Properties

Label 468.2.k.a.445.10
Level $468$
Weight $2$
Character 468.445
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(61,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.61"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 445.10
Character \(\chi\) \(=\) 468.445
Dual form 468.2.k.a.61.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.964854 - 1.43842i) q^{3} +(-0.468893 + 0.812147i) q^{5} -0.897167 q^{7} +(-1.13811 - 2.77573i) q^{9} +(1.14490 - 1.98302i) q^{11} +(2.12242 - 2.91468i) q^{13} +(0.715797 + 1.45807i) q^{15} +(2.42154 - 4.19424i) q^{17} +(3.21430 - 5.56733i) q^{19} +(-0.865635 + 1.29050i) q^{21} -2.45776 q^{23} +(2.06028 + 3.56851i) q^{25} +(-5.09079 - 1.04109i) q^{27} +(-5.24091 + 9.07753i) q^{29} +(3.53762 - 6.12734i) q^{31} +(-1.74776 - 3.56017i) q^{33} +(0.420676 - 0.728632i) q^{35} +(2.82939 + 4.90064i) q^{37} +(-2.14471 - 5.86517i) q^{39} -1.58900 q^{41} -4.11807 q^{43} +(2.78796 + 0.377207i) q^{45} +(4.34470 + 7.52524i) q^{47} -6.19509 q^{49} +(-3.69665 - 7.53003i) q^{51} -9.76841 q^{53} +(1.07367 + 1.85965i) q^{55} +(-4.90684 - 9.99518i) q^{57} +(6.06148 + 10.4988i) q^{59} +7.42626 q^{61} +(1.02108 + 2.49030i) q^{63} +(1.37196 + 3.09039i) q^{65} +10.8472 q^{67} +(-2.37137 + 3.53529i) q^{69} +(2.14956 - 3.72315i) q^{71} +6.91745 q^{73} +(7.12088 + 0.479538i) q^{75} +(-1.02716 + 1.77910i) q^{77} +(-3.32457 - 5.75832i) q^{79} +(-6.40939 + 6.31820i) q^{81} +(0.852333 + 1.47628i) q^{83} +(2.27089 + 3.93330i) q^{85} +(8.00060 + 16.2971i) q^{87} +(0.452237 + 0.783298i) q^{89} +(-1.90416 + 2.61495i) q^{91} +(-5.40042 - 11.0006i) q^{93} +(3.01433 + 5.22097i) q^{95} -4.65687 q^{97} +(-6.80735 - 0.921024i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - 4 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} + 8 q^{23} - 14 q^{25} - 13 q^{29} + 2 q^{31} - 25 q^{33} + 3 q^{35} - q^{37} - 3 q^{39} - 8 q^{41} - 4 q^{43}+ \cdots - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.964854 1.43842i 0.557059 0.830473i
\(4\) 0 0
\(5\) −0.468893 + 0.812147i −0.209696 + 0.363203i −0.951619 0.307282i \(-0.900581\pi\)
0.741923 + 0.670485i \(0.233914\pi\)
\(6\) 0 0
\(7\) −0.897167 −0.339097 −0.169549 0.985522i \(-0.554231\pi\)
−0.169549 + 0.985522i \(0.554231\pi\)
\(8\) 0 0
\(9\) −1.13811 2.77573i −0.379372 0.925244i
\(10\) 0 0
\(11\) 1.14490 1.98302i 0.345199 0.597902i −0.640191 0.768216i \(-0.721145\pi\)
0.985390 + 0.170314i \(0.0544780\pi\)
\(12\) 0 0
\(13\) 2.12242 2.91468i 0.588653 0.808386i
\(14\) 0 0
\(15\) 0.715797 + 1.45807i 0.184818 + 0.376472i
\(16\) 0 0
\(17\) 2.42154 4.19424i 0.587311 1.01725i −0.407273 0.913307i \(-0.633520\pi\)
0.994583 0.103945i \(-0.0331466\pi\)
\(18\) 0 0
\(19\) 3.21430 5.56733i 0.737411 1.27723i −0.216246 0.976339i \(-0.569381\pi\)
0.953657 0.300894i \(-0.0972852\pi\)
\(20\) 0 0
\(21\) −0.865635 + 1.29050i −0.188897 + 0.281611i
\(22\) 0 0
\(23\) −2.45776 −0.512477 −0.256239 0.966614i \(-0.582483\pi\)
−0.256239 + 0.966614i \(0.582483\pi\)
\(24\) 0 0
\(25\) 2.06028 + 3.56851i 0.412056 + 0.713701i
\(26\) 0 0
\(27\) −5.09079 1.04109i −0.979723 0.200357i
\(28\) 0 0
\(29\) −5.24091 + 9.07753i −0.973213 + 1.68565i −0.287503 + 0.957780i \(0.592825\pi\)
−0.685710 + 0.727874i \(0.740508\pi\)
\(30\) 0 0
\(31\) 3.53762 6.12734i 0.635376 1.10050i −0.351059 0.936353i \(-0.614178\pi\)
0.986435 0.164150i \(-0.0524882\pi\)
\(32\) 0 0
\(33\) −1.74776 3.56017i −0.304246 0.619745i
\(34\) 0 0
\(35\) 0.420676 0.728632i 0.0711072 0.123161i
\(36\) 0 0
\(37\) 2.82939 + 4.90064i 0.465149 + 0.805661i 0.999208 0.0397858i \(-0.0126676\pi\)
−0.534060 + 0.845447i \(0.679334\pi\)
\(38\) 0 0
\(39\) −2.14471 5.86517i −0.343428 0.939179i
\(40\) 0 0
\(41\) −1.58900 −0.248160 −0.124080 0.992272i \(-0.539598\pi\)
−0.124080 + 0.992272i \(0.539598\pi\)
\(42\) 0 0
\(43\) −4.11807 −0.628000 −0.314000 0.949423i \(-0.601669\pi\)
−0.314000 + 0.949423i \(0.601669\pi\)
\(44\) 0 0
\(45\) 2.78796 + 0.377207i 0.415604 + 0.0562306i
\(46\) 0 0
\(47\) 4.34470 + 7.52524i 0.633740 + 1.09767i 0.986781 + 0.162061i \(0.0518142\pi\)
−0.353041 + 0.935608i \(0.614852\pi\)
\(48\) 0 0
\(49\) −6.19509 −0.885013
\(50\) 0 0
\(51\) −3.69665 7.53003i −0.517634 1.05441i
\(52\) 0 0
\(53\) −9.76841 −1.34179 −0.670897 0.741550i \(-0.734091\pi\)
−0.670897 + 0.741550i \(0.734091\pi\)
\(54\) 0 0
\(55\) 1.07367 + 1.85965i 0.144773 + 0.250755i
\(56\) 0 0
\(57\) −4.90684 9.99518i −0.649927 1.32389i
\(58\) 0 0
\(59\) 6.06148 + 10.4988i 0.789137 + 1.36683i 0.926496 + 0.376304i \(0.122805\pi\)
−0.137359 + 0.990521i \(0.543862\pi\)
\(60\) 0 0
\(61\) 7.42626 0.950835 0.475417 0.879760i \(-0.342297\pi\)
0.475417 + 0.879760i \(0.342297\pi\)
\(62\) 0 0
\(63\) 1.02108 + 2.49030i 0.128644 + 0.313748i
\(64\) 0 0
\(65\) 1.37196 + 3.09039i 0.170170 + 0.383316i
\(66\) 0 0
\(67\) 10.8472 1.32519 0.662597 0.748977i \(-0.269454\pi\)
0.662597 + 0.748977i \(0.269454\pi\)
\(68\) 0 0
\(69\) −2.37137 + 3.53529i −0.285480 + 0.425599i
\(70\) 0 0
\(71\) 2.14956 3.72315i 0.255106 0.441856i −0.709818 0.704385i \(-0.751223\pi\)
0.964924 + 0.262528i \(0.0845563\pi\)
\(72\) 0 0
\(73\) 6.91745 0.809627 0.404813 0.914399i \(-0.367337\pi\)
0.404813 + 0.914399i \(0.367337\pi\)
\(74\) 0 0
\(75\) 7.12088 + 0.479538i 0.822249 + 0.0553722i
\(76\) 0 0
\(77\) −1.02716 + 1.77910i −0.117056 + 0.202747i
\(78\) 0 0
\(79\) −3.32457 5.75832i −0.374043 0.647862i 0.616140 0.787637i \(-0.288696\pi\)
−0.990183 + 0.139775i \(0.955362\pi\)
\(80\) 0 0
\(81\) −6.40939 + 6.31820i −0.712154 + 0.702023i
\(82\) 0 0
\(83\) 0.852333 + 1.47628i 0.0935556 + 0.162043i 0.909005 0.416785i \(-0.136843\pi\)
−0.815449 + 0.578829i \(0.803510\pi\)
\(84\) 0 0
\(85\) 2.27089 + 3.93330i 0.246313 + 0.426626i
\(86\) 0 0
\(87\) 8.00060 + 16.2971i 0.857754 + 1.74724i
\(88\) 0 0
\(89\) 0.452237 + 0.783298i 0.0479370 + 0.0830294i 0.888998 0.457910i \(-0.151402\pi\)
−0.841061 + 0.540940i \(0.818069\pi\)
\(90\) 0 0
\(91\) −1.90416 + 2.61495i −0.199611 + 0.274121i
\(92\) 0 0
\(93\) −5.40042 11.0006i −0.559997 1.14071i
\(94\) 0 0
\(95\) 3.01433 + 5.22097i 0.309264 + 0.535660i
\(96\) 0 0
\(97\) −4.65687 −0.472834 −0.236417 0.971652i \(-0.575973\pi\)
−0.236417 + 0.971652i \(0.575973\pi\)
\(98\) 0 0
\(99\) −6.80735 0.921024i −0.684165 0.0925664i
\(100\) 0 0
\(101\) −3.11582 + 5.39676i −0.310036 + 0.536998i −0.978370 0.206864i \(-0.933674\pi\)
0.668334 + 0.743861i \(0.267008\pi\)
\(102\) 0 0
\(103\) −1.03851 + 1.79875i −0.102327 + 0.177236i −0.912643 0.408757i \(-0.865962\pi\)
0.810316 + 0.585993i \(0.199296\pi\)
\(104\) 0 0
\(105\) −0.642189 1.30813i −0.0626712 0.127661i
\(106\) 0 0
\(107\) −2.18277 3.78066i −0.211016 0.365490i 0.741017 0.671487i \(-0.234344\pi\)
−0.952033 + 0.305996i \(0.901011\pi\)
\(108\) 0 0
\(109\) −0.616958 −0.0590939 −0.0295470 0.999563i \(-0.509406\pi\)
−0.0295470 + 0.999563i \(0.509406\pi\)
\(110\) 0 0
\(111\) 9.77914 + 0.658551i 0.928195 + 0.0625069i
\(112\) 0 0
\(113\) 5.84292 + 10.1202i 0.549656 + 0.952032i 0.998298 + 0.0583204i \(0.0185745\pi\)
−0.448642 + 0.893712i \(0.648092\pi\)
\(114\) 0 0
\(115\) 1.15243 1.99606i 0.107464 0.186134i
\(116\) 0 0
\(117\) −10.5059 2.57404i −0.971273 0.237970i
\(118\) 0 0
\(119\) −2.17253 + 3.76293i −0.199155 + 0.344947i
\(120\) 0 0
\(121\) 2.87843 + 4.98558i 0.261675 + 0.453235i
\(122\) 0 0
\(123\) −1.53315 + 2.28565i −0.138240 + 0.206090i
\(124\) 0 0
\(125\) −8.55314 −0.765016
\(126\) 0 0
\(127\) 6.43952 + 11.1536i 0.571415 + 0.989720i 0.996421 + 0.0845291i \(0.0269386\pi\)
−0.425006 + 0.905190i \(0.639728\pi\)
\(128\) 0 0
\(129\) −3.97334 + 5.92353i −0.349833 + 0.521537i
\(130\) 0 0
\(131\) 3.91937 6.78855i 0.342437 0.593119i −0.642448 0.766330i \(-0.722081\pi\)
0.984885 + 0.173211i \(0.0554143\pi\)
\(132\) 0 0
\(133\) −2.88376 + 4.99482i −0.250054 + 0.433106i
\(134\) 0 0
\(135\) 3.23255 3.64631i 0.278214 0.313825i
\(136\) 0 0
\(137\) −19.0085 −1.62401 −0.812003 0.583654i \(-0.801623\pi\)
−0.812003 + 0.583654i \(0.801623\pi\)
\(138\) 0 0
\(139\) −5.96161 10.3258i −0.505657 0.875824i −0.999979 0.00654493i \(-0.997917\pi\)
0.494321 0.869279i \(-0.335417\pi\)
\(140\) 0 0
\(141\) 15.0165 + 1.01125i 1.26461 + 0.0851622i
\(142\) 0 0
\(143\) −3.34990 7.54580i −0.280133 0.631011i
\(144\) 0 0
\(145\) −4.91486 8.51279i −0.408157 0.706948i
\(146\) 0 0
\(147\) −5.97736 + 8.91116i −0.493004 + 0.734980i
\(148\) 0 0
\(149\) −0.106480 0.184429i −0.00872321 0.0151090i 0.861631 0.507535i \(-0.169443\pi\)
−0.870354 + 0.492426i \(0.836110\pi\)
\(150\) 0 0
\(151\) 10.3552 + 17.9357i 0.842693 + 1.45959i 0.887610 + 0.460596i \(0.152364\pi\)
−0.0449166 + 0.998991i \(0.514302\pi\)
\(152\) 0 0
\(153\) −14.3981 1.94804i −1.16402 0.157489i
\(154\) 0 0
\(155\) 3.31754 + 5.74614i 0.266471 + 0.461541i
\(156\) 0 0
\(157\) −1.58686 + 2.74853i −0.126646 + 0.219357i −0.922375 0.386296i \(-0.873754\pi\)
0.795729 + 0.605652i \(0.207088\pi\)
\(158\) 0 0
\(159\) −9.42509 + 14.0511i −0.747458 + 1.11432i
\(160\) 0 0
\(161\) 2.20502 0.173780
\(162\) 0 0
\(163\) 1.17804 2.04043i 0.0922716 0.159819i −0.816195 0.577776i \(-0.803921\pi\)
0.908467 + 0.417957i \(0.137254\pi\)
\(164\) 0 0
\(165\) 3.71089 + 0.249900i 0.288893 + 0.0194547i
\(166\) 0 0
\(167\) 8.76677 0.678393 0.339196 0.940716i \(-0.389845\pi\)
0.339196 + 0.940716i \(0.389845\pi\)
\(168\) 0 0
\(169\) −3.99067 12.3723i −0.306974 0.951718i
\(170\) 0 0
\(171\) −19.1117 2.58578i −1.46151 0.197739i
\(172\) 0 0
\(173\) −4.33886 −0.329877 −0.164939 0.986304i \(-0.552743\pi\)
−0.164939 + 0.986304i \(0.552743\pi\)
\(174\) 0 0
\(175\) −1.84841 3.20154i −0.139727 0.242014i
\(176\) 0 0
\(177\) 20.9501 + 1.41083i 1.57471 + 0.106045i
\(178\) 0 0
\(179\) −6.38992 11.0677i −0.477605 0.827236i 0.522066 0.852905i \(-0.325162\pi\)
−0.999670 + 0.0256695i \(0.991828\pi\)
\(180\) 0 0
\(181\) −5.90627 −0.439009 −0.219505 0.975611i \(-0.570444\pi\)
−0.219505 + 0.975611i \(0.570444\pi\)
\(182\) 0 0
\(183\) 7.16525 10.6821i 0.529671 0.789643i
\(184\) 0 0
\(185\) −5.30673 −0.390158
\(186\) 0 0
\(187\) −5.54483 9.60393i −0.405478 0.702309i
\(188\) 0 0
\(189\) 4.56729 + 0.934029i 0.332221 + 0.0679406i
\(190\) 0 0
\(191\) 23.4282 1.69521 0.847603 0.530631i \(-0.178045\pi\)
0.847603 + 0.530631i \(0.178045\pi\)
\(192\) 0 0
\(193\) 10.0542 0.723716 0.361858 0.932233i \(-0.382143\pi\)
0.361858 + 0.932233i \(0.382143\pi\)
\(194\) 0 0
\(195\) 5.76902 + 1.00832i 0.413128 + 0.0722074i
\(196\) 0 0
\(197\) 6.65982 + 11.5352i 0.474493 + 0.821845i 0.999573 0.0292070i \(-0.00929820\pi\)
−0.525081 + 0.851052i \(0.675965\pi\)
\(198\) 0 0
\(199\) 2.53206 4.38565i 0.179493 0.310890i −0.762214 0.647325i \(-0.775888\pi\)
0.941707 + 0.336434i \(0.109221\pi\)
\(200\) 0 0
\(201\) 10.4659 15.6028i 0.738210 1.10054i
\(202\) 0 0
\(203\) 4.70197 8.14406i 0.330014 0.571601i
\(204\) 0 0
\(205\) 0.745072 1.29050i 0.0520381 0.0901326i
\(206\) 0 0
\(207\) 2.79721 + 6.82207i 0.194419 + 0.474167i
\(208\) 0 0
\(209\) −7.36008 12.7480i −0.509107 0.881800i
\(210\) 0 0
\(211\) −7.41803 −0.510678 −0.255339 0.966852i \(-0.582187\pi\)
−0.255339 + 0.966852i \(0.582187\pi\)
\(212\) 0 0
\(213\) −3.28145 6.68427i −0.224841 0.457998i
\(214\) 0 0
\(215\) 1.93094 3.34448i 0.131689 0.228092i
\(216\) 0 0
\(217\) −3.17384 + 5.49725i −0.215454 + 0.373178i
\(218\) 0 0
\(219\) 6.67433 9.95022i 0.451009 0.672373i
\(220\) 0 0
\(221\) −7.08530 15.9599i −0.476609 1.07358i
\(222\) 0 0
\(223\) 1.48472 2.57161i 0.0994240 0.172207i −0.812022 0.583626i \(-0.801633\pi\)
0.911446 + 0.411419i \(0.134967\pi\)
\(224\) 0 0
\(225\) 7.56039 9.78015i 0.504026 0.652010i
\(226\) 0 0
\(227\) −8.21162 −0.545024 −0.272512 0.962152i \(-0.587855\pi\)
−0.272512 + 0.962152i \(0.587855\pi\)
\(228\) 0 0
\(229\) −13.3798 + 23.1745i −0.884164 + 1.53142i −0.0374944 + 0.999297i \(0.511938\pi\)
−0.846669 + 0.532119i \(0.821396\pi\)
\(230\) 0 0
\(231\) 1.56803 + 3.19406i 0.103169 + 0.210154i
\(232\) 0 0
\(233\) 1.48653 0.0973860 0.0486930 0.998814i \(-0.484494\pi\)
0.0486930 + 0.998814i \(0.484494\pi\)
\(234\) 0 0
\(235\) −8.14880 −0.531569
\(236\) 0 0
\(237\) −11.4906 0.773806i −0.746396 0.0502641i
\(238\) 0 0
\(239\) 12.7567 22.0952i 0.825159 1.42922i −0.0766386 0.997059i \(-0.524419\pi\)
0.901798 0.432159i \(-0.142248\pi\)
\(240\) 0 0
\(241\) 21.0733 1.35745 0.678726 0.734391i \(-0.262532\pi\)
0.678726 + 0.734391i \(0.262532\pi\)
\(242\) 0 0
\(243\) 2.90412 + 15.3156i 0.186299 + 0.982493i
\(244\) 0 0
\(245\) 2.90484 5.03133i 0.185583 0.321440i
\(246\) 0 0
\(247\) −9.40487 21.1849i −0.598417 1.34796i
\(248\) 0 0
\(249\) 2.94589 + 0.198384i 0.186688 + 0.0125721i
\(250\) 0 0
\(251\) 5.87642 10.1783i 0.370916 0.642446i −0.618791 0.785556i \(-0.712377\pi\)
0.989707 + 0.143110i \(0.0457104\pi\)
\(252\) 0 0
\(253\) −2.81387 + 4.87377i −0.176907 + 0.306412i
\(254\) 0 0
\(255\) 7.84882 + 0.528559i 0.491512 + 0.0330996i
\(256\) 0 0
\(257\) 25.9194 1.61681 0.808404 0.588627i \(-0.200331\pi\)
0.808404 + 0.588627i \(0.200331\pi\)
\(258\) 0 0
\(259\) −2.53843 4.39670i −0.157731 0.273197i
\(260\) 0 0
\(261\) 31.1616 + 4.21611i 1.92885 + 0.260971i
\(262\) 0 0
\(263\) −11.4003 + 19.7458i −0.702970 + 1.21758i 0.264449 + 0.964400i \(0.414810\pi\)
−0.967419 + 0.253180i \(0.918523\pi\)
\(264\) 0 0
\(265\) 4.58035 7.93339i 0.281368 0.487344i
\(266\) 0 0
\(267\) 1.56306 + 0.105260i 0.0956574 + 0.00644180i
\(268\) 0 0
\(269\) 13.5774 23.5168i 0.827831 1.43385i −0.0719045 0.997412i \(-0.522908\pi\)
0.899736 0.436435i \(-0.143759\pi\)
\(270\) 0 0
\(271\) −11.2144 19.4239i −0.681224 1.17992i −0.974607 0.223920i \(-0.928114\pi\)
0.293383 0.955995i \(-0.405219\pi\)
\(272\) 0 0
\(273\) 1.92416 + 5.26204i 0.116455 + 0.318473i
\(274\) 0 0
\(275\) 9.43522 0.568965
\(276\) 0 0
\(277\) −1.60846 −0.0966432 −0.0483216 0.998832i \(-0.515387\pi\)
−0.0483216 + 0.998832i \(0.515387\pi\)
\(278\) 0 0
\(279\) −21.0341 2.84588i −1.25928 0.170378i
\(280\) 0 0
\(281\) −8.42019 14.5842i −0.502306 0.870020i −0.999996 0.00266532i \(-0.999152\pi\)
0.497690 0.867355i \(-0.334182\pi\)
\(282\) 0 0
\(283\) −23.3167 −1.38603 −0.693017 0.720922i \(-0.743719\pi\)
−0.693017 + 0.720922i \(0.743719\pi\)
\(284\) 0 0
\(285\) 10.4183 + 0.701597i 0.617129 + 0.0415590i
\(286\) 0 0
\(287\) 1.42560 0.0841504
\(288\) 0 0
\(289\) −3.22774 5.59062i −0.189867 0.328860i
\(290\) 0 0
\(291\) −4.49320 + 6.69854i −0.263396 + 0.392676i
\(292\) 0 0
\(293\) 7.98254 + 13.8262i 0.466345 + 0.807733i 0.999261 0.0384350i \(-0.0122372\pi\)
−0.532916 + 0.846168i \(0.678904\pi\)
\(294\) 0 0
\(295\) −11.3687 −0.661914
\(296\) 0 0
\(297\) −7.89292 + 8.90319i −0.457994 + 0.516615i
\(298\) 0 0
\(299\) −5.21639 + 7.16356i −0.301672 + 0.414279i
\(300\) 0 0
\(301\) 3.69460 0.212953
\(302\) 0 0
\(303\) 4.75651 + 9.68895i 0.273254 + 0.556616i
\(304\) 0 0
\(305\) −3.48212 + 6.03121i −0.199386 + 0.345346i
\(306\) 0 0
\(307\) −31.4078 −1.79254 −0.896269 0.443512i \(-0.853733\pi\)
−0.896269 + 0.443512i \(0.853733\pi\)
\(308\) 0 0
\(309\) 1.58535 + 3.22935i 0.0901876 + 0.183711i
\(310\) 0 0
\(311\) 2.17084 3.76001i 0.123097 0.213210i −0.797890 0.602803i \(-0.794051\pi\)
0.920987 + 0.389592i \(0.127384\pi\)
\(312\) 0 0
\(313\) 12.1727 + 21.0836i 0.688039 + 1.19172i 0.972471 + 0.233022i \(0.0748615\pi\)
−0.284432 + 0.958696i \(0.591805\pi\)
\(314\) 0 0
\(315\) −2.50126 0.338417i −0.140930 0.0190676i
\(316\) 0 0
\(317\) −16.6834 28.8965i −0.937033 1.62299i −0.770968 0.636874i \(-0.780227\pi\)
−0.166065 0.986115i \(-0.553106\pi\)
\(318\) 0 0
\(319\) 12.0006 + 20.7856i 0.671905 + 1.16377i
\(320\) 0 0
\(321\) −7.54424 0.508047i −0.421078 0.0283564i
\(322\) 0 0
\(323\) −15.5671 26.9631i −0.866178 1.50027i
\(324\) 0 0
\(325\) 14.7738 + 1.56883i 0.819504 + 0.0870229i
\(326\) 0 0
\(327\) −0.595275 + 0.887447i −0.0329188 + 0.0490759i
\(328\) 0 0
\(329\) −3.89792 6.75140i −0.214899 0.372216i
\(330\) 0 0
\(331\) −18.5850 −1.02152 −0.510762 0.859722i \(-0.670637\pi\)
−0.510762 + 0.859722i \(0.670637\pi\)
\(332\) 0 0
\(333\) 10.3827 13.4311i 0.568969 0.736021i
\(334\) 0 0
\(335\) −5.08617 + 8.80950i −0.277887 + 0.481314i
\(336\) 0 0
\(337\) −8.74013 + 15.1384i −0.476105 + 0.824639i −0.999625 0.0273747i \(-0.991285\pi\)
0.523520 + 0.852014i \(0.324619\pi\)
\(338\) 0 0
\(339\) 20.1947 + 1.35996i 1.09683 + 0.0738630i
\(340\) 0 0
\(341\) −8.10042 14.0303i −0.438662 0.759786i
\(342\) 0 0
\(343\) 11.8382 0.639203
\(344\) 0 0
\(345\) −1.75925 3.58358i −0.0947150 0.192933i
\(346\) 0 0
\(347\) 2.76667 + 4.79201i 0.148522 + 0.257248i 0.930682 0.365830i \(-0.119215\pi\)
−0.782159 + 0.623079i \(0.785882\pi\)
\(348\) 0 0
\(349\) −1.46906 + 2.54448i −0.0786368 + 0.136203i −0.902662 0.430350i \(-0.858390\pi\)
0.824025 + 0.566553i \(0.191723\pi\)
\(350\) 0 0
\(351\) −13.8392 + 12.6284i −0.738683 + 0.674053i
\(352\) 0 0
\(353\) −11.6461 + 20.1717i −0.619860 + 1.07363i 0.369651 + 0.929171i \(0.379477\pi\)
−0.989511 + 0.144459i \(0.953856\pi\)
\(354\) 0 0
\(355\) 2.01583 + 3.49152i 0.106989 + 0.185311i
\(356\) 0 0
\(357\) 3.31651 + 6.75569i 0.175528 + 0.357549i
\(358\) 0 0
\(359\) −7.00737 −0.369835 −0.184917 0.982754i \(-0.559202\pi\)
−0.184917 + 0.982754i \(0.559202\pi\)
\(360\) 0 0
\(361\) −11.1634 19.3357i −0.587550 1.01767i
\(362\) 0 0
\(363\) 9.94863 + 0.669965i 0.522168 + 0.0351640i
\(364\) 0 0
\(365\) −3.24355 + 5.61799i −0.169775 + 0.294059i
\(366\) 0 0
\(367\) −1.19968 + 2.07791i −0.0626230 + 0.108466i −0.895637 0.444786i \(-0.853280\pi\)
0.833014 + 0.553252i \(0.186613\pi\)
\(368\) 0 0
\(369\) 1.80846 + 4.41064i 0.0941449 + 0.229609i
\(370\) 0 0
\(371\) 8.76390 0.454999
\(372\) 0 0
\(373\) 2.77715 + 4.81016i 0.143795 + 0.249061i 0.928923 0.370273i \(-0.120736\pi\)
−0.785128 + 0.619334i \(0.787403\pi\)
\(374\) 0 0
\(375\) −8.25253 + 12.3030i −0.426159 + 0.635325i
\(376\) 0 0
\(377\) 15.3346 + 34.5419i 0.789773 + 1.77900i
\(378\) 0 0
\(379\) 8.99747 + 15.5841i 0.462169 + 0.800500i 0.999069 0.0431457i \(-0.0137380\pi\)
−0.536900 + 0.843646i \(0.680405\pi\)
\(380\) 0 0
\(381\) 22.2567 + 1.49882i 1.14025 + 0.0767870i
\(382\) 0 0
\(383\) −5.96843 10.3376i −0.304973 0.528228i 0.672282 0.740295i \(-0.265314\pi\)
−0.977255 + 0.212066i \(0.931981\pi\)
\(384\) 0 0
\(385\) −0.963260 1.66841i −0.0490923 0.0850303i
\(386\) 0 0
\(387\) 4.68684 + 11.4307i 0.238245 + 0.581054i
\(388\) 0 0
\(389\) −6.13475 10.6257i −0.311044 0.538745i 0.667544 0.744570i \(-0.267345\pi\)
−0.978589 + 0.205825i \(0.934012\pi\)
\(390\) 0 0
\(391\) −5.95156 + 10.3084i −0.300983 + 0.521319i
\(392\) 0 0
\(393\) −5.98318 12.1877i −0.301812 0.614787i
\(394\) 0 0
\(395\) 6.23547 0.313741
\(396\) 0 0
\(397\) −9.46714 + 16.3976i −0.475142 + 0.822970i −0.999595 0.0284693i \(-0.990937\pi\)
0.524452 + 0.851440i \(0.324270\pi\)
\(398\) 0 0
\(399\) 4.40225 + 8.96734i 0.220388 + 0.448929i
\(400\) 0 0
\(401\) 33.6297 1.67939 0.839694 0.543060i \(-0.182734\pi\)
0.839694 + 0.543060i \(0.182734\pi\)
\(402\) 0 0
\(403\) −10.3509 23.3158i −0.515615 1.16144i
\(404\) 0 0
\(405\) −2.12599 8.16793i −0.105641 0.405868i
\(406\) 0 0
\(407\) 12.9574 0.642276
\(408\) 0 0
\(409\) 7.15085 + 12.3856i 0.353587 + 0.612431i 0.986875 0.161486i \(-0.0516285\pi\)
−0.633288 + 0.773916i \(0.718295\pi\)
\(410\) 0 0
\(411\) −18.3404 + 27.3422i −0.904666 + 1.34869i
\(412\) 0 0
\(413\) −5.43815 9.41916i −0.267594 0.463487i
\(414\) 0 0
\(415\) −1.59861 −0.0784728
\(416\) 0 0
\(417\) −20.6050 1.38759i −1.00903 0.0679505i
\(418\) 0 0
\(419\) 11.6920 0.571190 0.285595 0.958350i \(-0.407809\pi\)
0.285595 + 0.958350i \(0.407809\pi\)
\(420\) 0 0
\(421\) −15.4632 26.7830i −0.753630 1.30532i −0.946053 0.324013i \(-0.894968\pi\)
0.192423 0.981312i \(-0.438365\pi\)
\(422\) 0 0
\(423\) 15.9433 20.6243i 0.775190 1.00279i
\(424\) 0 0
\(425\) 19.9562 0.968018
\(426\) 0 0
\(427\) −6.66259 −0.322425
\(428\) 0 0
\(429\) −14.0862 2.46202i −0.680088 0.118867i
\(430\) 0 0
\(431\) 14.8068 + 25.6461i 0.713218 + 1.23533i 0.963643 + 0.267194i \(0.0860965\pi\)
−0.250424 + 0.968136i \(0.580570\pi\)
\(432\) 0 0
\(433\) −1.34968 + 2.33771i −0.0648613 + 0.112343i −0.896632 0.442776i \(-0.853994\pi\)
0.831771 + 0.555119i \(0.187327\pi\)
\(434\) 0 0
\(435\) −16.9871 1.14395i −0.814469 0.0548483i
\(436\) 0 0
\(437\) −7.89996 + 13.6831i −0.377907 + 0.654553i
\(438\) 0 0
\(439\) −15.5997 + 27.0194i −0.744532 + 1.28957i 0.205881 + 0.978577i \(0.433994\pi\)
−0.950413 + 0.310991i \(0.899339\pi\)
\(440\) 0 0
\(441\) 7.05072 + 17.1959i 0.335749 + 0.818853i
\(442\) 0 0
\(443\) −18.3073 31.7092i −0.869806 1.50655i −0.862195 0.506577i \(-0.830910\pi\)
−0.00761158 0.999971i \(-0.502423\pi\)
\(444\) 0 0
\(445\) −0.848204 −0.0402087
\(446\) 0 0
\(447\) −0.368025 0.0247837i −0.0174070 0.00117223i
\(448\) 0 0
\(449\) −16.9564 + 29.3693i −0.800222 + 1.38602i 0.119248 + 0.992864i \(0.461952\pi\)
−0.919470 + 0.393160i \(0.871382\pi\)
\(450\) 0 0
\(451\) −1.81924 + 3.15102i −0.0856647 + 0.148376i
\(452\) 0 0
\(453\) 35.7904 + 2.41021i 1.68158 + 0.113242i
\(454\) 0 0
\(455\) −1.23087 2.77260i −0.0577043 0.129981i
\(456\) 0 0
\(457\) 21.1402 36.6159i 0.988896 1.71282i 0.365747 0.930714i \(-0.380814\pi\)
0.623149 0.782103i \(-0.285853\pi\)
\(458\) 0 0
\(459\) −16.6941 + 18.8309i −0.779215 + 0.878953i
\(460\) 0 0
\(461\) 8.35048 0.388920 0.194460 0.980910i \(-0.437704\pi\)
0.194460 + 0.980910i \(0.437704\pi\)
\(462\) 0 0
\(463\) −2.81834 + 4.88150i −0.130979 + 0.226863i −0.924054 0.382261i \(-0.875145\pi\)
0.793075 + 0.609124i \(0.208479\pi\)
\(464\) 0 0
\(465\) 11.4663 + 0.772170i 0.531738 + 0.0358085i
\(466\) 0 0
\(467\) −24.8169 −1.14839 −0.574195 0.818719i \(-0.694685\pi\)
−0.574195 + 0.818719i \(0.694685\pi\)
\(468\) 0 0
\(469\) −9.73172 −0.449369
\(470\) 0 0
\(471\) 2.42245 + 4.93451i 0.111621 + 0.227370i
\(472\) 0 0
\(473\) −4.71477 + 8.16621i −0.216785 + 0.375483i
\(474\) 0 0
\(475\) 26.4894 1.21542
\(476\) 0 0
\(477\) 11.1176 + 27.1145i 0.509039 + 1.24149i
\(478\) 0 0
\(479\) 11.8238 20.4794i 0.540242 0.935727i −0.458647 0.888618i \(-0.651666\pi\)
0.998890 0.0471090i \(-0.0150008\pi\)
\(480\) 0 0
\(481\) 20.2889 + 2.15448i 0.925096 + 0.0982357i
\(482\) 0 0
\(483\) 2.12752 3.17174i 0.0968055 0.144319i
\(484\) 0 0
\(485\) 2.18358 3.78207i 0.0991511 0.171735i
\(486\) 0 0
\(487\) 2.67346 4.63057i 0.121146 0.209831i −0.799074 0.601233i \(-0.794676\pi\)
0.920220 + 0.391402i \(0.128010\pi\)
\(488\) 0 0
\(489\) −1.79836 3.66324i −0.0813248 0.165658i
\(490\) 0 0
\(491\) −19.7581 −0.891672 −0.445836 0.895115i \(-0.647094\pi\)
−0.445836 + 0.895115i \(0.647094\pi\)
\(492\) 0 0
\(493\) 25.3822 + 43.9632i 1.14316 + 1.98001i
\(494\) 0 0
\(495\) 3.93993 5.09671i 0.177087 0.229080i
\(496\) 0 0
\(497\) −1.92851 + 3.34028i −0.0865057 + 0.149832i
\(498\) 0 0
\(499\) 9.13549 15.8231i 0.408961 0.708341i −0.585813 0.810446i \(-0.699225\pi\)
0.994774 + 0.102106i \(0.0325580\pi\)
\(500\) 0 0
\(501\) 8.45865 12.6103i 0.377904 0.563387i
\(502\) 0 0
\(503\) −3.12995 + 5.42124i −0.139558 + 0.241721i −0.927329 0.374246i \(-0.877901\pi\)
0.787772 + 0.615968i \(0.211235\pi\)
\(504\) 0 0
\(505\) −2.92198 5.06101i −0.130026 0.225212i
\(506\) 0 0
\(507\) −21.6470 6.19723i −0.961379 0.275229i
\(508\) 0 0
\(509\) −29.4233 −1.30416 −0.652082 0.758148i \(-0.726104\pi\)
−0.652082 + 0.758148i \(0.726104\pi\)
\(510\) 0 0
\(511\) −6.20611 −0.274542
\(512\) 0 0
\(513\) −22.1594 + 24.9957i −0.978362 + 1.10359i
\(514\) 0 0
\(515\) −0.973900 1.68684i −0.0429152 0.0743313i
\(516\) 0 0
\(517\) 19.8969 0.875065
\(518\) 0 0
\(519\) −4.18636 + 6.24111i −0.183761 + 0.273954i
\(520\) 0 0
\(521\) 22.1544 0.970604 0.485302 0.874347i \(-0.338710\pi\)
0.485302 + 0.874347i \(0.338710\pi\)
\(522\) 0 0
\(523\) 0.383884 + 0.664906i 0.0167861 + 0.0290743i 0.874296 0.485392i \(-0.161323\pi\)
−0.857510 + 0.514467i \(0.827990\pi\)
\(524\) 0 0
\(525\) −6.38862 0.430225i −0.278822 0.0187766i
\(526\) 0 0
\(527\) −17.1330 29.6753i −0.746326 1.29267i
\(528\) 0 0
\(529\) −16.9594 −0.737367
\(530\) 0 0
\(531\) 22.2432 28.7739i 0.965271 1.24868i
\(532\) 0 0
\(533\) −3.37253 + 4.63142i −0.146080 + 0.200609i
\(534\) 0 0
\(535\) 4.09394 0.176996
\(536\) 0 0
\(537\) −22.0853 1.48728i −0.953051 0.0641808i
\(538\) 0 0
\(539\) −7.09274 + 12.2850i −0.305506 + 0.529151i
\(540\) 0 0
\(541\) 30.6466 1.31760 0.658799 0.752319i \(-0.271065\pi\)
0.658799 + 0.752319i \(0.271065\pi\)
\(542\) 0 0
\(543\) −5.69868 + 8.49570i −0.244554 + 0.364585i
\(544\) 0 0
\(545\) 0.289288 0.501061i 0.0123917 0.0214631i
\(546\) 0 0
\(547\) 18.0700 + 31.2982i 0.772618 + 1.33821i 0.936124 + 0.351671i \(0.114387\pi\)
−0.163505 + 0.986542i \(0.552280\pi\)
\(548\) 0 0
\(549\) −8.45193 20.6133i −0.360720 0.879754i
\(550\) 0 0
\(551\) 33.6917 + 58.3558i 1.43532 + 2.48604i
\(552\) 0 0
\(553\) 2.98269 + 5.16618i 0.126837 + 0.219688i
\(554\) 0 0
\(555\) −5.12021 + 7.63331i −0.217341 + 0.324016i
\(556\) 0 0
\(557\) −4.10600 7.11180i −0.173977 0.301337i 0.765830 0.643043i \(-0.222328\pi\)
−0.939807 + 0.341707i \(0.888995\pi\)
\(558\) 0 0
\(559\) −8.74028 + 12.0028i −0.369675 + 0.507666i
\(560\) 0 0
\(561\) −19.1645 1.29058i −0.809124 0.0544884i
\(562\) 0 0
\(563\) 15.9643 + 27.6510i 0.672816 + 1.16535i 0.977102 + 0.212771i \(0.0682487\pi\)
−0.304286 + 0.952581i \(0.598418\pi\)
\(564\) 0 0
\(565\) −10.9588 −0.461042
\(566\) 0 0
\(567\) 5.75029 5.66848i 0.241490 0.238054i
\(568\) 0 0
\(569\) 14.6512 25.3767i 0.614211 1.06385i −0.376311 0.926493i \(-0.622808\pi\)
0.990522 0.137352i \(-0.0438591\pi\)
\(570\) 0 0
\(571\) 12.4100 21.4948i 0.519343 0.899528i −0.480405 0.877047i \(-0.659510\pi\)
0.999747 0.0224810i \(-0.00715652\pi\)
\(572\) 0 0
\(573\) 22.6048 33.6997i 0.944329 1.40782i
\(574\) 0 0
\(575\) −5.06366 8.77052i −0.211169 0.365756i
\(576\) 0 0
\(577\) −32.0808 −1.33554 −0.667771 0.744366i \(-0.732752\pi\)
−0.667771 + 0.744366i \(0.732752\pi\)
\(578\) 0 0
\(579\) 9.70082 14.4622i 0.403152 0.601027i
\(580\) 0 0
\(581\) −0.764684 1.32447i −0.0317245 0.0549484i
\(582\) 0 0
\(583\) −11.1838 + 19.3709i −0.463186 + 0.802262i
\(584\) 0 0
\(585\) 7.01665 7.32540i 0.290103 0.302868i
\(586\) 0 0
\(587\) −16.2931 + 28.2206i −0.672490 + 1.16479i 0.304706 + 0.952447i \(0.401442\pi\)
−0.977196 + 0.212341i \(0.931891\pi\)
\(588\) 0 0
\(589\) −22.7420 39.3902i −0.937066 1.62305i
\(590\) 0 0
\(591\) 23.0182 + 1.55010i 0.946841 + 0.0637626i
\(592\) 0 0
\(593\) −21.9727 −0.902310 −0.451155 0.892446i \(-0.648988\pi\)
−0.451155 + 0.892446i \(0.648988\pi\)
\(594\) 0 0
\(595\) −2.03737 3.52883i −0.0835240 0.144668i
\(596\) 0 0
\(597\) −3.86535 7.87367i −0.158198 0.322248i
\(598\) 0 0
\(599\) −16.0735 + 27.8402i −0.656746 + 1.13752i 0.324706 + 0.945815i \(0.394734\pi\)
−0.981453 + 0.191703i \(0.938599\pi\)
\(600\) 0 0
\(601\) 11.0940 19.2154i 0.452534 0.783812i −0.546009 0.837780i \(-0.683853\pi\)
0.998543 + 0.0539675i \(0.0171867\pi\)
\(602\) 0 0
\(603\) −12.3453 30.1089i −0.502740 1.22613i
\(604\) 0 0
\(605\) −5.39870 −0.219488
\(606\) 0 0
\(607\) −12.9704 22.4654i −0.526452 0.911842i −0.999525 0.0308188i \(-0.990189\pi\)
0.473073 0.881023i \(-0.343145\pi\)
\(608\) 0 0
\(609\) −7.17787 14.6212i −0.290862 0.592483i
\(610\) 0 0
\(611\) 31.1549 + 3.30833i 1.26039 + 0.133841i
\(612\) 0 0
\(613\) 10.0170 + 17.3500i 0.404584 + 0.700760i 0.994273 0.106871i \(-0.0340831\pi\)
−0.589689 + 0.807630i \(0.700750\pi\)
\(614\) 0 0
\(615\) −1.13740 2.31687i −0.0458644 0.0934254i
\(616\) 0 0
\(617\) −7.64802 13.2468i −0.307898 0.533294i 0.670005 0.742357i \(-0.266292\pi\)
−0.977902 + 0.209063i \(0.932959\pi\)
\(618\) 0 0
\(619\) −8.72206 15.1071i −0.350569 0.607204i 0.635780 0.771870i \(-0.280679\pi\)
−0.986349 + 0.164666i \(0.947345\pi\)
\(620\) 0 0
\(621\) 12.5119 + 2.55874i 0.502086 + 0.102679i
\(622\) 0 0
\(623\) −0.405732 0.702749i −0.0162553 0.0281550i
\(624\) 0 0
\(625\) −6.29088 + 10.8961i −0.251635 + 0.435845i
\(626\) 0 0
\(627\) −25.4384 1.71309i −1.01591 0.0684141i
\(628\) 0 0
\(629\) 27.4059 1.09275
\(630\) 0 0
\(631\) 7.16539 12.4108i 0.285250 0.494067i −0.687420 0.726260i \(-0.741257\pi\)
0.972670 + 0.232193i \(0.0745901\pi\)
\(632\) 0 0
\(633\) −7.15731 + 10.6703i −0.284478 + 0.424105i
\(634\) 0 0
\(635\) −12.0778 −0.479293
\(636\) 0 0
\(637\) −13.1486 + 18.0567i −0.520966 + 0.715432i
\(638\) 0 0
\(639\) −12.7809 1.72924i −0.505605 0.0684076i
\(640\) 0 0
\(641\) 18.5729 0.733587 0.366794 0.930302i \(-0.380455\pi\)
0.366794 + 0.930302i \(0.380455\pi\)
\(642\) 0 0
\(643\) −5.04733 8.74224i −0.199047 0.344760i 0.749172 0.662375i \(-0.230451\pi\)
−0.948220 + 0.317615i \(0.897118\pi\)
\(644\) 0 0
\(645\) −2.94770 6.00444i −0.116066 0.236425i
\(646\) 0 0
\(647\) 1.75145 + 3.03361i 0.0688567 + 0.119263i 0.898398 0.439182i \(-0.144732\pi\)
−0.829542 + 0.558445i \(0.811398\pi\)
\(648\) 0 0
\(649\) 27.7590 1.08964
\(650\) 0 0
\(651\) 4.84507 + 9.86936i 0.189893 + 0.386811i
\(652\) 0 0
\(653\) −7.00545 −0.274145 −0.137072 0.990561i \(-0.543769\pi\)
−0.137072 + 0.990561i \(0.543769\pi\)
\(654\) 0 0
\(655\) 3.67554 + 6.36622i 0.143615 + 0.248749i
\(656\) 0 0
\(657\) −7.87285 19.2010i −0.307149 0.749103i
\(658\) 0 0
\(659\) 7.38173 0.287551 0.143776 0.989610i \(-0.454076\pi\)
0.143776 + 0.989610i \(0.454076\pi\)
\(660\) 0 0
\(661\) −13.3745 −0.520208 −0.260104 0.965581i \(-0.583757\pi\)
−0.260104 + 0.965581i \(0.583757\pi\)
\(662\) 0 0
\(663\) −29.7934 5.20735i −1.15708 0.202237i
\(664\) 0 0
\(665\) −2.70436 4.68408i −0.104870 0.181641i
\(666\) 0 0
\(667\) 12.8809 22.3103i 0.498750 0.863860i
\(668\) 0 0
\(669\) −2.26652 4.61687i −0.0876287 0.178499i
\(670\) 0 0
\(671\) 8.50229 14.7264i 0.328227 0.568506i
\(672\) 0 0
\(673\) 3.75544 6.50462i 0.144762 0.250735i −0.784522 0.620101i \(-0.787092\pi\)
0.929284 + 0.369366i \(0.120425\pi\)
\(674\) 0 0
\(675\) −6.77331 20.3114i −0.260705 0.781788i
\(676\) 0 0
\(677\) −12.0939 20.9473i −0.464808 0.805071i 0.534385 0.845241i \(-0.320543\pi\)
−0.999193 + 0.0401706i \(0.987210\pi\)
\(678\) 0 0
\(679\) 4.17799 0.160337
\(680\) 0 0
\(681\) −7.92301 + 11.8118i −0.303611 + 0.452628i
\(682\) 0 0
\(683\) 4.18641 7.25108i 0.160189 0.277455i −0.774748 0.632271i \(-0.782123\pi\)
0.934936 + 0.354816i \(0.115456\pi\)
\(684\) 0 0
\(685\) 8.91296 15.4377i 0.340547 0.589844i
\(686\) 0 0
\(687\) 20.4252 + 41.6059i 0.779269 + 1.58736i
\(688\) 0 0
\(689\) −20.7327 + 28.4718i −0.789852 + 1.08469i
\(690\) 0 0
\(691\) 10.1039 17.5004i 0.384369 0.665746i −0.607313 0.794463i \(-0.707753\pi\)
0.991681 + 0.128717i \(0.0410859\pi\)
\(692\) 0 0
\(693\) 6.10733 + 0.826312i 0.231998 + 0.0313890i
\(694\) 0 0
\(695\) 11.1814 0.424136
\(696\) 0 0
\(697\) −3.84783 + 6.66464i −0.145747 + 0.252441i
\(698\) 0 0
\(699\) 1.43429 2.13826i 0.0542497 0.0808764i
\(700\) 0 0
\(701\) 27.5279 1.03971 0.519856 0.854254i \(-0.325985\pi\)
0.519856 + 0.854254i \(0.325985\pi\)
\(702\) 0 0
\(703\) 36.3780 1.37202
\(704\) 0 0
\(705\) −7.86240 + 11.7214i −0.296115 + 0.441454i
\(706\) 0 0
\(707\) 2.79541 4.84180i 0.105132 0.182094i
\(708\) 0 0
\(709\) 1.78659 0.0670968 0.0335484 0.999437i \(-0.489319\pi\)
0.0335484 + 0.999437i \(0.489319\pi\)
\(710\) 0 0
\(711\) −12.1998 + 15.7817i −0.457529 + 0.591862i
\(712\) 0 0
\(713\) −8.69461 + 15.0595i −0.325616 + 0.563983i
\(714\) 0 0
\(715\) 7.69905 + 0.817560i 0.287928 + 0.0305750i
\(716\) 0 0
\(717\) −19.4739 39.6680i −0.727265 1.48143i
\(718\) 0 0
\(719\) −6.19105 + 10.7232i −0.230887 + 0.399909i −0.958069 0.286536i \(-0.907496\pi\)
0.727182 + 0.686445i \(0.240830\pi\)
\(720\) 0 0
\(721\) 0.931716 1.61378i 0.0346989 0.0601003i
\(722\) 0 0
\(723\) 20.3327 30.3123i 0.756181 1.12733i
\(724\) 0 0
\(725\) −43.1909 −1.60407
\(726\) 0 0
\(727\) −23.7662 41.1642i −0.881439 1.52670i −0.849742 0.527199i \(-0.823242\pi\)
−0.0316971 0.999498i \(-0.510091\pi\)
\(728\) 0 0
\(729\) 24.8323 + 10.5999i 0.919714 + 0.392590i
\(730\) 0 0
\(731\) −9.97209 + 17.2722i −0.368831 + 0.638834i
\(732\) 0 0
\(733\) 11.4300 19.7974i 0.422177 0.731232i −0.573975 0.818873i \(-0.694599\pi\)
0.996152 + 0.0876406i \(0.0279327\pi\)
\(734\) 0 0
\(735\) −4.43443 9.03288i −0.163566 0.333183i
\(736\) 0 0
\(737\) 12.4189 21.5101i 0.457455 0.792336i
\(738\) 0 0
\(739\) 10.9525 + 18.9703i 0.402894 + 0.697833i 0.994074 0.108707i \(-0.0346710\pi\)
−0.591180 + 0.806540i \(0.701338\pi\)
\(740\) 0 0
\(741\) −39.5471 6.91212i −1.45280 0.253923i
\(742\) 0 0
\(743\) −6.11940 −0.224499 −0.112249 0.993680i \(-0.535806\pi\)
−0.112249 + 0.993680i \(0.535806\pi\)
\(744\) 0 0
\(745\) 0.199712 0.00731687
\(746\) 0 0
\(747\) 3.12772 4.04603i 0.114437 0.148036i
\(748\) 0 0
\(749\) 1.95831 + 3.39188i 0.0715549 + 0.123937i
\(750\) 0 0
\(751\) 16.0538 0.585810 0.292905 0.956142i \(-0.405378\pi\)
0.292905 + 0.956142i \(0.405378\pi\)
\(752\) 0 0
\(753\) −8.97074 18.2733i −0.326912 0.665916i
\(754\) 0 0
\(755\) −19.4219 −0.706836
\(756\) 0 0
\(757\) 14.6925 + 25.4481i 0.534008 + 0.924928i 0.999211 + 0.0397242i \(0.0126479\pi\)
−0.465203 + 0.885204i \(0.654019\pi\)
\(758\) 0 0
\(759\) 4.29557 + 8.75002i 0.155919 + 0.317606i
\(760\) 0 0
\(761\) 5.05541 + 8.75622i 0.183258 + 0.317413i 0.942988 0.332826i \(-0.108002\pi\)
−0.759730 + 0.650239i \(0.774669\pi\)
\(762\) 0 0
\(763\) 0.553515 0.0200386
\(764\) 0 0
\(765\) 8.33326 10.7799i 0.301290 0.389749i
\(766\) 0 0
\(767\) 43.4655 + 4.61559i 1.56945 + 0.166659i
\(768\) 0 0
\(769\) 48.7126 1.75662 0.878310 0.478092i \(-0.158671\pi\)
0.878310 + 0.478092i \(0.158671\pi\)
\(770\) 0 0
\(771\) 25.0084 37.2831i 0.900657 1.34272i
\(772\) 0 0
\(773\) −1.21294 + 2.10087i −0.0436264 + 0.0755631i −0.887014 0.461742i \(-0.847224\pi\)
0.843388 + 0.537306i \(0.180558\pi\)
\(774\) 0 0
\(775\) 29.1539 1.04724
\(776\) 0 0
\(777\) −8.77352 0.590830i −0.314748 0.0211959i
\(778\) 0 0
\(779\) −5.10752 + 8.84649i −0.182996 + 0.316958i
\(780\) 0 0
\(781\) −4.92205 8.52523i −0.176125 0.305057i
\(782\) 0 0
\(783\) 36.1309 40.7555i 1.29121 1.45648i
\(784\) 0 0
\(785\) −1.48814 2.57753i −0.0531140 0.0919962i
\(786\) 0 0
\(787\) 9.55478 + 16.5494i 0.340591 + 0.589921i 0.984543 0.175145i \(-0.0560395\pi\)
−0.643952 + 0.765066i \(0.722706\pi\)
\(788\) 0 0
\(789\) 17.4033 + 35.4502i 0.619572 + 1.26206i
\(790\) 0 0
\(791\) −5.24208 9.07954i −0.186387 0.322831i
\(792\) 0 0
\(793\) 15.7616 21.6451i 0.559712 0.768641i
\(794\) 0 0
\(795\) −6.99220 14.2430i −0.247988 0.505148i
\(796\) 0 0
\(797\) −13.5804 23.5220i −0.481043 0.833191i 0.518720 0.854944i \(-0.326409\pi\)
−0.999763 + 0.0217532i \(0.993075\pi\)
\(798\) 0 0
\(799\) 42.0835 1.48881
\(800\) 0 0
\(801\) 1.65953 2.14677i 0.0586365 0.0758525i
\(802\) 0 0
\(803\) 7.91976 13.7174i 0.279482 0.484078i
\(804\) 0 0
\(805\) −1.03392 + 1.79080i −0.0364408 + 0.0631173i
\(806\) 0 0
\(807\) −20.7269 42.2204i −0.729620 1.48623i
\(808\) 0 0
\(809\) 24.4213 + 42.2990i 0.858609 + 1.48715i 0.873256 + 0.487261i \(0.162004\pi\)
−0.0146479 + 0.999893i \(0.504663\pi\)
\(810\) 0 0
\(811\) 39.4775 1.38624 0.693122 0.720821i \(-0.256235\pi\)
0.693122 + 0.720821i \(0.256235\pi\)
\(812\) 0 0
\(813\) −38.7599 2.61019i −1.35937 0.0915433i
\(814\) 0 0
\(815\) 1.10475 + 1.91349i 0.0386979 + 0.0670267i
\(816\) 0 0
\(817\) −13.2367 + 22.9267i −0.463094 + 0.802103i
\(818\) 0 0
\(819\) 9.42556 + 2.30934i 0.329356 + 0.0806949i
\(820\) 0 0
\(821\) 11.3028 19.5769i 0.394469 0.683240i −0.598564 0.801075i \(-0.704262\pi\)
0.993033 + 0.117835i \(0.0375952\pi\)
\(822\) 0 0
\(823\) 5.99189 + 10.3783i 0.208864 + 0.361763i 0.951357 0.308091i \(-0.0996900\pi\)
−0.742493 + 0.669854i \(0.766357\pi\)
\(824\) 0 0
\(825\) 9.10360 13.5718i 0.316947 0.472510i
\(826\) 0 0
\(827\) −46.1187 −1.60370 −0.801852 0.597523i \(-0.796152\pi\)
−0.801852 + 0.597523i \(0.796152\pi\)
\(828\) 0 0
\(829\) −8.70889 15.0842i −0.302472 0.523897i 0.674223 0.738528i \(-0.264479\pi\)
−0.976695 + 0.214630i \(0.931145\pi\)
\(830\) 0 0
\(831\) −1.55193 + 2.31365i −0.0538359 + 0.0802596i
\(832\) 0 0
\(833\) −15.0017 + 25.9837i −0.519778 + 0.900281i
\(834\) 0 0
\(835\) −4.11068 + 7.11991i −0.142256 + 0.246394i
\(836\) 0 0
\(837\) −24.3884 + 27.5100i −0.842986 + 0.950886i
\(838\) 0 0
\(839\) −36.5799 −1.26288 −0.631439 0.775426i \(-0.717535\pi\)
−0.631439 + 0.775426i \(0.717535\pi\)
\(840\) 0 0
\(841\) −40.4343 70.0343i −1.39429 2.41498i
\(842\) 0 0
\(843\) −29.1025 1.95983i −1.00234 0.0675002i
\(844\) 0 0
\(845\) 11.9194 + 2.56030i 0.410038 + 0.0880769i
\(846\) 0 0
\(847\) −2.58243 4.47290i −0.0887333 0.153691i
\(848\) 0 0
\(849\) −22.4972 + 33.5392i −0.772102 + 1.15106i
\(850\) 0 0
\(851\) −6.95395 12.0446i −0.238378 0.412883i
\(852\) 0 0
\(853\) 17.8494 + 30.9160i 0.611150 + 1.05854i 0.991047 + 0.133514i \(0.0426262\pi\)
−0.379897 + 0.925029i \(0.624040\pi\)
\(854\) 0 0
\(855\) 11.0614 14.3090i 0.378291 0.489359i
\(856\) 0 0
\(857\) 7.40047 + 12.8180i 0.252795 + 0.437854i 0.964294 0.264833i \(-0.0853168\pi\)
−0.711499 + 0.702687i \(0.751983\pi\)
\(858\) 0 0
\(859\) −12.5687 + 21.7697i −0.428839 + 0.742771i −0.996770 0.0803049i \(-0.974411\pi\)
0.567931 + 0.823076i \(0.307744\pi\)
\(860\) 0 0
\(861\) 1.37549 2.05061i 0.0468767 0.0698847i
\(862\) 0 0
\(863\) −42.4676 −1.44561 −0.722807 0.691050i \(-0.757148\pi\)
−0.722807 + 0.691050i \(0.757148\pi\)
\(864\) 0 0
\(865\) 2.03446 3.52379i 0.0691738 0.119813i
\(866\) 0 0
\(867\) −11.1560 0.751270i −0.378877 0.0255145i
\(868\) 0 0
\(869\) −15.2251 −0.516478
\(870\) 0 0
\(871\) 23.0223 31.6160i 0.780079 1.07127i
\(872\) 0 0
\(873\) 5.30005 + 12.9262i 0.179380 + 0.437487i
\(874\) 0 0
\(875\) 7.67359 0.259415
\(876\) 0 0
\(877\) −17.0991 29.6166i −0.577397 1.00008i −0.995777 0.0918085i \(-0.970735\pi\)
0.418380 0.908272i \(-0.362598\pi\)
\(878\) 0 0
\(879\) 27.5898 + 1.85797i 0.930582 + 0.0626677i
\(880\) 0 0
\(881\) 11.5943 + 20.0819i 0.390621 + 0.676576i 0.992532 0.121988i \(-0.0389269\pi\)
−0.601910 + 0.798564i \(0.705594\pi\)
\(882\) 0 0
\(883\) −32.2202 −1.08430 −0.542148 0.840283i \(-0.682389\pi\)
−0.542148 + 0.840283i \(0.682389\pi\)
\(884\) 0 0
\(885\) −10.9692 + 16.3530i −0.368725 + 0.549702i
\(886\) 0 0
\(887\) 3.13771 0.105354 0.0526769 0.998612i \(-0.483225\pi\)
0.0526769 + 0.998612i \(0.483225\pi\)
\(888\) 0 0
\(889\) −5.77732 10.0066i −0.193765 0.335611i
\(890\) 0 0
\(891\) 5.19103 + 19.9436i 0.173906 + 0.668137i
\(892\) 0 0
\(893\) 55.8607 1.86931
\(894\) 0 0
\(895\) 11.9848 0.400606
\(896\) 0 0
\(897\) 5.27117 + 14.4152i 0.175999 + 0.481308i
\(898\) 0 0
\(899\) 37.0807 + 64.2257i 1.23671 + 2.14205i
\(900\) 0 0
\(901\) −23.6546 + 40.9710i −0.788050 + 1.36494i
\(902\) 0 0
\(903\) 3.56475 5.31439i 0.118627 0.176852i
\(904\) 0 0
\(905\) 2.76941 4.79676i 0.0920583 0.159450i
\(906\) 0 0
\(907\) −8.70436 + 15.0764i −0.289023 + 0.500603i −0.973577 0.228359i \(-0.926664\pi\)
0.684553 + 0.728963i \(0.259997\pi\)
\(908\) 0 0
\(909\) 18.5261 + 2.50656i 0.614473 + 0.0831373i
\(910\) 0 0
\(911\) −26.1890 45.3606i −0.867680 1.50286i −0.864362 0.502870i \(-0.832277\pi\)
−0.00331774 0.999994i \(-0.501056\pi\)
\(912\) 0 0
\(913\) 3.90333 0.129181
\(914\) 0 0
\(915\) 5.31569 + 10.8280i 0.175731 + 0.357963i
\(916\) 0 0
\(917\) −3.51633 + 6.09046i −0.116119 + 0.201125i
\(918\) 0 0
\(919\) −14.9366 + 25.8710i −0.492713 + 0.853404i −0.999965 0.00839378i \(-0.997328\pi\)
0.507252 + 0.861798i \(0.330661\pi\)
\(920\) 0 0
\(921\) −30.3039 + 45.1777i −0.998548 + 1.48865i
\(922\) 0 0
\(923\) −6.28950 14.1674i −0.207021 0.466324i
\(924\) 0 0
\(925\) −11.6587 + 20.1934i −0.383334 + 0.663954i
\(926\) 0 0
\(927\) 6.17479 + 0.835440i 0.202807 + 0.0274395i
\(928\) 0 0
\(929\) 42.1855 1.38406 0.692030 0.721869i \(-0.256717\pi\)
0.692030 + 0.721869i \(0.256717\pi\)
\(930\) 0 0
\(931\) −19.9129 + 34.4901i −0.652618 + 1.13037i
\(932\) 0 0
\(933\) −3.31393 6.75044i −0.108493 0.220999i
\(934\) 0 0
\(935\) 10.3997 0.340108
\(936\) 0 0
\(937\) −1.90435 −0.0622125 −0.0311063 0.999516i \(-0.509903\pi\)
−0.0311063 + 0.999516i \(0.509903\pi\)
\(938\) 0 0
\(939\) 42.0720 + 2.83323i 1.37297 + 0.0924590i
\(940\) 0 0
\(941\) −14.7980 + 25.6309i −0.482402 + 0.835545i −0.999796 0.0202024i \(-0.993569\pi\)
0.517394 + 0.855747i \(0.326902\pi\)
\(942\) 0 0
\(943\) 3.90537 0.127176
\(944\) 0 0
\(945\) −2.90014 + 3.27135i −0.0943416 + 0.106417i
\(946\) 0 0
\(947\) −6.05111 + 10.4808i −0.196635 + 0.340581i −0.947435 0.319948i \(-0.896335\pi\)
0.750800 + 0.660529i \(0.229668\pi\)
\(948\) 0 0
\(949\) 14.6817 20.1621i 0.476589 0.654490i
\(950\) 0 0
\(951\) −57.6624 3.88312i −1.86983 0.125919i
\(952\) 0 0
\(953\) −1.75304 + 3.03636i −0.0567866 + 0.0983572i −0.893021 0.450015i \(-0.851419\pi\)
0.836235 + 0.548372i \(0.184752\pi\)
\(954\) 0 0
\(955\) −10.9853 + 19.0272i −0.355477 + 0.615704i
\(956\) 0 0
\(957\) 41.4773 + 2.79319i 1.34077 + 0.0902909i
\(958\) 0 0
\(959\) 17.0538 0.550696
\(960\) 0 0
\(961\) −9.52956 16.5057i −0.307405 0.532441i
\(962\) 0 0
\(963\) −8.00987 + 10.3616i −0.258114 + 0.333898i
\(964\) 0 0
\(965\) −4.71434 + 8.16548i −0.151760 + 0.262856i
\(966\) 0 0
\(967\) −10.5692 + 18.3064i −0.339883 + 0.588695i −0.984410 0.175886i \(-0.943721\pi\)
0.644527 + 0.764581i \(0.277054\pi\)
\(968\) 0 0
\(969\) −53.8043 3.62331i −1.72844 0.116398i
\(970\) 0 0
\(971\) 18.9603 32.8402i 0.608464 1.05389i −0.383029 0.923736i \(-0.625119\pi\)
0.991494 0.130155i \(-0.0415475\pi\)
\(972\) 0 0
\(973\) 5.34856 + 9.26398i 0.171467 + 0.296990i
\(974\) 0 0
\(975\) 16.5112 19.7373i 0.528782 0.632099i
\(976\) 0 0
\(977\) −34.3816 −1.09997 −0.549983 0.835176i \(-0.685366\pi\)
−0.549983 + 0.835176i \(0.685366\pi\)
\(978\) 0 0
\(979\) 2.07106 0.0661913
\(980\) 0 0
\(981\) 0.702169 + 1.71251i 0.0224185 + 0.0546763i
\(982\) 0 0
\(983\) −6.78481 11.7516i −0.216402 0.374819i 0.737304 0.675562i \(-0.236099\pi\)
−0.953705 + 0.300743i \(0.902765\pi\)
\(984\) 0 0
\(985\) −12.4910 −0.397996
\(986\) 0 0
\(987\) −13.4723 0.907256i −0.428827 0.0288783i
\(988\) 0 0
\(989\) 10.1212 0.321836
\(990\) 0 0
\(991\) −9.73649 16.8641i −0.309290 0.535706i 0.668917 0.743337i \(-0.266758\pi\)
−0.978207 + 0.207631i \(0.933425\pi\)
\(992\) 0 0
\(993\) −17.9318 + 26.7331i −0.569048 + 0.848348i
\(994\) 0 0
\(995\) 2.37453 + 4.11280i 0.0752776 + 0.130385i
\(996\) 0 0
\(997\) −60.7212 −1.92306 −0.961530 0.274700i \(-0.911421\pi\)
−0.961530 + 0.274700i \(0.911421\pi\)
\(998\) 0 0
\(999\) −9.30182 27.8938i −0.294297 0.882520i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.k.a.445.10 yes 28
3.2 odd 2 1404.2.k.a.1225.9 28
9.2 odd 6 1404.2.j.a.289.9 28
9.7 even 3 468.2.j.a.133.1 28
13.9 even 3 468.2.j.a.373.1 yes 28
39.35 odd 6 1404.2.j.a.685.9 28
117.61 even 3 inner 468.2.k.a.61.10 yes 28
117.74 odd 6 1404.2.k.a.1153.9 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.1 28 9.7 even 3
468.2.j.a.373.1 yes 28 13.9 even 3
468.2.k.a.61.10 yes 28 117.61 even 3 inner
468.2.k.a.445.10 yes 28 1.1 even 1 trivial
1404.2.j.a.289.9 28 9.2 odd 6
1404.2.j.a.685.9 28 39.35 odd 6
1404.2.k.a.1153.9 28 117.74 odd 6
1404.2.k.a.1225.9 28 3.2 odd 2