Properties

Label 1404.2.k.a.1153.11
Level $1404$
Weight $2$
Character 1404.1153
Analytic conductor $11.211$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(1153,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.1153"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1153.11
Character \(\chi\) \(=\) 1404.1153
Dual form 1404.2.k.a.1225.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.913993 + 1.58308i) q^{5} +3.54787 q^{7} +(0.394633 + 0.683524i) q^{11} +(3.60317 - 0.131005i) q^{13} +(1.48507 + 2.57222i) q^{17} +(1.51934 + 2.63157i) q^{19} -5.81581 q^{23} +(0.829233 - 1.43627i) q^{25} +(-4.09470 - 7.09223i) q^{29} +(-0.129332 - 0.224010i) q^{31} +(3.24273 + 5.61657i) q^{35} +(-1.90793 + 3.30463i) q^{37} -0.0912193 q^{41} +8.61643 q^{43} +(-1.16369 + 2.01557i) q^{47} +5.58740 q^{49} +6.58958 q^{53} +(-0.721383 + 1.24947i) q^{55} +(-0.605518 + 1.04879i) q^{59} -3.76705 q^{61} +(3.50066 + 5.58438i) q^{65} -8.47022 q^{67} +(6.51214 + 11.2794i) q^{71} -7.67537 q^{73} +(1.40011 + 2.42506i) q^{77} +(5.76726 - 9.98919i) q^{79} +(-7.82491 + 13.5531i) q^{83} +(-2.71469 + 4.70199i) q^{85} +(2.17897 - 3.77409i) q^{89} +(12.7836 - 0.464789i) q^{91} +(-2.77733 + 4.81047i) q^{95} +0.113077 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7} + 4 q^{11} + q^{13} + 8 q^{17} - q^{19} - 8 q^{23} - 14 q^{25} + 13 q^{29} + 2 q^{31} - 3 q^{35} - q^{37} + 8 q^{41} - 4 q^{43} - 11 q^{47} + 24 q^{49} - 52 q^{53} + 8 q^{59} + 14 q^{61}+ \cdots + 50 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.913993 + 1.58308i 0.408750 + 0.707976i 0.994750 0.102335i \(-0.0326314\pi\)
−0.586000 + 0.810311i \(0.699298\pi\)
\(6\) 0 0
\(7\) 3.54787 1.34097 0.670485 0.741923i \(-0.266086\pi\)
0.670485 + 0.741923i \(0.266086\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.394633 + 0.683524i 0.118986 + 0.206090i 0.919366 0.393403i \(-0.128702\pi\)
−0.800380 + 0.599493i \(0.795369\pi\)
\(12\) 0 0
\(13\) 3.60317 0.131005i 0.999340 0.0363342i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.48507 + 2.57222i 0.360183 + 0.623855i 0.987991 0.154513i \(-0.0493809\pi\)
−0.627808 + 0.778369i \(0.716048\pi\)
\(18\) 0 0
\(19\) 1.51934 + 2.63157i 0.348560 + 0.603724i 0.985994 0.166781i \(-0.0533374\pi\)
−0.637434 + 0.770505i \(0.720004\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.81581 −1.21268 −0.606340 0.795206i \(-0.707363\pi\)
−0.606340 + 0.795206i \(0.707363\pi\)
\(24\) 0 0
\(25\) 0.829233 1.43627i 0.165847 0.287255i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.09470 7.09223i −0.760367 1.31699i −0.942662 0.333750i \(-0.891686\pi\)
0.182295 0.983244i \(-0.441648\pi\)
\(30\) 0 0
\(31\) −0.129332 0.224010i −0.0232288 0.0402334i 0.854177 0.519982i \(-0.174061\pi\)
−0.877406 + 0.479748i \(0.840728\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.24273 + 5.61657i 0.548122 + 0.949374i
\(36\) 0 0
\(37\) −1.90793 + 3.30463i −0.313661 + 0.543277i −0.979152 0.203129i \(-0.934889\pi\)
0.665491 + 0.746406i \(0.268222\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.0912193 −0.0142461 −0.00712303 0.999975i \(-0.502267\pi\)
−0.00712303 + 0.999975i \(0.502267\pi\)
\(42\) 0 0
\(43\) 8.61643 1.31399 0.656997 0.753893i \(-0.271826\pi\)
0.656997 + 0.753893i \(0.271826\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.16369 + 2.01557i −0.169741 + 0.294001i −0.938329 0.345744i \(-0.887627\pi\)
0.768587 + 0.639745i \(0.220960\pi\)
\(48\) 0 0
\(49\) 5.58740 0.798200
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.58958 0.905149 0.452574 0.891727i \(-0.350506\pi\)
0.452574 + 0.891727i \(0.350506\pi\)
\(54\) 0 0
\(55\) −0.721383 + 1.24947i −0.0972713 + 0.168479i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.605518 + 1.04879i −0.0788318 + 0.136541i −0.902746 0.430174i \(-0.858452\pi\)
0.823914 + 0.566714i \(0.191786\pi\)
\(60\) 0 0
\(61\) −3.76705 −0.482321 −0.241161 0.970485i \(-0.577528\pi\)
−0.241161 + 0.970485i \(0.577528\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.50066 + 5.58438i 0.434204 + 0.692657i
\(66\) 0 0
\(67\) −8.47022 −1.03480 −0.517401 0.855743i \(-0.673100\pi\)
−0.517401 + 0.855743i \(0.673100\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.51214 + 11.2794i 0.772849 + 1.33861i 0.935995 + 0.352012i \(0.114502\pi\)
−0.163146 + 0.986602i \(0.552164\pi\)
\(72\) 0 0
\(73\) −7.67537 −0.898334 −0.449167 0.893448i \(-0.648279\pi\)
−0.449167 + 0.893448i \(0.648279\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.40011 + 2.42506i 0.159557 + 0.276361i
\(78\) 0 0
\(79\) 5.76726 9.98919i 0.648868 1.12387i −0.334526 0.942387i \(-0.608576\pi\)
0.983394 0.181485i \(-0.0580905\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.82491 + 13.5531i −0.858896 + 1.48765i 0.0140878 + 0.999901i \(0.495516\pi\)
−0.872983 + 0.487750i \(0.837818\pi\)
\(84\) 0 0
\(85\) −2.71469 + 4.70199i −0.294450 + 0.510002i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.17897 3.77409i 0.230970 0.400053i −0.727124 0.686507i \(-0.759143\pi\)
0.958094 + 0.286454i \(0.0924766\pi\)
\(90\) 0 0
\(91\) 12.7836 0.464789i 1.34008 0.0487231i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.77733 + 4.81047i −0.284948 + 0.493544i
\(96\) 0 0
\(97\) 0.113077 0.0114813 0.00574063 0.999984i \(-0.498173\pi\)
0.00574063 + 0.999984i \(0.498173\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.07159 + 7.05221i 0.405139 + 0.701721i 0.994338 0.106267i \(-0.0338899\pi\)
−0.589199 + 0.807988i \(0.700557\pi\)
\(102\) 0 0
\(103\) −1.51452 2.62322i −0.149230 0.258474i 0.781713 0.623638i \(-0.214346\pi\)
−0.930943 + 0.365164i \(0.881013\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.94326 17.2222i 0.961252 1.66494i 0.241886 0.970305i \(-0.422234\pi\)
0.719365 0.694632i \(-0.244433\pi\)
\(108\) 0 0
\(109\) 18.7499 1.79591 0.897957 0.440082i \(-0.145051\pi\)
0.897957 + 0.440082i \(0.145051\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.25463 + 2.17308i −0.118025 + 0.204426i −0.918985 0.394292i \(-0.870990\pi\)
0.800960 + 0.598718i \(0.204323\pi\)
\(114\) 0 0
\(115\) −5.31561 9.20690i −0.495683 0.858548i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.26885 + 9.12591i 0.482995 + 0.836571i
\(120\) 0 0
\(121\) 5.18853 8.98680i 0.471685 0.816982i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1716 1.08866
\(126\) 0 0
\(127\) −10.9444 + 18.9563i −0.971160 + 1.68210i −0.279096 + 0.960263i \(0.590035\pi\)
−0.692065 + 0.721836i \(0.743299\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.14623 14.1097i −0.711740 1.23277i −0.964204 0.265163i \(-0.914574\pi\)
0.252464 0.967606i \(-0.418759\pi\)
\(132\) 0 0
\(133\) 5.39042 + 9.33647i 0.467408 + 0.809575i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.1730 1.29631 0.648157 0.761507i \(-0.275540\pi\)
0.648157 + 0.761507i \(0.275540\pi\)
\(138\) 0 0
\(139\) −9.03063 + 15.6415i −0.765968 + 1.32670i 0.173765 + 0.984787i \(0.444407\pi\)
−0.939733 + 0.341908i \(0.888927\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.51147 + 2.41115i 0.126396 + 0.201631i
\(144\) 0 0
\(145\) 7.48506 12.9645i 0.621600 1.07664i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.00434 8.66778i 0.409972 0.710092i −0.584914 0.811095i \(-0.698872\pi\)
0.994886 + 0.101003i \(0.0322052\pi\)
\(150\) 0 0
\(151\) −9.52036 + 16.4898i −0.774756 + 1.34192i 0.160175 + 0.987089i \(0.448794\pi\)
−0.934931 + 0.354829i \(0.884539\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.236418 0.409488i 0.0189895 0.0328908i
\(156\) 0 0
\(157\) −5.01398 8.68447i −0.400159 0.693096i 0.593585 0.804771i \(-0.297712\pi\)
−0.993745 + 0.111675i \(0.964379\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −20.6337 −1.62617
\(162\) 0 0
\(163\) −2.74172 4.74879i −0.214748 0.371954i 0.738447 0.674312i \(-0.235560\pi\)
−0.953195 + 0.302358i \(0.902226\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.1142 −1.16957 −0.584784 0.811189i \(-0.698821\pi\)
−0.584784 + 0.811189i \(0.698821\pi\)
\(168\) 0 0
\(169\) 12.9657 0.944067i 0.997360 0.0726205i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.88965 0.523811 0.261905 0.965094i \(-0.415649\pi\)
0.261905 + 0.965094i \(0.415649\pi\)
\(174\) 0 0
\(175\) 2.94201 5.09572i 0.222395 0.385200i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.90439 6.76259i 0.291827 0.505460i −0.682414 0.730966i \(-0.739070\pi\)
0.974242 + 0.225505i \(0.0724034\pi\)
\(180\) 0 0
\(181\) −9.35311 −0.695211 −0.347606 0.937641i \(-0.613005\pi\)
−0.347606 + 0.937641i \(0.613005\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.97533 −0.512836
\(186\) 0 0
\(187\) −1.17212 + 2.03017i −0.0857137 + 0.148460i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.3660 −1.40127 −0.700636 0.713519i \(-0.747100\pi\)
−0.700636 + 0.713519i \(0.747100\pi\)
\(192\) 0 0
\(193\) 5.57023 0.400954 0.200477 0.979698i \(-0.435751\pi\)
0.200477 + 0.979698i \(0.435751\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.3330 19.6294i 0.807445 1.39854i −0.107182 0.994239i \(-0.534183\pi\)
0.914628 0.404297i \(-0.132484\pi\)
\(198\) 0 0
\(199\) −5.10112 8.83540i −0.361609 0.626325i 0.626617 0.779327i \(-0.284439\pi\)
−0.988226 + 0.153002i \(0.951106\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −14.5275 25.1623i −1.01963 1.76605i
\(204\) 0 0
\(205\) −0.0833738 0.144408i −0.00582308 0.0100859i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.19916 + 2.07701i −0.0829477 + 0.143670i
\(210\) 0 0
\(211\) 4.13229 0.284478 0.142239 0.989832i \(-0.454570\pi\)
0.142239 + 0.989832i \(0.454570\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.87536 + 13.6405i 0.537095 + 0.930276i
\(216\) 0 0
\(217\) −0.458855 0.794760i −0.0311491 0.0539518i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.68795 + 9.07360i 0.382613 + 0.610357i
\(222\) 0 0
\(223\) −0.997068 1.72697i −0.0667686 0.115647i 0.830709 0.556708i \(-0.187936\pi\)
−0.897477 + 0.441061i \(0.854602\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −18.3994 −1.22121 −0.610607 0.791934i \(-0.709074\pi\)
−0.610607 + 0.791934i \(0.709074\pi\)
\(228\) 0 0
\(229\) −10.8242 18.7481i −0.715284 1.23891i −0.962850 0.270038i \(-0.912964\pi\)
0.247565 0.968871i \(-0.420370\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.5670 −0.692265 −0.346133 0.938186i \(-0.612505\pi\)
−0.346133 + 0.938186i \(0.612505\pi\)
\(234\) 0 0
\(235\) −4.25441 −0.277527
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.75441 + 3.03873i 0.113484 + 0.196559i 0.917173 0.398490i \(-0.130466\pi\)
−0.803689 + 0.595050i \(0.797132\pi\)
\(240\) 0 0
\(241\) −26.1264 −1.68295 −0.841475 0.540296i \(-0.818312\pi\)
−0.841475 + 0.540296i \(0.818312\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.10684 + 8.84531i 0.326264 + 0.565106i
\(246\) 0 0
\(247\) 5.81918 + 9.28295i 0.370266 + 0.590660i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.00649 13.8677i −0.505365 0.875319i −0.999981 0.00620652i \(-0.998024\pi\)
0.494615 0.869112i \(-0.335309\pi\)
\(252\) 0 0
\(253\) −2.29511 3.97524i −0.144292 0.249921i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.38690 0.273647 0.136824 0.990595i \(-0.456311\pi\)
0.136824 + 0.990595i \(0.456311\pi\)
\(258\) 0 0
\(259\) −6.76908 + 11.7244i −0.420610 + 0.728518i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.3028 19.5770i −0.696958 1.20717i −0.969516 0.245027i \(-0.921203\pi\)
0.272558 0.962139i \(-0.412130\pi\)
\(264\) 0 0
\(265\) 6.02283 + 10.4319i 0.369980 + 0.640824i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.33389 + 12.7027i 0.447155 + 0.774496i 0.998200 0.0599804i \(-0.0191038\pi\)
−0.551044 + 0.834476i \(0.685771\pi\)
\(270\) 0 0
\(271\) 2.35377 4.07684i 0.142981 0.247651i −0.785637 0.618688i \(-0.787664\pi\)
0.928618 + 0.371037i \(0.120998\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.30897 0.0789339
\(276\) 0 0
\(277\) −15.8732 −0.953727 −0.476863 0.878977i \(-0.658226\pi\)
−0.476863 + 0.878977i \(0.658226\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.96870 + 8.60604i −0.296408 + 0.513393i −0.975311 0.220834i \(-0.929122\pi\)
0.678904 + 0.734227i \(0.262455\pi\)
\(282\) 0 0
\(283\) −6.51285 −0.387149 −0.193574 0.981086i \(-0.562008\pi\)
−0.193574 + 0.981086i \(0.562008\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.323634 −0.0191035
\(288\) 0 0
\(289\) 4.08912 7.08256i 0.240536 0.416621i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.7842 27.3390i 0.922120 1.59716i 0.125993 0.992031i \(-0.459788\pi\)
0.796128 0.605128i \(-0.206878\pi\)
\(294\) 0 0
\(295\) −2.21376 −0.128890
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −20.9553 + 0.761900i −1.21188 + 0.0440618i
\(300\) 0 0
\(301\) 30.5700 1.76203
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.44306 5.96355i −0.197149 0.341472i
\(306\) 0 0
\(307\) −9.62508 −0.549332 −0.274666 0.961540i \(-0.588567\pi\)
−0.274666 + 0.961540i \(0.588567\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.09612 5.36263i −0.175565 0.304087i 0.764792 0.644277i \(-0.222842\pi\)
−0.940357 + 0.340190i \(0.889508\pi\)
\(312\) 0 0
\(313\) −8.25806 + 14.3034i −0.466773 + 0.808475i −0.999280 0.0379511i \(-0.987917\pi\)
0.532506 + 0.846426i \(0.321250\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.2779 + 19.5340i −0.633432 + 1.09714i 0.353413 + 0.935467i \(0.385021\pi\)
−0.986845 + 0.161669i \(0.948312\pi\)
\(318\) 0 0
\(319\) 3.23181 5.59765i 0.180946 0.313408i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.51265 + 7.81615i −0.251091 + 0.434902i
\(324\) 0 0
\(325\) 2.79971 5.28377i 0.155300 0.293091i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.12862 + 7.15098i −0.227618 + 0.394246i
\(330\) 0 0
\(331\) 13.9793 0.768374 0.384187 0.923255i \(-0.374482\pi\)
0.384187 + 0.923255i \(0.374482\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.74172 13.4091i −0.422976 0.732615i
\(336\) 0 0
\(337\) 0.207169 + 0.358827i 0.0112852 + 0.0195466i 0.871613 0.490195i \(-0.163074\pi\)
−0.860328 + 0.509741i \(0.829741\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.102078 0.176804i 0.00552781 0.00957445i
\(342\) 0 0
\(343\) −5.01173 −0.270608
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.06201 8.76765i 0.271743 0.470672i −0.697565 0.716521i \(-0.745733\pi\)
0.969308 + 0.245849i \(0.0790667\pi\)
\(348\) 0 0
\(349\) −7.41055 12.8355i −0.396678 0.687066i 0.596636 0.802512i \(-0.296504\pi\)
−0.993314 + 0.115446i \(0.963170\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.0414 + 26.0525i 0.800573 + 1.38663i 0.919239 + 0.393699i \(0.128805\pi\)
−0.118666 + 0.992934i \(0.537862\pi\)
\(354\) 0 0
\(355\) −11.9041 + 20.6185i −0.631804 + 1.09432i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.20722 −0.169271 −0.0846353 0.996412i \(-0.526973\pi\)
−0.0846353 + 0.996412i \(0.526973\pi\)
\(360\) 0 0
\(361\) 4.88323 8.45800i 0.257012 0.445158i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.01523 12.1507i −0.367194 0.635999i
\(366\) 0 0
\(367\) 1.08009 + 1.87076i 0.0563800 + 0.0976530i 0.892838 0.450378i \(-0.148711\pi\)
−0.836458 + 0.548031i \(0.815377\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 23.3790 1.21378
\(372\) 0 0
\(373\) −6.98479 + 12.0980i −0.361659 + 0.626411i −0.988234 0.152950i \(-0.951123\pi\)
0.626575 + 0.779361i \(0.284456\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.6830 25.0181i −0.807717 1.28850i
\(378\) 0 0
\(379\) −3.47398 + 6.01711i −0.178446 + 0.309078i −0.941349 0.337436i \(-0.890440\pi\)
0.762902 + 0.646514i \(0.223774\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.5333 21.7082i 0.640420 1.10924i −0.344919 0.938632i \(-0.612094\pi\)
0.985339 0.170607i \(-0.0545729\pi\)
\(384\) 0 0
\(385\) −2.55938 + 4.43297i −0.130438 + 0.225925i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.9765 25.9401i 0.759339 1.31521i −0.183850 0.982954i \(-0.558856\pi\)
0.943188 0.332259i \(-0.107811\pi\)
\(390\) 0 0
\(391\) −8.63690 14.9596i −0.436787 0.756537i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 21.0850 1.06090
\(396\) 0 0
\(397\) −14.4399 25.0106i −0.724718 1.25525i −0.959090 0.283101i \(-0.908637\pi\)
0.234372 0.972147i \(-0.424696\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.64590 −0.481693 −0.240847 0.970563i \(-0.577425\pi\)
−0.240847 + 0.970563i \(0.577425\pi\)
\(402\) 0 0
\(403\) −0.495353 0.790204i −0.0246753 0.0393629i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.01172 −0.149286
\(408\) 0 0
\(409\) −13.2875 + 23.0146i −0.657024 + 1.13800i 0.324358 + 0.945934i \(0.394852\pi\)
−0.981382 + 0.192065i \(0.938482\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.14830 + 3.72097i −0.105711 + 0.183097i
\(414\) 0 0
\(415\) −28.6077 −1.40429
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 30.4742 1.48876 0.744380 0.667756i \(-0.232745\pi\)
0.744380 + 0.667756i \(0.232745\pi\)
\(420\) 0 0
\(421\) 15.2202 26.3622i 0.741788 1.28481i −0.209893 0.977724i \(-0.567311\pi\)
0.951681 0.307090i \(-0.0993552\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.92589 0.238941
\(426\) 0 0
\(427\) −13.3650 −0.646778
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.842335 + 1.45897i −0.0405738 + 0.0702759i −0.885599 0.464450i \(-0.846252\pi\)
0.845025 + 0.534726i \(0.179585\pi\)
\(432\) 0 0
\(433\) 10.5289 + 18.2367i 0.505989 + 0.876398i 0.999976 + 0.00692888i \(0.00220555\pi\)
−0.493987 + 0.869469i \(0.664461\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.83618 15.3047i −0.422692 0.732123i
\(438\) 0 0
\(439\) −2.94942 5.10855i −0.140768 0.243818i 0.787018 0.616930i \(-0.211624\pi\)
−0.927786 + 0.373112i \(0.878291\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.8651 20.5510i 0.563728 0.976406i −0.433438 0.901183i \(-0.642700\pi\)
0.997167 0.0752229i \(-0.0239668\pi\)
\(444\) 0 0
\(445\) 7.96626 0.377637
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.3374 21.3689i −0.582236 1.00846i −0.995214 0.0977216i \(-0.968845\pi\)
0.412977 0.910741i \(-0.364489\pi\)
\(450\) 0 0
\(451\) −0.0359981 0.0623506i −0.00169509 0.00293597i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.4199 + 19.8127i 0.582254 + 0.928832i
\(456\) 0 0
\(457\) −7.24537 12.5493i −0.338924 0.587033i 0.645307 0.763924i \(-0.276730\pi\)
−0.984231 + 0.176890i \(0.943396\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.9740 −1.30288 −0.651439 0.758701i \(-0.725834\pi\)
−0.651439 + 0.758701i \(0.725834\pi\)
\(462\) 0 0
\(463\) −12.9541 22.4371i −0.602027 1.04274i −0.992514 0.122132i \(-0.961027\pi\)
0.390487 0.920608i \(-0.372307\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.61901 −0.398840 −0.199420 0.979914i \(-0.563906\pi\)
−0.199420 + 0.979914i \(0.563906\pi\)
\(468\) 0 0
\(469\) −30.0513 −1.38764
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.40033 + 5.88954i 0.156347 + 0.270801i
\(474\) 0 0
\(475\) 5.03954 0.231230
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.15223 + 15.8521i 0.418176 + 0.724302i 0.995756 0.0920318i \(-0.0293362\pi\)
−0.577580 + 0.816334i \(0.696003\pi\)
\(480\) 0 0
\(481\) −6.44166 + 12.1571i −0.293715 + 0.554315i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.103352 + 0.179011i 0.00469297 + 0.00812846i
\(486\) 0 0
\(487\) 16.8413 + 29.1699i 0.763150 + 1.32182i 0.941219 + 0.337797i \(0.109682\pi\)
−0.178069 + 0.984018i \(0.556985\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −30.8537 −1.39241 −0.696204 0.717844i \(-0.745129\pi\)
−0.696204 + 0.717844i \(0.745129\pi\)
\(492\) 0 0
\(493\) 12.1619 21.0650i 0.547743 0.948718i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.1042 + 40.0177i 1.03637 + 1.79504i
\(498\) 0 0
\(499\) −6.47626 11.2172i −0.289917 0.502151i 0.683873 0.729601i \(-0.260294\pi\)
−0.973790 + 0.227450i \(0.926961\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.8940 + 22.3331i 0.574916 + 0.995784i 0.996051 + 0.0887855i \(0.0282986\pi\)
−0.421135 + 0.906998i \(0.638368\pi\)
\(504\) 0 0
\(505\) −7.44282 + 12.8913i −0.331201 + 0.573657i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.0195 0.887350 0.443675 0.896188i \(-0.353674\pi\)
0.443675 + 0.896188i \(0.353674\pi\)
\(510\) 0 0
\(511\) −27.2312 −1.20464
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.76852 4.79522i 0.121996 0.211302i
\(516\) 0 0
\(517\) −1.83692 −0.0807876
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −24.1247 −1.05692 −0.528461 0.848958i \(-0.677231\pi\)
−0.528461 + 0.848958i \(0.677231\pi\)
\(522\) 0 0
\(523\) 0.701127 1.21439i 0.0306581 0.0531015i −0.850289 0.526316i \(-0.823573\pi\)
0.880947 + 0.473214i \(0.156906\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.384136 0.665343i 0.0167332 0.0289828i
\(528\) 0 0
\(529\) 10.8236 0.470593
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.328679 + 0.0119502i −0.0142367 + 0.000517620i
\(534\) 0 0
\(535\) 36.3523 1.57165
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.20497 + 3.81912i 0.0949748 + 0.164501i
\(540\) 0 0
\(541\) 16.6942 0.717741 0.358871 0.933387i \(-0.383162\pi\)
0.358871 + 0.933387i \(0.383162\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.1373 + 29.6826i 0.734080 + 1.27146i
\(546\) 0 0
\(547\) −9.02605 + 15.6336i −0.385926 + 0.668443i −0.991897 0.127043i \(-0.959451\pi\)
0.605971 + 0.795487i \(0.292785\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.4425 21.5510i 0.530067 0.918103i
\(552\) 0 0
\(553\) 20.4615 35.4404i 0.870112 1.50708i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.46050 16.3861i 0.400854 0.694300i −0.592975 0.805221i \(-0.702047\pi\)
0.993829 + 0.110921i \(0.0353800\pi\)
\(558\) 0 0
\(559\) 31.0465 1.12880i 1.31313 0.0477430i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.84531 + 11.8564i −0.288496 + 0.499689i −0.973451 0.228896i \(-0.926488\pi\)
0.684955 + 0.728585i \(0.259822\pi\)
\(564\) 0 0
\(565\) −4.58688 −0.192972
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.12083 14.0657i −0.340443 0.589665i 0.644072 0.764965i \(-0.277244\pi\)
−0.984515 + 0.175300i \(0.943910\pi\)
\(570\) 0 0
\(571\) 18.7269 + 32.4359i 0.783696 + 1.35740i 0.929775 + 0.368129i \(0.120001\pi\)
−0.146079 + 0.989273i \(0.546665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.82266 + 8.35309i −0.201119 + 0.348348i
\(576\) 0 0
\(577\) 24.9058 1.03684 0.518421 0.855126i \(-0.326520\pi\)
0.518421 + 0.855126i \(0.326520\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −27.7618 + 48.0848i −1.15175 + 1.99489i
\(582\) 0 0
\(583\) 2.60047 + 4.50414i 0.107700 + 0.186542i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.9379 + 24.1412i 0.575279 + 0.996413i 0.996011 + 0.0892281i \(0.0284400\pi\)
−0.420732 + 0.907185i \(0.638227\pi\)
\(588\) 0 0
\(589\) 0.392999 0.680694i 0.0161932 0.0280475i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 39.1962 1.60959 0.804797 0.593550i \(-0.202274\pi\)
0.804797 + 0.593550i \(0.202274\pi\)
\(594\) 0 0
\(595\) −9.63138 + 16.6820i −0.394848 + 0.683897i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.21215 + 9.02771i 0.212963 + 0.368862i 0.952640 0.304099i \(-0.0983554\pi\)
−0.739678 + 0.672961i \(0.765022\pi\)
\(600\) 0 0
\(601\) 14.0755 + 24.3795i 0.574152 + 0.994460i 0.996133 + 0.0878557i \(0.0280014\pi\)
−0.421981 + 0.906605i \(0.638665\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 18.9691 0.771205
\(606\) 0 0
\(607\) −10.7141 + 18.5573i −0.434871 + 0.753219i −0.997285 0.0736371i \(-0.976539\pi\)
0.562414 + 0.826856i \(0.309873\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.92892 + 7.41488i −0.158947 + 0.299974i
\(612\) 0 0
\(613\) 17.1769 29.7512i 0.693766 1.20164i −0.276828 0.960919i \(-0.589283\pi\)
0.970595 0.240719i \(-0.0773833\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.18881 + 10.7193i −0.249152 + 0.431544i −0.963291 0.268460i \(-0.913485\pi\)
0.714139 + 0.700004i \(0.246819\pi\)
\(618\) 0 0
\(619\) −7.10653 + 12.3089i −0.285635 + 0.494735i −0.972763 0.231802i \(-0.925538\pi\)
0.687128 + 0.726537i \(0.258871\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.73071 13.3900i 0.309724 0.536458i
\(624\) 0 0
\(625\) 6.97858 + 12.0873i 0.279143 + 0.483490i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.3336 −0.451902
\(630\) 0 0
\(631\) −19.7301 34.1735i −0.785441 1.36042i −0.928735 0.370744i \(-0.879103\pi\)
0.143294 0.989680i \(-0.454231\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −40.0125 −1.58785
\(636\) 0 0
\(637\) 20.1323 0.731977i 0.797673 0.0290020i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −38.5836 −1.52396 −0.761980 0.647600i \(-0.775773\pi\)
−0.761980 + 0.647600i \(0.775773\pi\)
\(642\) 0 0
\(643\) 16.7399 28.9944i 0.660158 1.14343i −0.320416 0.947277i \(-0.603823\pi\)
0.980574 0.196150i \(-0.0628438\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.34123 16.1795i 0.367242 0.636081i −0.621891 0.783103i \(-0.713636\pi\)
0.989133 + 0.147022i \(0.0469688\pi\)
\(648\) 0 0
\(649\) −0.955829 −0.0375196
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −21.8099 −0.853486 −0.426743 0.904373i \(-0.640339\pi\)
−0.426743 + 0.904373i \(0.640339\pi\)
\(654\) 0 0
\(655\) 14.8912 25.7923i 0.581848 1.00779i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −42.8462 −1.66905 −0.834526 0.550969i \(-0.814258\pi\)
−0.834526 + 0.550969i \(0.814258\pi\)
\(660\) 0 0
\(661\) −24.4668 −0.951650 −0.475825 0.879540i \(-0.657850\pi\)
−0.475825 + 0.879540i \(0.657850\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −9.85361 + 17.0669i −0.382106 + 0.661828i
\(666\) 0 0
\(667\) 23.8140 + 41.2471i 0.922082 + 1.59709i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.48660 2.57487i −0.0573896 0.0994017i
\(672\) 0 0
\(673\) 4.26726 + 7.39111i 0.164491 + 0.284907i 0.936474 0.350736i \(-0.114069\pi\)
−0.771983 + 0.635643i \(0.780735\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.1789 36.6829i 0.813970 1.40984i −0.0960958 0.995372i \(-0.530636\pi\)
0.910065 0.414465i \(-0.136031\pi\)
\(678\) 0 0
\(679\) 0.401184 0.0153960
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16.5016 + 28.5816i 0.631415 + 1.09364i 0.987263 + 0.159099i \(0.0508589\pi\)
−0.355847 + 0.934544i \(0.615808\pi\)
\(684\) 0 0
\(685\) 13.8680 + 24.0201i 0.529869 + 0.917759i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 23.7434 0.863268i 0.904551 0.0328879i
\(690\) 0 0
\(691\) 5.50867 + 9.54129i 0.209560 + 0.362968i 0.951576 0.307414i \(-0.0994637\pi\)
−0.742016 + 0.670382i \(0.766130\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −33.0157 −1.25236
\(696\) 0 0
\(697\) −0.135467 0.234636i −0.00513119 0.00888748i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.41066 0.128819 0.0644094 0.997924i \(-0.479484\pi\)
0.0644094 + 0.997924i \(0.479484\pi\)
\(702\) 0 0
\(703\) −11.5951 −0.437319
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.4455 + 25.0203i 0.543279 + 0.940986i
\(708\) 0 0
\(709\) 28.7937 1.08137 0.540684 0.841226i \(-0.318165\pi\)
0.540684 + 0.841226i \(0.318165\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.752172 + 1.30280i 0.0281691 + 0.0487903i
\(714\) 0 0
\(715\) −2.43558 + 4.59657i −0.0910855 + 0.171902i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.18739 + 10.7169i 0.230751 + 0.399672i 0.958029 0.286670i \(-0.0925484\pi\)
−0.727278 + 0.686343i \(0.759215\pi\)
\(720\) 0 0
\(721\) −5.37332 9.30686i −0.200113 0.346606i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −13.5818 −0.504417
\(726\) 0 0
\(727\) 0.0603226 0.104482i 0.00223724 0.00387502i −0.864905 0.501936i \(-0.832621\pi\)
0.867142 + 0.498061i \(0.165955\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.7960 + 22.1634i 0.473278 + 0.819742i
\(732\) 0 0
\(733\) −6.33410 10.9710i −0.233955 0.405223i 0.725013 0.688735i \(-0.241834\pi\)
−0.958969 + 0.283512i \(0.908500\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.34263 5.78960i −0.123127 0.213263i
\(738\) 0 0
\(739\) −1.93983 + 3.35988i −0.0713578 + 0.123595i −0.899497 0.436928i \(-0.856067\pi\)
0.828139 + 0.560523i \(0.189400\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.0182 1.61487 0.807435 0.589956i \(-0.200855\pi\)
0.807435 + 0.589956i \(0.200855\pi\)
\(744\) 0 0
\(745\) 18.2957 0.670304
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 35.2774 61.1023i 1.28901 2.23263i
\(750\) 0 0
\(751\) −29.5451 −1.07812 −0.539058 0.842269i \(-0.681219\pi\)
−0.539058 + 0.842269i \(0.681219\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −34.8062 −1.26673
\(756\) 0 0
\(757\) −3.72486 + 6.45165i −0.135382 + 0.234489i −0.925743 0.378152i \(-0.876560\pi\)
0.790361 + 0.612641i \(0.209893\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.73158 + 8.19534i −0.171520 + 0.297081i −0.938951 0.344050i \(-0.888201\pi\)
0.767432 + 0.641131i \(0.221534\pi\)
\(762\) 0 0
\(763\) 66.5223 2.40827
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.04439 + 3.85829i −0.0738186 + 0.139315i
\(768\) 0 0
\(769\) 32.9002 1.18641 0.593205 0.805051i \(-0.297862\pi\)
0.593205 + 0.805051i \(0.297862\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 25.4419 + 44.0667i 0.915082 + 1.58497i 0.806781 + 0.590851i \(0.201208\pi\)
0.108302 + 0.994118i \(0.465459\pi\)
\(774\) 0 0
\(775\) −0.428987 −0.0154097
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.138593 0.240050i −0.00496561 0.00860068i
\(780\) 0 0
\(781\) −5.13981 + 8.90241i −0.183917 + 0.318553i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.16549 15.8751i 0.327130 0.566606i
\(786\) 0 0
\(787\) 10.6565 18.4575i 0.379862 0.657940i −0.611180 0.791492i \(-0.709305\pi\)
0.991042 + 0.133552i \(0.0426382\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.45126 + 7.70980i −0.158268 + 0.274129i
\(792\) 0 0
\(793\) −13.5733 + 0.493502i −0.482003 + 0.0175248i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −17.2569 + 29.8898i −0.611270 + 1.05875i 0.379757 + 0.925086i \(0.376008\pi\)
−0.991027 + 0.133664i \(0.957326\pi\)
\(798\) 0 0
\(799\) −6.91265 −0.244552
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.02895 5.24630i −0.106889 0.185138i
\(804\) 0 0
\(805\) −18.8591 32.6649i −0.664696 1.15129i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −17.9703 + 31.1254i −0.631801 + 1.09431i 0.355382 + 0.934721i \(0.384351\pi\)
−0.987183 + 0.159591i \(0.948983\pi\)
\(810\) 0 0
\(811\) 25.8673 0.908323 0.454161 0.890919i \(-0.349939\pi\)
0.454161 + 0.890919i \(0.349939\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.01182 8.68073i 0.175556 0.304073i
\(816\) 0 0
\(817\) 13.0913 + 22.6747i 0.458006 + 0.793289i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.61949 11.4653i −0.231022 0.400142i 0.727087 0.686545i \(-0.240874\pi\)
−0.958109 + 0.286404i \(0.907540\pi\)
\(822\) 0 0
\(823\) 8.00285 13.8614i 0.278962 0.483176i −0.692165 0.721739i \(-0.743343\pi\)
0.971127 + 0.238563i \(0.0766763\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.7803 −1.13988 −0.569942 0.821685i \(-0.693034\pi\)
−0.569942 + 0.821685i \(0.693034\pi\)
\(828\) 0 0
\(829\) −6.77951 + 11.7424i −0.235462 + 0.407832i −0.959407 0.282026i \(-0.908994\pi\)
0.723945 + 0.689858i \(0.242327\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.29769 + 14.3720i 0.287498 + 0.497961i
\(834\) 0 0
\(835\) −13.8142 23.9269i −0.478061 0.828026i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.1091 −0.763290 −0.381645 0.924309i \(-0.624642\pi\)
−0.381645 + 0.924309i \(0.624642\pi\)
\(840\) 0 0
\(841\) −19.0332 + 32.9664i −0.656316 + 1.13677i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.3451 + 19.6629i 0.459084 + 0.676423i
\(846\) 0 0
\(847\) 18.4082 31.8840i 0.632515 1.09555i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.0961 19.2191i 0.380371 0.658821i
\(852\) 0 0
\(853\) 25.0344 43.3608i 0.857160 1.48464i −0.0174667 0.999847i \(-0.505560\pi\)
0.874627 0.484797i \(-0.161107\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.7269 35.9000i 0.708018 1.22632i −0.257574 0.966259i \(-0.582923\pi\)
0.965591 0.260064i \(-0.0837436\pi\)
\(858\) 0 0
\(859\) −12.4494 21.5630i −0.424769 0.735721i 0.571630 0.820511i \(-0.306311\pi\)
−0.996399 + 0.0847904i \(0.972978\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15.8767 0.540448 0.270224 0.962797i \(-0.412902\pi\)
0.270224 + 0.962797i \(0.412902\pi\)
\(864\) 0 0
\(865\) 6.29710 + 10.9069i 0.214108 + 0.370845i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.10380 0.308825
\(870\) 0 0
\(871\) −30.5197 + 1.10964i −1.03412 + 0.0375988i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 43.1832 1.45986
\(876\) 0 0
\(877\) 5.00766 8.67352i 0.169097 0.292884i −0.769006 0.639242i \(-0.779248\pi\)
0.938103 + 0.346358i \(0.112582\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −11.0336 + 19.1108i −0.371732 + 0.643859i −0.989832 0.142240i \(-0.954569\pi\)
0.618100 + 0.786100i \(0.287903\pi\)
\(882\) 0 0
\(883\) 46.2340 1.55590 0.777950 0.628326i \(-0.216260\pi\)
0.777950 + 0.628326i \(0.216260\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.92642 0.0646828 0.0323414 0.999477i \(-0.489704\pi\)
0.0323414 + 0.999477i \(0.489704\pi\)
\(888\) 0 0
\(889\) −38.8294 + 67.2545i −1.30230 + 2.25564i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.07214 −0.236660
\(894\) 0 0
\(895\) 14.2743 0.477138
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.05915 + 1.83451i −0.0353248 + 0.0611843i
\(900\) 0 0
\(901\) 9.78601 + 16.9499i 0.326019 + 0.564682i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.54868 14.8067i −0.284168 0.492193i
\(906\) 0 0
\(907\) −1.54206 2.67092i −0.0512032 0.0886865i 0.839288 0.543687i \(-0.182972\pi\)
−0.890491 + 0.455001i \(0.849639\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.56268 9.63484i 0.184300 0.319216i −0.759041 0.651043i \(-0.774332\pi\)
0.943340 + 0.331827i \(0.107665\pi\)
\(912\) 0 0
\(913\) −12.3519 −0.408787
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −28.9018 50.0594i −0.954422 1.65311i
\(918\) 0 0
\(919\) 28.4673 + 49.3069i 0.939051 + 1.62648i 0.767247 + 0.641352i \(0.221626\pi\)
0.171804 + 0.985131i \(0.445040\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 24.9420 + 39.7883i 0.820976 + 1.30965i
\(924\) 0 0
\(925\) 3.16423 + 5.48061i 0.104039 + 0.180201i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.34805 0.0770370 0.0385185 0.999258i \(-0.487736\pi\)
0.0385185 + 0.999258i \(0.487736\pi\)
\(930\) 0 0
\(931\) 8.48914 + 14.7036i 0.278220 + 0.481892i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.28523 −0.140142
\(936\) 0 0
\(937\) 1.23201 0.0402482 0.0201241 0.999797i \(-0.493594\pi\)
0.0201241 + 0.999797i \(0.493594\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.2312 + 17.7210i 0.333529 + 0.577689i 0.983201 0.182525i \(-0.0584272\pi\)
−0.649672 + 0.760214i \(0.725094\pi\)
\(942\) 0 0
\(943\) 0.530514 0.0172759
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.0932 31.3384i −0.587951 1.01836i −0.994500 0.104733i \(-0.966601\pi\)
0.406549 0.913629i \(-0.366732\pi\)
\(948\) 0 0
\(949\) −27.6557 + 1.00551i −0.897741 + 0.0326403i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −10.3996 18.0126i −0.336875 0.583484i 0.646969 0.762517i \(-0.276036\pi\)
−0.983843 + 0.179033i \(0.942703\pi\)
\(954\) 0 0
\(955\) −17.7004 30.6579i −0.572770 0.992067i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 53.8317 1.73832
\(960\) 0 0
\(961\) 15.4665 26.7888i 0.498921 0.864156i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.09116 + 8.81814i 0.163890 + 0.283866i
\(966\) 0 0
\(967\) 6.25537 + 10.8346i 0.201159 + 0.348418i 0.948902 0.315570i \(-0.102196\pi\)
−0.747743 + 0.663988i \(0.768862\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.25114 + 3.89909i 0.0722425 + 0.125128i 0.899884 0.436130i \(-0.143651\pi\)
−0.827641 + 0.561257i \(0.810318\pi\)
\(972\) 0 0
\(973\) −32.0395 + 55.4941i −1.02714 + 1.77906i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47.5050 1.51982 0.759910 0.650029i \(-0.225243\pi\)
0.759910 + 0.650029i \(0.225243\pi\)
\(978\) 0 0
\(979\) 3.43957 0.109929
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −6.94982 + 12.0374i −0.221665 + 0.383935i −0.955314 0.295594i \(-0.904482\pi\)
0.733649 + 0.679529i \(0.237816\pi\)
\(984\) 0 0
\(985\) 41.4333 1.32017
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −50.1115 −1.59345
\(990\) 0 0
\(991\) 9.92979 17.1989i 0.315430 0.546341i −0.664099 0.747645i \(-0.731185\pi\)
0.979529 + 0.201304i \(0.0645178\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.32478 16.1510i 0.295615 0.512021i
\(996\) 0 0
\(997\) −52.8484 −1.67372 −0.836862 0.547414i \(-0.815612\pi\)
−0.836862 + 0.547414i \(0.815612\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.k.a.1153.11 28
3.2 odd 2 468.2.k.a.61.5 yes 28
9.4 even 3 1404.2.j.a.685.11 28
9.5 odd 6 468.2.j.a.373.6 yes 28
13.3 even 3 1404.2.j.a.289.11 28
39.29 odd 6 468.2.j.a.133.6 28
117.68 odd 6 468.2.k.a.445.5 yes 28
117.94 even 3 inner 1404.2.k.a.1225.11 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.6 28 39.29 odd 6
468.2.j.a.373.6 yes 28 9.5 odd 6
468.2.k.a.61.5 yes 28 3.2 odd 2
468.2.k.a.445.5 yes 28 117.68 odd 6
1404.2.j.a.289.11 28 13.3 even 3
1404.2.j.a.685.11 28 9.4 even 3
1404.2.k.a.1153.11 28 1.1 even 1 trivial
1404.2.k.a.1225.11 28 117.94 even 3 inner