L(s) = 1 | + (0.964 − 1.43i)3-s + (−0.468 + 0.812i)5-s − 0.897·7-s + (−1.13 − 2.77i)9-s + (1.14 − 1.98i)11-s + (2.12 − 2.91i)13-s + (0.715 + 1.45i)15-s + (2.42 − 4.19i)17-s + (3.21 − 5.56i)19-s + (−0.865 + 1.29i)21-s − 2.45·23-s + (2.06 + 3.56i)25-s + (−5.09 − 1.04i)27-s + (−5.24 + 9.07i)29-s + (3.53 − 6.12i)31-s + ⋯ |
L(s) = 1 | + (0.557 − 0.830i)3-s + (−0.209 + 0.363i)5-s − 0.339·7-s + (−0.379 − 0.925i)9-s + (0.345 − 0.597i)11-s + (0.588 − 0.808i)13-s + (0.184 + 0.376i)15-s + (0.587 − 1.01i)17-s + (0.737 − 1.27i)19-s + (−0.188 + 0.281i)21-s − 0.512·23-s + (0.412 + 0.713i)25-s + (−0.979 − 0.200i)27-s + (−0.973 + 1.68i)29-s + (0.635 − 1.10i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.201 + 0.979i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.201 + 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20946 - 0.986402i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20946 - 0.986402i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.964 + 1.43i)T \) |
| 13 | \( 1 + (-2.12 + 2.91i)T \) |
good | 5 | \( 1 + (0.468 - 0.812i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 0.897T + 7T^{2} \) |
| 11 | \( 1 + (-1.14 + 1.98i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.42 + 4.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.21 + 5.56i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 2.45T + 23T^{2} \) |
| 29 | \( 1 + (5.24 - 9.07i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.53 + 6.12i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.82 - 4.90i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.58T + 41T^{2} \) |
| 43 | \( 1 + 4.11T + 43T^{2} \) |
| 47 | \( 1 + (-4.34 - 7.52i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 9.76T + 53T^{2} \) |
| 59 | \( 1 + (-6.06 - 10.4i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 7.42T + 61T^{2} \) |
| 67 | \( 1 - 10.8T + 67T^{2} \) |
| 71 | \( 1 + (-2.14 + 3.72i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 6.91T + 73T^{2} \) |
| 79 | \( 1 + (3.32 + 5.75i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.852 - 1.47i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.452 - 0.783i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 4.65T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10881439596025808378435389300, −9.728045990604393137131058354102, −9.006812017817925409137432877880, −7.999616929960024263321274784491, −7.22080600568721302972364692126, −6.37849764984533097942647381391, −5.27558696498360334164748784650, −3.48267075463470155759313913635, −2.85692729109594977811499619136, −0.984091100354097237102718053150,
1.90076067574012782541801458897, 3.59012684444120737338107208796, 4.18131793494767353935993233589, 5.44279499400242662442920785208, 6.53602198544048401024887884214, 7.939507340413311936688155263417, 8.477040460258494382373227592381, 9.677467704030066587681554125777, 9.979583589186005923834501281284, 11.16273848903285327944119575638