Properties

Label 468.2.k.a.445.1
Level $468$
Weight $2$
Character 468.445
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(61,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.61"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 445.1
Character \(\chi\) \(=\) 468.445
Dual form 468.2.k.a.61.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72988 + 0.0866924i) q^{3} +(0.826802 - 1.43206i) q^{5} -3.50986 q^{7} +(2.98497 - 0.299935i) q^{9} +(-2.50348 + 4.33615i) q^{11} +(3.08461 + 1.86687i) q^{13} +(-1.30612 + 2.54897i) q^{15} +(-0.982875 + 1.70239i) q^{17} +(0.724325 - 1.25457i) q^{19} +(6.07163 - 0.304278i) q^{21} +6.38468 q^{23} +(1.13280 + 1.96206i) q^{25} +(-5.13764 + 0.777625i) q^{27} +(-4.80530 + 8.32302i) q^{29} +(-4.78740 + 8.29202i) q^{31} +(3.95481 - 7.71806i) q^{33} +(-2.90196 + 5.02634i) q^{35} +(0.862266 + 1.49349i) q^{37} +(-5.49784 - 2.96205i) q^{39} -10.7593 q^{41} +12.2696 q^{43} +(2.03845 - 4.52265i) q^{45} +(-0.870397 - 1.50757i) q^{47} +5.31910 q^{49} +(1.55267 - 3.03014i) q^{51} -7.82781 q^{53} +(4.13976 + 7.17028i) q^{55} +(-1.14423 + 2.23305i) q^{57} +(-1.48418 - 2.57067i) q^{59} +4.77997 q^{61} +(-10.4768 + 1.05273i) q^{63} +(5.22383 - 2.87382i) q^{65} +12.5004 q^{67} +(-11.0447 + 0.553503i) q^{69} +(-3.50147 + 6.06472i) q^{71} +2.22966 q^{73} +(-2.12970 - 3.29593i) q^{75} +(8.78686 - 15.2193i) q^{77} +(-8.49580 - 14.7152i) q^{79} +(8.82008 - 1.79059i) q^{81} +(-2.22230 - 3.84913i) q^{83} +(1.62529 + 2.81508i) q^{85} +(7.59105 - 14.8144i) q^{87} +(-2.12011 - 3.67214i) q^{89} +(-10.8265 - 6.55245i) q^{91} +(7.56277 - 14.7592i) q^{93} +(-1.19775 - 2.07456i) q^{95} +4.77804 q^{97} +(-6.17224 + 13.6942i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - 4 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} + 8 q^{23} - 14 q^{25} - 13 q^{29} + 2 q^{31} - 25 q^{33} + 3 q^{35} - q^{37} - 3 q^{39} - 8 q^{41} - 4 q^{43}+ \cdots - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72988 + 0.0866924i −0.998747 + 0.0500519i
\(4\) 0 0
\(5\) 0.826802 1.43206i 0.369757 0.640438i −0.619770 0.784783i \(-0.712774\pi\)
0.989527 + 0.144345i \(0.0461076\pi\)
\(6\) 0 0
\(7\) −3.50986 −1.32660 −0.663301 0.748353i \(-0.730845\pi\)
−0.663301 + 0.748353i \(0.730845\pi\)
\(8\) 0 0
\(9\) 2.98497 0.299935i 0.994990 0.0999783i
\(10\) 0 0
\(11\) −2.50348 + 4.33615i −0.754827 + 1.30740i 0.190633 + 0.981661i \(0.438946\pi\)
−0.945460 + 0.325738i \(0.894387\pi\)
\(12\) 0 0
\(13\) 3.08461 + 1.86687i 0.855516 + 0.517777i
\(14\) 0 0
\(15\) −1.30612 + 2.54897i −0.337238 + 0.658142i
\(16\) 0 0
\(17\) −0.982875 + 1.70239i −0.238382 + 0.412890i −0.960250 0.279141i \(-0.909950\pi\)
0.721868 + 0.692031i \(0.243284\pi\)
\(18\) 0 0
\(19\) 0.724325 1.25457i 0.166172 0.287818i −0.770899 0.636957i \(-0.780193\pi\)
0.937071 + 0.349140i \(0.113526\pi\)
\(20\) 0 0
\(21\) 6.07163 0.304278i 1.32494 0.0663989i
\(22\) 0 0
\(23\) 6.38468 1.33130 0.665649 0.746265i \(-0.268155\pi\)
0.665649 + 0.746265i \(0.268155\pi\)
\(24\) 0 0
\(25\) 1.13280 + 1.96206i 0.226560 + 0.392413i
\(26\) 0 0
\(27\) −5.13764 + 0.777625i −0.988738 + 0.149654i
\(28\) 0 0
\(29\) −4.80530 + 8.32302i −0.892322 + 1.54555i −0.0552368 + 0.998473i \(0.517591\pi\)
−0.837085 + 0.547073i \(0.815742\pi\)
\(30\) 0 0
\(31\) −4.78740 + 8.29202i −0.859842 + 1.48929i 0.0122364 + 0.999925i \(0.496105\pi\)
−0.872079 + 0.489365i \(0.837228\pi\)
\(32\) 0 0
\(33\) 3.95481 7.71806i 0.688443 1.34354i
\(34\) 0 0
\(35\) −2.90196 + 5.02634i −0.490520 + 0.849606i
\(36\) 0 0
\(37\) 0.862266 + 1.49349i 0.141756 + 0.245528i 0.928158 0.372187i \(-0.121392\pi\)
−0.786402 + 0.617715i \(0.788059\pi\)
\(38\) 0 0
\(39\) −5.49784 2.96205i −0.880359 0.474308i
\(40\) 0 0
\(41\) −10.7593 −1.68032 −0.840159 0.542340i \(-0.817539\pi\)
−0.840159 + 0.542340i \(0.817539\pi\)
\(42\) 0 0
\(43\) 12.2696 1.87110 0.935551 0.353193i \(-0.114904\pi\)
0.935551 + 0.353193i \(0.114904\pi\)
\(44\) 0 0
\(45\) 2.03845 4.52265i 0.303874 0.674197i
\(46\) 0 0
\(47\) −0.870397 1.50757i −0.126960 0.219902i 0.795537 0.605905i \(-0.207189\pi\)
−0.922498 + 0.386003i \(0.873855\pi\)
\(48\) 0 0
\(49\) 5.31910 0.759872
\(50\) 0 0
\(51\) 1.55267 3.03014i 0.217417 0.424304i
\(52\) 0 0
\(53\) −7.82781 −1.07523 −0.537616 0.843190i \(-0.680675\pi\)
−0.537616 + 0.843190i \(0.680675\pi\)
\(54\) 0 0
\(55\) 4.13976 + 7.17028i 0.558205 + 0.966840i
\(56\) 0 0
\(57\) −1.14423 + 2.23305i −0.151558 + 0.295774i
\(58\) 0 0
\(59\) −1.48418 2.57067i −0.193224 0.334673i 0.753093 0.657914i \(-0.228561\pi\)
−0.946317 + 0.323241i \(0.895228\pi\)
\(60\) 0 0
\(61\) 4.77997 0.612013 0.306006 0.952029i \(-0.401007\pi\)
0.306006 + 0.952029i \(0.401007\pi\)
\(62\) 0 0
\(63\) −10.4768 + 1.05273i −1.31995 + 0.132631i
\(64\) 0 0
\(65\) 5.22383 2.87382i 0.647937 0.356453i
\(66\) 0 0
\(67\) 12.5004 1.52717 0.763584 0.645709i \(-0.223438\pi\)
0.763584 + 0.645709i \(0.223438\pi\)
\(68\) 0 0
\(69\) −11.0447 + 0.553503i −1.32963 + 0.0666340i
\(70\) 0 0
\(71\) −3.50147 + 6.06472i −0.415547 + 0.719749i −0.995486 0.0949111i \(-0.969743\pi\)
0.579938 + 0.814660i \(0.303077\pi\)
\(72\) 0 0
\(73\) 2.22966 0.260962 0.130481 0.991451i \(-0.458348\pi\)
0.130481 + 0.991451i \(0.458348\pi\)
\(74\) 0 0
\(75\) −2.12970 3.29593i −0.245917 0.380581i
\(76\) 0 0
\(77\) 8.78686 15.2193i 1.00136 1.73440i
\(78\) 0 0
\(79\) −8.49580 14.7152i −0.955852 1.65558i −0.732406 0.680869i \(-0.761602\pi\)
−0.223447 0.974716i \(-0.571731\pi\)
\(80\) 0 0
\(81\) 8.82008 1.79059i 0.980009 0.198955i
\(82\) 0 0
\(83\) −2.22230 3.84913i −0.243929 0.422497i 0.717901 0.696145i \(-0.245103\pi\)
−0.961830 + 0.273648i \(0.911770\pi\)
\(84\) 0 0
\(85\) 1.62529 + 2.81508i 0.176287 + 0.305338i
\(86\) 0 0
\(87\) 7.59105 14.8144i 0.813846 1.58827i
\(88\) 0 0
\(89\) −2.12011 3.67214i −0.224732 0.389246i 0.731507 0.681834i \(-0.238817\pi\)
−0.956239 + 0.292587i \(0.905484\pi\)
\(90\) 0 0
\(91\) −10.8265 6.55245i −1.13493 0.686884i
\(92\) 0 0
\(93\) 7.56277 14.7592i 0.784223 1.53046i
\(94\) 0 0
\(95\) −1.19775 2.07456i −0.122886 0.212845i
\(96\) 0 0
\(97\) 4.77804 0.485137 0.242568 0.970134i \(-0.422010\pi\)
0.242568 + 0.970134i \(0.422010\pi\)
\(98\) 0 0
\(99\) −6.17224 + 13.6942i −0.620334 + 1.37632i
\(100\) 0 0
\(101\) −2.32194 + 4.02172i −0.231042 + 0.400176i −0.958115 0.286384i \(-0.907547\pi\)
0.727073 + 0.686560i \(0.240880\pi\)
\(102\) 0 0
\(103\) −3.47526 + 6.01933i −0.342428 + 0.593102i −0.984883 0.173221i \(-0.944583\pi\)
0.642455 + 0.766323i \(0.277916\pi\)
\(104\) 0 0
\(105\) 4.58429 8.94654i 0.447381 0.873092i
\(106\) 0 0
\(107\) 4.05336 + 7.02063i 0.391853 + 0.678710i 0.992694 0.120659i \(-0.0385007\pi\)
−0.600841 + 0.799369i \(0.705167\pi\)
\(108\) 0 0
\(109\) −9.57526 −0.917144 −0.458572 0.888657i \(-0.651639\pi\)
−0.458572 + 0.888657i \(0.651639\pi\)
\(110\) 0 0
\(111\) −1.62109 2.50880i −0.153867 0.238125i
\(112\) 0 0
\(113\) −4.57209 7.91910i −0.430106 0.744966i 0.566776 0.823872i \(-0.308191\pi\)
−0.996882 + 0.0789062i \(0.974857\pi\)
\(114\) 0 0
\(115\) 5.27886 9.14326i 0.492257 0.852614i
\(116\) 0 0
\(117\) 9.76739 + 4.64737i 0.902996 + 0.429650i
\(118\) 0 0
\(119\) 3.44975 5.97515i 0.316238 0.547741i
\(120\) 0 0
\(121\) −7.03482 12.1847i −0.639529 1.10770i
\(122\) 0 0
\(123\) 18.6123 0.932749i 1.67821 0.0841031i
\(124\) 0 0
\(125\) 12.0144 1.07460
\(126\) 0 0
\(127\) −4.92860 8.53659i −0.437343 0.757500i 0.560141 0.828397i \(-0.310747\pi\)
−0.997484 + 0.0708976i \(0.977414\pi\)
\(128\) 0 0
\(129\) −21.2250 + 1.06368i −1.86876 + 0.0936521i
\(130\) 0 0
\(131\) −2.47850 + 4.29289i −0.216547 + 0.375071i −0.953750 0.300600i \(-0.902813\pi\)
0.737203 + 0.675672i \(0.236146\pi\)
\(132\) 0 0
\(133\) −2.54228 + 4.40336i −0.220444 + 0.381819i
\(134\) 0 0
\(135\) −3.13420 + 8.00036i −0.269749 + 0.688561i
\(136\) 0 0
\(137\) 0.0122966 0.00105057 0.000525285 1.00000i \(-0.499833\pi\)
0.000525285 1.00000i \(0.499833\pi\)
\(138\) 0 0
\(139\) 0.524409 + 0.908303i 0.0444798 + 0.0770412i 0.887408 0.460985i \(-0.152504\pi\)
−0.842928 + 0.538026i \(0.819170\pi\)
\(140\) 0 0
\(141\) 1.63638 + 2.53246i 0.137808 + 0.213272i
\(142\) 0 0
\(143\) −15.8173 + 8.70165i −1.32271 + 0.727668i
\(144\) 0 0
\(145\) 7.94606 + 13.7630i 0.659884 + 1.14295i
\(146\) 0 0
\(147\) −9.20141 + 0.461126i −0.758920 + 0.0380330i
\(148\) 0 0
\(149\) 8.47773 + 14.6839i 0.694523 + 1.20295i 0.970341 + 0.241739i \(0.0777178\pi\)
−0.275818 + 0.961210i \(0.588949\pi\)
\(150\) 0 0
\(151\) 4.12187 + 7.13929i 0.335433 + 0.580987i 0.983568 0.180538i \(-0.0577840\pi\)
−0.648135 + 0.761526i \(0.724451\pi\)
\(152\) 0 0
\(153\) −2.42325 + 5.37638i −0.195908 + 0.434654i
\(154\) 0 0
\(155\) 7.91646 + 13.7117i 0.635865 + 1.10135i
\(156\) 0 0
\(157\) 0.660501 1.14402i 0.0527137 0.0913028i −0.838464 0.544956i \(-0.816546\pi\)
0.891178 + 0.453653i \(0.149880\pi\)
\(158\) 0 0
\(159\) 13.5412 0.678612i 1.07388 0.0538174i
\(160\) 0 0
\(161\) −22.4093 −1.76610
\(162\) 0 0
\(163\) −4.63491 + 8.02790i −0.363034 + 0.628794i −0.988459 0.151491i \(-0.951593\pi\)
0.625424 + 0.780285i \(0.284926\pi\)
\(164\) 0 0
\(165\) −7.78290 12.0448i −0.605898 0.937689i
\(166\) 0 0
\(167\) −10.0132 −0.774844 −0.387422 0.921902i \(-0.626634\pi\)
−0.387422 + 0.921902i \(0.626634\pi\)
\(168\) 0 0
\(169\) 6.02958 + 11.5171i 0.463814 + 0.885933i
\(170\) 0 0
\(171\) 1.78580 3.96210i 0.136564 0.302989i
\(172\) 0 0
\(173\) 8.40854 0.639290 0.319645 0.947537i \(-0.396436\pi\)
0.319645 + 0.947537i \(0.396436\pi\)
\(174\) 0 0
\(175\) −3.97596 6.88657i −0.300554 0.520575i
\(176\) 0 0
\(177\) 2.79031 + 4.31829i 0.209732 + 0.324582i
\(178\) 0 0
\(179\) 4.10687 + 7.11330i 0.306962 + 0.531673i 0.977696 0.210024i \(-0.0673543\pi\)
−0.670735 + 0.741698i \(0.734021\pi\)
\(180\) 0 0
\(181\) 10.9678 0.815231 0.407615 0.913154i \(-0.366360\pi\)
0.407615 + 0.913154i \(0.366360\pi\)
\(182\) 0 0
\(183\) −8.26878 + 0.414387i −0.611246 + 0.0306324i
\(184\) 0 0
\(185\) 2.85169 0.209661
\(186\) 0 0
\(187\) −4.92121 8.52379i −0.359875 0.623321i
\(188\) 0 0
\(189\) 18.0324 2.72935i 1.31166 0.198531i
\(190\) 0 0
\(191\) 1.45538 0.105308 0.0526540 0.998613i \(-0.483232\pi\)
0.0526540 + 0.998613i \(0.483232\pi\)
\(192\) 0 0
\(193\) −10.3243 −0.743160 −0.371580 0.928401i \(-0.621184\pi\)
−0.371580 + 0.928401i \(0.621184\pi\)
\(194\) 0 0
\(195\) −8.78747 + 5.42422i −0.629284 + 0.388437i
\(196\) 0 0
\(197\) −5.05995 8.76409i −0.360507 0.624416i 0.627538 0.778586i \(-0.284063\pi\)
−0.988044 + 0.154170i \(0.950730\pi\)
\(198\) 0 0
\(199\) 3.43613 5.95155i 0.243581 0.421894i −0.718151 0.695887i \(-0.755011\pi\)
0.961732 + 0.273993i \(0.0883446\pi\)
\(200\) 0 0
\(201\) −21.6242 + 1.08369i −1.52525 + 0.0764376i
\(202\) 0 0
\(203\) 16.8659 29.2126i 1.18376 2.05032i
\(204\) 0 0
\(205\) −8.89580 + 15.4080i −0.621310 + 1.07614i
\(206\) 0 0
\(207\) 19.0581 1.91499i 1.32463 0.133101i
\(208\) 0 0
\(209\) 3.62667 + 6.28157i 0.250862 + 0.434505i
\(210\) 0 0
\(211\) 17.3073 1.19149 0.595743 0.803175i \(-0.296858\pi\)
0.595743 + 0.803175i \(0.296858\pi\)
\(212\) 0 0
\(213\) 5.53135 10.7948i 0.379002 0.739646i
\(214\) 0 0
\(215\) 10.1446 17.5709i 0.691853 1.19832i
\(216\) 0 0
\(217\) 16.8031 29.1038i 1.14067 1.97570i
\(218\) 0 0
\(219\) −3.85704 + 0.193294i −0.260635 + 0.0130616i
\(220\) 0 0
\(221\) −6.20992 + 3.41630i −0.417725 + 0.229805i
\(222\) 0 0
\(223\) −11.3230 + 19.6120i −0.758242 + 1.31331i 0.185505 + 0.982643i \(0.440608\pi\)
−0.943746 + 0.330670i \(0.892725\pi\)
\(224\) 0 0
\(225\) 3.96986 + 5.51693i 0.264657 + 0.367796i
\(226\) 0 0
\(227\) 15.5160 1.02983 0.514917 0.857240i \(-0.327823\pi\)
0.514917 + 0.857240i \(0.327823\pi\)
\(228\) 0 0
\(229\) 3.33988 5.78483i 0.220705 0.382273i −0.734317 0.678807i \(-0.762497\pi\)
0.955022 + 0.296534i \(0.0958308\pi\)
\(230\) 0 0
\(231\) −13.8808 + 27.0893i −0.913290 + 1.78234i
\(232\) 0 0
\(233\) −15.0244 −0.984281 −0.492141 0.870516i \(-0.663785\pi\)
−0.492141 + 0.870516i \(0.663785\pi\)
\(234\) 0 0
\(235\) −2.87858 −0.187778
\(236\) 0 0
\(237\) 15.9724 + 24.7189i 1.03752 + 1.60567i
\(238\) 0 0
\(239\) 4.26040 7.37923i 0.275582 0.477323i −0.694700 0.719300i \(-0.744463\pi\)
0.970282 + 0.241977i \(0.0777960\pi\)
\(240\) 0 0
\(241\) −18.3375 −1.18122 −0.590612 0.806956i \(-0.701114\pi\)
−0.590612 + 0.806956i \(0.701114\pi\)
\(242\) 0 0
\(243\) −15.1024 + 3.86214i −0.968822 + 0.247757i
\(244\) 0 0
\(245\) 4.39784 7.61729i 0.280968 0.486651i
\(246\) 0 0
\(247\) 4.57638 2.51763i 0.291188 0.160193i
\(248\) 0 0
\(249\) 4.17800 + 6.46588i 0.264770 + 0.409758i
\(250\) 0 0
\(251\) −5.78538 + 10.0206i −0.365170 + 0.632493i −0.988803 0.149224i \(-0.952323\pi\)
0.623633 + 0.781717i \(0.285656\pi\)
\(252\) 0 0
\(253\) −15.9839 + 27.6850i −1.00490 + 1.74054i
\(254\) 0 0
\(255\) −3.05559 4.72884i −0.191349 0.296132i
\(256\) 0 0
\(257\) 5.60911 0.349887 0.174943 0.984578i \(-0.444026\pi\)
0.174943 + 0.984578i \(0.444026\pi\)
\(258\) 0 0
\(259\) −3.02643 5.24193i −0.188053 0.325718i
\(260\) 0 0
\(261\) −11.8473 + 26.2852i −0.733330 + 1.62702i
\(262\) 0 0
\(263\) −11.1528 + 19.3172i −0.687710 + 1.19115i 0.284867 + 0.958567i \(0.408051\pi\)
−0.972577 + 0.232581i \(0.925283\pi\)
\(264\) 0 0
\(265\) −6.47205 + 11.2099i −0.397575 + 0.688619i
\(266\) 0 0
\(267\) 3.98589 + 6.16857i 0.243932 + 0.377510i
\(268\) 0 0
\(269\) 6.49509 11.2498i 0.396013 0.685914i −0.597217 0.802080i \(-0.703727\pi\)
0.993230 + 0.116165i \(0.0370603\pi\)
\(270\) 0 0
\(271\) −13.5914 23.5410i −0.825619 1.43001i −0.901445 0.432893i \(-0.857493\pi\)
0.0758262 0.997121i \(-0.475841\pi\)
\(272\) 0 0
\(273\) 19.2966 + 10.3964i 1.16789 + 0.629218i
\(274\) 0 0
\(275\) −11.3437 −0.684054
\(276\) 0 0
\(277\) 0.220883 0.0132716 0.00663580 0.999978i \(-0.497888\pi\)
0.00663580 + 0.999978i \(0.497888\pi\)
\(278\) 0 0
\(279\) −11.8032 + 26.1873i −0.706637 + 1.56779i
\(280\) 0 0
\(281\) 9.42986 + 16.3330i 0.562538 + 0.974345i 0.997274 + 0.0737867i \(0.0235084\pi\)
−0.434736 + 0.900558i \(0.643158\pi\)
\(282\) 0 0
\(283\) 1.47869 0.0878991 0.0439495 0.999034i \(-0.486006\pi\)
0.0439495 + 0.999034i \(0.486006\pi\)
\(284\) 0 0
\(285\) 2.25181 + 3.48490i 0.133386 + 0.206428i
\(286\) 0 0
\(287\) 37.7636 2.22911
\(288\) 0 0
\(289\) 6.56791 + 11.3760i 0.386348 + 0.669174i
\(290\) 0 0
\(291\) −8.26544 + 0.414220i −0.484528 + 0.0242820i
\(292\) 0 0
\(293\) −4.65804 8.06795i −0.272125 0.471335i 0.697281 0.716798i \(-0.254393\pi\)
−0.969406 + 0.245463i \(0.921060\pi\)
\(294\) 0 0
\(295\) −4.90848 −0.285783
\(296\) 0 0
\(297\) 9.49006 24.2243i 0.550669 1.40564i
\(298\) 0 0
\(299\) 19.6942 + 11.9194i 1.13895 + 0.689315i
\(300\) 0 0
\(301\) −43.0647 −2.48221
\(302\) 0 0
\(303\) 3.66803 7.15839i 0.210723 0.411239i
\(304\) 0 0
\(305\) 3.95209 6.84522i 0.226296 0.391956i
\(306\) 0 0
\(307\) −3.33251 −0.190196 −0.0950982 0.995468i \(-0.530317\pi\)
−0.0950982 + 0.995468i \(0.530317\pi\)
\(308\) 0 0
\(309\) 5.48996 10.7140i 0.312313 0.609498i
\(310\) 0 0
\(311\) 4.23963 7.34325i 0.240407 0.416398i −0.720423 0.693535i \(-0.756052\pi\)
0.960830 + 0.277137i \(0.0893857\pi\)
\(312\) 0 0
\(313\) 0.215576 + 0.373388i 0.0121851 + 0.0211052i 0.872054 0.489410i \(-0.162788\pi\)
−0.859869 + 0.510515i \(0.829455\pi\)
\(314\) 0 0
\(315\) −7.15468 + 15.8739i −0.403120 + 0.894390i
\(316\) 0 0
\(317\) 2.95969 + 5.12633i 0.166233 + 0.287923i 0.937092 0.349082i \(-0.113506\pi\)
−0.770860 + 0.637005i \(0.780173\pi\)
\(318\) 0 0
\(319\) −24.0599 41.6730i −1.34710 2.33324i
\(320\) 0 0
\(321\) −7.62046 11.7934i −0.425333 0.658246i
\(322\) 0 0
\(323\) 1.42384 + 2.46617i 0.0792247 + 0.137221i
\(324\) 0 0
\(325\) −0.168685 + 8.16698i −0.00935697 + 0.453023i
\(326\) 0 0
\(327\) 16.5641 0.830103i 0.915994 0.0459048i
\(328\) 0 0
\(329\) 3.05497 + 5.29137i 0.168426 + 0.291722i
\(330\) 0 0
\(331\) 13.0612 0.717908 0.358954 0.933355i \(-0.383134\pi\)
0.358954 + 0.933355i \(0.383134\pi\)
\(332\) 0 0
\(333\) 3.02179 + 4.19939i 0.165593 + 0.230125i
\(334\) 0 0
\(335\) 10.3354 17.9014i 0.564681 0.978056i
\(336\) 0 0
\(337\) 11.3051 19.5811i 0.615831 1.06665i −0.374408 0.927264i \(-0.622154\pi\)
0.990238 0.139386i \(-0.0445128\pi\)
\(338\) 0 0
\(339\) 8.59570 + 13.3027i 0.466854 + 0.722505i
\(340\) 0 0
\(341\) −23.9703 41.5178i −1.29807 2.24831i
\(342\) 0 0
\(343\) 5.89970 0.318554
\(344\) 0 0
\(345\) −8.33915 + 16.2744i −0.448965 + 0.876183i
\(346\) 0 0
\(347\) 15.9399 + 27.6087i 0.855699 + 1.48211i 0.875995 + 0.482320i \(0.160206\pi\)
−0.0202963 + 0.999794i \(0.506461\pi\)
\(348\) 0 0
\(349\) 5.20670 9.01828i 0.278708 0.482737i −0.692356 0.721556i \(-0.743427\pi\)
0.971064 + 0.238819i \(0.0767603\pi\)
\(350\) 0 0
\(351\) −17.2993 7.19264i −0.923369 0.383915i
\(352\) 0 0
\(353\) 7.36243 12.7521i 0.391863 0.678726i −0.600832 0.799375i \(-0.705164\pi\)
0.992695 + 0.120649i \(0.0384974\pi\)
\(354\) 0 0
\(355\) 5.79003 + 10.0286i 0.307303 + 0.532265i
\(356\) 0 0
\(357\) −5.44966 + 10.6354i −0.288426 + 0.562882i
\(358\) 0 0
\(359\) −9.70132 −0.512016 −0.256008 0.966675i \(-0.582407\pi\)
−0.256008 + 0.966675i \(0.582407\pi\)
\(360\) 0 0
\(361\) 8.45071 + 14.6371i 0.444774 + 0.770371i
\(362\) 0 0
\(363\) 13.2257 + 20.4681i 0.694169 + 1.07430i
\(364\) 0 0
\(365\) 1.84348 3.19301i 0.0964924 0.167130i
\(366\) 0 0
\(367\) 6.55553 11.3545i 0.342196 0.592701i −0.642644 0.766165i \(-0.722163\pi\)
0.984840 + 0.173464i \(0.0554960\pi\)
\(368\) 0 0
\(369\) −32.1161 + 3.22709i −1.67190 + 0.167995i
\(370\) 0 0
\(371\) 27.4745 1.42641
\(372\) 0 0
\(373\) 11.5830 + 20.0623i 0.599744 + 1.03879i 0.992859 + 0.119297i \(0.0380642\pi\)
−0.393115 + 0.919489i \(0.628602\pi\)
\(374\) 0 0
\(375\) −20.7835 + 1.04156i −1.07325 + 0.0537858i
\(376\) 0 0
\(377\) −30.3605 + 16.7024i −1.56364 + 0.860216i
\(378\) 0 0
\(379\) 5.97448 + 10.3481i 0.306888 + 0.531546i 0.977680 0.210100i \(-0.0673789\pi\)
−0.670792 + 0.741646i \(0.734046\pi\)
\(380\) 0 0
\(381\) 9.26595 + 14.3400i 0.474709 + 0.734660i
\(382\) 0 0
\(383\) −18.3035 31.7027i −0.935267 1.61993i −0.774156 0.632994i \(-0.781826\pi\)
−0.161111 0.986936i \(-0.551508\pi\)
\(384\) 0 0
\(385\) −14.5300 25.1667i −0.740516 1.28261i
\(386\) 0 0
\(387\) 36.6245 3.68009i 1.86173 0.187069i
\(388\) 0 0
\(389\) −2.76801 4.79433i −0.140344 0.243082i 0.787282 0.616592i \(-0.211487\pi\)
−0.927626 + 0.373510i \(0.878154\pi\)
\(390\) 0 0
\(391\) −6.27534 + 10.8692i −0.317358 + 0.549680i
\(392\) 0 0
\(393\) 3.91535 7.64104i 0.197503 0.385440i
\(394\) 0 0
\(395\) −28.0974 −1.41373
\(396\) 0 0
\(397\) 1.77564 3.07551i 0.0891171 0.154355i −0.818021 0.575188i \(-0.804929\pi\)
0.907138 + 0.420833i \(0.138262\pi\)
\(398\) 0 0
\(399\) 4.01610 7.83768i 0.201057 0.392375i
\(400\) 0 0
\(401\) 24.3613 1.21655 0.608273 0.793728i \(-0.291863\pi\)
0.608273 + 0.793728i \(0.291863\pi\)
\(402\) 0 0
\(403\) −30.2474 + 16.6402i −1.50673 + 0.828905i
\(404\) 0 0
\(405\) 4.72821 14.1114i 0.234947 0.701199i
\(406\) 0 0
\(407\) −8.63466 −0.428004
\(408\) 0 0
\(409\) −5.62960 9.75076i −0.278366 0.482144i 0.692613 0.721310i \(-0.256459\pi\)
−0.970979 + 0.239166i \(0.923126\pi\)
\(410\) 0 0
\(411\) −0.0212717 + 0.00106602i −0.00104925 + 5.25830e-5i
\(412\) 0 0
\(413\) 5.20926 + 9.02269i 0.256331 + 0.443978i
\(414\) 0 0
\(415\) −7.34959 −0.360777
\(416\) 0 0
\(417\) −0.985907 1.52579i −0.0482801 0.0747184i
\(418\) 0 0
\(419\) 38.4548 1.87864 0.939319 0.343046i \(-0.111459\pi\)
0.939319 + 0.343046i \(0.111459\pi\)
\(420\) 0 0
\(421\) 11.2699 + 19.5201i 0.549263 + 0.951351i 0.998325 + 0.0578506i \(0.0184247\pi\)
−0.449063 + 0.893500i \(0.648242\pi\)
\(422\) 0 0
\(423\) −3.05028 4.23899i −0.148310 0.206107i
\(424\) 0 0
\(425\) −4.45360 −0.216031
\(426\) 0 0
\(427\) −16.7770 −0.811897
\(428\) 0 0
\(429\) 26.6076 16.4240i 1.28463 0.792960i
\(430\) 0 0
\(431\) 5.97132 + 10.3426i 0.287629 + 0.498187i 0.973243 0.229777i \(-0.0737998\pi\)
−0.685615 + 0.727965i \(0.740466\pi\)
\(432\) 0 0
\(433\) 12.5066 21.6620i 0.601028 1.04101i −0.391638 0.920120i \(-0.628091\pi\)
0.992666 0.120892i \(-0.0385754\pi\)
\(434\) 0 0
\(435\) −14.9389 23.1194i −0.716264 1.10849i
\(436\) 0 0
\(437\) 4.62459 8.01002i 0.221224 0.383171i
\(438\) 0 0
\(439\) 16.2116 28.0793i 0.773737 1.34015i −0.161764 0.986829i \(-0.551718\pi\)
0.935501 0.353323i \(-0.114948\pi\)
\(440\) 0 0
\(441\) 15.8774 1.59539i 0.756065 0.0759707i
\(442\) 0 0
\(443\) −6.55432 11.3524i −0.311405 0.539370i 0.667262 0.744823i \(-0.267466\pi\)
−0.978667 + 0.205454i \(0.934133\pi\)
\(444\) 0 0
\(445\) −7.01165 −0.332384
\(446\) 0 0
\(447\) −15.9384 24.6664i −0.753862 1.16668i
\(448\) 0 0
\(449\) 15.6886 27.1735i 0.740392 1.28240i −0.211925 0.977286i \(-0.567973\pi\)
0.952317 0.305111i \(-0.0986934\pi\)
\(450\) 0 0
\(451\) 26.9357 46.6539i 1.26835 2.19685i
\(452\) 0 0
\(453\) −7.74926 11.9928i −0.364092 0.563470i
\(454\) 0 0
\(455\) −18.3349 + 10.0867i −0.859554 + 0.472871i
\(456\) 0 0
\(457\) −8.55281 + 14.8139i −0.400083 + 0.692965i −0.993736 0.111757i \(-0.964352\pi\)
0.593652 + 0.804722i \(0.297686\pi\)
\(458\) 0 0
\(459\) 3.72583 9.51056i 0.173907 0.443915i
\(460\) 0 0
\(461\) −33.1328 −1.54315 −0.771575 0.636138i \(-0.780531\pi\)
−0.771575 + 0.636138i \(0.780531\pi\)
\(462\) 0 0
\(463\) 9.37793 16.2430i 0.435829 0.754878i −0.561534 0.827454i \(-0.689789\pi\)
0.997363 + 0.0725756i \(0.0231219\pi\)
\(464\) 0 0
\(465\) −14.8832 23.0333i −0.690193 1.06814i
\(466\) 0 0
\(467\) 11.3134 0.523523 0.261762 0.965133i \(-0.415697\pi\)
0.261762 + 0.965133i \(0.415697\pi\)
\(468\) 0 0
\(469\) −43.8747 −2.02594
\(470\) 0 0
\(471\) −1.04341 + 2.03628i −0.0480778 + 0.0938268i
\(472\) 0 0
\(473\) −30.7168 + 53.2030i −1.41236 + 2.44628i
\(474\) 0 0
\(475\) 3.28206 0.150591
\(476\) 0 0
\(477\) −23.3658 + 2.34783i −1.06984 + 0.107500i
\(478\) 0 0
\(479\) 8.19158 14.1882i 0.374283 0.648277i −0.615937 0.787796i \(-0.711222\pi\)
0.990219 + 0.139519i \(0.0445556\pi\)
\(480\) 0 0
\(481\) −0.128400 + 6.21656i −0.00585454 + 0.283451i
\(482\) 0 0
\(483\) 38.7654 1.94272i 1.76389 0.0883967i
\(484\) 0 0
\(485\) 3.95049 6.84245i 0.179383 0.310700i
\(486\) 0 0
\(487\) −1.01175 + 1.75240i −0.0458467 + 0.0794089i −0.888038 0.459770i \(-0.847932\pi\)
0.842191 + 0.539179i \(0.181265\pi\)
\(488\) 0 0
\(489\) 7.32188 14.2891i 0.331107 0.646176i
\(490\) 0 0
\(491\) 13.7085 0.618657 0.309328 0.950955i \(-0.399896\pi\)
0.309328 + 0.950955i \(0.399896\pi\)
\(492\) 0 0
\(493\) −9.44602 16.3610i −0.425427 0.736861i
\(494\) 0 0
\(495\) 14.5077 + 20.1614i 0.652071 + 0.906187i
\(496\) 0 0
\(497\) 12.2896 21.2863i 0.551266 0.954821i
\(498\) 0 0
\(499\) 2.76875 4.79561i 0.123946 0.214681i −0.797374 0.603485i \(-0.793778\pi\)
0.921320 + 0.388804i \(0.127112\pi\)
\(500\) 0 0
\(501\) 17.3216 0.868068i 0.773873 0.0387824i
\(502\) 0 0
\(503\) −5.37660 + 9.31254i −0.239731 + 0.415226i −0.960637 0.277807i \(-0.910392\pi\)
0.720906 + 0.693033i \(0.243726\pi\)
\(504\) 0 0
\(505\) 3.83957 + 6.65033i 0.170859 + 0.295936i
\(506\) 0 0
\(507\) −11.4289 19.4005i −0.507575 0.861607i
\(508\) 0 0
\(509\) −22.7496 −1.00836 −0.504180 0.863599i \(-0.668205\pi\)
−0.504180 + 0.863599i \(0.668205\pi\)
\(510\) 0 0
\(511\) −7.82578 −0.346192
\(512\) 0 0
\(513\) −2.74574 + 7.00877i −0.121227 + 0.309445i
\(514\) 0 0
\(515\) 5.74671 + 9.95359i 0.253230 + 0.438607i
\(516\) 0 0
\(517\) 8.71609 0.383333
\(518\) 0 0
\(519\) −14.5458 + 0.728957i −0.638488 + 0.0319976i
\(520\) 0 0
\(521\) 36.8064 1.61252 0.806259 0.591563i \(-0.201489\pi\)
0.806259 + 0.591563i \(0.201489\pi\)
\(522\) 0 0
\(523\) −0.646458 1.11970i −0.0282677 0.0489610i 0.851546 0.524281i \(-0.175666\pi\)
−0.879813 + 0.475320i \(0.842332\pi\)
\(524\) 0 0
\(525\) 7.47495 + 11.5682i 0.326233 + 0.504880i
\(526\) 0 0
\(527\) −9.41083 16.3000i −0.409942 0.710041i
\(528\) 0 0
\(529\) 17.7641 0.772354
\(530\) 0 0
\(531\) −5.20126 7.22822i −0.225715 0.313678i
\(532\) 0 0
\(533\) −33.1882 20.0862i −1.43754 0.870030i
\(534\) 0 0
\(535\) 13.4053 0.579562
\(536\) 0 0
\(537\) −7.72106 11.9491i −0.333188 0.515643i
\(538\) 0 0
\(539\) −13.3163 + 23.0645i −0.573572 + 0.993456i
\(540\) 0 0
\(541\) −30.2710 −1.30145 −0.650725 0.759313i \(-0.725535\pi\)
−0.650725 + 0.759313i \(0.725535\pi\)
\(542\) 0 0
\(543\) −18.9730 + 0.950826i −0.814209 + 0.0408038i
\(544\) 0 0
\(545\) −7.91684 + 13.7124i −0.339120 + 0.587374i
\(546\) 0 0
\(547\) −2.55758 4.42986i −0.109354 0.189407i 0.806155 0.591705i \(-0.201545\pi\)
−0.915509 + 0.402298i \(0.868212\pi\)
\(548\) 0 0
\(549\) 14.2681 1.43368i 0.608946 0.0611880i
\(550\) 0 0
\(551\) 6.96120 + 12.0572i 0.296557 + 0.513652i
\(552\) 0 0
\(553\) 29.8191 + 51.6481i 1.26804 + 2.19630i
\(554\) 0 0
\(555\) −4.93308 + 0.247220i −0.209398 + 0.0104939i
\(556\) 0 0
\(557\) −0.372512 0.645209i −0.0157838 0.0273384i 0.858026 0.513607i \(-0.171691\pi\)
−0.873809 + 0.486269i \(0.838358\pi\)
\(558\) 0 0
\(559\) 37.8470 + 22.9058i 1.60076 + 0.968813i
\(560\) 0 0
\(561\) 9.25206 + 14.3185i 0.390622 + 0.604528i
\(562\) 0 0
\(563\) −16.0330 27.7699i −0.675710 1.17036i −0.976261 0.216598i \(-0.930504\pi\)
0.300551 0.953766i \(-0.402829\pi\)
\(564\) 0 0
\(565\) −15.1209 −0.636139
\(566\) 0 0
\(567\) −30.9572 + 6.28473i −1.30008 + 0.263934i
\(568\) 0 0
\(569\) −20.4237 + 35.3749i −0.856206 + 1.48299i 0.0193165 + 0.999813i \(0.493851\pi\)
−0.875522 + 0.483178i \(0.839482\pi\)
\(570\) 0 0
\(571\) 0.269451 0.466702i 0.0112762 0.0195309i −0.860332 0.509734i \(-0.829744\pi\)
0.871608 + 0.490203i \(0.163077\pi\)
\(572\) 0 0
\(573\) −2.51764 + 0.126171i −0.105176 + 0.00527086i
\(574\) 0 0
\(575\) 7.23255 + 12.5272i 0.301618 + 0.522418i
\(576\) 0 0
\(577\) 15.0441 0.626294 0.313147 0.949705i \(-0.398617\pi\)
0.313147 + 0.949705i \(0.398617\pi\)
\(578\) 0 0
\(579\) 17.8598 0.895039i 0.742228 0.0371965i
\(580\) 0 0
\(581\) 7.79995 + 13.5099i 0.323596 + 0.560485i
\(582\) 0 0
\(583\) 19.5968 33.9426i 0.811615 1.40576i
\(584\) 0 0
\(585\) 14.7310 10.1451i 0.609053 0.419447i
\(586\) 0 0
\(587\) 19.4497 33.6879i 0.802776 1.39045i −0.115007 0.993365i \(-0.536689\pi\)
0.917783 0.397083i \(-0.129978\pi\)
\(588\) 0 0
\(589\) 6.93527 + 12.0122i 0.285763 + 0.494956i
\(590\) 0 0
\(591\) 9.51289 + 14.7222i 0.391308 + 0.605589i
\(592\) 0 0
\(593\) 32.3325 1.32774 0.663868 0.747850i \(-0.268914\pi\)
0.663868 + 0.747850i \(0.268914\pi\)
\(594\) 0 0
\(595\) −5.70452 9.88052i −0.233863 0.405062i
\(596\) 0 0
\(597\) −5.42814 + 10.5934i −0.222159 + 0.433557i
\(598\) 0 0
\(599\) 6.65728 11.5307i 0.272009 0.471133i −0.697367 0.716714i \(-0.745645\pi\)
0.969376 + 0.245581i \(0.0789786\pi\)
\(600\) 0 0
\(601\) −15.7116 + 27.2132i −0.640888 + 1.11005i 0.344347 + 0.938842i \(0.388100\pi\)
−0.985235 + 0.171208i \(0.945233\pi\)
\(602\) 0 0
\(603\) 37.3133 3.74931i 1.51952 0.152684i
\(604\) 0 0
\(605\) −23.2656 −0.945881
\(606\) 0 0
\(607\) 12.0979 + 20.9542i 0.491038 + 0.850503i 0.999947 0.0103174i \(-0.00328420\pi\)
−0.508909 + 0.860821i \(0.669951\pi\)
\(608\) 0 0
\(609\) −26.6435 + 51.9965i −1.07965 + 2.10700i
\(610\) 0 0
\(611\) 0.129611 6.27519i 0.00524350 0.253867i
\(612\) 0 0
\(613\) −7.56923 13.1103i −0.305718 0.529520i 0.671703 0.740821i \(-0.265563\pi\)
−0.977421 + 0.211301i \(0.932230\pi\)
\(614\) 0 0
\(615\) 14.0529 27.4251i 0.566668 1.10589i
\(616\) 0 0
\(617\) 8.24120 + 14.2742i 0.331778 + 0.574657i 0.982861 0.184350i \(-0.0590181\pi\)
−0.651082 + 0.759007i \(0.725685\pi\)
\(618\) 0 0
\(619\) 6.79563 + 11.7704i 0.273139 + 0.473091i 0.969664 0.244442i \(-0.0786046\pi\)
−0.696525 + 0.717533i \(0.745271\pi\)
\(620\) 0 0
\(621\) −32.8022 + 4.96489i −1.31631 + 0.199234i
\(622\) 0 0
\(623\) 7.44130 + 12.8887i 0.298129 + 0.516375i
\(624\) 0 0
\(625\) 4.26955 7.39507i 0.170782 0.295803i
\(626\) 0 0
\(627\) −6.81826 10.5520i −0.272295 0.421405i
\(628\) 0 0
\(629\) −3.39000 −0.135168
\(630\) 0 0
\(631\) −5.94680 + 10.3002i −0.236738 + 0.410043i −0.959776 0.280765i \(-0.909412\pi\)
0.723038 + 0.690808i \(0.242745\pi\)
\(632\) 0 0
\(633\) −29.9396 + 1.50041i −1.18999 + 0.0596361i
\(634\) 0 0
\(635\) −16.2999 −0.646842
\(636\) 0 0
\(637\) 16.4073 + 9.93008i 0.650083 + 0.393444i
\(638\) 0 0
\(639\) −8.63275 + 19.1532i −0.341506 + 0.757689i
\(640\) 0 0
\(641\) 8.04947 0.317935 0.158967 0.987284i \(-0.449184\pi\)
0.158967 + 0.987284i \(0.449184\pi\)
\(642\) 0 0
\(643\) 11.4136 + 19.7690i 0.450110 + 0.779613i 0.998392 0.0566799i \(-0.0180514\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(644\) 0 0
\(645\) −16.0256 + 31.2750i −0.631007 + 1.23145i
\(646\) 0 0
\(647\) 3.91414 + 6.77949i 0.153881 + 0.266529i 0.932651 0.360780i \(-0.117490\pi\)
−0.778770 + 0.627309i \(0.784156\pi\)
\(648\) 0 0
\(649\) 14.8624 0.583402
\(650\) 0 0
\(651\) −26.5443 + 51.8028i −1.04035 + 2.03031i
\(652\) 0 0
\(653\) 16.2617 0.636370 0.318185 0.948029i \(-0.396927\pi\)
0.318185 + 0.948029i \(0.396927\pi\)
\(654\) 0 0
\(655\) 4.09845 + 7.09873i 0.160140 + 0.277370i
\(656\) 0 0
\(657\) 6.65546 0.668752i 0.259654 0.0260905i
\(658\) 0 0
\(659\) −27.2808 −1.06271 −0.531355 0.847149i \(-0.678317\pi\)
−0.531355 + 0.847149i \(0.678317\pi\)
\(660\) 0 0
\(661\) 0.558818 0.0217355 0.0108678 0.999941i \(-0.496541\pi\)
0.0108678 + 0.999941i \(0.496541\pi\)
\(662\) 0 0
\(663\) 10.4463 6.44814i 0.405699 0.250425i
\(664\) 0 0
\(665\) 4.20392 + 7.28141i 0.163021 + 0.282361i
\(666\) 0 0
\(667\) −30.6803 + 53.1398i −1.18795 + 2.05758i
\(668\) 0 0
\(669\) 17.8872 34.9079i 0.691558 1.34962i
\(670\) 0 0
\(671\) −11.9666 + 20.7267i −0.461964 + 0.800145i
\(672\) 0 0
\(673\) 8.56550 14.8359i 0.330176 0.571881i −0.652370 0.757900i \(-0.726225\pi\)
0.982546 + 0.186019i \(0.0595586\pi\)
\(674\) 0 0
\(675\) −7.34565 9.19948i −0.282734 0.354088i
\(676\) 0 0
\(677\) −21.0208 36.4091i −0.807896 1.39932i −0.914319 0.404996i \(-0.867273\pi\)
0.106423 0.994321i \(-0.466060\pi\)
\(678\) 0 0
\(679\) −16.7702 −0.643583
\(680\) 0 0
\(681\) −26.8408 + 1.34512i −1.02854 + 0.0515451i
\(682\) 0 0
\(683\) 10.4554 18.1093i 0.400065 0.692933i −0.593668 0.804710i \(-0.702321\pi\)
0.993733 + 0.111777i \(0.0356542\pi\)
\(684\) 0 0
\(685\) 0.0101669 0.0176095i 0.000388456 0.000672825i
\(686\) 0 0
\(687\) −5.27608 + 10.2966i −0.201295 + 0.392840i
\(688\) 0 0
\(689\) −24.1457 14.6135i −0.919878 0.556730i
\(690\) 0 0
\(691\) −11.8805 + 20.5777i −0.451957 + 0.782812i −0.998508 0.0546138i \(-0.982607\pi\)
0.546551 + 0.837426i \(0.315941\pi\)
\(692\) 0 0
\(693\) 21.6637 48.0646i 0.822936 1.82582i
\(694\) 0 0
\(695\) 1.73433 0.0657868
\(696\) 0 0
\(697\) 10.5750 18.3165i 0.400558 0.693787i
\(698\) 0 0
\(699\) 25.9904 1.30250i 0.983048 0.0492651i
\(700\) 0 0
\(701\) 30.8413 1.16486 0.582429 0.812881i \(-0.302102\pi\)
0.582429 + 0.812881i \(0.302102\pi\)
\(702\) 0 0
\(703\) 2.49824 0.0942231
\(704\) 0 0
\(705\) 4.97960 0.249551i 0.187543 0.00939865i
\(706\) 0 0
\(707\) 8.14969 14.1157i 0.306501 0.530875i
\(708\) 0 0
\(709\) 11.0151 0.413682 0.206841 0.978375i \(-0.433682\pi\)
0.206841 + 0.978375i \(0.433682\pi\)
\(710\) 0 0
\(711\) −29.7733 41.3761i −1.11659 1.55173i
\(712\) 0 0
\(713\) −30.5660 + 52.9419i −1.14471 + 1.98269i
\(714\) 0 0
\(715\) −0.616452 + 29.8459i −0.0230540 + 1.11617i
\(716\) 0 0
\(717\) −6.73026 + 13.1345i −0.251346 + 0.490518i
\(718\) 0 0
\(719\) −18.1480 + 31.4332i −0.676805 + 1.17226i 0.299133 + 0.954212i \(0.403303\pi\)
−0.975938 + 0.218049i \(0.930031\pi\)
\(720\) 0 0
\(721\) 12.1977 21.1270i 0.454265 0.786811i
\(722\) 0 0
\(723\) 31.7217 1.58972i 1.17974 0.0591225i
\(724\) 0 0
\(725\) −21.7737 −0.808656
\(726\) 0 0
\(727\) 20.2911 + 35.1452i 0.752556 + 1.30346i 0.946580 + 0.322468i \(0.104512\pi\)
−0.194025 + 0.980997i \(0.562154\pi\)
\(728\) 0 0
\(729\) 25.7906 7.99031i 0.955207 0.295937i
\(730\) 0 0
\(731\) −12.0595 + 20.8877i −0.446037 + 0.772559i
\(732\) 0 0
\(733\) 18.4885 32.0230i 0.682888 1.18280i −0.291207 0.956660i \(-0.594057\pi\)
0.974095 0.226137i \(-0.0726098\pi\)
\(734\) 0 0
\(735\) −6.94738 + 13.5583i −0.256258 + 0.500104i
\(736\) 0 0
\(737\) −31.2945 + 54.2037i −1.15275 + 1.99662i
\(738\) 0 0
\(739\) 10.1289 + 17.5438i 0.372598 + 0.645359i 0.989964 0.141317i \(-0.0451337\pi\)
−0.617366 + 0.786676i \(0.711800\pi\)
\(740\) 0 0
\(741\) −7.69832 + 4.75193i −0.282805 + 0.174566i
\(742\) 0 0
\(743\) −44.2428 −1.62311 −0.811555 0.584276i \(-0.801379\pi\)
−0.811555 + 0.584276i \(0.801379\pi\)
\(744\) 0 0
\(745\) 28.0376 1.02722
\(746\) 0 0
\(747\) −7.78797 10.8230i −0.284947 0.395992i
\(748\) 0 0
\(749\) −14.2267 24.6414i −0.519833 0.900378i
\(750\) 0 0
\(751\) −10.2828 −0.375225 −0.187613 0.982243i \(-0.560075\pi\)
−0.187613 + 0.982243i \(0.560075\pi\)
\(752\) 0 0
\(753\) 9.13931 17.8359i 0.333055 0.649978i
\(754\) 0 0
\(755\) 13.6319 0.496115
\(756\) 0 0
\(757\) −1.24016 2.14801i −0.0450743 0.0780709i 0.842608 0.538527i \(-0.181019\pi\)
−0.887682 + 0.460456i \(0.847686\pi\)
\(758\) 0 0
\(759\) 25.2502 49.2773i 0.916523 1.78865i
\(760\) 0 0
\(761\) 8.08162 + 13.9978i 0.292958 + 0.507419i 0.974508 0.224353i \(-0.0720269\pi\)
−0.681549 + 0.731772i \(0.738694\pi\)
\(762\) 0 0
\(763\) 33.6078 1.21668
\(764\) 0 0
\(765\) 5.69577 + 7.91544i 0.205931 + 0.286183i
\(766\) 0 0
\(767\) 0.221009 10.7003i 0.00798018 0.386365i
\(768\) 0 0
\(769\) 13.3575 0.481684 0.240842 0.970564i \(-0.422576\pi\)
0.240842 + 0.970564i \(0.422576\pi\)
\(770\) 0 0
\(771\) −9.70309 + 0.486268i −0.349448 + 0.0175125i
\(772\) 0 0
\(773\) −0.835057 + 1.44636i −0.0300349 + 0.0520220i −0.880652 0.473763i \(-0.842895\pi\)
0.850617 + 0.525785i \(0.176229\pi\)
\(774\) 0 0
\(775\) −21.6926 −0.779222
\(776\) 0 0
\(777\) 5.68980 + 8.80555i 0.204120 + 0.315897i
\(778\) 0 0
\(779\) −7.79323 + 13.4983i −0.279221 + 0.483626i
\(780\) 0 0
\(781\) −17.5317 30.3658i −0.627333 1.08657i
\(782\) 0 0
\(783\) 18.2157 46.4974i 0.650975 1.66168i
\(784\) 0 0
\(785\) −1.09221 1.89176i −0.0389825 0.0675197i
\(786\) 0 0
\(787\) −19.4001 33.6020i −0.691540 1.19778i −0.971333 0.237722i \(-0.923599\pi\)
0.279793 0.960060i \(-0.409734\pi\)
\(788\) 0 0
\(789\) 17.6183 34.3833i 0.627229 1.22408i
\(790\) 0 0
\(791\) 16.0474 + 27.7949i 0.570580 + 0.988273i
\(792\) 0 0
\(793\) 14.7443 + 8.92359i 0.523587 + 0.316886i
\(794\) 0 0
\(795\) 10.2240 19.9529i 0.362610 0.707656i
\(796\) 0 0
\(797\) 25.4413 + 44.0656i 0.901177 + 1.56088i 0.825969 + 0.563716i \(0.190629\pi\)
0.0752076 + 0.997168i \(0.476038\pi\)
\(798\) 0 0
\(799\) 3.42197 0.121060
\(800\) 0 0
\(801\) −7.42988 10.3253i −0.262522 0.364828i
\(802\) 0 0
\(803\) −5.58190 + 9.66814i −0.196981 + 0.341181i
\(804\) 0 0
\(805\) −18.5281 + 32.0916i −0.653029 + 1.13108i
\(806\) 0 0
\(807\) −10.2605 + 20.0239i −0.361185 + 0.704876i
\(808\) 0 0
\(809\) 4.23379 + 7.33314i 0.148852 + 0.257820i 0.930804 0.365520i \(-0.119109\pi\)
−0.781951 + 0.623340i \(0.785775\pi\)
\(810\) 0 0
\(811\) 4.41113 0.154896 0.0774479 0.996996i \(-0.475323\pi\)
0.0774479 + 0.996996i \(0.475323\pi\)
\(812\) 0 0
\(813\) 25.5523 + 39.5448i 0.896159 + 1.38690i
\(814\) 0 0
\(815\) 7.66430 + 13.2750i 0.268469 + 0.465002i
\(816\) 0 0
\(817\) 8.88720 15.3931i 0.310924 0.538536i
\(818\) 0 0
\(819\) −34.2822 16.3116i −1.19792 0.569974i
\(820\) 0 0
\(821\) −11.8122 + 20.4593i −0.412249 + 0.714036i −0.995135 0.0985177i \(-0.968590\pi\)
0.582886 + 0.812554i \(0.301923\pi\)
\(822\) 0 0
\(823\) 12.4584 + 21.5785i 0.434271 + 0.752180i 0.997236 0.0743011i \(-0.0236726\pi\)
−0.562965 + 0.826481i \(0.690339\pi\)
\(824\) 0 0
\(825\) 19.6233 0.983417i 0.683196 0.0342382i
\(826\) 0 0
\(827\) 3.01028 0.104678 0.0523389 0.998629i \(-0.483332\pi\)
0.0523389 + 0.998629i \(0.483332\pi\)
\(828\) 0 0
\(829\) −3.60061 6.23644i −0.125054 0.216601i 0.796700 0.604375i \(-0.206577\pi\)
−0.921754 + 0.387775i \(0.873244\pi\)
\(830\) 0 0
\(831\) −0.382102 + 0.0191489i −0.0132550 + 0.000664268i
\(832\) 0 0
\(833\) −5.22801 + 9.05519i −0.181140 + 0.313744i
\(834\) 0 0
\(835\) −8.27893 + 14.3395i −0.286504 + 0.496240i
\(836\) 0 0
\(837\) 18.1478 46.3242i 0.627281 1.60120i
\(838\) 0 0
\(839\) −43.0248 −1.48538 −0.742690 0.669635i \(-0.766451\pi\)
−0.742690 + 0.669635i \(0.766451\pi\)
\(840\) 0 0
\(841\) −31.6818 54.8745i −1.09248 1.89222i
\(842\) 0 0
\(843\) −17.7285 27.4366i −0.610601 0.944967i
\(844\) 0 0
\(845\) 21.4785 + 0.887635i 0.738883 + 0.0305356i
\(846\) 0 0
\(847\) 24.6912 + 42.7664i 0.848400 + 1.46947i
\(848\) 0 0
\(849\) −2.55796 + 0.128191i −0.0877889 + 0.00439951i
\(850\) 0 0
\(851\) 5.50529 + 9.53545i 0.188719 + 0.326871i
\(852\) 0 0
\(853\) −4.75065 8.22837i −0.162659 0.281734i 0.773162 0.634208i \(-0.218674\pi\)
−0.935822 + 0.352474i \(0.885340\pi\)
\(854\) 0 0
\(855\) −4.19747 5.83325i −0.143550 0.199493i
\(856\) 0 0
\(857\) −12.3253 21.3480i −0.421024 0.729234i 0.575016 0.818142i \(-0.304996\pi\)
−0.996040 + 0.0889077i \(0.971662\pi\)
\(858\) 0 0
\(859\) 4.10381 7.10801i 0.140020 0.242522i −0.787484 0.616335i \(-0.788617\pi\)
0.927504 + 0.373813i \(0.121950\pi\)
\(860\) 0 0
\(861\) −65.3265 + 3.27382i −2.22632 + 0.111571i
\(862\) 0 0
\(863\) 16.3550 0.556731 0.278366 0.960475i \(-0.410207\pi\)
0.278366 + 0.960475i \(0.410207\pi\)
\(864\) 0 0
\(865\) 6.95220 12.0416i 0.236382 0.409425i
\(866\) 0 0
\(867\) −12.3479 19.1097i −0.419357 0.648998i
\(868\) 0 0
\(869\) 85.0762 2.88601
\(870\) 0 0
\(871\) 38.5588 + 23.3366i 1.30652 + 0.790732i
\(872\) 0 0
\(873\) 14.2623 1.43310i 0.482706 0.0485031i
\(874\) 0 0
\(875\) −42.1689 −1.42557
\(876\) 0 0
\(877\) 11.9207 + 20.6473i 0.402534 + 0.697209i 0.994031 0.109098i \(-0.0347962\pi\)
−0.591497 + 0.806307i \(0.701463\pi\)
\(878\) 0 0
\(879\) 8.75727 + 13.5528i 0.295375 + 0.457124i
\(880\) 0 0
\(881\) −16.2280 28.1076i −0.546734 0.946971i −0.998496 0.0548320i \(-0.982538\pi\)
0.451762 0.892139i \(-0.350796\pi\)
\(882\) 0 0
\(883\) −46.3015 −1.55817 −0.779084 0.626920i \(-0.784315\pi\)
−0.779084 + 0.626920i \(0.784315\pi\)
\(884\) 0 0
\(885\) 8.49109 0.425528i 0.285425 0.0143040i
\(886\) 0 0
\(887\) −13.1345 −0.441014 −0.220507 0.975385i \(-0.570771\pi\)
−0.220507 + 0.975385i \(0.570771\pi\)
\(888\) 0 0
\(889\) 17.2987 + 29.9622i 0.580180 + 1.00490i
\(890\) 0 0
\(891\) −14.3166 + 42.7279i −0.479624 + 1.43144i
\(892\) 0 0
\(893\) −2.52180 −0.0843889
\(894\) 0 0
\(895\) 13.5823 0.454005
\(896\) 0 0
\(897\) −35.1020 18.9117i −1.17202 0.631445i
\(898\) 0 0
\(899\) −46.0098 79.6913i −1.53451 2.65785i
\(900\) 0 0
\(901\) 7.69376 13.3260i 0.256316 0.443953i
\(902\) 0 0
\(903\) 74.4967 3.73338i 2.47909 0.124239i
\(904\) 0 0
\(905\) 9.06820 15.7066i 0.301437 0.522105i
\(906\) 0 0
\(907\) 17.3953 30.1296i 0.577603 1.00044i −0.418151 0.908378i \(-0.637322\pi\)
0.995753 0.0920599i \(-0.0293451\pi\)
\(908\) 0 0
\(909\) −5.72467 + 12.7012i −0.189875 + 0.421271i
\(910\) 0 0
\(911\) −14.7500 25.5478i −0.488690 0.846435i 0.511226 0.859446i \(-0.329192\pi\)
−0.999915 + 0.0130113i \(0.995858\pi\)
\(912\) 0 0
\(913\) 22.2539 0.736496
\(914\) 0 0
\(915\) −6.24321 + 12.1840i −0.206394 + 0.402791i
\(916\) 0 0
\(917\) 8.69918 15.0674i 0.287272 0.497570i
\(918\) 0 0
\(919\) −10.4757 + 18.1445i −0.345562 + 0.598530i −0.985456 0.169933i \(-0.945645\pi\)
0.639894 + 0.768463i \(0.278978\pi\)
\(920\) 0 0
\(921\) 5.76484 0.288903i 0.189958 0.00951969i
\(922\) 0 0
\(923\) −22.1227 + 12.1705i −0.728177 + 0.400596i
\(924\) 0 0
\(925\) −1.95355 + 3.38364i −0.0642322 + 0.111253i
\(926\) 0 0
\(927\) −8.56814 + 19.0099i −0.281415 + 0.624366i
\(928\) 0 0
\(929\) 43.3703 1.42293 0.711466 0.702720i \(-0.248031\pi\)
0.711466 + 0.702720i \(0.248031\pi\)
\(930\) 0 0
\(931\) 3.85276 6.67318i 0.126269 0.218705i
\(932\) 0 0
\(933\) −6.69744 + 13.0705i −0.219264 + 0.427908i
\(934\) 0 0
\(935\) −16.2755 −0.532265
\(936\) 0 0
\(937\) −19.9060 −0.650300 −0.325150 0.945663i \(-0.605415\pi\)
−0.325150 + 0.945663i \(0.605415\pi\)
\(938\) 0 0
\(939\) −0.405290 0.627228i −0.0132261 0.0204688i
\(940\) 0 0
\(941\) 1.29883 2.24964i 0.0423407 0.0733362i −0.844078 0.536220i \(-0.819852\pi\)
0.886419 + 0.462884i \(0.153185\pi\)
\(942\) 0 0
\(943\) −68.6946 −2.23700
\(944\) 0 0
\(945\) 11.0006 28.0801i 0.357849 0.913446i
\(946\) 0 0
\(947\) 6.13201 10.6209i 0.199263 0.345134i −0.749026 0.662540i \(-0.769478\pi\)
0.948290 + 0.317406i \(0.102812\pi\)
\(948\) 0 0
\(949\) 6.87761 + 4.16248i 0.223257 + 0.135120i
\(950\) 0 0
\(951\) −5.56431 8.61135i −0.180435 0.279242i
\(952\) 0 0
\(953\) 16.3572 28.3315i 0.529862 0.917747i −0.469532 0.882916i \(-0.655577\pi\)
0.999393 0.0348314i \(-0.0110894\pi\)
\(954\) 0 0
\(955\) 1.20331 2.08420i 0.0389383 0.0674432i
\(956\) 0 0
\(957\) 45.2335 + 70.0035i 1.46219 + 2.26289i
\(958\) 0 0
\(959\) −0.0431594 −0.00139369
\(960\) 0 0
\(961\) −30.3384 52.5476i −0.978658 1.69508i
\(962\) 0 0
\(963\) 14.2049 + 19.7406i 0.457746 + 0.636132i
\(964\) 0 0
\(965\) −8.53615 + 14.7851i −0.274789 + 0.475948i
\(966\) 0 0
\(967\) −1.72209 + 2.98275i −0.0553787 + 0.0959187i −0.892386 0.451273i \(-0.850970\pi\)
0.837007 + 0.547192i \(0.184303\pi\)
\(968\) 0 0
\(969\) −2.67687 4.14274i −0.0859936 0.133084i
\(970\) 0 0
\(971\) −26.3611 + 45.6588i −0.845969 + 1.46526i 0.0388082 + 0.999247i \(0.487644\pi\)
−0.884777 + 0.466014i \(0.845689\pi\)
\(972\) 0 0
\(973\) −1.84060 3.18801i −0.0590070 0.102203i
\(974\) 0 0
\(975\) −0.416210 14.1425i −0.0133294 0.452923i
\(976\) 0 0
\(977\) −18.0223 −0.576585 −0.288293 0.957542i \(-0.593088\pi\)
−0.288293 + 0.957542i \(0.593088\pi\)
\(978\) 0 0
\(979\) 21.2306 0.678534
\(980\) 0 0
\(981\) −28.5819 + 2.87196i −0.912549 + 0.0916945i
\(982\) 0 0
\(983\) 18.6651 + 32.3288i 0.595323 + 1.03113i 0.993501 + 0.113821i \(0.0363091\pi\)
−0.398178 + 0.917308i \(0.630358\pi\)
\(984\) 0 0
\(985\) −16.7343 −0.533199
\(986\) 0 0
\(987\) −5.74345 8.88858i −0.182816 0.282927i
\(988\) 0 0
\(989\) 78.3377 2.49099
\(990\) 0 0
\(991\) −11.9106 20.6298i −0.378353 0.655326i 0.612470 0.790494i \(-0.290176\pi\)
−0.990823 + 0.135168i \(0.956843\pi\)
\(992\) 0 0
\(993\) −22.5943 + 1.13231i −0.717008 + 0.0359326i
\(994\) 0 0
\(995\) −5.68199 9.84150i −0.180131 0.311997i
\(996\) 0 0
\(997\) 40.5279 1.28353 0.641766 0.766901i \(-0.278202\pi\)
0.641766 + 0.766901i \(0.278202\pi\)
\(998\) 0 0
\(999\) −5.59138 7.00248i −0.176904 0.221549i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.k.a.445.1 yes 28
3.2 odd 2 1404.2.k.a.1225.5 28
9.2 odd 6 1404.2.j.a.289.5 28
9.7 even 3 468.2.j.a.133.10 28
13.9 even 3 468.2.j.a.373.10 yes 28
39.35 odd 6 1404.2.j.a.685.5 28
117.61 even 3 inner 468.2.k.a.61.1 yes 28
117.74 odd 6 1404.2.k.a.1153.5 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.10 28 9.7 even 3
468.2.j.a.373.10 yes 28 13.9 even 3
468.2.k.a.61.1 yes 28 117.61 even 3 inner
468.2.k.a.445.1 yes 28 1.1 even 1 trivial
1404.2.j.a.289.5 28 9.2 odd 6
1404.2.j.a.685.5 28 39.35 odd 6
1404.2.k.a.1153.5 28 117.74 odd 6
1404.2.k.a.1225.5 28 3.2 odd 2