0.955126i \(-0.404280\pi\)
\(8\) 0 0
\(9\) −0.489378 + 2.95982i −0.163126 + 0.986605i
\(10\) 0 0
\(11\) 4.75537 1.43380 0.716898 0.697178i \(-0.245561\pi\)
0.716898 + 0.697178i \(0.245561\pi\)
\(12\) 0 0
\(13\) 3.16282 1.73106i 0.877209 0.480108i
\(14\) 0 0
\(15\) 1.53152 4.27875i 0.395438 1.10477i
\(16\) 0 0
\(17\) 0.733833 1.27104i 0.177981 0.308272i −0.763208 0.646153i \(-0.776377\pi\)
0.941189 + 0.337881i \(0.109710\pi\)
\(18\) 0 0
\(19\) 2.78567 4.82492i 0.639076 1.10691i −0.346560 0.938028i \(-0.612650\pi\)
0.985636 0.168884i \(-0.0540164\pi\)
\(20\) 0 0
\(21\) 2.09739 5.85965i 0.457688 1.27868i
\(22\) 0 0
\(23\) −1.70649 + 2.95573i −0.355828 + 0.616312i −0.987259 0.159120i \(-0.949134\pi\)
0.631431 + 0.775432i \(0.282468\pi\)
\(24\) 0 0
\(25\) −0.942208 + 1.63195i −0.188442 + 0.326390i
\(26\) 0 0
\(27\) −4.45782 + 2.66979i −0.857909 + 0.513802i
\(28\) 0 0
\(29\) 3.83704 0.712521 0.356260 0.934387i \(-0.384052\pi\)
0.356260 + 0.934387i \(0.384052\pi\)
\(30\) 0 0
\(31\) −4.73573 8.20253i −0.850563 1.47322i −0.880701 0.473672i \(-0.842928\pi\)
0.0301382 0.999546i \(-0.490405\pi\)
\(32\) 0 0
\(33\) 5.32794 + 6.28121i 0.927476 + 1.09342i
\(34\) 0 0
\(35\) −4.71403 + 8.16494i −0.796816 + 1.38013i
\(36\) 0 0
\(37\) 2.14495 + 3.71516i 0.352628 + 0.610769i 0.986709 0.162497i \(-0.0519548\pi\)
−0.634081 + 0.773266i \(0.718621\pi\)
\(38\) 0 0
\(39\) 5.83014 + 2.23818i 0.933570 + 0.358396i
\(40\) 0 0
\(41\) −3.67488 + 6.36507i −0.573919 + 0.994057i 0.422239 + 0.906485i \(0.361244\pi\)
−0.996158 + 0.0875727i \(0.972089\pi\)
\(42\) 0 0
\(43\) 1.28146 + 2.21955i 0.195421 + 0.338479i 0.947038 0.321120i \(-0.104059\pi\)
−0.751618 + 0.659599i \(0.770726\pi\)
\(44\) 0 0
\(45\) 7.36759 2.77100i 1.09829 0.413076i
\(46\) 0 0
\(47\) −3.88207 + 6.72393i −0.566257 + 0.980787i 0.430674 + 0.902508i \(0.358276\pi\)
−0.996931 + 0.0782791i \(0.975057\pi\)
\(48\) 0 0
\(49\) −2.95576 + 5.11952i −0.422251 + 0.731361i
\(50\) 0 0
\(51\) 2.50106 0.454782i 0.350219 0.0636822i
\(52\) 0 0
\(53\) 1.77064 0.243216 0.121608 0.992578i \(-0.461195\pi\)
0.121608 + 0.992578i \(0.461195\pi\)
\(54\) 0 0
\(55\) −6.23861 10.8056i −0.841213 1.45702i
\(56\) 0 0
\(57\) 9.49415 1.72637i 1.25753 0.228664i
\(58\) 0 0
\(59\) −8.79316 −1.14477 −0.572386 0.819984i \(-0.693982\pi\)
−0.572386 + 0.819984i \(0.693982\pi\)
\(60\) 0 0
\(61\) −3.18608 5.51845i −0.407936 0.706566i 0.586722 0.809788i \(-0.300418\pi\)
−0.994658 + 0.103222i \(0.967085\pi\)
\(62\) 0 0
\(63\) 10.0897 3.79482i 1.27119 0.478103i
\(64\) 0 0
\(65\) −8.08280 4.91587i −1.00255 0.609739i
\(66\) 0 0
\(67\) −2.12325 + 3.67758i −0.259396 + 0.449287i −0.966080 0.258242i \(-0.916857\pi\)
0.706684 + 0.707529i \(0.250190\pi\)
\(68\) 0 0
\(69\) −5.81609 + 1.05757i −0.700175 + 0.127317i
\(70\) 0 0
\(71\) 4.76526 8.25367i 0.565532 0.979531i −0.431468 0.902128i \(-0.642004\pi\)
0.997000 0.0774024i \(-0.0246626\pi\)
\(72\) 0 0
\(73\) 11.1926 1.31000 0.654999 0.755630i \(-0.272669\pi\)
0.654999 + 0.755630i \(0.272669\pi\)
\(74\) 0 0
\(75\) −3.21125 + 0.583919i −0.370803 + 0.0674251i
\(76\) 0 0
\(77\) −8.54363 14.7980i −0.973638 1.68639i
\(78\) 0 0
\(79\) −5.06674 + 8.77586i −0.570053 + 0.987361i 0.426507 + 0.904484i \(0.359744\pi\)
−0.996560 + 0.0828765i \(0.973589\pi\)
\(80\) 0 0
\(81\) −8.52102 2.89694i −0.946780 0.321882i
\(82\) 0 0
\(83\) −4.51894 + 7.82703i −0.496018 + 0.859129i −0.999989 0.00459172i \(-0.998538\pi\)
0.503971 + 0.863720i \(0.331872\pi\)
\(84\) 0 0
\(85\) −3.85089 −0.417687
\(86\) 0 0
\(87\) 4.29905 + 5.06822i 0.460906 + 0.543370i
\(88\) 0 0
\(89\) 6.36777 + 11.0293i 0.674983 + 1.16910i 0.976474 + 0.215635i \(0.0691822\pi\)
−0.301491 + 0.953469i \(0.597484\pi\)
\(90\) 0 0
\(91\) −11.0692 6.73218i −1.16037 0.705724i
\(92\) 0 0
\(93\) 5.52850 15.4454i 0.573279 1.60162i
\(94\) 0 0
\(95\) −14.6182 −1.49979
\(96\) 0 0
\(97\) −6.04292 10.4666i −0.613565 1.06273i −0.990634 0.136541i \(-0.956401\pi\)
0.377069 0.926185i \(-0.376932\pi\)
\(98\) 0 0
\(99\) −2.32717 + 14.0750i −0.233890 + 1.41459i
\(100\) 0 0
\(101\) −4.35115 −0.432956 −0.216478 0.976288i \(-0.569457\pi\)
−0.216478 + 0.976288i \(0.569457\pi\)
\(102\) 0 0
\(103\) 4.23722 + 7.33908i 0.417505 + 0.723141i 0.995688 0.0927669i \(-0.0295711\pi\)
−0.578182 + 0.815908i \(0.696238\pi\)
\(104\) 0 0
\(105\) −16.0664 + 2.92145i −1.56792 + 0.285104i
\(106\) 0 0
\(107\) 8.89600 + 15.4083i 0.860009 + 1.48958i 0.871919 + 0.489649i \(0.162875\pi\)
−0.0119108 + 0.999929i \(0.503791\pi\)
\(108\) 0 0
\(109\) 18.5220 1.77409 0.887043 0.461686i \(-0.152755\pi\)
0.887043 + 0.461686i \(0.152755\pi\)
\(110\) 0 0
\(111\) −2.50402 + 6.99569i −0.237671 + 0.664002i
\(112\) 0 0
\(113\) 13.0488 1.22753 0.613764 0.789490i \(-0.289655\pi\)
0.613764 + 0.789490i \(0.289655\pi\)
\(114\) 0 0
\(115\) 8.95504 0.835062
\(116\) 0 0
\(117\) 3.57579 + 10.2085i 0.330582 + 0.943777i
\(118\) 0 0
\(119\) −5.27371 −0.483440
\(120\) 0 0
\(121\) 11.6135 1.05577
\(122\) 0 0
\(123\) −12.5248 + 2.27745i −1.12932 + 0.205351i
\(124\) 0 0
\(125\) −8.17472 −0.731169
\(126\) 0 0
\(127\) −3.10087 5.37087i −0.275158 0.476588i 0.695017 0.718993i \(-0.255397\pi\)
−0.970175 + 0.242406i \(0.922063\pi\)
\(128\) 0 0
\(129\) −1.49598 + 4.17944i −0.131713 + 0.367979i
\(130\) 0 0
\(131\) −2.10548 3.64680i −0.183957 0.318623i 0.759268 0.650779i \(-0.225557\pi\)
−0.943225 + 0.332156i \(0.892224\pi\)
\(132\) 0 0
\(133\) −20.0193 −1.73589
\(134\) 0 0
\(135\) 11.9148 + 6.62695i 1.02546 + 0.570357i
\(136\) 0 0
\(137\) 0.582932 + 1.00967i 0.0498032 + 0.0862617i 0.889852 0.456249i \(-0.150807\pi\)
−0.840049 + 0.542510i \(0.817474\pi\)
\(138\) 0 0
\(139\) −7.48846 −0.635163 −0.317582 0.948231i \(-0.602871\pi\)
−0.317582 + 0.948231i \(0.602871\pi\)
\(140\) 0 0
\(141\) −13.2309 + 2.40585i −1.11424 + 0.202609i
\(142\) 0 0
\(143\) 15.0404 8.23180i 1.25774 0.688378i
\(144\) 0 0
\(145\) −5.03385 8.71888i −0.418038 0.724063i
\(146\) 0 0
\(147\) −10.0739 + 1.83179i −0.830878 + 0.151083i
\(148\) 0 0
\(149\) 4.14377 0.339470 0.169735 0.985490i \(-0.445709\pi\)
0.169735 + 0.985490i \(0.445709\pi\)
\(150\) 0 0
\(151\) −0.375131 + 0.649747i −0.0305278 + 0.0528756i −0.880886 0.473329i \(-0.843052\pi\)
0.850358 + 0.526205i \(0.176385\pi\)
\(152\) 0 0
\(153\) 3.40291 + 2.79403i 0.275109 + 0.225884i
\(154\) 0 0
\(155\) −12.4257 + 21.5219i −0.998056 + 1.72868i
\(156\) 0 0
\(157\) 0.905461 + 1.56830i 0.0722637 + 0.125164i 0.899893 0.436111i \(-0.143644\pi\)
−0.827629 + 0.561275i \(0.810311\pi\)
\(158\) 0 0
\(159\) 1.98384 + 2.33878i 0.157328 + 0.185477i
\(160\) 0 0
\(161\) 12.2637 0.966517
\(162\) 0 0
\(163\) −11.8289 + 20.4883i −0.926513 + 1.60477i −0.137402 + 0.990515i \(0.543875\pi\)
−0.789110 + 0.614252i \(0.789458\pi\)
\(164\) 0 0
\(165\) 7.28296 20.3470i 0.566978 1.58401i
\(166\) 0 0
\(167\) −1.43127 + 2.47903i −0.110755 + 0.191833i −0.916075 0.401007i \(-0.868660\pi\)
0.805320 + 0.592840i \(0.201993\pi\)
\(168\) 0 0
\(169\) 7.00689 10.9500i 0.538992 0.842311i
\(170\) 0 0
\(171\) 12.9176 + 10.6063i 0.987835 + 0.811082i
\(172\) 0 0
\(173\) 11.0272 + 19.0997i 0.838384 + 1.45212i 0.891246 + 0.453521i \(0.149832\pi\)
−0.0528621 + 0.998602i \(0.516834\pi\)
\(174\) 0 0
\(175\) 6.77120 0.511854
\(176\) 0 0
\(177\) −9.85191 11.6146i −0.740515 0.873006i
\(178\) 0 0
\(179\) −12.9994 22.5157i −0.971624 1.68290i −0.690655 0.723184i \(-0.742678\pi\)
−0.280968 0.959717i \(-0.590656\pi\)
\(180\) 0 0
\(181\) −15.0145 −1.11602 −0.558009 0.829835i \(-0.688435\pi\)
−0.558009 + 0.829835i \(0.688435\pi\)
\(182\) 0 0
\(183\) 3.71944 10.3913i 0.274949 0.768147i
\(184\) 0 0
\(185\) 5.62796 9.74791i 0.413776 0.716681i
\(186\) 0 0
\(187\) 3.48965 6.04424i 0.255188 0.441999i
\(188\) 0 0
\(189\) 16.3171 + 9.07547i 1.18689 + 0.660143i
\(190\) 0 0
\(191\) 12.2527 + 21.2223i 0.886574 + 1.53559i 0.843899 + 0.536502i \(0.180255\pi\)
0.0426749 + 0.999089i \(0.486412\pi\)
\(192\) 0 0
\(193\) −6.06911 + 10.5120i −0.436864 + 0.756671i −0.997446 0.0714280i \(-0.977244\pi\)
0.560581 + 0.828099i \(0.310578\pi\)
\(194\) 0 0
\(195\) −2.56281 16.1841i −0.183527 1.15897i
\(196\) 0 0
\(197\) −0.295155 0.511223i −0.0210289 0.0364231i 0.855319 0.518101i \(-0.173361\pi\)
−0.876348 + 0.481678i \(0.840028\pi\)
\(198\) 0 0
\(199\) 2.11664 3.66613i 0.150045 0.259885i −0.781199 0.624282i \(-0.785392\pi\)
0.931244 + 0.364397i \(0.118725\pi\)
\(200\) 0 0
\(201\) −7.23649 + 1.31585i −0.510423 + 0.0928130i
\(202\) 0 0
\(203\) −6.89374 11.9403i −0.483846 0.838046i
\(204\) 0 0
\(205\) 19.2844 1.34688
\(206\) 0 0
\(207\) −7.91329 6.49737i −0.550012 0.451598i
\(208\) 0 0
\(209\) 13.2469 22.9443i 0.916305 1.58709i
\(210\) 0 0
\(211\) 11.9634 20.7213i 0.823598 1.42651i −0.0793884 0.996844i \(-0.525297\pi\)
0.902986 0.429669i \(-0.141370\pi\)
\(212\) 0 0
\(213\) 16.2410 2.95320i 1.11282 0.202350i
\(214\) 0 0
\(215\) 3.36231 5.82370i 0.229308 0.397173i
\(216\) 0 0
\(217\) −17.0167 + 29.4738i −1.15517 + 2.00081i
\(218\) 0 0
\(219\) 12.5403 + 14.7840i 0.847394 + 0.999008i
\(220\) 0 0
\(221\) 0.120750 5.29037i 0.00812251 0.355869i
\(222\) 0 0
\(223\) −1.09289 −0.0731856 −0.0365928 0.999330i \(-0.511650\pi\)
−0.0365928 + 0.999330i \(0.511650\pi\)
\(224\) 0 0
\(225\) −4.36918 3.58740i −0.291279 0.239160i
\(226\) 0 0
\(227\) −12.7383 22.0635i −0.845473 1.46440i −0.885210 0.465193i \(-0.845985\pi\)
0.0397362 0.999210i \(-0.487348\pi\)
\(228\) 0 0
\(229\) 6.27227 + 10.8639i 0.414483 + 0.717906i 0.995374 0.0960758i \(-0.0306291\pi\)
−0.580891 + 0.813981i \(0.697296\pi\)
\(230\) 0 0
\(231\) 9.97385 27.8648i 0.656231 1.83337i
\(232\) 0 0
\(233\) 11.3418 0.743024 0.371512 0.928428i \(-0.378839\pi\)
0.371512 + 0.928428i \(0.378839\pi\)
\(234\) 0 0
\(235\) 20.3717 1.32890
\(236\) 0 0
\(237\) −17.2685 + 3.14004i −1.12171 + 0.203967i
\(238\) 0 0
\(239\) 0.387292 + 0.670809i 0.0250518 + 0.0433910i 0.878280 0.478148i \(-0.158692\pi\)
−0.853228 + 0.521539i \(0.825358\pi\)
\(240\) 0 0
\(241\) 4.38293 + 7.59146i 0.282329 + 0.489009i 0.971958 0.235154i \(-0.0755595\pi\)
−0.689629 + 0.724163i \(0.742226\pi\)
\(242\) 0 0
\(243\) −5.72054 14.5009i −0.366973 0.930232i
\(244\) 0 0
\(245\) 15.5107 0.990945
\(246\) 0 0
\(247\) 0.458373 20.0825i 0.0291655 1.27782i
\(248\) 0 0
\(249\) −15.4015 + 2.80054i −0.976032 + 0.177477i
\(250\) 0 0
\(251\) 9.59084 16.6118i 0.605368 1.04853i −0.386625 0.922237i \(-0.626359\pi\)
0.991993 0.126292i \(-0.0403075\pi\)
\(252\) 0 0
\(253\) −8.11499 + 14.0556i −0.510185 + 0.883666i
\(254\) 0 0
\(255\) −4.31456 5.08651i −0.270188 0.318530i
\(256\) 0 0
\(257\) 6.51412 11.2828i 0.406340 0.703801i −0.588137 0.808762i \(-0.700138\pi\)
0.994476 + 0.104961i \(0.0334716\pi\)
\(258\) 0 0
\(259\) 7.70737 13.3496i 0.478913 0.829501i
\(260\) 0 0
\(261\) −1.87776 + 11.3569i −0.116231 + 0.702977i
\(262\) 0 0
\(263\) −17.8655 −1.10163 −0.550817 0.834626i \(-0.685684\pi\)
−0.550817 + 0.834626i \(0.685684\pi\)
\(264\) 0 0
\(265\) −2.32292 4.02341i −0.142696 0.247156i
\(266\) 0 0
\(267\) −7.43375 + 20.7683i −0.454938 + 1.27100i
\(268\) 0 0
\(269\) −0.348659 + 0.603895i −0.0212581 + 0.0368201i −0.876459 0.481477i \(-0.840101\pi\)
0.855201 + 0.518297i \(0.173434\pi\)
\(270\) 0 0
\(271\) 2.09858 + 3.63485i 0.127480 + 0.220801i 0.922700 0.385520i \(-0.125978\pi\)
−0.795220 + 0.606321i \(0.792645\pi\)
\(272\) 0 0
\(273\) −3.50971 22.1637i −0.212417 1.34141i
\(274\) 0 0
\(275\) −4.48055 + 7.76053i −0.270187 + 0.467978i
\(276\) 0 0
\(277\) 12.8475 + 22.2526i 0.771934 + 1.33703i 0.936502 + 0.350663i \(0.114044\pi\)
−0.164568 + 0.986366i \(0.552623\pi\)
\(278\) 0 0
\(279\) 26.5955 10.0028i 1.59223 0.598850i
\(280\) 0 0
\(281\) 6.73980 11.6737i 0.402063 0.696393i −0.591912 0.806003i \(-0.701627\pi\)
0.993975 + 0.109609i \(0.0349600\pi\)
\(282\) 0 0
\(283\) −8.27750 + 14.3371i −0.492046 + 0.852249i −0.999958 0.00915992i \(-0.997084\pi\)
0.507912 + 0.861409i \(0.330418\pi\)
\(284\) 0 0
\(285\) −16.3783 19.3086i −0.970166 1.14375i
\(286\) 0 0
\(287\) 26.4096 1.55891
\(288\) 0 0
\(289\) 7.42298 + 12.8570i 0.436646 + 0.756293i
\(290\) 0 0
\(291\) 7.05451 19.7088i 0.413543 1.15535i
\(292\) 0 0
\(293\) −12.6711 −0.740252 −0.370126 0.928981i \(-0.620686\pi\)
−0.370126 + 0.928981i \(0.620686\pi\)
\(294\) 0 0
\(295\) 11.5358 + 19.9806i 0.671641 + 1.16332i
\(296\) 0 0
\(297\) −21.1986 + 12.6959i −1.23007 + 0.736688i
\(298\) 0 0
\(299\) −0.280798 + 12.3025i −0.0162389 + 0.711471i
\(300\) 0 0
\(301\) 4.60462 7.97543i 0.265406 0.459696i
\(302\) 0 0
\(303\) −4.87506 5.74729i −0.280065 0.330173i
\(304\) 0 0
\(305\) −8.35970 + 14.4794i −0.478675 + 0.829089i
\(306\) 0 0
\(307\) 9.08603 0.518567 0.259284 0.965801i \(-0.416514\pi\)
0.259284 + 0.965801i \(0.416514\pi\)
\(308\) 0 0
\(309\) −4.94654 + 13.8196i −0.281399 + 0.786167i
\(310\) 0 0
\(311\) 2.40367 + 4.16327i 0.136299 + 0.236077i 0.926093 0.377295i \(-0.123146\pi\)
−0.789794 + 0.613373i \(0.789812\pi\)
\(312\) 0 0
\(313\) 6.54378 11.3342i 0.369877 0.640645i −0.619669 0.784863i \(-0.712733\pi\)
0.989546 + 0.144218i \(0.0460666\pi\)
\(314\) 0 0
\(315\) −21.8598 17.9484i −1.23166 1.01128i
\(316\) 0 0
\(317\) −2.99255 + 5.18325i −0.168078 + 0.291120i −0.937744 0.347327i \(-0.887090\pi\)
0.769666 + 0.638447i \(0.220423\pi\)
\(318\) 0 0
\(319\) 18.2465 1.02161
\(320\) 0 0
\(321\) −10.3852 + 29.0140i −0.579645 + 1.61940i
\(322\) 0 0
\(323\) −4.08843 7.08137i −0.227486 0.394018i
\(324\) 0 0
\(325\) −0.155037 + 6.79259i −0.00859992 + 0.376785i
\(326\) 0 0
\(327\) 20.7522 + 24.4651i 1.14760 + 1.35292i
\(328\) 0 0
\(329\) 27.8985 1.53810
\(330\) 0 0
\(331\) 12.6517 + 21.9134i 0.695401 + 1.20447i 0.970045 + 0.242924i \(0.0781066\pi\)
−0.274644 + 0.961546i \(0.588560\pi\)
\(332\) 0 0
\(333\) −12.0459 + 4.53054i −0.660111 + 0.248272i
\(334\) 0 0
\(335\) 11.1420 0.608754
\(336\) 0 0
\(337\) 8.81119 + 15.2614i 0.479976 + 0.831343i 0.999736 0.0229694i \(-0.00731203\pi\)
−0.519760 + 0.854312i \(0.673979\pi\)
\(338\) 0 0
\(339\) 14.6200 + 17.2357i 0.794047 + 0.936116i
\(340\) 0 0
\(341\) −22.5202 39.0060i −1.21953 2.11230i
\(342\) 0 0
\(343\) −3.91120 −0.211185
\(344\) 0 0
\(345\) 10.0333 + 11.8284i 0.540174 + 0.636820i
\(346\) 0 0
\(347\) 2.56873 0.137896 0.0689482 0.997620i \(-0.478036\pi\)
0.0689482 + 0.997620i \(0.478036\pi\)
\(348\) 0 0
\(349\) 9.13603 0.489041 0.244520 0.969644i \(-0.421370\pi\)
0.244520 + 0.969644i \(0.421370\pi\)
\(350\) 0 0
\(351\) −9.47775 + 16.1608i −0.505885 + 0.862601i
\(352\) 0 0
\(353\) −6.37931 −0.339536 −0.169768 0.985484i \(-0.554302\pi\)
−0.169768 + 0.985484i \(0.554302\pi\)
\(354\) 0 0
\(355\) −25.0063 −1.32720
\(356\) 0 0
\(357\) −5.90870 6.96586i −0.312721 0.368673i
\(358\) 0 0
\(359\) −25.3664 −1.33879 −0.669394 0.742907i \(-0.733446\pi\)
−0.669394 + 0.742907i \(0.733446\pi\)
\(360\) 0 0
\(361\) −6.01989 10.4268i −0.316836 0.548776i
\(362\) 0 0
\(363\) 13.0119 + 15.3399i 0.682945 + 0.805136i
\(364\) 0 0
\(365\) −14.6837 25.4329i −0.768580 1.33122i
\(366\) 0 0
\(367\) −9.63166 −0.502768 −0.251384 0.967887i \(-0.580886\pi\)
−0.251384 + 0.967887i \(0.580886\pi\)
\(368\) 0 0
\(369\) −17.0410 13.9919i −0.887121 0.728388i
\(370\) 0 0
\(371\) −3.18118 5.50997i −0.165159 0.286063i
\(372\) 0 0
\(373\) −33.7946 −1.74982 −0.874909 0.484287i \(-0.839079\pi\)
−0.874909 + 0.484287i \(0.839079\pi\)
\(374\) 0 0
\(375\) −9.15901 10.7977i −0.472969 0.557592i
\(376\) 0 0
\(377\) 12.1359 6.64213i 0.625030 0.342087i
\(378\) 0 0
\(379\) −12.7091 22.0129i −0.652825 1.13073i −0.982434 0.186608i \(-0.940250\pi\)
0.329610 0.944117i \(-0.393083\pi\)
\(380\) 0 0
\(381\) 3.61996 10.1134i 0.185456 0.518125i
\(382\) 0 0
\(383\) 29.2357 1.49388 0.746938 0.664894i \(-0.231523\pi\)
0.746938 + 0.664894i \(0.231523\pi\)
\(384\) 0 0
\(385\) −22.4169 + 38.8273i −1.14247 + 1.97882i
\(386\) 0 0
\(387\) −7.19658 + 2.70668i −0.365823 + 0.137588i
\(388\) 0 0
\(389\) −14.2989 + 24.7664i −0.724981 + 1.25570i 0.234000 + 0.972236i \(0.424818\pi\)
−0.958982 + 0.283468i \(0.908515\pi\)
\(390\) 0 0
\(391\) 2.50456 + 4.33802i 0.126661 + 0.219383i
\(392\) 0 0
\(393\) 2.45794 6.86697i 0.123987 0.346393i
\(394\) 0 0
\(395\) 26.5884 1.33781
\(396\) 0 0
\(397\) 13.8398 23.9712i 0.694597 1.20308i −0.275719 0.961238i \(-0.588916\pi\)
0.970316 0.241840i \(-0.0777508\pi\)
\(398\) 0 0
\(399\) −22.4297 26.4428i −1.12289 1.32379i
\(400\) 0 0
\(401\) 10.1284 17.5430i 0.505790 0.876053i −0.494188 0.869355i \(-0.664535\pi\)
0.999978 0.00669810i \(-0.00213209\pi\)
\(402\) 0 0
\(403\) −29.1773 17.7453i −1.45343 0.883958i
\(404\) 0 0
\(405\) 4.59611 + 23.1628i 0.228383 + 1.15097i
\(406\) 0 0
\(407\) 10.2000 + 17.6670i 0.505597 + 0.875719i
\(408\) 0 0
\(409\) −15.6147 −0.772097 −0.386049 0.922478i \(-0.626160\pi\)
−0.386049 + 0.922478i \(0.626160\pi\)
\(410\) 0 0
\(411\) −0.680515 + 1.90121i −0.0335673 + 0.0937799i
\(412\) 0 0
\(413\) 15.7980 + 27.3630i 0.777371 + 1.34645i
\(414\) 0 0
\(415\) 23.7137 1.16406
\(416\) 0 0
\(417\) −8.39012 9.89126i −0.410866 0.484377i
\(418\) 0 0
\(419\) −13.2803 + 23.0021i −0.648785 + 1.12373i 0.334629 + 0.942350i \(0.391389\pi\)
−0.983413 + 0.181378i \(0.941944\pi\)
\(420\) 0 0
\(421\) −3.31325 + 5.73872i −0.161478 + 0.279688i −0.935399 0.353594i \(-0.884959\pi\)
0.773921 + 0.633282i \(0.218293\pi\)
\(422\) 0 0
\(423\) −18.0018 14.7807i −0.875278 0.718664i
\(424\) 0 0
\(425\) 1.38285 + 2.39516i 0.0670779 + 0.116182i
\(426\) 0 0
\(427\) −11.4484 + 19.8292i −0.554028 + 0.959604i
\(428\) 0 0
\(429\) 27.7245 + 10.6434i 1.33855 + 0.513867i
\(430\) 0 0
\(431\) −19.3047 33.4367i −0.929874 1.61059i −0.783529 0.621355i \(-0.786583\pi\)
−0.146344 0.989234i \(-0.546751\pi\)
\(432\) 0 0
\(433\) −0.943893 + 1.63487i −0.0453606 + 0.0785668i −0.887814 0.460202i \(-0.847777\pi\)
0.842454 + 0.538769i \(0.181110\pi\)
\(434\) 0 0
\(435\) 5.87652 16.4177i 0.281758 0.787170i
\(436\) 0 0
\(437\) 9.50743 + 16.4674i 0.454802 + 0.787740i
\(438\) 0 0
\(439\) −3.02192 −0.144229 −0.0721143 0.997396i \(-0.522975\pi\)
−0.0721143 + 0.997396i \(0.522975\pi\)
\(440\) 0 0
\(441\) −13.7064 11.2539i −0.652684 0.535899i
\(442\) 0 0
\(443\) −0.0108117 + 0.0187264i −0.000513680 + 0.000889719i −0.866282 0.499555i \(-0.833497\pi\)
0.865768 + 0.500445i \(0.166830\pi\)
\(444\) 0 0
\(445\) 16.7079 28.9389i 0.792029 1.37183i
\(446\) 0 0
\(447\) 4.64270 + 5.47336i 0.219592 + 0.258881i
\(448\) 0 0
\(449\) 7.43393 12.8759i 0.350829 0.607653i −0.635566 0.772047i \(-0.719233\pi\)
0.986395 + 0.164393i \(0.0525665\pi\)
\(450\) 0 0
\(451\) −17.4754 + 30.2683i −0.822884 + 1.42528i
\(452\) 0 0
\(453\) −1.27853 + 0.232482i −0.0600705 + 0.0109230i
\(454\) 0 0
\(455\) −0.775678 + 33.9845i −0.0363643 + 1.59322i
\(456\) 0 0
\(457\) 3.34792 0.156609 0.0783045 0.996929i \(-0.475049\pi\)
0.0783045 + 0.996929i \(0.475049\pi\)
\(458\) 0 0
\(459\) 0.122106 + 7.62524i 0.00569942 + 0.355916i
\(460\) 0 0
\(461\) −7.03880 12.1916i −0.327830 0.567818i 0.654251 0.756277i \(-0.272984\pi\)
−0.982081 + 0.188460i \(0.939651\pi\)
\(462\) 0 0
\(463\) −15.2927 26.4878i −0.710713 1.23099i −0.964590 0.263755i \(-0.915039\pi\)
0.253877 0.967237i \(-0.418294\pi\)
\(464\) 0 0
\(465\) −42.3495 + 7.70063i −1.96391 + 0.357108i
\(466\) 0 0
\(467\) 22.0857 1.02200 0.511002 0.859579i \(-0.329274\pi\)
0.511002 + 0.859579i \(0.329274\pi\)
\(468\) 0 0
\(469\) 15.2588 0.704585
\(470\) 0 0
\(471\) −1.05704 + 2.95313i −0.0487057 + 0.136073i
\(472\) 0 0
\(473\) 6.09381 + 10.5548i 0.280194 + 0.485309i
\(474\) 0 0
\(475\) 5.24936 + 9.09215i 0.240857 + 0.417177i
\(476\) 0 0
\(477\) −0.866512 + 5.24077i −0.0396748 + 0.239958i
\(478\) 0 0
\(479\) 23.4564 1.07175 0.535876 0.844297i \(-0.319982\pi\)
0.535876 + 0.844297i \(0.319982\pi\)
\(480\) 0 0
\(481\) 13.2153 + 8.03738i 0.602564 + 0.366473i
\(482\) 0 0
\(483\) 13.7404 + 16.1988i 0.625208 + 0.737069i
\(484\) 0 0
\(485\) −15.8555 + 27.4626i −0.719962 + 1.24701i
\(486\) 0 0
\(487\) −4.07543 + 7.05885i −0.184675 + 0.319867i −0.943467 0.331466i \(-0.892457\pi\)
0.758792 + 0.651333i \(0.225790\pi\)
\(488\) 0 0
\(489\) −40.3155 + 7.33079i −1.82313 + 0.331510i
\(490\) 0 0
\(491\) 5.59764 9.69540i 0.252618 0.437547i −0.711628 0.702557i \(-0.752042\pi\)
0.964246 + 0.265009i \(0.0853751\pi\)
\(492\) 0 0
\(493\) 2.81575 4.87702i 0.126815 0.219650i
\(494\) 0 0
\(495\) 35.0356 13.1771i 1.57473 0.592267i
\(496\) 0 0
\(497\) −34.2456 −1.53613
\(498\) 0 0
\(499\) −0.839515 1.45408i −0.0375818 0.0650936i 0.846623 0.532194i \(-0.178632\pi\)
−0.884205 + 0.467100i \(0.845299\pi\)
\(500\) 0 0
\(501\) −4.87806 + 0.887005i −0.217936 + 0.0396285i
\(502\) 0 0
\(503\) −7.55237 + 13.0811i −0.336743 + 0.583257i −0.983818 0.179170i \(-0.942659\pi\)
0.647075 + 0.762427i \(0.275992\pi\)
\(504\) 0 0
\(505\) 5.70831 + 9.88708i 0.254016 + 0.439969i
\(506\) 0 0
\(507\) 22.3141 3.01333i 0.991005 0.133827i
\(508\) 0 0
\(509\) −15.9569 + 27.6382i −0.707279 + 1.22504i 0.258584 + 0.965989i \(0.416744\pi\)
−0.965863 + 0.259054i \(0.916589\pi\)
\(510\) 0 0
\(511\) −20.1090 34.8298i −0.889570 1.54078i
\(512\) 0 0
\(513\) 0.463521 + 28.9458i 0.0204649 + 1.27799i
\(514\) 0 0
\(515\) 11.1177 19.2564i 0.489904 0.848538i
\(516\) 0 0
\(517\) −18.4606 + 31.9748i −0.811898 + 1.40625i
\(518\) 0 0
\(519\) −12.8732 + 35.9649i −0.565070 + 1.57868i
\(520\) 0 0
\(521\) −15.5056 −0.679315 −0.339657 0.940549i \(-0.610311\pi\)
−0.339657 + 0.940549i \(0.610311\pi\)
\(522\) 0 0
\(523\) −20.4667 35.4494i −0.894948 1.55009i −0.833869 0.551962i \(-0.813879\pi\)
−0.0610783 0.998133i \(-0.519454\pi\)
\(524\) 0 0
\(525\) 7.58650 + 8.94385i 0.331102 + 0.390342i
\(526\) 0 0
\(527\) −13.9010 −0.605535
\(528\) 0 0
\(529\) 5.67578 + 9.83074i 0.246773 + 0.427423i
\(530\) 0 0
\(531\) 4.30318 26.0261i 0.186742 1.12944i
\(532\) 0 0
\(533\) −0.604689 + 26.4930i −0.0261920 + 1.14754i
\(534\) 0 0
\(535\) 23.3415 40.4286i 1.00914 1.74788i
\(536\) 0 0
\(537\) 15.1756 42.3972i 0.654874 1.82958i
\(538\) 0 0
\(539\) −14.0557 + 24.3452i −0.605423 + 1.04862i
\(540\) 0 0
\(541\) 12.7245 0.547069 0.273534 0.961862i \(-0.411807\pi\)
0.273534 + 0.961862i \(0.411807\pi\)
\(542\) 0 0
\(543\) −16.8223 19.8322i −0.721916 0.851079i
\(544\) 0 0
\(545\) −24.2992 42.0874i −1.04086 1.80283i
\(546\) 0 0
\(547\) −2.72430 + 4.71863i −0.116483 + 0.201754i −0.918371 0.395719i \(-0.870495\pi\)
0.801889 + 0.597473i \(0.203829\pi\)
\(548\) 0 0
\(549\) 17.8928 6.72960i 0.763646 0.287213i
\(550\) 0 0
\(551\) 10.6887 18.5134i 0.455355 0.788698i
\(552\) 0 0
\(553\) 36.4122 1.54841
\(554\) 0 0
\(555\) 19.1813 3.48784i 0.814201 0.148051i
\(556\) 0 0
\(557\) −6.49410 11.2481i −0.275164 0.476598i 0.695013 0.718997i \(-0.255399\pi\)
−0.970176 + 0.242400i \(0.922065\pi\)
\(558\) 0 0
\(559\) 7.89520 + 4.80177i 0.333931 + 0.203093i
\(560\) 0 0
\(561\) 11.8935 2.16265i 0.502142 0.0913073i
\(562\) 0 0
\(563\) −20.4388 −0.861392 −0.430696 0.902497i \(-0.641732\pi\)
−0.430696 + 0.902497i \(0.641732\pi\)
\(564\) 0 0
\(565\) −17.1188 29.6507i −0.720195 1.24741i
\(566\) 0 0
\(567\) 6.29427 + 31.7209i 0.264335 + 1.33215i
\(568\) 0 0
\(569\) −11.8791 −0.497999 −0.249000 0.968504i \(-0.580102\pi\)
−0.249000 + 0.968504i \(0.580102\pi\)
\(570\) 0 0
\(571\) 8.04840 + 13.9402i 0.336815 + 0.583381i 0.983832 0.179095i \(-0.0573169\pi\)
−0.647017 + 0.762476i \(0.723984\pi\)
\(572\) 0 0
\(573\) −14.3038 + 39.9618i −0.597551 + 1.66943i
\(574\) 0 0
\(575\) −3.21574 5.56982i −0.134106 0.232278i
\(576\) 0 0
\(577\) 8.72062 0.363044 0.181522 0.983387i \(-0.441898\pi\)
0.181522 + 0.983387i \(0.441898\pi\)
\(578\) 0 0
\(579\) −20.6848 + 3.76124i −0.859633 + 0.156312i
\(580\) 0 0
\(581\) 32.4755 1.34731
\(582\) 0 0
\(583\) 8.42004 0.348722
\(584\) 0 0
\(585\) 18.5056 21.5179i 0.765113 0.889655i
\(586\) 0 0
\(587\) −21.2141 −0.875599 −0.437800 0.899073i \(-0.644242\pi\)
−0.437800 + 0.899073i \(0.644242\pi\)
\(588\) 0 0
\(589\) −52.7687 −2.17430
\(590\) 0 0
\(591\) 0.344564 0.962637i 0.0141735 0.0395976i
\(592\) 0 0
\(593\) 2.20452 0.0905286 0.0452643 0.998975i \(-0.485587\pi\)
0.0452643 + 0.998975i \(0.485587\pi\)
\(594\) 0 0
\(595\) 6.91862 + 11.9834i 0.283636 + 0.491272i
\(596\) 0 0
\(597\) 7.21396 1.31175i 0.295248 0.0536865i
\(598\) 0 0
\(599\) −13.5519 23.4726i −0.553715 0.959063i −0.998002 0.0631787i \(-0.979876\pi\)
0.444287 0.895885i \(-0.353457\pi\)
\(600\) 0 0
\(601\) 14.6300 0.596770 0.298385 0.954446i \(-0.403552\pi\)
0.298385 + 0.954446i \(0.403552\pi\)
\(602\) 0 0
\(603\) −9.84588 8.08415i −0.400955 0.329212i
\(604\) 0 0
\(605\) −15.2359 26.3893i −0.619426 1.07288i
\(606\) 0 0
\(607\) 36.6831 1.48892 0.744461 0.667666i \(-0.232707\pi\)
0.744461 + 0.667666i \(0.232707\pi\)
\(608\) 0 0
\(609\) 8.04777 22.4837i 0.326112 0.911086i
\(610\) 0 0
\(611\) −0.638781 + 27.9867i −0.0258423 + 1.13222i
\(612\) 0 0
\(613\) −4.48301 7.76481i −0.181067 0.313618i 0.761177 0.648544i \(-0.224622\pi\)
−0.942244 + 0.334927i \(0.891288\pi\)
\(614\) 0 0
\(615\) 21.6064 + 25.4721i 0.871253 + 1.02714i
\(616\) 0 0
\(617\) 8.44166 0.339848 0.169924 0.985457i \(-0.445648\pi\)
0.169924 + 0.985457i \(0.445648\pi\)
\(618\) 0 0
\(619\) −0.643084 + 1.11385i −0.0258477 + 0.0447695i −0.878660 0.477448i \(-0.841562\pi\)
0.852812 + 0.522218i \(0.174895\pi\)
\(620\) 0 0
\(621\) −0.283951 17.7321i −0.0113946 0.711565i
\(622\) 0 0
\(623\) 22.8811 39.6312i 0.916710 1.58779i
\(624\) 0 0
\(625\) 15.4355 + 26.7351i 0.617421 + 1.06940i
\(626\) 0 0
\(627\) 45.1482 8.20954i 1.80304 0.327858i
\(628\) 0 0
\(629\) 6.29615 0.251044
\(630\) 0 0
\(631\) 8.83740 15.3068i 0.351811 0.609355i −0.634756 0.772713i \(-0.718899\pi\)
0.986567 + 0.163358i \(0.0522326\pi\)
\(632\) 0 0
\(633\) 40.7740 7.41416i 1.62062 0.294686i
\(634\) 0 0
\(635\) −8.13612 + 14.0922i −0.322872 + 0.559231i
\(636\) 0 0
\(637\) −0.486360 + 21.3087i −0.0192703 + 0.844283i
\(638\) 0 0
\(639\) 22.0973 + 18.1435i 0.874157 + 0.717744i
\(640\) 0 0
\(641\) −10.6122 18.3808i −0.419156 0.725999i 0.576699 0.816957i \(-0.304341\pi\)
−0.995855 + 0.0909577i \(0.971007\pi\)
\(642\) 0 0
\(643\) 19.8257 0.781850 0.390925 0.920423i \(-0.372155\pi\)
0.390925 + 0.920423i \(0.372155\pi\)
\(644\) 0 0
\(645\) 11.4595 2.08374i 0.451217 0.0820473i
\(646\) 0 0
\(647\) 0.739188 + 1.28031i 0.0290605 + 0.0503342i 0.880190 0.474622i \(-0.157415\pi\)
−0.851129 + 0.524956i \(0.824082\pi\)
\(648\) 0 0
\(649\) −41.8147 −1.64137
\(650\) 0 0
\(651\) −57.9967 + 10.5459i −2.27307 + 0.413324i
\(652\) 0 0
\(653\) 5.57053 9.64844i 0.217992 0.377572i −0.736202 0.676762i \(-0.763383\pi\)
0.954194 + 0.299189i \(0.0967161\pi\)
\(654\) 0 0
\(655\) −5.52440 + 9.56855i −0.215856 + 0.373874i
\(656\) 0 0
\(657\) −5.47742 + 33.1281i −0.213695 + 1.29245i
\(658\) 0 0
\(659\) −2.23871 3.87757i −0.0872079 0.151049i 0.819122 0.573619i \(-0.194461\pi\)
−0.906330 + 0.422571i \(0.861128\pi\)
\(660\) 0 0
\(661\) 6.25885 10.8406i 0.243441 0.421652i −0.718251 0.695784i \(-0.755057\pi\)
0.961692 + 0.274132i \(0.0883904\pi\)
\(662\) 0 0
\(663\) 7.12316 5.76787i 0.276641 0.224005i
\(664\) 0 0
\(665\) 26.2634 + 45.4896i 1.01845 + 1.76401i
\(666\) 0 0
\(667\) −6.54787 + 11.3413i −0.253535 + 0.439135i
\(668\) 0 0
\(669\) −1.22449 1.44357i −0.0473414 0.0558116i
\(670\) 0 0
\(671\) −15.1510 26.2423i −0.584897 1.01307i
\(672\) 0 0
\(673\) −17.6922 −0.681982 −0.340991 0.940066i \(-0.610763\pi\)
−0.340991 + 0.940066i \(0.610763\pi\)
\(674\) 0 0
\(675\) −0.156779 9.79046i −0.00603441 0.376835i
\(676\) 0 0
\(677\) −19.1654 + 33.1955i −0.736587 + 1.27581i 0.217437 + 0.976074i \(0.430230\pi\)
−0.954024 + 0.299731i \(0.903103\pi\)
\(678\) 0 0
\(679\) −21.7138 + 37.6094i −0.833298 + 1.44331i
\(680\) 0 0
\(681\) 14.8708 41.5457i 0.569849 1.59203i
\(682\) 0 0
\(683\) −23.3906 + 40.5137i −0.895017 + 1.55021i −0.0612334 + 0.998123i \(0.519503\pi\)
−0.833784 + 0.552091i \(0.813830\pi\)
\(684\) 0 0
\(685\) 1.52951 2.64918i 0.0584394 0.101220i
\(686\) 0 0
\(687\) −7.32225 + 20.4568i −0.279361 + 0.780475i
\(688\) 0 0
\(689\) 5.60022 3.06507i 0.213351 0.116770i
\(690\) 0 0
\(691\) 28.5592 1.08644 0.543222 0.839589i \(-0.317204\pi\)
0.543222 + 0.839589i \(0.317204\pi\)
\(692\) 0 0
\(693\) 47.9804 18.0458i 1.82263 0.685502i
\(694\) 0 0
\(695\) 9.82418 + 17.0160i 0.372652 + 0.645453i
\(696\) 0 0
\(697\) 5.39349 + 9.34180i 0.204293 + 0.353846i
\(698\) 0 0
\(699\) 12.7074 + 14.9810i 0.480638 + 0.566632i
\(700\) 0 0
\(701\) −7.23324 −0.273196 −0.136598 0.990627i \(-0.543617\pi\)
−0.136598 + 0.990627i \(0.543617\pi\)
\(702\) 0 0
\(703\) 23.9005 0.901424
\(704\) 0 0
\(705\) 22.8245 + 26.9082i 0.859622 + 1.01342i
\(706\) 0 0
\(707\) 7.81740 + 13.5401i 0.294004 + 0.509229i
\(708\) 0 0
\(709\) −18.4241 31.9114i −0.691931 1.19846i −0.971205 0.238247i \(-0.923427\pi\)
0.279274 0.960211i \(-0.409906\pi\)
\(710\) 0 0
\(711\) −23.4954 19.2913i −0.881145 0.723482i
\(712\) 0 0
\(713\) 32.3259 1.21062
\(714\) 0 0
\(715\) −38.4367 23.3768i −1.43745 0.874242i
\(716\) 0 0
\(717\) −0.452125 + 1.26314i −0.0168849 + 0.0471728i
\(718\) 0 0
\(719\) 6.09570 10.5581i 0.227331 0.393749i −0.729685 0.683783i \(-0.760333\pi\)
0.957016 + 0.290034i \(0.0936666\pi\)
\(720\) 0 0
\(721\) 15.2254 26.3712i 0.567024 0.982115i
\(722\) 0 0
\(723\) −5.11664 + 14.2948i −0.190290 + 0.531629i
\(724\) 0 0
\(725\) −3.61529 + 6.26187i −0.134269 + 0.232560i
\(726\) 0 0
\(727\) 11.3403 19.6420i 0.420589 0.728482i −0.575408 0.817866i \(-0.695157\pi\)
0.995997 + 0.0893849i \(0.0284901\pi\)
\(728\) 0 0
\(729\) 12.7444 23.8029i 0.472015 0.881591i
\(730\) 0 0
\(731\) 3.76151 0.139124
\(732\) 0 0
\(733\) −9.20420 15.9421i −0.339965 0.588836i 0.644461 0.764637i \(-0.277082\pi\)
−0.984426 + 0.175801i \(0.943749\pi\)
\(734\) 0 0
\(735\) 17.3783 + 20.4876i 0.641010 + 0.755697i
\(736\) 0 0
\(737\) −10.0968 + 17.4882i −0.371921 + 0.644187i
\(738\) 0 0
\(739\) −7.08381 12.2695i −0.260582 0.451341i 0.705815 0.708396i \(-0.250581\pi\)
−0.966397 + 0.257055i \(0.917248\pi\)
\(740\) 0 0
\(741\) 27.0399 21.8951i 0.993335 0.804337i
\(742\) 0 0
\(743\) −13.7724 + 23.8544i −0.505259 + 0.875134i 0.494723 + 0.869051i \(0.335270\pi\)
−0.999981 + 0.00608305i \(0.998064\pi\)
\(744\) 0 0
\(745\) −5.43624 9.41585i −0.199168 0.344970i
\(746\) 0 0
\(747\) −20.9551 17.2056i −0.766707 0.629520i
\(748\) 0 0
\(749\) 31.9656 55.3661i 1.16800 2.02303i
\(750\) 0 0
\(751\) 20.6350 35.7409i 0.752982 1.30420i −0.193389 0.981122i \(-0.561948\pi\)
0.946371 0.323081i \(-0.104719\pi\)
\(752\) 0 0
\(753\) 32.6876 5.94377i 1.19120 0.216603i
\(754\) 0 0
\(755\) 1.96855 0.0716430
\(756\) 0 0
\(757\) 6.86589 + 11.8921i 0.249545 + 0.432225i 0.963400 0.268069i \(-0.0863856\pi\)
−0.713854 + 0.700294i \(0.753052\pi\)
\(758\) 0 0
\(759\) −27.6576 + 5.02914i −1.00391 + 0.182546i
\(760\) 0 0
\(761\) −29.1925 −1.05823 −0.529113 0.848551i \(-0.677475\pi\)
−0.529113 + 0.848551i \(0.677475\pi\)
\(762\) 0 0
\(763\) −33.2772 57.6378i −1.20472 2.08663i
\(764\) 0 0
\(765\) 1.88454 11.3979i 0.0681357 0.412093i
\(766\) 0 0
\(767\) −27.8112 + 15.2214i −1.00420 + 0.549614i
\(768\) 0 0
\(769\) 18.0093 31.1931i 0.649433 1.12485i −0.333825 0.942635i \(-0.608340\pi\)
0.983258 0.182216i \(-0.0583271\pi\)
\(770\) 0 0
\(771\) 22.2015 4.03703i 0.799568 0.145390i
\(772\) 0 0
\(773\) −26.1726 + 45.3322i −0.941361 + 1.63049i −0.178483 + 0.983943i \(0.557119\pi\)
−0.762878 + 0.646543i \(0.776214\pi\)
\(774\) 0 0
\(775\) 17.8482 0.641126
\(776\) 0 0
\(777\) 26.2684 4.77652i 0.942372 0.171357i
\(778\) 0 0
\(779\) 20.4740 + 35.4620i 0.733556 + 1.27056i
\(780\) 0 0
\(781\) 22.6606 39.2492i 0.810859 1.40445i
\(782\) 0 0
\(783\) −17.1049 + 10.2441i −0.611278 + 0.366095i
\(784\) 0 0
\(785\) 2.37576 4.11494i 0.0847947 0.146869i
\(786\) 0 0
\(787\) 13.4115 0.478069 0.239035 0.971011i \(-0.423169\pi\)
0.239035 + 0.971011i \(0.423169\pi\)
\(788\) 0 0
\(789\) −20.0166 23.5979i −0.712611 0.840109i
\(790\) 0 0
\(791\) −23.4439 40.6060i −0.833568 1.44378i
\(792\) 0 0
\(793\) −19.6298 11.9386i −0.697073 0.423952i
\(794\) 0 0
\(795\) 2.71178 7.57612i 0.0961768 0.268697i
\(796\) 0 0
\(797\) 21.2067 0.751181 0.375591 0.926786i \(-0.377440\pi\)
0.375591 + 0.926786i \(0.377440\pi\)
\(798\) 0 0
\(799\) 5.69758 + 9.86849i 0.201566 + 0.349122i
\(800\) 0 0
\(801\) −35.7610 + 13.4499i −1.26355 + 0.475230i
\(802\) 0 0
\(803\) 53.2250 1.87827
\(804\) 0 0
\(805\) −16.0889 27.8668i −0.567059 0.982175i
\(806\) 0 0
\(807\) −1.18830 + 0.216076i −0.0418303 + 0.00760623i
\(808\) 0 0
\(809\) −2.68990 4.65903i −0.0945717 0.163803i 0.814858 0.579660i \(-0.196815\pi\)
−0.909430 + 0.415858i \(0.863481\pi\)
\(810\) 0 0
\(811\) −25.9549 −0.911399 −0.455700 0.890134i \(-0.650611\pi\)
−0.455700 + 0.890134i \(0.650611\pi\)
\(812\) 0 0
\(813\) −2.44989 + 6.84445i −0.0859213 + 0.240045i
\(814\) 0 0
\(815\) 62.0738 2.17435
\(816\) 0 0
\(817\) 14.2789 0.499555
\(818\) 0 0
\(819\) 25.3430 29.4683i 0.885557 1.02970i
\(820\) 0 0
\(821\) −29.4353 −1.02730 −0.513649 0.858001i \(-0.671707\pi\)
−0.513649 + 0.858001i \(0.671707\pi\)
\(822\) 0 0
\(823\) 3.84352 0.133977 0.0669883 0.997754i \(-0.478661\pi\)
0.0669883 + 0.997754i \(0.478661\pi\)
\(824\) 0 0
\(825\) −15.2707 + 2.77675i −0.531656 + 0.0966740i
\(826\) 0 0
\(827\) 7.89362 0.274488 0.137244 0.990537i \(-0.456176\pi\)
0.137244 + 0.990537i \(0.456176\pi\)
\(828\) 0 0
\(829\) −13.9381 24.1415i −0.484091 0.838470i 0.515742 0.856744i \(-0.327516\pi\)
−0.999833 + 0.0182738i \(0.994183\pi\)
\(830\) 0 0
\(831\) −14.9982 + 41.9018i −0.520283 + 1.45356i
\(832\) 0 0
\(833\) 4.33807 + 7.51375i 0.150305 + 0.260336i
\(834\) 0 0
\(835\) 7.51076 0.259921
\(836\) 0 0
\(837\) 43.0101 + 23.9220i 1.48665 + 0.826866i
\(838\) 0 0
\(839\) −0.509063 0.881723i −0.0175748 0.0304405i 0.857104 0.515143i \(-0.172261\pi\)
−0.874679 + 0.484703i \(0.838928\pi\)
\(840\) 0 0
\(841\) −14.2771 −0.492314
\(842\) 0 0
\(843\) 22.9707 4.17689i 0.791153 0.143860i
\(844\) 0 0
\(845\) −34.0741 1.55626i −1.17218 0.0535369i
\(846\) 0 0
\(847\) −20.8652 36.1396i −0.716936 1.24177i
\(848\) 0 0
\(849\) −28.2115 + 5.12985i −0.968216 + 0.176056i
\(850\) 0 0
\(851\) −14.6414 −0.501899
\(852\) 0 0
\(853\) 5.26184 9.11377i 0.180162 0.312049i −0.761774 0.647843i \(-0.775671\pi\)
0.941936 + 0.335794i \(0.109005\pi\)
\(854\) 0 0
\(855\) 7.15381 43.2671i 0.244655 1.47970i
\(856\) 0 0
\(857\) 27.4772 47.5919i 0.938602 1.62571i 0.170522 0.985354i \(-0.445455\pi\)
0.768081 0.640353i \(-0.221212\pi\)
\(858\) 0 0
\(859\) 24.2942 + 42.0789i 0.828909 + 1.43571i 0.898895 + 0.438164i \(0.144371\pi\)
−0.0699862 + 0.997548i \(0.522296\pi\)
\(860\) 0 0
\(861\) 29.5895 + 34.8835i 1.00841 + 1.18883i
\(862\) 0 0
\(863\) −36.1609 −1.23093 −0.615466 0.788163i \(-0.711032\pi\)
−0.615466 + 0.788163i \(0.711032\pi\)
\(864\) 0 0
\(865\) 28.9334 50.1141i 0.983765 1.70393i
\(866\) 0 0
\(867\) −8.66560 + 24.2098i −0.294299 + 0.822208i
\(868\) 0 0
\(869\) −24.0942 + 41.7324i −0.817340 + 1.41568i
\(870\) 0 0
\(871\) −0.349374 + 15.3070i −0.0118381 + 0.518657i
\(872\) 0 0
\(873\) 33.9366 12.7638i 1.14858 0.431989i
\(874\) 0 0
\(875\) 14.6870 + 25.4385i 0.496510 + 0.859980i
\(876\) 0 0
\(877\) −30.1766 −1.01899 −0.509495 0.860474i \(-0.670168\pi\)
−0.509495 + 0.860474i \(0.670168\pi\)
\(878\) 0 0
\(879\) −14.1968 16.7368i −0.478845 0.564518i
\(880\) 0 0
\(881\) 2.07896 + 3.60087i 0.0700420 + 0.121316i 0.898919 0.438114i \(-0.144353\pi\)
−0.828877 + 0.559430i \(0.811020\pi\)
\(882\) 0 0
\(883\) −26.0189 −0.875605 −0.437802 0.899071i \(-0.644243\pi\)
−0.437802 + 0.899071i \(0.644243\pi\)
\(884\) 0 0
\(885\) −13.4669 + 37.6237i −0.452686 + 1.26471i
\(886\) 0 0
\(887\) −17.5818 + 30.4526i −0.590339 + 1.02250i 0.403847 + 0.914826i \(0.367673\pi\)
−0.994187 + 0.107671i \(0.965661\pi\)
\(888\) 0 0
\(889\) −11.1422 + 19.2989i −0.373699 + 0.647265i
\(890\) 0 0
\(891\) −40.5206 13.7760i −1.35749 0.461513i
\(892\) 0 0
\(893\) 21.6283 + 37.4613i 0.723763 + 1.25359i
\(894\) 0 0
\(895\) −34.1081 + 59.0770i −1.14011 + 1.97473i
\(896\) 0 0
\(897\) −16.5645 + 13.4129i −0.553074 + 0.447843i
\(898\) 0 0
\(899\) −18.1712 31.4734i −0.606044 1.04970i
\(900\) 0 0
\(901\) 1.29935 2.25055i 0.0432877 0.0749766i
\(902\) 0 0
\(903\) 15.6935 2.85364i 0.522248 0.0949632i
\(904\) 0 0
\(905\) 19.6977 + 34.1173i 0.654772 + 1.13410i
\(906\) 0 0
\(907\) −23.9356 −0.794767 −0.397384 0.917653i \(-0.630082\pi\)
−0.397384 + 0.917653i \(0.630082\pi\)
\(908\) 0 0
\(909\) 2.12936 12.8786i 0.0706263 0.427156i
\(910\) 0 0
\(911\) 5.01570 8.68744i 0.166177 0.287828i −0.770895 0.636962i \(-0.780191\pi\)
0.937073 + 0.349134i \(0.113524\pi\)
\(912\) 0 0
\(913\) −21.4892 + 37.2204i −0.711189 + 1.23182i
\(914\) 0 0
\(915\) −28.4916 + 5.18079i −0.941904 + 0.171272i
\(916\) 0 0
\(917\) −7.56555 + 13.1039i −0.249836 + 0.432729i
\(918\) 0 0
\(919\) −26.8145 + 46.4441i −0.884530 + 1.53205i −0.0382782 + 0.999267i \(0.512187\pi\)
−0.846252 + 0.532783i \(0.821146\pi\)
\(920\) 0 0
\(921\) 10.1800 + 12.0014i 0.335444 + 0.395461i
\(922\) 0 0
\(923\) 0.784108 34.3538i 0.0258092 1.13077i
\(924\) 0 0
\(925\) −8.08396 −0.265799
\(926\) 0 0
\(927\) −23.7959 + 8.94980i −0.781560 + 0.293950i
\(928\) 0 0
\(929\) −18.4795 32.0074i −0.606292 1.05013i −0.991846 0.127443i \(-0.959323\pi\)
0.385554 0.922685i \(-0.374010\pi\)
\(930\) 0 0
\(931\) 16.4675 + 28.5226i 0.539701 + 0.934790i
\(932\) 0 0
\(933\) −2.80604 + 7.83948i −0.0918657 + 0.256653i
\(934\) 0 0
\(935\) −18.3124 −0.598879
\(936\) 0 0
\(937\) 15.2960 0.499697 0.249849 0.968285i \(-0.419619\pi\)
0.249849 + 0.968285i \(0.419619\pi\)
\(938\) 0 0
\(939\) 22.3026 4.05541i 0.727819 0.132343i
\(940\) 0 0
\(941\) 8.92739 + 15.4627i 0.291025 + 0.504069i 0.974052 0.226323i \(-0.0726705\pi\)
−0.683028 + 0.730392i \(0.739337\pi\)
\(942\) 0 0
\(943\) −12.5423 21.7239i −0.408433 0.707427i
\(944\) 0 0
\(945\) −0.784390 48.9833i −0.0255162 1.59343i
\(946\) 0 0
\(947\) 17.1814 0.558320 0.279160 0.960245i \(-0.409944\pi\)
0.279160 + 0.960245i \(0.409944\pi\)
\(948\) 0 0
\(949\) 35.4003 19.3751i 1.14914 0.628941i
\(950\) 0 0
\(951\) −10.1993 + 1.85459i −0.330734 + 0.0601391i
\(952\) 0 0
\(953\) 4.11751 7.13174i 0.133379 0.231020i −0.791598 0.611042i \(-0.790750\pi\)
0.924977 + 0.380023i \(0.124084\pi\)
\(954\) 0 0
\(955\) 32.1488 55.6834i 1.04031 1.80187i
\(956\) 0 0
\(957\) 20.4435 + 24.1012i 0.660846 + 0.779083i
\(958\) 0 0
\(959\) 2.09462 3.62800i 0.0676390 0.117154i
\(960\) 0 0
\(961\) −29.3544 + 50.8432i −0.946915 + 1.64010i
\(962\) 0 0
\(963\) −49.9593 + 18.7900i −1.60992 + 0.605500i
\(964\) 0 0
\(965\) 31.8485 1.02524
\(966\) 0 0
\(967\) 11.5109 + 19.9375i 0.370166 + 0.641146i 0.989591 0.143910i \(-0.0459675\pi\)
−0.619425 + 0.785056i \(0.712634\pi\)
\(968\) 0 0
\(969\) 4.77284 13.3343i 0.153326 0.428359i
\(970\) 0 0
\(971\) 8.70378 15.0754i 0.279318 0.483792i −0.691898 0.721996i \(-0.743225\pi\)
0.971215 + 0.238203i \(0.0765584\pi\)
\(972\) 0 0
\(973\) 13.4540 + 23.3030i 0.431315 + 0.747060i
\(974\) 0 0
\(975\) −9.14581 + 7.40568i −0.292900 + 0.237172i
\(976\) 0 0
\(977\) −24.3975 + 42.2577i −0.780546 + 1.35194i 0.151079 + 0.988522i \(0.451725\pi\)
−0.931624 + 0.363423i \(0.881608\pi\)
\(978\) 0 0
\(979\) 30.2811 + 52.4484i 0.967788 + 1.67626i
\(980\) 0 0
\(981\) −9.06426 + 54.8217i −0.289400 + 1.75032i
\(982\) 0 0
\(983\) 14.7251 25.5046i 0.469657 0.813470i −0.529741 0.848160i \(-0.677711\pi\)
0.999398 + 0.0346892i \(0.0110441\pi\)
\(984\) 0 0
\(985\) −0.774432 + 1.34136i −0.0246755 + 0.0427391i
\(986\) 0 0
\(987\) 31.2577 + 36.8503i 0.994944 + 1.17296i
\(988\) 0 0
\(989\) −8.74719 −0.278145
\(990\) 0 0
\(991\) 26.0112 + 45.0527i 0.826273 + 1.43115i 0.900943 + 0.433938i \(0.142876\pi\)
−0.0746703 + 0.997208i \(0.523790\pi\)
\(992\) 0 0
\(993\) −14.7696 + 41.2632i −0.468700 + 1.30945i
\(994\) 0 0
\(995\) −11.1073 −0.352127
\(996\) 0 0
\(997\) −30.8874 53.4986i −0.978215 1.69432i −0.668889 0.743362i \(-0.733230\pi\)
−0.309326 0.950956i \(-0.600103\pi\)
\(998\) 0 0
\(999\) −19.4805 10.8350i −0.616337 0.342803i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.j.a.133.11 28
3.2 odd 2 1404.2.j.a.289.12 28
9.4 even 3 468.2.k.a.445.9 yes 28
9.5 odd 6 1404.2.k.a.1225.12 28
13.9 even 3 468.2.k.a.61.9 yes 28
39.35 odd 6 1404.2.k.a.1153.12 28
117.22 even 3 inner 468.2.j.a.373.11 yes 28
117.113 odd 6 1404.2.j.a.685.12 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.11 28 1.1 even 1 trivial
468.2.j.a.373.11 yes 28 117.22 even 3 inner
468.2.k.a.61.9 yes 28 13.9 even 3
468.2.k.a.445.9 yes 28 9.4 even 3
1404.2.j.a.289.12 28 3.2 odd 2
1404.2.j.a.685.12 28 117.113 odd 6
1404.2.k.a.1153.12 28 39.35 odd 6
1404.2.k.a.1225.12 28 9.5 odd 6