Properties

Label 468.2.k.a.445.5
Level $468$
Weight $2$
Character 468.445
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(61,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.61"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 445.5
Character \(\chi\) \(=\) 468.445
Dual form 468.2.k.a.61.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.824641 - 1.52314i) q^{3} +(-0.913993 + 1.58308i) q^{5} +3.54787 q^{7} +(-1.63994 + 2.51209i) q^{9} +(-0.394633 + 0.683524i) q^{11} +(3.60317 + 0.131005i) q^{13} +(3.16498 + 0.0866688i) q^{15} +(-1.48507 + 2.57222i) q^{17} +(1.51934 - 2.63157i) q^{19} +(-2.92572 - 5.40392i) q^{21} +5.81581 q^{23} +(0.829233 + 1.43627i) q^{25} +(5.17864 + 0.426283i) q^{27} +(4.09470 - 7.09223i) q^{29} +(-0.129332 + 0.224010i) q^{31} +(1.36654 + 0.0374208i) q^{33} +(-3.24273 + 5.61657i) q^{35} +(-1.90793 - 3.30463i) q^{37} +(-2.77178 - 5.59618i) q^{39} +0.0912193 q^{41} +8.61643 q^{43} +(-2.47796 - 4.89219i) q^{45} +(1.16369 + 2.01557i) q^{47} +5.58740 q^{49} +(5.14252 + 0.140821i) q^{51} -6.58958 q^{53} +(-0.721383 - 1.24947i) q^{55} +(-5.26117 - 0.144070i) q^{57} +(0.605518 + 1.04879i) q^{59} -3.76705 q^{61} +(-5.81828 + 8.91259i) q^{63} +(-3.50066 + 5.58438i) q^{65} -8.47022 q^{67} +(-4.79595 - 8.85831i) q^{69} +(-6.51214 + 11.2794i) q^{71} -7.67537 q^{73} +(1.50383 - 2.44745i) q^{75} +(-1.40011 + 2.42506i) q^{77} +(5.76726 + 9.98919i) q^{79} +(-3.62122 - 8.23934i) q^{81} +(7.82491 + 13.5531i) q^{83} +(-2.71469 - 4.70199i) q^{85} +(-14.1791 - 0.388277i) q^{87} +(-2.17897 - 3.77409i) q^{89} +(12.7836 + 0.464789i) q^{91} +(0.447853 + 0.0122639i) q^{93} +(2.77733 + 4.81047i) q^{95} +0.113077 q^{97} +(-1.06990 - 2.11229i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - 4 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} + 8 q^{23} - 14 q^{25} - 13 q^{29} + 2 q^{31} - 25 q^{33} + 3 q^{35} - q^{37} - 3 q^{39} - 8 q^{41} - 4 q^{43}+ \cdots - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.824641 1.52314i −0.476107 0.879388i
\(4\) 0 0
\(5\) −0.913993 + 1.58308i −0.408750 + 0.707976i −0.994750 0.102335i \(-0.967369\pi\)
0.586000 + 0.810311i \(0.300702\pi\)
\(6\) 0 0
\(7\) 3.54787 1.34097 0.670485 0.741923i \(-0.266086\pi\)
0.670485 + 0.741923i \(0.266086\pi\)
\(8\) 0 0
\(9\) −1.63994 + 2.51209i −0.546645 + 0.837364i
\(10\) 0 0
\(11\) −0.394633 + 0.683524i −0.118986 + 0.206090i −0.919366 0.393403i \(-0.871298\pi\)
0.800380 + 0.599493i \(0.204631\pi\)
\(12\) 0 0
\(13\) 3.60317 + 0.131005i 0.999340 + 0.0363342i
\(14\) 0 0
\(15\) 3.16498 + 0.0866688i 0.817194 + 0.0223778i
\(16\) 0 0
\(17\) −1.48507 + 2.57222i −0.360183 + 0.623855i −0.987991 0.154513i \(-0.950619\pi\)
0.627808 + 0.778369i \(0.283952\pi\)
\(18\) 0 0
\(19\) 1.51934 2.63157i 0.348560 0.603724i −0.637434 0.770505i \(-0.720004\pi\)
0.985994 + 0.166781i \(0.0533374\pi\)
\(20\) 0 0
\(21\) −2.92572 5.40392i −0.638444 1.17923i
\(22\) 0 0
\(23\) 5.81581 1.21268 0.606340 0.795206i \(-0.292637\pi\)
0.606340 + 0.795206i \(0.292637\pi\)
\(24\) 0 0
\(25\) 0.829233 + 1.43627i 0.165847 + 0.287255i
\(26\) 0 0
\(27\) 5.17864 + 0.426283i 0.996629 + 0.0820383i
\(28\) 0 0
\(29\) 4.09470 7.09223i 0.760367 1.31699i −0.182295 0.983244i \(-0.558352\pi\)
0.942662 0.333750i \(-0.108314\pi\)
\(30\) 0 0
\(31\) −0.129332 + 0.224010i −0.0232288 + 0.0402334i −0.877406 0.479748i \(-0.840728\pi\)
0.854177 + 0.519982i \(0.174061\pi\)
\(32\) 0 0
\(33\) 1.36654 + 0.0374208i 0.237883 + 0.00651412i
\(34\) 0 0
\(35\) −3.24273 + 5.61657i −0.548122 + 0.949374i
\(36\) 0 0
\(37\) −1.90793 3.30463i −0.313661 0.543277i 0.665491 0.746406i \(-0.268222\pi\)
−0.979152 + 0.203129i \(0.934889\pi\)
\(38\) 0 0
\(39\) −2.77178 5.59618i −0.443840 0.896106i
\(40\) 0 0
\(41\) 0.0912193 0.0142461 0.00712303 0.999975i \(-0.497733\pi\)
0.00712303 + 0.999975i \(0.497733\pi\)
\(42\) 0 0
\(43\) 8.61643 1.31399 0.656997 0.753893i \(-0.271826\pi\)
0.656997 + 0.753893i \(0.271826\pi\)
\(44\) 0 0
\(45\) −2.47796 4.89219i −0.369393 0.729284i
\(46\) 0 0
\(47\) 1.16369 + 2.01557i 0.169741 + 0.294001i 0.938329 0.345744i \(-0.112373\pi\)
−0.768587 + 0.639745i \(0.779040\pi\)
\(48\) 0 0
\(49\) 5.58740 0.798200
\(50\) 0 0
\(51\) 5.14252 + 0.140821i 0.720096 + 0.0197189i
\(52\) 0 0
\(53\) −6.58958 −0.905149 −0.452574 0.891727i \(-0.649494\pi\)
−0.452574 + 0.891727i \(0.649494\pi\)
\(54\) 0 0
\(55\) −0.721383 1.24947i −0.0972713 0.168479i
\(56\) 0 0
\(57\) −5.26117 0.144070i −0.696859 0.0190826i
\(58\) 0 0
\(59\) 0.605518 + 1.04879i 0.0788318 + 0.136541i 0.902746 0.430174i \(-0.141548\pi\)
−0.823914 + 0.566714i \(0.808214\pi\)
\(60\) 0 0
\(61\) −3.76705 −0.482321 −0.241161 0.970485i \(-0.577528\pi\)
−0.241161 + 0.970485i \(0.577528\pi\)
\(62\) 0 0
\(63\) −5.81828 + 8.91259i −0.733035 + 1.12288i
\(64\) 0 0
\(65\) −3.50066 + 5.58438i −0.434204 + 0.692657i
\(66\) 0 0
\(67\) −8.47022 −1.03480 −0.517401 0.855743i \(-0.673100\pi\)
−0.517401 + 0.855743i \(0.673100\pi\)
\(68\) 0 0
\(69\) −4.79595 8.85831i −0.577365 1.06642i
\(70\) 0 0
\(71\) −6.51214 + 11.2794i −0.772849 + 1.33861i 0.163146 + 0.986602i \(0.447836\pi\)
−0.935995 + 0.352012i \(0.885498\pi\)
\(72\) 0 0
\(73\) −7.67537 −0.898334 −0.449167 0.893448i \(-0.648279\pi\)
−0.449167 + 0.893448i \(0.648279\pi\)
\(74\) 0 0
\(75\) 1.50383 2.44745i 0.173648 0.282607i
\(76\) 0 0
\(77\) −1.40011 + 2.42506i −0.159557 + 0.276361i
\(78\) 0 0
\(79\) 5.76726 + 9.98919i 0.648868 + 1.12387i 0.983394 + 0.181485i \(0.0580905\pi\)
−0.334526 + 0.942387i \(0.608576\pi\)
\(80\) 0 0
\(81\) −3.62122 8.23934i −0.402358 0.915482i
\(82\) 0 0
\(83\) 7.82491 + 13.5531i 0.858896 + 1.48765i 0.872983 + 0.487750i \(0.162182\pi\)
−0.0140878 + 0.999901i \(0.504484\pi\)
\(84\) 0 0
\(85\) −2.71469 4.70199i −0.294450 0.510002i
\(86\) 0 0
\(87\) −14.1791 0.388277i −1.52016 0.0416277i
\(88\) 0 0
\(89\) −2.17897 3.77409i −0.230970 0.400053i 0.727124 0.686507i \(-0.240857\pi\)
−0.958094 + 0.286454i \(0.907523\pi\)
\(90\) 0 0
\(91\) 12.7836 + 0.464789i 1.34008 + 0.0487231i
\(92\) 0 0
\(93\) 0.447853 + 0.0122639i 0.0464401 + 0.00127170i
\(94\) 0 0
\(95\) 2.77733 + 4.81047i 0.284948 + 0.493544i
\(96\) 0 0
\(97\) 0.113077 0.0114813 0.00574063 0.999984i \(-0.498173\pi\)
0.00574063 + 0.999984i \(0.498173\pi\)
\(98\) 0 0
\(99\) −1.06990 2.11229i −0.107529 0.212293i
\(100\) 0 0
\(101\) −4.07159 + 7.05221i −0.405139 + 0.701721i −0.994338 0.106267i \(-0.966110\pi\)
0.589199 + 0.807988i \(0.299443\pi\)
\(102\) 0 0
\(103\) −1.51452 + 2.62322i −0.149230 + 0.258474i −0.930943 0.365164i \(-0.881013\pi\)
0.781713 + 0.623638i \(0.214346\pi\)
\(104\) 0 0
\(105\) 11.2289 + 0.307490i 1.09583 + 0.0300079i
\(106\) 0 0
\(107\) −9.94326 17.2222i −0.961252 1.66494i −0.719365 0.694632i \(-0.755567\pi\)
−0.241886 0.970305i \(-0.577766\pi\)
\(108\) 0 0
\(109\) 18.7499 1.79591 0.897957 0.440082i \(-0.145051\pi\)
0.897957 + 0.440082i \(0.145051\pi\)
\(110\) 0 0
\(111\) −3.46007 + 5.63118i −0.328415 + 0.534488i
\(112\) 0 0
\(113\) 1.25463 + 2.17308i 0.118025 + 0.204426i 0.918985 0.394292i \(-0.129010\pi\)
−0.800960 + 0.598718i \(0.795677\pi\)
\(114\) 0 0
\(115\) −5.31561 + 9.20690i −0.495683 + 0.858548i
\(116\) 0 0
\(117\) −6.23806 + 8.83666i −0.576709 + 0.816950i
\(118\) 0 0
\(119\) −5.26885 + 9.12591i −0.482995 + 0.836571i
\(120\) 0 0
\(121\) 5.18853 + 8.98680i 0.471685 + 0.816982i
\(122\) 0 0
\(123\) −0.0752231 0.138940i −0.00678264 0.0125278i
\(124\) 0 0
\(125\) −12.1716 −1.08866
\(126\) 0 0
\(127\) −10.9444 18.9563i −0.971160 1.68210i −0.692065 0.721836i \(-0.743299\pi\)
−0.279096 0.960263i \(-0.590035\pi\)
\(128\) 0 0
\(129\) −7.10546 13.1241i −0.625601 1.15551i
\(130\) 0 0
\(131\) 8.14623 14.1097i 0.711740 1.23277i −0.252464 0.967606i \(-0.581241\pi\)
0.964204 0.265163i \(-0.0854258\pi\)
\(132\) 0 0
\(133\) 5.39042 9.33647i 0.467408 0.809575i
\(134\) 0 0
\(135\) −5.40808 + 7.80859i −0.465453 + 0.672056i
\(136\) 0 0
\(137\) −15.1730 −1.29631 −0.648157 0.761507i \(-0.724460\pi\)
−0.648157 + 0.761507i \(0.724460\pi\)
\(138\) 0 0
\(139\) −9.03063 15.6415i −0.765968 1.32670i −0.939733 0.341908i \(-0.888927\pi\)
0.173765 0.984787i \(-0.444407\pi\)
\(140\) 0 0
\(141\) 2.11038 3.43459i 0.177726 0.289244i
\(142\) 0 0
\(143\) −1.51147 + 2.41115i −0.126396 + 0.201631i
\(144\) 0 0
\(145\) 7.48506 + 12.9645i 0.621600 + 1.07664i
\(146\) 0 0
\(147\) −4.60760 8.51041i −0.380028 0.701927i
\(148\) 0 0
\(149\) −5.00434 8.66778i −0.409972 0.710092i 0.584914 0.811095i \(-0.301128\pi\)
−0.994886 + 0.101003i \(0.967795\pi\)
\(150\) 0 0
\(151\) −9.52036 16.4898i −0.774756 1.34192i −0.934931 0.354829i \(-0.884539\pi\)
0.160175 0.987089i \(-0.448794\pi\)
\(152\) 0 0
\(153\) −4.02624 7.94892i −0.325502 0.642632i
\(154\) 0 0
\(155\) −0.236418 0.409488i −0.0189895 0.0328908i
\(156\) 0 0
\(157\) −5.01398 + 8.68447i −0.400159 + 0.693096i −0.993745 0.111675i \(-0.964379\pi\)
0.593585 + 0.804771i \(0.297712\pi\)
\(158\) 0 0
\(159\) 5.43404 + 10.0369i 0.430947 + 0.795977i
\(160\) 0 0
\(161\) 20.6337 1.62617
\(162\) 0 0
\(163\) −2.74172 + 4.74879i −0.214748 + 0.371954i −0.953195 0.302358i \(-0.902226\pi\)
0.738447 + 0.674312i \(0.235560\pi\)
\(164\) 0 0
\(165\) −1.30824 + 2.12914i −0.101847 + 0.165753i
\(166\) 0 0
\(167\) 15.1142 1.16957 0.584784 0.811189i \(-0.301179\pi\)
0.584784 + 0.811189i \(0.301179\pi\)
\(168\) 0 0
\(169\) 12.9657 + 0.944067i 0.997360 + 0.0726205i
\(170\) 0 0
\(171\) 4.11913 + 8.13232i 0.314998 + 0.621894i
\(172\) 0 0
\(173\) −6.88965 −0.523811 −0.261905 0.965094i \(-0.584351\pi\)
−0.261905 + 0.965094i \(0.584351\pi\)
\(174\) 0 0
\(175\) 2.94201 + 5.09572i 0.222395 + 0.385200i
\(176\) 0 0
\(177\) 1.09812 1.78717i 0.0825398 0.134332i
\(178\) 0 0
\(179\) −3.90439 6.76259i −0.291827 0.505460i 0.682414 0.730966i \(-0.260930\pi\)
−0.974242 + 0.225505i \(0.927597\pi\)
\(180\) 0 0
\(181\) −9.35311 −0.695211 −0.347606 0.937641i \(-0.613005\pi\)
−0.347606 + 0.937641i \(0.613005\pi\)
\(182\) 0 0
\(183\) 3.10646 + 5.73776i 0.229636 + 0.424147i
\(184\) 0 0
\(185\) 6.97533 0.512836
\(186\) 0 0
\(187\) −1.17212 2.03017i −0.0857137 0.148460i
\(188\) 0 0
\(189\) 18.3731 + 1.51240i 1.33645 + 0.110011i
\(190\) 0 0
\(191\) 19.3660 1.40127 0.700636 0.713519i \(-0.252900\pi\)
0.700636 + 0.713519i \(0.252900\pi\)
\(192\) 0 0
\(193\) 5.57023 0.400954 0.200477 0.979698i \(-0.435751\pi\)
0.200477 + 0.979698i \(0.435751\pi\)
\(194\) 0 0
\(195\) 11.3926 + 0.726911i 0.815841 + 0.0520551i
\(196\) 0 0
\(197\) −11.3330 19.6294i −0.807445 1.39854i −0.914628 0.404297i \(-0.867516\pi\)
0.107182 0.994239i \(-0.465817\pi\)
\(198\) 0 0
\(199\) −5.10112 + 8.83540i −0.361609 + 0.626325i −0.988226 0.153002i \(-0.951106\pi\)
0.626617 + 0.779327i \(0.284439\pi\)
\(200\) 0 0
\(201\) 6.98489 + 12.9014i 0.492676 + 0.909992i
\(202\) 0 0
\(203\) 14.5275 25.1623i 1.01963 1.76605i
\(204\) 0 0
\(205\) −0.0833738 + 0.144408i −0.00582308 + 0.0100859i
\(206\) 0 0
\(207\) −9.53755 + 14.6099i −0.662906 + 1.01545i
\(208\) 0 0
\(209\) 1.19916 + 2.07701i 0.0829477 + 0.143670i
\(210\) 0 0
\(211\) 4.13229 0.284478 0.142239 0.989832i \(-0.454570\pi\)
0.142239 + 0.989832i \(0.454570\pi\)
\(212\) 0 0
\(213\) 22.5503 + 0.617510i 1.54512 + 0.0423111i
\(214\) 0 0
\(215\) −7.87536 + 13.6405i −0.537095 + 0.930276i
\(216\) 0 0
\(217\) −0.458855 + 0.794760i −0.0311491 + 0.0539518i
\(218\) 0 0
\(219\) 6.32942 + 11.6907i 0.427703 + 0.789984i
\(220\) 0 0
\(221\) −5.68795 + 9.07360i −0.382613 + 0.610357i
\(222\) 0 0
\(223\) −0.997068 + 1.72697i −0.0667686 + 0.115647i −0.897477 0.441061i \(-0.854602\pi\)
0.830709 + 0.556708i \(0.187936\pi\)
\(224\) 0 0
\(225\) −4.96794 0.272285i −0.331196 0.0181524i
\(226\) 0 0
\(227\) 18.3994 1.22121 0.610607 0.791934i \(-0.290926\pi\)
0.610607 + 0.791934i \(0.290926\pi\)
\(228\) 0 0
\(229\) −10.8242 + 18.7481i −0.715284 + 1.23891i 0.247565 + 0.968871i \(0.420370\pi\)
−0.962850 + 0.270038i \(0.912964\pi\)
\(230\) 0 0
\(231\) 4.84829 + 0.132764i 0.318994 + 0.00873524i
\(232\) 0 0
\(233\) 10.5670 0.692265 0.346133 0.938186i \(-0.387495\pi\)
0.346133 + 0.938186i \(0.387495\pi\)
\(234\) 0 0
\(235\) −4.25441 −0.277527
\(236\) 0 0
\(237\) 10.4591 17.0219i 0.679389 1.10569i
\(238\) 0 0
\(239\) −1.75441 + 3.03873i −0.113484 + 0.196559i −0.917173 0.398490i \(-0.869534\pi\)
0.803689 + 0.595050i \(0.202868\pi\)
\(240\) 0 0
\(241\) −26.1264 −1.68295 −0.841475 0.540296i \(-0.818312\pi\)
−0.841475 + 0.540296i \(0.818312\pi\)
\(242\) 0 0
\(243\) −9.56349 + 12.3101i −0.613498 + 0.789696i
\(244\) 0 0
\(245\) −5.10684 + 8.84531i −0.326264 + 0.565106i
\(246\) 0 0
\(247\) 5.81918 9.28295i 0.370266 0.590660i
\(248\) 0 0
\(249\) 14.1906 23.0949i 0.899296 1.46358i
\(250\) 0 0
\(251\) 8.00649 13.8677i 0.505365 0.875319i −0.494615 0.869112i \(-0.664691\pi\)
0.999981 0.00620652i \(-0.00197561\pi\)
\(252\) 0 0
\(253\) −2.29511 + 3.97524i −0.144292 + 0.249921i
\(254\) 0 0
\(255\) −4.92316 + 8.01232i −0.308300 + 0.501751i
\(256\) 0 0
\(257\) −4.38690 −0.273647 −0.136824 0.990595i \(-0.543689\pi\)
−0.136824 + 0.990595i \(0.543689\pi\)
\(258\) 0 0
\(259\) −6.76908 11.7244i −0.420610 0.728518i
\(260\) 0 0
\(261\) 11.1013 + 21.9171i 0.687153 + 1.35663i
\(262\) 0 0
\(263\) 11.3028 19.5770i 0.696958 1.20717i −0.272558 0.962139i \(-0.587870\pi\)
0.969516 0.245027i \(-0.0787970\pi\)
\(264\) 0 0
\(265\) 6.02283 10.4319i 0.369980 0.640824i
\(266\) 0 0
\(267\) −3.95161 + 6.43115i −0.241835 + 0.393580i
\(268\) 0 0
\(269\) −7.33389 + 12.7027i −0.447155 + 0.774496i −0.998200 0.0599804i \(-0.980896\pi\)
0.551044 + 0.834476i \(0.314229\pi\)
\(270\) 0 0
\(271\) 2.35377 + 4.07684i 0.142981 + 0.247651i 0.928618 0.371037i \(-0.120998\pi\)
−0.785637 + 0.618688i \(0.787664\pi\)
\(272\) 0 0
\(273\) −9.83393 19.8545i −0.595176 1.20165i
\(274\) 0 0
\(275\) −1.30897 −0.0789339
\(276\) 0 0
\(277\) −15.8732 −0.953727 −0.476863 0.878977i \(-0.658226\pi\)
−0.476863 + 0.878977i \(0.658226\pi\)
\(278\) 0 0
\(279\) −0.350638 0.692257i −0.0209921 0.0414444i
\(280\) 0 0
\(281\) 4.96870 + 8.60604i 0.296408 + 0.513393i 0.975311 0.220834i \(-0.0708780\pi\)
−0.678904 + 0.734227i \(0.737545\pi\)
\(282\) 0 0
\(283\) −6.51285 −0.387149 −0.193574 0.981086i \(-0.562008\pi\)
−0.193574 + 0.981086i \(0.562008\pi\)
\(284\) 0 0
\(285\) 5.03675 8.19718i 0.298351 0.485559i
\(286\) 0 0
\(287\) 0.323634 0.0191035
\(288\) 0 0
\(289\) 4.08912 + 7.08256i 0.240536 + 0.416621i
\(290\) 0 0
\(291\) −0.0932482 0.172233i −0.00546630 0.0100965i
\(292\) 0 0
\(293\) −15.7842 27.3390i −0.922120 1.59716i −0.796128 0.605128i \(-0.793122\pi\)
−0.125993 0.992031i \(-0.540212\pi\)
\(294\) 0 0
\(295\) −2.21376 −0.128890
\(296\) 0 0
\(297\) −2.33503 + 3.37150i −0.135492 + 0.195634i
\(298\) 0 0
\(299\) 20.9553 + 0.761900i 1.21188 + 0.0440618i
\(300\) 0 0
\(301\) 30.5700 1.76203
\(302\) 0 0
\(303\) 14.0991 + 0.386086i 0.809974 + 0.0221801i
\(304\) 0 0
\(305\) 3.44306 5.96355i 0.197149 0.341472i
\(306\) 0 0
\(307\) −9.62508 −0.549332 −0.274666 0.961540i \(-0.588567\pi\)
−0.274666 + 0.961540i \(0.588567\pi\)
\(308\) 0 0
\(309\) 5.24448 + 0.143613i 0.298348 + 0.00816987i
\(310\) 0 0
\(311\) 3.09612 5.36263i 0.175565 0.304087i −0.764792 0.644277i \(-0.777158\pi\)
0.940357 + 0.340190i \(0.110492\pi\)
\(312\) 0 0
\(313\) −8.25806 14.3034i −0.466773 0.808475i 0.532506 0.846426i \(-0.321250\pi\)
−0.999280 + 0.0379511i \(0.987917\pi\)
\(314\) 0 0
\(315\) −8.79149 17.3569i −0.495344 0.977948i
\(316\) 0 0
\(317\) 11.2779 + 19.5340i 0.633432 + 1.09714i 0.986845 + 0.161669i \(0.0516876\pi\)
−0.353413 + 0.935467i \(0.614979\pi\)
\(318\) 0 0
\(319\) 3.23181 + 5.59765i 0.180946 + 0.313408i
\(320\) 0 0
\(321\) −18.0323 + 29.3472i −1.00647 + 1.63800i
\(322\) 0 0
\(323\) 4.51265 + 7.81615i 0.251091 + 0.434902i
\(324\) 0 0
\(325\) 2.79971 + 5.28377i 0.155300 + 0.293091i
\(326\) 0 0
\(327\) −15.4619 28.5588i −0.855047 1.57931i
\(328\) 0 0
\(329\) 4.12862 + 7.15098i 0.227618 + 0.394246i
\(330\) 0 0
\(331\) 13.9793 0.768374 0.384187 0.923255i \(-0.374482\pi\)
0.384187 + 0.923255i \(0.374482\pi\)
\(332\) 0 0
\(333\) 11.4304 + 0.626483i 0.626382 + 0.0343311i
\(334\) 0 0
\(335\) 7.74172 13.4091i 0.422976 0.732615i
\(336\) 0 0
\(337\) 0.207169 0.358827i 0.0112852 0.0195466i −0.860328 0.509741i \(-0.829741\pi\)
0.871613 + 0.490195i \(0.163074\pi\)
\(338\) 0 0
\(339\) 2.27529 3.70299i 0.123577 0.201119i
\(340\) 0 0
\(341\) −0.102078 0.176804i −0.00552781 0.00957445i
\(342\) 0 0
\(343\) −5.01173 −0.270608
\(344\) 0 0
\(345\) 18.4069 + 0.504049i 0.990995 + 0.0271371i
\(346\) 0 0
\(347\) −5.06201 8.76765i −0.271743 0.470672i 0.697565 0.716521i \(-0.254267\pi\)
−0.969308 + 0.245849i \(0.920933\pi\)
\(348\) 0 0
\(349\) −7.41055 + 12.8355i −0.396678 + 0.687066i −0.993314 0.115446i \(-0.963170\pi\)
0.596636 + 0.802512i \(0.296504\pi\)
\(350\) 0 0
\(351\) 18.6037 + 2.21440i 0.992990 + 0.118196i
\(352\) 0 0
\(353\) −15.0414 + 26.0525i −0.800573 + 1.38663i 0.118666 + 0.992934i \(0.462138\pi\)
−0.919239 + 0.393699i \(0.871195\pi\)
\(354\) 0 0
\(355\) −11.9041 20.6185i −0.631804 1.09432i
\(356\) 0 0
\(357\) 18.2450 + 0.499615i 0.965627 + 0.0264424i
\(358\) 0 0
\(359\) 3.20722 0.169271 0.0846353 0.996412i \(-0.473027\pi\)
0.0846353 + 0.996412i \(0.473027\pi\)
\(360\) 0 0
\(361\) 4.88323 + 8.45800i 0.257012 + 0.445158i
\(362\) 0 0
\(363\) 9.40951 15.3138i 0.493871 0.803764i
\(364\) 0 0
\(365\) 7.01523 12.1507i 0.367194 0.635999i
\(366\) 0 0
\(367\) 1.08009 1.87076i 0.0563800 0.0976530i −0.836458 0.548031i \(-0.815377\pi\)
0.892838 + 0.450378i \(0.148711\pi\)
\(368\) 0 0
\(369\) −0.149594 + 0.229151i −0.00778754 + 0.0119291i
\(370\) 0 0
\(371\) −23.3790 −1.21378
\(372\) 0 0
\(373\) −6.98479 12.0980i −0.361659 0.626411i 0.626575 0.779361i \(-0.284456\pi\)
−0.988234 + 0.152950i \(0.951123\pi\)
\(374\) 0 0
\(375\) 10.0372 + 18.5391i 0.518318 + 0.957354i
\(376\) 0 0
\(377\) 15.6830 25.0181i 0.807717 1.28850i
\(378\) 0 0
\(379\) −3.47398 6.01711i −0.178446 0.309078i 0.762902 0.646514i \(-0.223774\pi\)
−0.941349 + 0.337436i \(0.890440\pi\)
\(380\) 0 0
\(381\) −19.8479 + 32.3021i −1.01684 + 1.65488i
\(382\) 0 0
\(383\) −12.5333 21.7082i −0.640420 1.10924i −0.985339 0.170607i \(-0.945427\pi\)
0.344919 0.938632i \(-0.387906\pi\)
\(384\) 0 0
\(385\) −2.55938 4.43297i −0.130438 0.225925i
\(386\) 0 0
\(387\) −14.1304 + 21.6453i −0.718288 + 1.10029i
\(388\) 0 0
\(389\) −14.9765 25.9401i −0.759339 1.31521i −0.943188 0.332259i \(-0.892189\pi\)
0.183850 0.982954i \(-0.441144\pi\)
\(390\) 0 0
\(391\) −8.63690 + 14.9596i −0.436787 + 0.756537i
\(392\) 0 0
\(393\) −28.2088 0.772461i −1.42295 0.0389655i
\(394\) 0 0
\(395\) −21.0850 −1.06090
\(396\) 0 0
\(397\) −14.4399 + 25.0106i −0.724718 + 1.25525i 0.234372 + 0.972147i \(0.424696\pi\)
−0.959090 + 0.283101i \(0.908637\pi\)
\(398\) 0 0
\(399\) −18.6660 0.511143i −0.934466 0.0255891i
\(400\) 0 0
\(401\) 9.64590 0.481693 0.240847 0.970563i \(-0.422575\pi\)
0.240847 + 0.970563i \(0.422575\pi\)
\(402\) 0 0
\(403\) −0.495353 + 0.790204i −0.0246753 + 0.0393629i
\(404\) 0 0
\(405\) 16.3533 + 1.79800i 0.812604 + 0.0893435i
\(406\) 0 0
\(407\) 3.01172 0.149286
\(408\) 0 0
\(409\) −13.2875 23.0146i −0.657024 1.13800i −0.981382 0.192065i \(-0.938482\pi\)
0.324358 0.945934i \(-0.394852\pi\)
\(410\) 0 0
\(411\) 12.5122 + 23.1106i 0.617184 + 1.13996i
\(412\) 0 0
\(413\) 2.14830 + 3.72097i 0.105711 + 0.183097i
\(414\) 0 0
\(415\) −28.6077 −1.40429
\(416\) 0 0
\(417\) −16.3772 + 26.6536i −0.801997 + 1.30523i
\(418\) 0 0
\(419\) −30.4742 −1.48876 −0.744380 0.667756i \(-0.767255\pi\)
−0.744380 + 0.667756i \(0.767255\pi\)
\(420\) 0 0
\(421\) 15.2202 + 26.3622i 0.741788 + 1.28481i 0.951681 + 0.307090i \(0.0993552\pi\)
−0.209893 + 0.977724i \(0.567311\pi\)
\(422\) 0 0
\(423\) −6.97167 0.382107i −0.338974 0.0185787i
\(424\) 0 0
\(425\) −4.92589 −0.238941
\(426\) 0 0
\(427\) −13.3650 −0.646778
\(428\) 0 0
\(429\) 4.91896 + 0.313857i 0.237490 + 0.0151531i
\(430\) 0 0
\(431\) 0.842335 + 1.45897i 0.0405738 + 0.0702759i 0.885599 0.464450i \(-0.153748\pi\)
−0.845025 + 0.534726i \(0.820415\pi\)
\(432\) 0 0
\(433\) 10.5289 18.2367i 0.505989 0.876398i −0.493987 0.869469i \(-0.664461\pi\)
0.999976 0.00692888i \(-0.00220555\pi\)
\(434\) 0 0
\(435\) 13.5743 22.0919i 0.650839 1.05922i
\(436\) 0 0
\(437\) 8.83618 15.3047i 0.422692 0.732123i
\(438\) 0 0
\(439\) −2.94942 + 5.10855i −0.140768 + 0.243818i −0.927786 0.373112i \(-0.878291\pi\)
0.787018 + 0.616930i \(0.211624\pi\)
\(440\) 0 0
\(441\) −9.16297 + 14.0361i −0.436332 + 0.668384i
\(442\) 0 0
\(443\) −11.8651 20.5510i −0.563728 0.976406i −0.997167 0.0752229i \(-0.976033\pi\)
0.433438 0.901183i \(-0.357300\pi\)
\(444\) 0 0
\(445\) 7.96626 0.377637
\(446\) 0 0
\(447\) −9.07549 + 14.7701i −0.429256 + 0.698604i
\(448\) 0 0
\(449\) 12.3374 21.3689i 0.582236 1.00846i −0.412977 0.910741i \(-0.635511\pi\)
0.995214 0.0977216i \(-0.0311555\pi\)
\(450\) 0 0
\(451\) −0.0359981 + 0.0623506i −0.00169509 + 0.00293597i
\(452\) 0 0
\(453\) −17.2654 + 28.0990i −0.811199 + 1.32021i
\(454\) 0 0
\(455\) −12.4199 + 19.8127i −0.582254 + 0.928832i
\(456\) 0 0
\(457\) −7.24537 + 12.5493i −0.338924 + 0.587033i −0.984231 0.176890i \(-0.943396\pi\)
0.645307 + 0.763924i \(0.276730\pi\)
\(458\) 0 0
\(459\) −8.78715 + 12.6875i −0.410149 + 0.592204i
\(460\) 0 0
\(461\) 27.9740 1.30288 0.651439 0.758701i \(-0.274166\pi\)
0.651439 + 0.758701i \(0.274166\pi\)
\(462\) 0 0
\(463\) −12.9541 + 22.4371i −0.602027 + 1.04274i 0.390487 + 0.920608i \(0.372307\pi\)
−0.992514 + 0.122132i \(0.961027\pi\)
\(464\) 0 0
\(465\) −0.428749 + 0.697778i −0.0198828 + 0.0323587i
\(466\) 0 0
\(467\) 8.61901 0.398840 0.199420 0.979914i \(-0.436094\pi\)
0.199420 + 0.979914i \(0.436094\pi\)
\(468\) 0 0
\(469\) −30.0513 −1.38764
\(470\) 0 0
\(471\) 17.3624 + 0.475448i 0.800019 + 0.0219075i
\(472\) 0 0
\(473\) −3.40033 + 5.88954i −0.156347 + 0.270801i
\(474\) 0 0
\(475\) 5.03954 0.231230
\(476\) 0 0
\(477\) 10.8065 16.5536i 0.494795 0.757940i
\(478\) 0 0
\(479\) −9.15223 + 15.8521i −0.418176 + 0.724302i −0.995756 0.0920318i \(-0.970664\pi\)
0.577580 + 0.816334i \(0.303997\pi\)
\(480\) 0 0
\(481\) −6.44166 12.1571i −0.293715 0.554315i
\(482\) 0 0
\(483\) −17.0154 31.4282i −0.774229 1.43003i
\(484\) 0 0
\(485\) −0.103352 + 0.179011i −0.00469297 + 0.00812846i
\(486\) 0 0
\(487\) 16.8413 29.1699i 0.763150 1.32182i −0.178069 0.984018i \(-0.556985\pi\)
0.941219 0.337797i \(-0.109682\pi\)
\(488\) 0 0
\(489\) 9.49403 + 0.259982i 0.429335 + 0.0117568i
\(490\) 0 0
\(491\) 30.8537 1.39241 0.696204 0.717844i \(-0.254871\pi\)
0.696204 + 0.717844i \(0.254871\pi\)
\(492\) 0 0
\(493\) 12.1619 + 21.0650i 0.547743 + 0.948718i
\(494\) 0 0
\(495\) 4.32181 + 0.236872i 0.194251 + 0.0106466i
\(496\) 0 0
\(497\) −23.1042 + 40.0177i −1.03637 + 1.79504i
\(498\) 0 0
\(499\) −6.47626 + 11.2172i −0.289917 + 0.502151i −0.973790 0.227450i \(-0.926961\pi\)
0.683873 + 0.729601i \(0.260294\pi\)
\(500\) 0 0
\(501\) −12.4637 23.0210i −0.556839 1.02850i
\(502\) 0 0
\(503\) −12.8940 + 22.3331i −0.574916 + 0.995784i 0.421135 + 0.906998i \(0.361632\pi\)
−0.996051 + 0.0887855i \(0.971701\pi\)
\(504\) 0 0
\(505\) −7.44282 12.8913i −0.331201 0.573657i
\(506\) 0 0
\(507\) −9.25407 20.5271i −0.410988 0.911641i
\(508\) 0 0
\(509\) −20.0195 −0.887350 −0.443675 0.896188i \(-0.646326\pi\)
−0.443675 + 0.896188i \(0.646326\pi\)
\(510\) 0 0
\(511\) −27.2312 −1.20464
\(512\) 0 0
\(513\) 8.98989 12.9803i 0.396913 0.573093i
\(514\) 0 0
\(515\) −2.76852 4.79522i −0.121996 0.211302i
\(516\) 0 0
\(517\) −1.83692 −0.0807876
\(518\) 0 0
\(519\) 5.68149 + 10.4939i 0.249390 + 0.460633i
\(520\) 0 0
\(521\) 24.1247 1.05692 0.528461 0.848958i \(-0.322769\pi\)
0.528461 + 0.848958i \(0.322769\pi\)
\(522\) 0 0
\(523\) 0.701127 + 1.21439i 0.0306581 + 0.0531015i 0.880947 0.473214i \(-0.156906\pi\)
−0.850289 + 0.526316i \(0.823573\pi\)
\(524\) 0 0
\(525\) 5.33541 8.68325i 0.232856 0.378968i
\(526\) 0 0
\(527\) −0.384136 0.665343i −0.0167332 0.0289828i
\(528\) 0 0
\(529\) 10.8236 0.470593
\(530\) 0 0
\(531\) −3.62767 0.198827i −0.157427 0.00862835i
\(532\) 0 0
\(533\) 0.328679 + 0.0119502i 0.0142367 + 0.000517620i
\(534\) 0 0
\(535\) 36.3523 1.57165
\(536\) 0 0
\(537\) −7.08069 + 11.5237i −0.305554 + 0.497282i
\(538\) 0 0
\(539\) −2.20497 + 3.81912i −0.0949748 + 0.164501i
\(540\) 0 0
\(541\) 16.6942 0.717741 0.358871 0.933387i \(-0.383162\pi\)
0.358871 + 0.933387i \(0.383162\pi\)
\(542\) 0 0
\(543\) 7.71296 + 14.2461i 0.330995 + 0.611360i
\(544\) 0 0
\(545\) −17.1373 + 29.6826i −0.734080 + 1.27146i
\(546\) 0 0
\(547\) −9.02605 15.6336i −0.385926 0.668443i 0.605971 0.795487i \(-0.292785\pi\)
−0.991897 + 0.127043i \(0.959451\pi\)
\(548\) 0 0
\(549\) 6.17772 9.46318i 0.263659 0.403879i
\(550\) 0 0
\(551\) −12.4425 21.5510i −0.530067 0.918103i
\(552\) 0 0
\(553\) 20.4615 + 35.4404i 0.870112 + 1.50708i
\(554\) 0 0
\(555\) −5.75214 10.6244i −0.244165 0.450982i
\(556\) 0 0
\(557\) −9.46050 16.3861i −0.400854 0.694300i 0.592975 0.805221i \(-0.297953\pi\)
−0.993829 + 0.110921i \(0.964620\pi\)
\(558\) 0 0
\(559\) 31.0465 + 1.12880i 1.31313 + 0.0477430i
\(560\) 0 0
\(561\) −2.12566 + 3.45946i −0.0897454 + 0.146059i
\(562\) 0 0
\(563\) 6.84531 + 11.8564i 0.288496 + 0.499689i 0.973451 0.228896i \(-0.0735116\pi\)
−0.684955 + 0.728585i \(0.740178\pi\)
\(564\) 0 0
\(565\) −4.58688 −0.192972
\(566\) 0 0
\(567\) −12.8476 29.2321i −0.539550 1.22763i
\(568\) 0 0
\(569\) 8.12083 14.0657i 0.340443 0.589665i −0.644072 0.764965i \(-0.722756\pi\)
0.984515 + 0.175300i \(0.0560896\pi\)
\(570\) 0 0
\(571\) 18.7269 32.4359i 0.783696 1.35740i −0.146079 0.989273i \(-0.546665\pi\)
0.929775 0.368129i \(-0.120001\pi\)
\(572\) 0 0
\(573\) −15.9700 29.4971i −0.667155 1.23226i
\(574\) 0 0
\(575\) 4.82266 + 8.35309i 0.201119 + 0.348348i
\(576\) 0 0
\(577\) 24.9058 1.03684 0.518421 0.855126i \(-0.326520\pi\)
0.518421 + 0.855126i \(0.326520\pi\)
\(578\) 0 0
\(579\) −4.59344 8.48427i −0.190897 0.352594i
\(580\) 0 0
\(581\) 27.7618 + 48.0848i 1.15175 + 1.99489i
\(582\) 0 0
\(583\) 2.60047 4.50414i 0.107700 0.186542i
\(584\) 0 0
\(585\) −8.28762 17.9520i −0.342651 0.742225i
\(586\) 0 0
\(587\) −13.9379 + 24.1412i −0.575279 + 0.996413i 0.420732 + 0.907185i \(0.361773\pi\)
−0.996011 + 0.0892281i \(0.971560\pi\)
\(588\) 0 0
\(589\) 0.392999 + 0.680694i 0.0161932 + 0.0280475i
\(590\) 0 0
\(591\) −20.5527 + 33.4490i −0.845426 + 1.37591i
\(592\) 0 0
\(593\) −39.1962 −1.60959 −0.804797 0.593550i \(-0.797726\pi\)
−0.804797 + 0.593550i \(0.797726\pi\)
\(594\) 0 0
\(595\) −9.63138 16.6820i −0.394848 0.683897i
\(596\) 0 0
\(597\) 17.6642 + 0.483710i 0.722947 + 0.0197970i
\(598\) 0 0
\(599\) −5.21215 + 9.02771i −0.212963 + 0.368862i −0.952640 0.304099i \(-0.901645\pi\)
0.739678 + 0.672961i \(0.234978\pi\)
\(600\) 0 0
\(601\) 14.0755 24.3795i 0.574152 0.994460i −0.421981 0.906605i \(-0.638665\pi\)
0.996133 0.0878557i \(-0.0280014\pi\)
\(602\) 0 0
\(603\) 13.8906 21.2780i 0.565670 0.866507i
\(604\) 0 0
\(605\) −18.9691 −0.771205
\(606\) 0 0
\(607\) −10.7141 18.5573i −0.434871 0.753219i 0.562414 0.826856i \(-0.309873\pi\)
−0.997285 + 0.0736371i \(0.976539\pi\)
\(608\) 0 0
\(609\) −50.3058 1.37756i −2.03849 0.0558215i
\(610\) 0 0
\(611\) 3.92892 + 7.41488i 0.158947 + 0.299974i
\(612\) 0 0
\(613\) 17.1769 + 29.7512i 0.693766 + 1.20164i 0.970595 + 0.240719i \(0.0773833\pi\)
−0.276828 + 0.960919i \(0.589283\pi\)
\(614\) 0 0
\(615\) 0.288707 + 0.00790587i 0.0116418 + 0.000318795i
\(616\) 0 0
\(617\) 6.18881 + 10.7193i 0.249152 + 0.431544i 0.963291 0.268460i \(-0.0865148\pi\)
−0.714139 + 0.700004i \(0.753181\pi\)
\(618\) 0 0
\(619\) −7.10653 12.3089i −0.285635 0.494735i 0.687128 0.726537i \(-0.258871\pi\)
−0.972763 + 0.231802i \(0.925538\pi\)
\(620\) 0 0
\(621\) 30.1180 + 2.47918i 1.20859 + 0.0994861i
\(622\) 0 0
\(623\) −7.73071 13.3900i −0.309724 0.536458i
\(624\) 0 0
\(625\) 6.97858 12.0873i 0.279143 0.483490i
\(626\) 0 0
\(627\) 2.17470 3.53928i 0.0868493 0.141345i
\(628\) 0 0
\(629\) 11.3336 0.451902
\(630\) 0 0
\(631\) −19.7301 + 34.1735i −0.785441 + 1.36042i 0.143294 + 0.989680i \(0.454231\pi\)
−0.928735 + 0.370744i \(0.879103\pi\)
\(632\) 0 0
\(633\) −3.40765 6.29407i −0.135442 0.250167i
\(634\) 0 0
\(635\) 40.0125 1.58785
\(636\) 0 0
\(637\) 20.1323 + 0.731977i 0.797673 + 0.0290020i
\(638\) 0 0
\(639\) −17.6553 34.8565i −0.698433 1.37890i
\(640\) 0 0
\(641\) 38.5836 1.52396 0.761980 0.647600i \(-0.224227\pi\)
0.761980 + 0.647600i \(0.224227\pi\)
\(642\) 0 0
\(643\) 16.7399 + 28.9944i 0.660158 + 1.14343i 0.980574 + 0.196150i \(0.0628438\pi\)
−0.320416 + 0.947277i \(0.603823\pi\)
\(644\) 0 0
\(645\) 27.2708 + 0.746776i 1.07379 + 0.0294043i
\(646\) 0 0
\(647\) −9.34123 16.1795i −0.367242 0.636081i 0.621891 0.783103i \(-0.286364\pi\)
−0.989133 + 0.147022i \(0.953031\pi\)
\(648\) 0 0
\(649\) −0.955829 −0.0375196
\(650\) 0 0
\(651\) 1.58892 + 0.0435106i 0.0622748 + 0.00170531i
\(652\) 0 0
\(653\) 21.8099 0.853486 0.426743 0.904373i \(-0.359661\pi\)
0.426743 + 0.904373i \(0.359661\pi\)
\(654\) 0 0
\(655\) 14.8912 + 25.7923i 0.581848 + 1.00779i
\(656\) 0 0
\(657\) 12.5871 19.2812i 0.491070 0.752233i
\(658\) 0 0
\(659\) 42.8462 1.66905 0.834526 0.550969i \(-0.185742\pi\)
0.834526 + 0.550969i \(0.185742\pi\)
\(660\) 0 0
\(661\) −24.4668 −0.951650 −0.475825 0.879540i \(-0.657850\pi\)
−0.475825 + 0.879540i \(0.657850\pi\)
\(662\) 0 0
\(663\) 18.5109 + 1.18110i 0.718904 + 0.0458700i
\(664\) 0 0
\(665\) 9.85361 + 17.0669i 0.382106 + 0.661828i
\(666\) 0 0
\(667\) 23.8140 41.2471i 0.922082 1.59709i
\(668\) 0 0
\(669\) 3.45265 + 0.0945463i 0.133487 + 0.00365537i
\(670\) 0 0
\(671\) 1.48660 2.57487i 0.0573896 0.0994017i
\(672\) 0 0
\(673\) 4.26726 7.39111i 0.164491 0.284907i −0.771983 0.635643i \(-0.780735\pi\)
0.936474 + 0.350736i \(0.114069\pi\)
\(674\) 0 0
\(675\) 3.68204 + 7.79143i 0.141722 + 0.299892i
\(676\) 0 0
\(677\) −21.1789 36.6829i −0.813970 1.40984i −0.910065 0.414465i \(-0.863969\pi\)
0.0960958 0.995372i \(-0.469364\pi\)
\(678\) 0 0
\(679\) 0.401184 0.0153960
\(680\) 0 0
\(681\) −15.1729 28.0250i −0.581428 1.07392i
\(682\) 0 0
\(683\) −16.5016 + 28.5816i −0.631415 + 1.09364i 0.355847 + 0.934544i \(0.384192\pi\)
−0.987263 + 0.159099i \(0.949141\pi\)
\(684\) 0 0
\(685\) 13.8680 24.0201i 0.529869 0.917759i
\(686\) 0 0
\(687\) 37.4821 + 1.02640i 1.43003 + 0.0391596i
\(688\) 0 0
\(689\) −23.7434 0.863268i −0.904551 0.0328879i
\(690\) 0 0
\(691\) 5.50867 9.54129i 0.209560 0.362968i −0.742016 0.670382i \(-0.766130\pi\)
0.951576 + 0.307414i \(0.0994637\pi\)
\(692\) 0 0
\(693\) −3.79588 7.49413i −0.144194 0.284679i
\(694\) 0 0
\(695\) 33.0157 1.25236
\(696\) 0 0
\(697\) −0.135467 + 0.234636i −0.00513119 + 0.00888748i
\(698\) 0 0
\(699\) −8.71396 16.0950i −0.329592 0.608770i
\(700\) 0 0
\(701\) −3.41066 −0.128819 −0.0644094 0.997924i \(-0.520516\pi\)
−0.0644094 + 0.997924i \(0.520516\pi\)
\(702\) 0 0
\(703\) −11.5951 −0.437319
\(704\) 0 0
\(705\) 3.50836 + 6.48009i 0.132133 + 0.244054i
\(706\) 0 0
\(707\) −14.4455 + 25.0203i −0.543279 + 0.940986i
\(708\) 0 0
\(709\) 28.7937 1.08137 0.540684 0.841226i \(-0.318165\pi\)
0.540684 + 0.841226i \(0.318165\pi\)
\(710\) 0 0
\(711\) −34.5517 1.89373i −1.29579 0.0710203i
\(712\) 0 0
\(713\) −0.752172 + 1.30280i −0.0281691 + 0.0487903i
\(714\) 0 0
\(715\) −2.43558 4.59657i −0.0910855 0.171902i
\(716\) 0 0
\(717\) 6.07519 + 0.166361i 0.226882 + 0.00621287i
\(718\) 0 0
\(719\) −6.18739 + 10.7169i −0.230751 + 0.399672i −0.958029 0.286670i \(-0.907452\pi\)
0.727278 + 0.686343i \(0.240785\pi\)
\(720\) 0 0
\(721\) −5.37332 + 9.30686i −0.200113 + 0.346606i
\(722\) 0 0
\(723\) 21.5449 + 39.7943i 0.801264 + 1.47997i
\(724\) 0 0
\(725\) 13.5818 0.504417
\(726\) 0 0
\(727\) 0.0603226 + 0.104482i 0.00223724 + 0.00387502i 0.867142 0.498061i \(-0.165955\pi\)
−0.864905 + 0.501936i \(0.832621\pi\)
\(728\) 0 0
\(729\) 26.6366 + 4.41513i 0.986539 + 0.163523i
\(730\) 0 0
\(731\) −12.7960 + 22.1634i −0.473278 + 0.819742i
\(732\) 0 0
\(733\) −6.33410 + 10.9710i −0.233955 + 0.405223i −0.958969 0.283512i \(-0.908500\pi\)
0.725013 + 0.688735i \(0.241834\pi\)
\(734\) 0 0
\(735\) 17.6840 + 0.484253i 0.652284 + 0.0178619i
\(736\) 0 0
\(737\) 3.34263 5.78960i 0.123127 0.213263i
\(738\) 0 0
\(739\) −1.93983 3.35988i −0.0713578 0.123595i 0.828139 0.560523i \(-0.189400\pi\)
−0.899497 + 0.436928i \(0.856067\pi\)
\(740\) 0 0
\(741\) −18.9380 1.20835i −0.695705 0.0443898i
\(742\) 0 0
\(743\) −44.0182 −1.61487 −0.807435 0.589956i \(-0.799145\pi\)
−0.807435 + 0.589956i \(0.799145\pi\)
\(744\) 0 0
\(745\) 18.2957 0.670304
\(746\) 0 0
\(747\) −46.8791 2.56937i −1.71522 0.0940084i
\(748\) 0 0
\(749\) −35.2774 61.1023i −1.28901 2.23263i
\(750\) 0 0
\(751\) −29.5451 −1.07812 −0.539058 0.842269i \(-0.681219\pi\)
−0.539058 + 0.842269i \(0.681219\pi\)
\(752\) 0 0
\(753\) −27.7249 0.759211i −1.01035 0.0276672i
\(754\) 0 0
\(755\) 34.8062 1.26673
\(756\) 0 0
\(757\) −3.72486 6.45165i −0.135382 0.234489i 0.790361 0.612641i \(-0.209893\pi\)
−0.925743 + 0.378152i \(0.876560\pi\)
\(758\) 0 0
\(759\) 7.94751 + 0.217632i 0.288476 + 0.00789955i
\(760\) 0 0
\(761\) 4.73158 + 8.19534i 0.171520 + 0.297081i 0.938951 0.344050i \(-0.111799\pi\)
−0.767432 + 0.641131i \(0.778466\pi\)
\(762\) 0 0
\(763\) 66.5223 2.40827
\(764\) 0 0
\(765\) 16.2637 + 0.891392i 0.588017 + 0.0322283i
\(766\) 0 0
\(767\) 2.04439 + 3.85829i 0.0738186 + 0.139315i
\(768\) 0 0
\(769\) 32.9002 1.18641 0.593205 0.805051i \(-0.297862\pi\)
0.593205 + 0.805051i \(0.297862\pi\)
\(770\) 0 0
\(771\) 3.61762 + 6.68188i 0.130285 + 0.240642i
\(772\) 0 0
\(773\) −25.4419 + 44.0667i −0.915082 + 1.58497i −0.108302 + 0.994118i \(0.534541\pi\)
−0.806781 + 0.590851i \(0.798792\pi\)
\(774\) 0 0
\(775\) −0.428987 −0.0154097
\(776\) 0 0
\(777\) −12.2759 + 19.9787i −0.440395 + 0.716732i
\(778\) 0 0
\(779\) 0.138593 0.240050i 0.00496561 0.00860068i
\(780\) 0 0
\(781\) −5.13981 8.90241i −0.183917 0.318553i
\(782\) 0 0
\(783\) 24.2283 34.9826i 0.865848 1.25018i
\(784\) 0 0
\(785\) −9.16549 15.8751i −0.327130 0.566606i
\(786\) 0 0
\(787\) 10.6565 + 18.4575i 0.379862 + 0.657940i 0.991042 0.133552i \(-0.0426382\pi\)
−0.611180 + 0.791492i \(0.709305\pi\)
\(788\) 0 0
\(789\) −39.1392 1.07178i −1.39339 0.0381563i
\(790\) 0 0
\(791\) 4.45126 + 7.70980i 0.158268 + 0.274129i
\(792\) 0 0
\(793\) −13.5733 0.493502i −0.482003 0.0175248i
\(794\) 0 0
\(795\) −20.8559 0.571111i −0.739682 0.0202552i
\(796\) 0 0
\(797\) 17.2569 + 29.8898i 0.611270 + 1.05875i 0.991027 + 0.133664i \(0.0426743\pi\)
−0.379757 + 0.925086i \(0.623992\pi\)
\(798\) 0 0
\(799\) −6.91265 −0.244552
\(800\) 0 0
\(801\) 13.0542 + 0.715483i 0.461249 + 0.0252803i
\(802\) 0 0
\(803\) 3.02895 5.24630i 0.106889 0.185138i
\(804\) 0 0
\(805\) −18.8591 + 32.6649i −0.664696 + 1.15129i
\(806\) 0 0
\(807\) 25.3958 + 0.695431i 0.893975 + 0.0244803i
\(808\) 0 0
\(809\) 17.9703 + 31.1254i 0.631801 + 1.09431i 0.987183 + 0.159591i \(0.0510175\pi\)
−0.355382 + 0.934721i \(0.615649\pi\)
\(810\) 0 0
\(811\) 25.8673 0.908323 0.454161 0.890919i \(-0.349939\pi\)
0.454161 + 0.890919i \(0.349939\pi\)
\(812\) 0 0
\(813\) 4.26861 6.94706i 0.149707 0.243644i
\(814\) 0 0
\(815\) −5.01182 8.68073i −0.175556 0.304073i
\(816\) 0 0
\(817\) 13.0913 22.6747i 0.458006 0.793289i
\(818\) 0 0
\(819\) −22.1319 + 31.3513i −0.773349 + 1.09550i
\(820\) 0 0
\(821\) 6.61949 11.4653i 0.231022 0.400142i −0.727087 0.686545i \(-0.759126\pi\)
0.958109 + 0.286404i \(0.0924598\pi\)
\(822\) 0 0
\(823\) 8.00285 + 13.8614i 0.278962 + 0.483176i 0.971127 0.238563i \(-0.0766763\pi\)
−0.692165 + 0.721739i \(0.743343\pi\)
\(824\) 0 0
\(825\) 1.07943 + 1.99375i 0.0375809 + 0.0694135i
\(826\) 0 0
\(827\) 32.7803 1.13988 0.569942 0.821685i \(-0.306966\pi\)
0.569942 + 0.821685i \(0.306966\pi\)
\(828\) 0 0
\(829\) −6.77951 11.7424i −0.235462 0.407832i 0.723945 0.689858i \(-0.242327\pi\)
−0.959407 + 0.282026i \(0.908994\pi\)
\(830\) 0 0
\(831\) 13.0897 + 24.1771i 0.454075 + 0.838695i
\(832\) 0 0
\(833\) −8.29769 + 14.3720i −0.287498 + 0.497961i
\(834\) 0 0
\(835\) −13.8142 + 23.9269i −0.478061 + 0.828026i
\(836\) 0 0
\(837\) −0.765257 + 1.10494i −0.0264512 + 0.0381922i
\(838\) 0 0
\(839\) 22.1091 0.763290 0.381645 0.924309i \(-0.375358\pi\)
0.381645 + 0.924309i \(0.375358\pi\)
\(840\) 0 0
\(841\) −19.0332 32.9664i −0.656316 1.13677i
\(842\) 0 0
\(843\) 9.01084 14.6649i 0.310350 0.505087i
\(844\) 0 0
\(845\) −13.3451 + 19.6629i −0.459084 + 0.676423i
\(846\) 0 0
\(847\) 18.4082 + 31.8840i 0.632515 + 1.09555i
\(848\) 0 0
\(849\) 5.37076 + 9.92001i 0.184324 + 0.340454i
\(850\) 0 0
\(851\) −11.0961 19.2191i −0.380371 0.658821i
\(852\) 0 0
\(853\) 25.0344 + 43.3608i 0.857160 + 1.48464i 0.874627 + 0.484797i \(0.161107\pi\)
−0.0174667 + 0.999847i \(0.505560\pi\)
\(854\) 0 0
\(855\) −16.6390 0.911958i −0.569042 0.0311883i
\(856\) 0 0
\(857\) −20.7269 35.9000i −0.708018 1.22632i −0.965591 0.260064i \(-0.916256\pi\)
0.257574 0.966259i \(-0.417077\pi\)
\(858\) 0 0
\(859\) −12.4494 + 21.5630i −0.424769 + 0.735721i −0.996399 0.0847904i \(-0.972978\pi\)
0.571630 + 0.820511i \(0.306311\pi\)
\(860\) 0 0
\(861\) −0.266882 0.492942i −0.00909532 0.0167994i
\(862\) 0 0
\(863\) −15.8767 −0.540448 −0.270224 0.962797i \(-0.587098\pi\)
−0.270224 + 0.962797i \(0.587098\pi\)
\(864\) 0 0
\(865\) 6.29710 10.9069i 0.214108 0.370845i
\(866\) 0 0
\(867\) 7.41570 12.0689i 0.251850 0.409881i
\(868\) 0 0
\(869\) −9.10380 −0.308825
\(870\) 0 0
\(871\) −30.5197 1.10964i −1.03412 0.0375988i
\(872\) 0 0
\(873\) −0.185439 + 0.284061i −0.00627618 + 0.00961400i
\(874\) 0 0
\(875\) −43.1832 −1.45986
\(876\) 0 0
\(877\) 5.00766 + 8.67352i 0.169097 + 0.292884i 0.938103 0.346358i \(-0.112582\pi\)
−0.769006 + 0.639242i \(0.779248\pi\)
\(878\) 0 0
\(879\) −28.6249 + 46.5864i −0.965495 + 1.57132i
\(880\) 0 0
\(881\) 11.0336 + 19.1108i 0.371732 + 0.643859i 0.989832 0.142240i \(-0.0454306\pi\)
−0.618100 + 0.786100i \(0.712097\pi\)
\(882\) 0 0
\(883\) 46.2340 1.55590 0.777950 0.628326i \(-0.216260\pi\)
0.777950 + 0.628326i \(0.216260\pi\)
\(884\) 0 0
\(885\) 1.82556 + 3.37187i 0.0613654 + 0.113344i
\(886\) 0 0
\(887\) −1.92642 −0.0646828 −0.0323414 0.999477i \(-0.510296\pi\)
−0.0323414 + 0.999477i \(0.510296\pi\)
\(888\) 0 0
\(889\) −38.8294 67.2545i −1.30230 2.25564i
\(890\) 0 0
\(891\) 7.06084 + 0.776320i 0.236547 + 0.0260077i
\(892\) 0 0
\(893\) 7.07214 0.236660
\(894\) 0 0
\(895\) 14.2743 0.477138
\(896\) 0 0
\(897\) −16.1202 32.5463i −0.538236 1.08669i
\(898\) 0 0
\(899\) 1.05915 + 1.83451i 0.0353248 + 0.0611843i
\(900\) 0 0
\(901\) 9.78601 16.9499i 0.326019 0.564682i
\(902\) 0 0
\(903\) −25.2093 46.5625i −0.838912 1.54950i
\(904\) 0 0
\(905\) 8.54868 14.8067i 0.284168 0.492193i
\(906\) 0 0
\(907\) −1.54206 + 2.67092i −0.0512032 + 0.0886865i −0.890491 0.455001i \(-0.849639\pi\)
0.839288 + 0.543687i \(0.182972\pi\)
\(908\) 0 0
\(909\) −11.0386 21.7934i −0.366129 0.722841i
\(910\) 0 0
\(911\) −5.56268 9.63484i −0.184300 0.319216i 0.759041 0.651043i \(-0.225668\pi\)
−0.943340 + 0.331827i \(0.892335\pi\)
\(912\) 0 0
\(913\) −12.3519 −0.408787
\(914\) 0 0
\(915\) −11.9226 0.326486i −0.394150 0.0107933i
\(916\) 0 0
\(917\) 28.9018 50.0594i 0.954422 1.65311i
\(918\) 0 0
\(919\) 28.4673 49.3069i 0.939051 1.62648i 0.171804 0.985131i \(-0.445040\pi\)
0.767247 0.641352i \(-0.221626\pi\)
\(920\) 0 0
\(921\) 7.93723 + 14.6604i 0.261541 + 0.483076i
\(922\) 0 0
\(923\) −24.9420 + 39.7883i −0.820976 + 1.30965i
\(924\) 0 0
\(925\) 3.16423 5.48061i 0.104039 0.180201i
\(926\) 0 0
\(927\) −4.10607 8.10653i −0.134861 0.266253i
\(928\) 0 0
\(929\) −2.34805 −0.0770370 −0.0385185 0.999258i \(-0.512264\pi\)
−0.0385185 + 0.999258i \(0.512264\pi\)
\(930\) 0 0
\(931\) 8.48914 14.7036i 0.278220 0.481892i
\(932\) 0 0
\(933\) −10.7212 0.293587i −0.350998 0.00961162i
\(934\) 0 0
\(935\) 4.28523 0.140142
\(936\) 0 0
\(937\) 1.23201 0.0402482 0.0201241 0.999797i \(-0.493594\pi\)
0.0201241 + 0.999797i \(0.493594\pi\)
\(938\) 0 0
\(939\) −14.9762 + 24.3734i −0.488729 + 0.795395i
\(940\) 0 0
\(941\) −10.2312 + 17.7210i −0.333529 + 0.577689i −0.983201 0.182525i \(-0.941573\pi\)
0.649672 + 0.760214i \(0.274906\pi\)
\(942\) 0 0
\(943\) 0.530514 0.0172759
\(944\) 0 0
\(945\) −19.1872 + 27.7039i −0.624159 + 0.901207i
\(946\) 0 0
\(947\) 18.0932 31.3384i 0.587951 1.01836i −0.406549 0.913629i \(-0.633268\pi\)
0.994500 0.104733i \(-0.0333987\pi\)
\(948\) 0 0
\(949\) −27.6557 1.00551i −0.897741 0.0326403i
\(950\) 0 0
\(951\) 20.4528 33.2864i 0.663227 1.07939i
\(952\) 0 0
\(953\) 10.3996 18.0126i 0.336875 0.583484i −0.646969 0.762517i \(-0.723964\pi\)
0.983843 + 0.179033i \(0.0572968\pi\)
\(954\) 0 0
\(955\) −17.7004 + 30.6579i −0.572770 + 0.992067i
\(956\) 0 0
\(957\) 5.86095 9.53856i 0.189458 0.308338i
\(958\) 0 0
\(959\) −53.8317 −1.73832
\(960\) 0 0
\(961\) 15.4665 + 26.7888i 0.498921 + 0.864156i
\(962\) 0 0
\(963\) 59.5702 + 3.26495i 1.91962 + 0.105212i
\(964\) 0 0
\(965\) −5.09116 + 8.81814i −0.163890 + 0.283866i
\(966\) 0 0
\(967\) 6.25537 10.8346i 0.201159 0.348418i −0.747743 0.663988i \(-0.768862\pi\)
0.948902 + 0.315570i \(0.102196\pi\)
\(968\) 0 0
\(969\) 8.18380 13.3189i 0.262901 0.427866i
\(970\) 0 0
\(971\) −2.25114 + 3.89909i −0.0722425 + 0.125128i −0.899884 0.436130i \(-0.856349\pi\)
0.827641 + 0.561257i \(0.189682\pi\)
\(972\) 0 0
\(973\) −32.0395 55.4941i −1.02714 1.77906i
\(974\) 0 0
\(975\) 5.73919 8.62158i 0.183801 0.276111i
\(976\) 0 0
\(977\) −47.5050 −1.51982 −0.759910 0.650029i \(-0.774757\pi\)
−0.759910 + 0.650029i \(0.774757\pi\)
\(978\) 0 0
\(979\) 3.43957 0.109929
\(980\) 0 0
\(981\) −30.7486 + 47.1015i −0.981728 + 1.50384i
\(982\) 0 0
\(983\) 6.94982 + 12.0374i 0.221665 + 0.383935i 0.955314 0.295594i \(-0.0955176\pi\)
−0.733649 + 0.679529i \(0.762184\pi\)
\(984\) 0 0
\(985\) 41.4333 1.32017
\(986\) 0 0
\(987\) 7.48734 12.1855i 0.238325 0.387868i
\(988\) 0 0
\(989\) 50.1115 1.59345
\(990\) 0 0
\(991\) 9.92979 + 17.1989i 0.315430 + 0.546341i 0.979529 0.201304i \(-0.0645178\pi\)
−0.664099 + 0.747645i \(0.731185\pi\)
\(992\) 0 0
\(993\) −11.5279 21.2926i −0.365828 0.675699i
\(994\) 0 0
\(995\) −9.32478 16.1510i −0.295615 0.512021i
\(996\) 0 0
\(997\) −52.8484 −1.67372 −0.836862 0.547414i \(-0.815612\pi\)
−0.836862 + 0.547414i \(0.815612\pi\)
\(998\) 0 0
\(999\) −8.47175 17.9268i −0.268034 0.567178i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.k.a.445.5 yes 28
3.2 odd 2 1404.2.k.a.1225.11 28
9.2 odd 6 1404.2.j.a.289.11 28
9.7 even 3 468.2.j.a.133.6 28
13.9 even 3 468.2.j.a.373.6 yes 28
39.35 odd 6 1404.2.j.a.685.11 28
117.61 even 3 inner 468.2.k.a.61.5 yes 28
117.74 odd 6 1404.2.k.a.1153.11 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.6 28 9.7 even 3
468.2.j.a.373.6 yes 28 13.9 even 3
468.2.k.a.61.5 yes 28 117.61 even 3 inner
468.2.k.a.445.5 yes 28 1.1 even 1 trivial
1404.2.j.a.289.11 28 9.2 odd 6
1404.2.j.a.685.11 28 39.35 odd 6
1404.2.k.a.1153.11 28 117.74 odd 6
1404.2.k.a.1225.11 28 3.2 odd 2