Properties

Label 468.2.j.a.133.10
Level $468$
Weight $2$
Character 468.133
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(133,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.133"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.10
Character \(\chi\) \(=\) 468.133
Dual form 468.2.j.a.373.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.940018 - 1.45477i) q^{3} +(0.826802 + 1.43206i) q^{5} +(1.75493 + 3.03963i) q^{7} +(-1.23273 - 2.73503i) q^{9} +5.00696 q^{11} +(-3.15906 + 1.73791i) q^{13} +(2.86054 + 0.143355i) q^{15} +(-0.982875 + 1.70239i) q^{17} +(0.724325 - 1.25457i) q^{19} +(6.07163 + 0.304278i) q^{21} +(-3.19234 + 5.52930i) q^{23} +(1.13280 - 1.96206i) q^{25} +(-5.13764 - 0.777625i) q^{27} +9.61060 q^{29} +(-4.78740 - 8.29202i) q^{31} +(4.70663 - 7.28399i) q^{33} +(-2.90196 + 5.02634i) q^{35} +(0.862266 + 1.49349i) q^{37} +(-0.441306 + 6.22939i) q^{39} +(5.37964 - 9.31782i) q^{41} +(-6.13481 - 10.6258i) q^{43} +(2.89750 - 4.02668i) q^{45} +(-0.870397 + 1.50757i) q^{47} +(-2.65955 + 4.60648i) q^{49} +(1.55267 + 3.03014i) q^{51} -7.82781 q^{53} +(4.13976 + 7.17028i) q^{55} +(-1.14423 - 2.23305i) q^{57} +2.96836 q^{59} +(-2.38999 - 4.13958i) q^{61} +(6.15010 - 8.54683i) q^{63} +(-5.10071 - 3.08706i) q^{65} +(-6.25020 + 10.8257i) q^{67} +(5.04302 + 9.84177i) q^{69} +(-3.50147 + 6.06472i) q^{71} +2.22966 q^{73} +(-1.78951 - 3.49234i) q^{75} +(8.78686 + 15.2193i) q^{77} +(-8.49580 + 14.7152i) q^{79} +(-5.96074 + 6.74312i) q^{81} +(-2.22230 + 3.84913i) q^{83} -3.25057 q^{85} +(9.03413 - 13.9812i) q^{87} +(-2.12011 - 3.67214i) q^{89} +(-10.8265 - 6.55245i) q^{91} +(-16.5633 - 0.830062i) q^{93} +2.39549 q^{95} +(-2.38902 - 4.13790i) q^{97} +(-6.17224 - 13.6942i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{7} - 2 q^{9} + 8 q^{11} + q^{13} - 10 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} - 4 q^{23} - 14 q^{25} + 26 q^{29} + 2 q^{31} + 8 q^{33} + 3 q^{35} - q^{37} - 12 q^{39} + 4 q^{41} + 2 q^{43}+ \cdots - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.940018 1.45477i 0.542720 0.839914i
\(4\) 0 0
\(5\) 0.826802 + 1.43206i 0.369757 + 0.640438i 0.989527 0.144345i \(-0.0461076\pi\)
−0.619770 + 0.784783i \(0.712774\pi\)
\(6\) 0 0
\(7\) 1.75493 + 3.03963i 0.663301 + 1.14887i 0.979743 + 0.200259i \(0.0641784\pi\)
−0.316442 + 0.948612i \(0.602488\pi\)
\(8\) 0 0
\(9\) −1.23273 2.73503i −0.410911 0.911675i
\(10\) 0 0
\(11\) 5.00696 1.50965 0.754827 0.655924i \(-0.227721\pi\)
0.754827 + 0.655924i \(0.227721\pi\)
\(12\) 0 0
\(13\) −3.15906 + 1.73791i −0.876166 + 0.482010i
\(14\) 0 0
\(15\) 2.86054 + 0.143355i 0.738587 + 0.0370141i
\(16\) 0 0
\(17\) −0.982875 + 1.70239i −0.238382 + 0.412890i −0.960250 0.279141i \(-0.909950\pi\)
0.721868 + 0.692031i \(0.243284\pi\)
\(18\) 0 0
\(19\) 0.724325 1.25457i 0.166172 0.287818i −0.770899 0.636957i \(-0.780193\pi\)
0.937071 + 0.349140i \(0.113526\pi\)
\(20\) 0 0
\(21\) 6.07163 + 0.304278i 1.32494 + 0.0663989i
\(22\) 0 0
\(23\) −3.19234 + 5.52930i −0.665649 + 1.15294i 0.313460 + 0.949601i \(0.398512\pi\)
−0.979109 + 0.203336i \(0.934821\pi\)
\(24\) 0 0
\(25\) 1.13280 1.96206i 0.226560 0.392413i
\(26\) 0 0
\(27\) −5.13764 0.777625i −0.988738 0.149654i
\(28\) 0 0
\(29\) 9.61060 1.78464 0.892322 0.451400i \(-0.149075\pi\)
0.892322 + 0.451400i \(0.149075\pi\)
\(30\) 0 0
\(31\) −4.78740 8.29202i −0.859842 1.48929i −0.872079 0.489365i \(-0.837228\pi\)
0.0122364 0.999925i \(-0.496105\pi\)
\(32\) 0 0
\(33\) 4.70663 7.28399i 0.819319 1.26798i
\(34\) 0 0
\(35\) −2.90196 + 5.02634i −0.490520 + 0.849606i
\(36\) 0 0
\(37\) 0.862266 + 1.49349i 0.141756 + 0.245528i 0.928158 0.372187i \(-0.121392\pi\)
−0.786402 + 0.617715i \(0.788059\pi\)
\(38\) 0 0
\(39\) −0.441306 + 6.22939i −0.0706654 + 0.997500i
\(40\) 0 0
\(41\) 5.37964 9.31782i 0.840159 1.45520i −0.0496002 0.998769i \(-0.515795\pi\)
0.889760 0.456430i \(-0.150872\pi\)
\(42\) 0 0
\(43\) −6.13481 10.6258i −0.935551 1.62042i −0.773649 0.633614i \(-0.781571\pi\)
−0.161901 0.986807i \(-0.551763\pi\)
\(44\) 0 0
\(45\) 2.89750 4.02668i 0.431934 0.600261i
\(46\) 0 0
\(47\) −0.870397 + 1.50757i −0.126960 + 0.219902i −0.922498 0.386003i \(-0.873855\pi\)
0.795537 + 0.605905i \(0.207189\pi\)
\(48\) 0 0
\(49\) −2.65955 + 4.60648i −0.379936 + 0.658069i
\(50\) 0 0
\(51\) 1.55267 + 3.03014i 0.217417 + 0.424304i
\(52\) 0 0
\(53\) −7.82781 −1.07523 −0.537616 0.843190i \(-0.680675\pi\)
−0.537616 + 0.843190i \(0.680675\pi\)
\(54\) 0 0
\(55\) 4.13976 + 7.17028i 0.558205 + 0.966840i
\(56\) 0 0
\(57\) −1.14423 2.23305i −0.151558 0.295774i
\(58\) 0 0
\(59\) 2.96836 0.386447 0.193224 0.981155i \(-0.438106\pi\)
0.193224 + 0.981155i \(0.438106\pi\)
\(60\) 0 0
\(61\) −2.38999 4.13958i −0.306006 0.530019i 0.671478 0.741024i \(-0.265660\pi\)
−0.977485 + 0.211005i \(0.932326\pi\)
\(62\) 0 0
\(63\) 6.15010 8.54683i 0.774840 1.07680i
\(64\) 0 0
\(65\) −5.10071 3.08706i −0.632666 0.382903i
\(66\) 0 0
\(67\) −6.25020 + 10.8257i −0.763584 + 1.32257i 0.177408 + 0.984137i \(0.443229\pi\)
−0.940992 + 0.338429i \(0.890105\pi\)
\(68\) 0 0
\(69\) 5.04302 + 9.84177i 0.607108 + 1.18481i
\(70\) 0 0
\(71\) −3.50147 + 6.06472i −0.415547 + 0.719749i −0.995486 0.0949111i \(-0.969743\pi\)
0.579938 + 0.814660i \(0.303077\pi\)
\(72\) 0 0
\(73\) 2.22966 0.260962 0.130481 0.991451i \(-0.458348\pi\)
0.130481 + 0.991451i \(0.458348\pi\)
\(74\) 0 0
\(75\) −1.78951 3.49234i −0.206635 0.403261i
\(76\) 0 0
\(77\) 8.78686 + 15.2193i 1.00136 + 1.73440i
\(78\) 0 0
\(79\) −8.49580 + 14.7152i −0.955852 + 1.65558i −0.223447 + 0.974716i \(0.571731\pi\)
−0.732406 + 0.680869i \(0.761602\pi\)
\(80\) 0 0
\(81\) −5.96074 + 6.74312i −0.662304 + 0.749235i
\(82\) 0 0
\(83\) −2.22230 + 3.84913i −0.243929 + 0.422497i −0.961830 0.273648i \(-0.911770\pi\)
0.717901 + 0.696145i \(0.245103\pi\)
\(84\) 0 0
\(85\) −3.25057 −0.352574
\(86\) 0 0
\(87\) 9.03413 13.9812i 0.968561 1.49895i
\(88\) 0 0
\(89\) −2.12011 3.67214i −0.224732 0.389246i 0.731507 0.681834i \(-0.238817\pi\)
−0.956239 + 0.292587i \(0.905484\pi\)
\(90\) 0 0
\(91\) −10.8265 6.55245i −1.13493 0.686884i
\(92\) 0 0
\(93\) −16.5633 0.830062i −1.71753 0.0860735i
\(94\) 0 0
\(95\) 2.39549 0.245772
\(96\) 0 0
\(97\) −2.38902 4.13790i −0.242568 0.420141i 0.718877 0.695137i \(-0.244657\pi\)
−0.961445 + 0.274997i \(0.911323\pi\)
\(98\) 0 0
\(99\) −6.17224 13.6942i −0.620334 1.37632i
\(100\) 0 0
\(101\) 4.64389 0.462084 0.231042 0.972944i \(-0.425787\pi\)
0.231042 + 0.972944i \(0.425787\pi\)
\(102\) 0 0
\(103\) −3.47526 6.01933i −0.342428 0.593102i 0.642455 0.766323i \(-0.277916\pi\)
−0.984883 + 0.173221i \(0.944583\pi\)
\(104\) 0 0
\(105\) 4.58429 + 8.94654i 0.447381 + 0.873092i
\(106\) 0 0
\(107\) 4.05336 + 7.02063i 0.391853 + 0.678710i 0.992694 0.120659i \(-0.0385007\pi\)
−0.600841 + 0.799369i \(0.705167\pi\)
\(108\) 0 0
\(109\) −9.57526 −0.917144 −0.458572 0.888657i \(-0.651639\pi\)
−0.458572 + 0.888657i \(0.651639\pi\)
\(110\) 0 0
\(111\) 2.98323 + 0.149504i 0.283156 + 0.0141903i
\(112\) 0 0
\(113\) 9.14418 0.860213 0.430106 0.902778i \(-0.358476\pi\)
0.430106 + 0.902778i \(0.358476\pi\)
\(114\) 0 0
\(115\) −10.5577 −0.984513
\(116\) 0 0
\(117\) 8.64751 + 6.49773i 0.799463 + 0.600716i
\(118\) 0 0
\(119\) −6.89950 −0.632476
\(120\) 0 0
\(121\) 14.0696 1.27906
\(122\) 0 0
\(123\) −8.49836 16.5851i −0.766271 1.49543i
\(124\) 0 0
\(125\) 12.0144 1.07460
\(126\) 0 0
\(127\) −4.92860 8.53659i −0.437343 0.757500i 0.560141 0.828397i \(-0.310747\pi\)
−0.997484 + 0.0708976i \(0.977414\pi\)
\(128\) 0 0
\(129\) −21.2250 1.06368i −1.86876 0.0936521i
\(130\) 0 0
\(131\) −2.47850 4.29289i −0.216547 0.375071i 0.737203 0.675672i \(-0.236146\pi\)
−0.953750 + 0.300600i \(0.902813\pi\)
\(132\) 0 0
\(133\) 5.08456 0.440887
\(134\) 0 0
\(135\) −3.13420 8.00036i −0.269749 0.688561i
\(136\) 0 0
\(137\) −0.00614831 0.0106492i −0.000525285 0.000909821i 0.865763 0.500455i \(-0.166834\pi\)
−0.866288 + 0.499545i \(0.833501\pi\)
\(138\) 0 0
\(139\) −1.04882 −0.0889596 −0.0444798 0.999010i \(-0.514163\pi\)
−0.0444798 + 0.999010i \(0.514163\pi\)
\(140\) 0 0
\(141\) 1.37499 + 2.68338i 0.115795 + 0.225981i
\(142\) 0 0
\(143\) −15.8173 + 8.70165i −1.32271 + 0.727668i
\(144\) 0 0
\(145\) 7.94606 + 13.7630i 0.659884 + 1.14295i
\(146\) 0 0
\(147\) 4.20136 + 8.19922i 0.346522 + 0.676260i
\(148\) 0 0
\(149\) −16.9555 −1.38905 −0.694523 0.719471i \(-0.744384\pi\)
−0.694523 + 0.719471i \(0.744384\pi\)
\(150\) 0 0
\(151\) 4.12187 7.13929i 0.335433 0.580987i −0.648135 0.761526i \(-0.724451\pi\)
0.983568 + 0.180538i \(0.0577840\pi\)
\(152\) 0 0
\(153\) 5.86770 + 0.589597i 0.474376 + 0.0476661i
\(154\) 0 0
\(155\) 7.91646 13.7117i 0.635865 1.10135i
\(156\) 0 0
\(157\) 0.660501 + 1.14402i 0.0527137 + 0.0913028i 0.891178 0.453653i \(-0.149880\pi\)
−0.838464 + 0.544956i \(0.816546\pi\)
\(158\) 0 0
\(159\) −7.35828 + 11.3877i −0.583550 + 0.903103i
\(160\) 0 0
\(161\) −22.4093 −1.76610
\(162\) 0 0
\(163\) −4.63491 + 8.02790i −0.363034 + 0.628794i −0.988459 0.151491i \(-0.951593\pi\)
0.625424 + 0.780285i \(0.284926\pi\)
\(164\) 0 0
\(165\) 14.3226 + 0.717772i 1.11501 + 0.0558784i
\(166\) 0 0
\(167\) 5.00660 8.67168i 0.387422 0.671035i −0.604680 0.796469i \(-0.706699\pi\)
0.992102 + 0.125434i \(0.0400322\pi\)
\(168\) 0 0
\(169\) 6.95933 10.9803i 0.535333 0.844641i
\(170\) 0 0
\(171\) −4.32418 0.434501i −0.330678 0.0332271i
\(172\) 0 0
\(173\) −4.20427 7.28201i −0.319645 0.553641i 0.660769 0.750589i \(-0.270230\pi\)
−0.980414 + 0.196948i \(0.936897\pi\)
\(174\) 0 0
\(175\) 7.95192 0.601109
\(176\) 0 0
\(177\) 2.79031 4.31829i 0.209732 0.324582i
\(178\) 0 0
\(179\) 4.10687 + 7.11330i 0.306962 + 0.531673i 0.977696 0.210024i \(-0.0673543\pi\)
−0.670735 + 0.741698i \(0.734021\pi\)
\(180\) 0 0
\(181\) 10.9678 0.815231 0.407615 0.913154i \(-0.366360\pi\)
0.407615 + 0.913154i \(0.366360\pi\)
\(182\) 0 0
\(183\) −8.26878 0.414387i −0.611246 0.0306324i
\(184\) 0 0
\(185\) −1.42585 + 2.46964i −0.104830 + 0.181571i
\(186\) 0 0
\(187\) −4.92121 + 8.52379i −0.359875 + 0.623321i
\(188\) 0 0
\(189\) −6.65250 16.9812i −0.483898 1.23520i
\(190\) 0 0
\(191\) −0.727692 1.26040i −0.0526540 0.0911993i 0.838497 0.544906i \(-0.183435\pi\)
−0.891151 + 0.453707i \(0.850101\pi\)
\(192\) 0 0
\(193\) 5.16215 8.94111i 0.371580 0.643595i −0.618229 0.785998i \(-0.712150\pi\)
0.989809 + 0.142403i \(0.0454828\pi\)
\(194\) 0 0
\(195\) −9.28574 + 4.51849i −0.664966 + 0.323576i
\(196\) 0 0
\(197\) −5.05995 8.76409i −0.360507 0.624416i 0.627538 0.778586i \(-0.284063\pi\)
−0.988044 + 0.154170i \(0.950730\pi\)
\(198\) 0 0
\(199\) 3.43613 5.95155i 0.243581 0.421894i −0.718151 0.695887i \(-0.755011\pi\)
0.961732 + 0.273993i \(0.0883446\pi\)
\(200\) 0 0
\(201\) 9.87360 + 19.2690i 0.696430 + 1.35913i
\(202\) 0 0
\(203\) 16.8659 + 29.2126i 1.18376 + 2.05032i
\(204\) 0 0
\(205\) 17.7916 1.24262
\(206\) 0 0
\(207\) 19.0581 + 1.91499i 1.32463 + 0.133101i
\(208\) 0 0
\(209\) 3.62667 6.28157i 0.250862 0.434505i
\(210\) 0 0
\(211\) −8.65367 + 14.9886i −0.595743 + 1.03186i 0.397698 + 0.917516i \(0.369809\pi\)
−0.993442 + 0.114341i \(0.963524\pi\)
\(212\) 0 0
\(213\) 5.53135 + 10.7948i 0.379002 + 0.739646i
\(214\) 0 0
\(215\) 10.1446 17.5709i 0.691853 1.19832i
\(216\) 0 0
\(217\) 16.8031 29.1038i 1.14067 1.97570i
\(218\) 0 0
\(219\) 2.09592 3.24365i 0.141629 0.219185i
\(220\) 0 0
\(221\) 0.146360 7.08610i 0.00984524 0.476663i
\(222\) 0 0
\(223\) 22.6459 1.51648 0.758242 0.651973i \(-0.226059\pi\)
0.758242 + 0.651973i \(0.226059\pi\)
\(224\) 0 0
\(225\) −6.76273 0.679531i −0.450849 0.0453021i
\(226\) 0 0
\(227\) −7.75800 13.4373i −0.514917 0.891862i −0.999850 0.0173110i \(-0.994489\pi\)
0.484933 0.874551i \(-0.338844\pi\)
\(228\) 0 0
\(229\) 3.33988 + 5.78483i 0.220705 + 0.382273i 0.955022 0.296534i \(-0.0958308\pi\)
−0.734317 + 0.678807i \(0.762497\pi\)
\(230\) 0 0
\(231\) 30.4004 + 1.52351i 2.00020 + 0.100239i
\(232\) 0 0
\(233\) −15.0244 −0.984281 −0.492141 0.870516i \(-0.663785\pi\)
−0.492141 + 0.870516i \(0.663785\pi\)
\(234\) 0 0
\(235\) −2.87858 −0.187778
\(236\) 0 0
\(237\) 13.4210 + 26.1920i 0.871789 + 1.70135i
\(238\) 0 0
\(239\) 4.26040 + 7.37923i 0.275582 + 0.477323i 0.970282 0.241977i \(-0.0777960\pi\)
−0.694700 + 0.719300i \(0.744463\pi\)
\(240\) 0 0
\(241\) 9.16876 + 15.8808i 0.590612 + 1.02297i 0.994150 + 0.108007i \(0.0344469\pi\)
−0.403538 + 0.914963i \(0.632220\pi\)
\(242\) 0 0
\(243\) 4.20651 + 15.0102i 0.269848 + 0.962903i
\(244\) 0 0
\(245\) −8.79569 −0.561936
\(246\) 0 0
\(247\) −0.107859 + 5.22207i −0.00686293 + 0.332272i
\(248\) 0 0
\(249\) 3.51062 + 6.85119i 0.222476 + 0.434176i
\(250\) 0 0
\(251\) −5.78538 + 10.0206i −0.365170 + 0.632493i −0.988803 0.149224i \(-0.952323\pi\)
0.623633 + 0.781717i \(0.285656\pi\)
\(252\) 0 0
\(253\) −15.9839 + 27.6850i −1.00490 + 1.74054i
\(254\) 0 0
\(255\) −3.05559 + 4.72884i −0.191349 + 0.296132i
\(256\) 0 0
\(257\) −2.80456 + 4.85764i −0.174943 + 0.303011i −0.940142 0.340784i \(-0.889308\pi\)
0.765198 + 0.643795i \(0.222641\pi\)
\(258\) 0 0
\(259\) −3.02643 + 5.24193i −0.188053 + 0.325718i
\(260\) 0 0
\(261\) −11.8473 26.2852i −0.733330 1.62702i
\(262\) 0 0
\(263\) 22.3056 1.37542 0.687710 0.725986i \(-0.258616\pi\)
0.687710 + 0.725986i \(0.258616\pi\)
\(264\) 0 0
\(265\) −6.47205 11.2099i −0.397575 0.688619i
\(266\) 0 0
\(267\) −7.33508 0.367595i −0.448900 0.0224965i
\(268\) 0 0
\(269\) 6.49509 11.2498i 0.396013 0.685914i −0.597217 0.802080i \(-0.703727\pi\)
0.993230 + 0.116165i \(0.0370603\pi\)
\(270\) 0 0
\(271\) −13.5914 23.5410i −0.825619 1.43001i −0.901445 0.432893i \(-0.857493\pi\)
0.0758262 0.997121i \(-0.475841\pi\)
\(272\) 0 0
\(273\) −19.7095 + 9.59073i −1.19287 + 0.580457i
\(274\) 0 0
\(275\) 5.67187 9.82397i 0.342027 0.592408i
\(276\) 0 0
\(277\) −0.110442 0.191291i −0.00663580 0.0114935i 0.862688 0.505736i \(-0.168779\pi\)
−0.869324 + 0.494242i \(0.835446\pi\)
\(278\) 0 0
\(279\) −16.7773 + 23.3155i −1.00443 + 1.39586i
\(280\) 0 0
\(281\) 9.42986 16.3330i 0.562538 0.974345i −0.434736 0.900558i \(-0.643158\pi\)
0.997274 0.0737867i \(-0.0235084\pi\)
\(282\) 0 0
\(283\) −0.739346 + 1.28058i −0.0439495 + 0.0761228i −0.887163 0.461455i \(-0.847327\pi\)
0.843214 + 0.537578i \(0.180661\pi\)
\(284\) 0 0
\(285\) 2.25181 3.48490i 0.133386 0.206428i
\(286\) 0 0
\(287\) 37.7636 2.22911
\(288\) 0 0
\(289\) 6.56791 + 11.3760i 0.386348 + 0.669174i
\(290\) 0 0
\(291\) −8.26544 0.414220i −0.484528 0.0242820i
\(292\) 0 0
\(293\) 9.31607 0.544251 0.272125 0.962262i \(-0.412273\pi\)
0.272125 + 0.962262i \(0.412273\pi\)
\(294\) 0 0
\(295\) 2.45424 + 4.25087i 0.142891 + 0.247495i
\(296\) 0 0
\(297\) −25.7239 3.89354i −1.49265 0.225926i
\(298\) 0 0
\(299\) 0.475372 23.0154i 0.0274915 1.33101i
\(300\) 0 0
\(301\) 21.5323 37.2951i 1.24110 2.14965i
\(302\) 0 0
\(303\) 4.36534 6.75580i 0.250782 0.388111i
\(304\) 0 0
\(305\) 3.95209 6.84522i 0.226296 0.391956i
\(306\) 0 0
\(307\) −3.33251 −0.190196 −0.0950982 0.995468i \(-0.530317\pi\)
−0.0950982 + 0.995468i \(0.530317\pi\)
\(308\) 0 0
\(309\) −12.0236 0.602558i −0.683997 0.0342783i
\(310\) 0 0
\(311\) 4.23963 + 7.34325i 0.240407 + 0.416398i 0.960830 0.277137i \(-0.0893857\pi\)
−0.720423 + 0.693535i \(0.756052\pi\)
\(312\) 0 0
\(313\) 0.215576 0.373388i 0.0121851 0.0211052i −0.859869 0.510515i \(-0.829455\pi\)
0.872054 + 0.489410i \(0.162788\pi\)
\(314\) 0 0
\(315\) 17.3245 + 1.74080i 0.976125 + 0.0980827i
\(316\) 0 0
\(317\) 2.95969 5.12633i 0.166233 0.287923i −0.770860 0.637005i \(-0.780173\pi\)
0.937092 + 0.349082i \(0.113506\pi\)
\(318\) 0 0
\(319\) 48.1199 2.69420
\(320\) 0 0
\(321\) 14.0237 + 0.702791i 0.782724 + 0.0392260i
\(322\) 0 0
\(323\) 1.42384 + 2.46617i 0.0792247 + 0.137221i
\(324\) 0 0
\(325\) −0.168685 + 8.16698i −0.00935697 + 0.453023i
\(326\) 0 0
\(327\) −9.00092 + 13.9298i −0.497752 + 0.770322i
\(328\) 0 0
\(329\) −6.10994 −0.336852
\(330\) 0 0
\(331\) −6.53059 11.3113i −0.358954 0.621726i 0.628833 0.777541i \(-0.283533\pi\)
−0.987786 + 0.155815i \(0.950200\pi\)
\(332\) 0 0
\(333\) 3.02179 4.19939i 0.165593 0.230125i
\(334\) 0 0
\(335\) −20.6707 −1.12936
\(336\) 0 0
\(337\) 11.3051 + 19.5811i 0.615831 + 1.06665i 0.990238 + 0.139386i \(0.0445128\pi\)
−0.374408 + 0.927264i \(0.622154\pi\)
\(338\) 0 0
\(339\) 8.59570 13.3027i 0.466854 0.722505i
\(340\) 0 0
\(341\) −23.9703 41.5178i −1.29807 2.24831i
\(342\) 0 0
\(343\) 5.89970 0.318554
\(344\) 0 0
\(345\) −9.92445 + 15.3591i −0.534315 + 0.826906i
\(346\) 0 0
\(347\) −31.8798 −1.71140 −0.855699 0.517474i \(-0.826872\pi\)
−0.855699 + 0.517474i \(0.826872\pi\)
\(348\) 0 0
\(349\) −10.4134 −0.557417 −0.278708 0.960376i \(-0.589906\pi\)
−0.278708 + 0.960376i \(0.589906\pi\)
\(350\) 0 0
\(351\) 17.5815 6.47219i 0.938434 0.345460i
\(352\) 0 0
\(353\) −14.7249 −0.783726 −0.391863 0.920024i \(-0.628169\pi\)
−0.391863 + 0.920024i \(0.628169\pi\)
\(354\) 0 0
\(355\) −11.5801 −0.614606
\(356\) 0 0
\(357\) −6.48566 + 10.0372i −0.343257 + 0.531226i
\(358\) 0 0
\(359\) −9.70132 −0.512016 −0.256008 0.966675i \(-0.582407\pi\)
−0.256008 + 0.966675i \(0.582407\pi\)
\(360\) 0 0
\(361\) 8.45071 + 14.6371i 0.444774 + 0.770371i
\(362\) 0 0
\(363\) 13.2257 20.4681i 0.694169 1.07430i
\(364\) 0 0
\(365\) 1.84348 + 3.19301i 0.0964924 + 0.167130i
\(366\) 0 0
\(367\) −13.1111 −0.684392 −0.342196 0.939629i \(-0.611171\pi\)
−0.342196 + 0.939629i \(0.611171\pi\)
\(368\) 0 0
\(369\) −32.1161 3.22709i −1.67190 0.167995i
\(370\) 0 0
\(371\) −13.7373 23.7936i −0.713203 1.23530i
\(372\) 0 0
\(373\) −23.1660 −1.19949 −0.599744 0.800192i \(-0.704731\pi\)
−0.599744 + 0.800192i \(0.704731\pi\)
\(374\) 0 0
\(375\) 11.2938 17.4783i 0.583207 0.902573i
\(376\) 0 0
\(377\) −30.3605 + 16.7024i −1.56364 + 0.860216i
\(378\) 0 0
\(379\) 5.97448 + 10.3481i 0.306888 + 0.531546i 0.977680 0.210100i \(-0.0673789\pi\)
−0.670792 + 0.741646i \(0.734046\pi\)
\(380\) 0 0
\(381\) −17.0518 0.854545i −0.873589 0.0437796i
\(382\) 0 0
\(383\) 36.6071 1.87053 0.935267 0.353942i \(-0.115159\pi\)
0.935267 + 0.353942i \(0.115159\pi\)
\(384\) 0 0
\(385\) −14.5300 + 25.1667i −0.740516 + 1.28261i
\(386\) 0 0
\(387\) −21.4993 + 29.8777i −1.09287 + 1.51877i
\(388\) 0 0
\(389\) −2.76801 + 4.79433i −0.140344 + 0.243082i −0.927626 0.373510i \(-0.878154\pi\)
0.787282 + 0.616592i \(0.211487\pi\)
\(390\) 0 0
\(391\) −6.27534 10.8692i −0.317358 0.549680i
\(392\) 0 0
\(393\) −8.57501 0.429734i −0.432552 0.0216772i
\(394\) 0 0
\(395\) −28.0974 −1.41373
\(396\) 0 0
\(397\) 1.77564 3.07551i 0.0891171 0.154355i −0.818021 0.575188i \(-0.804929\pi\)
0.907138 + 0.420833i \(0.138262\pi\)
\(398\) 0 0
\(399\) 4.77958 7.39688i 0.239278 0.370307i
\(400\) 0 0
\(401\) −12.1807 + 21.0975i −0.608273 + 1.05356i 0.383252 + 0.923644i \(0.374804\pi\)
−0.991525 + 0.129916i \(0.958529\pi\)
\(402\) 0 0
\(403\) 29.5345 + 17.8749i 1.47122 + 0.890413i
\(404\) 0 0
\(405\) −14.5849 2.96093i −0.724730 0.147130i
\(406\) 0 0
\(407\) 4.31733 + 7.47783i 0.214002 + 0.370662i
\(408\) 0 0
\(409\) 11.2592 0.556732 0.278366 0.960475i \(-0.410207\pi\)
0.278366 + 0.960475i \(0.410207\pi\)
\(410\) 0 0
\(411\) −0.0212717 0.00106602i −0.00104925 5.25830e-5i
\(412\) 0 0
\(413\) 5.20926 + 9.02269i 0.256331 + 0.443978i
\(414\) 0 0
\(415\) −7.34959 −0.360777
\(416\) 0 0
\(417\) −0.985907 + 1.52579i −0.0482801 + 0.0747184i
\(418\) 0 0
\(419\) −19.2274 + 33.3028i −0.939319 + 1.62695i −0.172573 + 0.984997i \(0.555208\pi\)
−0.766746 + 0.641951i \(0.778125\pi\)
\(420\) 0 0
\(421\) 11.2699 19.5201i 0.549263 0.951351i −0.449063 0.893500i \(-0.648242\pi\)
0.998325 0.0578506i \(-0.0184247\pi\)
\(422\) 0 0
\(423\) 5.19622 + 0.522125i 0.252649 + 0.0253866i
\(424\) 0 0
\(425\) 2.22680 + 3.85693i 0.108016 + 0.187088i
\(426\) 0 0
\(427\) 8.38851 14.5293i 0.405949 0.703124i
\(428\) 0 0
\(429\) −2.20960 + 31.1903i −0.106680 + 1.50588i
\(430\) 0 0
\(431\) 5.97132 + 10.3426i 0.287629 + 0.498187i 0.973243 0.229777i \(-0.0737998\pi\)
−0.685615 + 0.727965i \(0.740466\pi\)
\(432\) 0 0
\(433\) 12.5066 21.6620i 0.601028 1.04101i −0.391638 0.920120i \(-0.628091\pi\)
0.992666 0.120892i \(-0.0385754\pi\)
\(434\) 0 0
\(435\) 27.4915 + 1.37773i 1.31811 + 0.0660569i
\(436\) 0 0
\(437\) 4.62459 + 8.01002i 0.221224 + 0.383171i
\(438\) 0 0
\(439\) −32.4232 −1.54747 −0.773737 0.633506i \(-0.781615\pi\)
−0.773737 + 0.633506i \(0.781615\pi\)
\(440\) 0 0
\(441\) 15.8774 + 1.59539i 0.756065 + 0.0759707i
\(442\) 0 0
\(443\) −6.55432 + 11.3524i −0.311405 + 0.539370i −0.978667 0.205454i \(-0.934133\pi\)
0.667262 + 0.744823i \(0.267466\pi\)
\(444\) 0 0
\(445\) 3.50583 6.07227i 0.166192 0.287853i
\(446\) 0 0
\(447\) −15.9384 + 24.6664i −0.753862 + 1.16668i
\(448\) 0 0
\(449\) 15.6886 27.1735i 0.740392 1.28240i −0.211925 0.977286i \(-0.567973\pi\)
0.952317 0.305111i \(-0.0986934\pi\)
\(450\) 0 0
\(451\) 26.9357 46.6539i 1.26835 2.19685i
\(452\) 0 0
\(453\) −6.51142 12.7074i −0.305933 0.597048i
\(454\) 0 0
\(455\) 0.432131 20.9218i 0.0202586 0.980831i
\(456\) 0 0
\(457\) 17.1056 0.800167 0.400083 0.916479i \(-0.368981\pi\)
0.400083 + 0.916479i \(0.368981\pi\)
\(458\) 0 0
\(459\) 6.37347 7.98195i 0.297488 0.372565i
\(460\) 0 0
\(461\) 16.5664 + 28.6939i 0.771575 + 1.33641i 0.936699 + 0.350135i \(0.113864\pi\)
−0.165124 + 0.986273i \(0.552802\pi\)
\(462\) 0 0
\(463\) 9.37793 + 16.2430i 0.435829 + 0.754878i 0.997363 0.0725756i \(-0.0231219\pi\)
−0.561534 + 0.827454i \(0.689789\pi\)
\(464\) 0 0
\(465\) −12.5058 24.4059i −0.579944 1.13180i
\(466\) 0 0
\(467\) 11.3134 0.523523 0.261762 0.965133i \(-0.415697\pi\)
0.261762 + 0.965133i \(0.415697\pi\)
\(468\) 0 0
\(469\) −43.8747 −2.02594
\(470\) 0 0
\(471\) 2.28517 + 0.114521i 0.105295 + 0.00527684i
\(472\) 0 0
\(473\) −30.7168 53.2030i −1.41236 2.44628i
\(474\) 0 0
\(475\) −1.64103 2.84235i −0.0752956 0.130416i
\(476\) 0 0
\(477\) 9.64960 + 21.4093i 0.441825 + 0.980263i
\(478\) 0 0
\(479\) −16.3832 −0.748565 −0.374283 0.927315i \(-0.622111\pi\)
−0.374283 + 0.927315i \(0.622111\pi\)
\(480\) 0 0
\(481\) −5.31950 3.21948i −0.242548 0.146796i
\(482\) 0 0
\(483\) −21.0652 + 32.6005i −0.958498 + 1.48337i
\(484\) 0 0
\(485\) 3.95049 6.84245i 0.179383 0.310700i
\(486\) 0 0
\(487\) −1.01175 + 1.75240i −0.0458467 + 0.0794089i −0.888038 0.459770i \(-0.847932\pi\)
0.842191 + 0.539179i \(0.181265\pi\)
\(488\) 0 0
\(489\) 7.32188 + 14.2891i 0.331107 + 0.646176i
\(490\) 0 0
\(491\) −6.85426 + 11.8719i −0.309328 + 0.535773i −0.978216 0.207591i \(-0.933438\pi\)
0.668887 + 0.743364i \(0.266771\pi\)
\(492\) 0 0
\(493\) −9.44602 + 16.3610i −0.425427 + 0.736861i
\(494\) 0 0
\(495\) 14.5077 20.1614i 0.652071 0.906187i
\(496\) 0 0
\(497\) −24.5793 −1.10253
\(498\) 0 0
\(499\) 2.76875 + 4.79561i 0.123946 + 0.214681i 0.921320 0.388804i \(-0.127112\pi\)
−0.797374 + 0.603485i \(0.793778\pi\)
\(500\) 0 0
\(501\) −7.90905 15.4350i −0.353350 0.689585i
\(502\) 0 0
\(503\) −5.37660 + 9.31254i −0.239731 + 0.415226i −0.960637 0.277807i \(-0.910392\pi\)
0.720906 + 0.693033i \(0.243726\pi\)
\(504\) 0 0
\(505\) 3.83957 + 6.65033i 0.170859 + 0.295936i
\(506\) 0 0
\(507\) −9.43201 20.4460i −0.418890 0.908037i
\(508\) 0 0
\(509\) 11.3748 19.7018i 0.504180 0.873265i −0.495808 0.868432i \(-0.665128\pi\)
0.999988 0.00483331i \(-0.00153850\pi\)
\(510\) 0 0
\(511\) 3.91289 + 6.77733i 0.173096 + 0.299811i
\(512\) 0 0
\(513\) −4.69690 + 5.88226i −0.207373 + 0.259708i
\(514\) 0 0
\(515\) 5.74671 9.95359i 0.253230 0.438607i
\(516\) 0 0
\(517\) −4.35804 + 7.54835i −0.191667 + 0.331976i
\(518\) 0 0
\(519\) −14.5458 0.728957i −0.638488 0.0319976i
\(520\) 0 0
\(521\) 36.8064 1.61252 0.806259 0.591563i \(-0.201489\pi\)
0.806259 + 0.591563i \(0.201489\pi\)
\(522\) 0 0
\(523\) −0.646458 1.11970i −0.0282677 0.0489610i 0.851546 0.524281i \(-0.175666\pi\)
−0.879813 + 0.475320i \(0.842332\pi\)
\(524\) 0 0
\(525\) 7.47495 11.5682i 0.326233 0.504880i
\(526\) 0 0
\(527\) 18.8217 0.819884
\(528\) 0 0
\(529\) −8.88207 15.3842i −0.386177 0.668878i
\(530\) 0 0
\(531\) −3.65919 8.11853i −0.158795 0.352314i
\(532\) 0 0
\(533\) −0.801084 + 38.7849i −0.0346988 + 1.67996i
\(534\) 0 0
\(535\) −6.70265 + 11.6093i −0.289781 + 0.501915i
\(536\) 0 0
\(537\) 14.2088 + 0.712068i 0.613154 + 0.0307280i
\(538\) 0 0
\(539\) −13.3163 + 23.0645i −0.573572 + 0.993456i
\(540\) 0 0
\(541\) −30.2710 −1.30145 −0.650725 0.759313i \(-0.725535\pi\)
−0.650725 + 0.759313i \(0.725535\pi\)
\(542\) 0 0
\(543\) 10.3099 15.9557i 0.442442 0.684724i
\(544\) 0 0
\(545\) −7.91684 13.7124i −0.339120 0.587374i
\(546\) 0 0
\(547\) −2.55758 + 4.42986i −0.109354 + 0.189407i −0.915509 0.402298i \(-0.868212\pi\)
0.806155 + 0.591705i \(0.201545\pi\)
\(548\) 0 0
\(549\) −8.37564 + 11.6397i −0.357464 + 0.496769i
\(550\) 0 0
\(551\) 6.96120 12.0572i 0.296557 0.513652i
\(552\) 0 0
\(553\) −59.6381 −2.53607
\(554\) 0 0
\(555\) 2.25244 + 4.39579i 0.0956109 + 0.186591i
\(556\) 0 0
\(557\) −0.372512 0.645209i −0.0157838 0.0273384i 0.858026 0.513607i \(-0.171691\pi\)
−0.873809 + 0.486269i \(0.838358\pi\)
\(558\) 0 0
\(559\) 37.8470 + 22.9058i 1.60076 + 0.968813i
\(560\) 0 0
\(561\) 7.77416 + 15.1718i 0.328225 + 0.640553i
\(562\) 0 0
\(563\) 32.0660 1.35142 0.675710 0.737168i \(-0.263837\pi\)
0.675710 + 0.737168i \(0.263837\pi\)
\(564\) 0 0
\(565\) 7.56043 + 13.0950i 0.318070 + 0.550913i
\(566\) 0 0
\(567\) −30.9572 6.28473i −1.30008 0.263934i
\(568\) 0 0
\(569\) 40.8474 1.71241 0.856206 0.516635i \(-0.172816\pi\)
0.856206 + 0.516635i \(0.172816\pi\)
\(570\) 0 0
\(571\) 0.269451 + 0.466702i 0.0112762 + 0.0195309i 0.871608 0.490203i \(-0.163077\pi\)
−0.860332 + 0.509734i \(0.829744\pi\)
\(572\) 0 0
\(573\) −2.51764 0.126171i −0.105176 0.00527086i
\(574\) 0 0
\(575\) 7.23255 + 12.5272i 0.301618 + 0.522418i
\(576\) 0 0
\(577\) 15.0441 0.626294 0.313147 0.949705i \(-0.398617\pi\)
0.313147 + 0.949705i \(0.398617\pi\)
\(578\) 0 0
\(579\) −8.15478 15.9146i −0.338901 0.661387i
\(580\) 0 0
\(581\) −15.5999 −0.647193
\(582\) 0 0
\(583\) −39.1935 −1.62323
\(584\) 0 0
\(585\) −2.15538 + 17.7561i −0.0891141 + 0.734125i
\(586\) 0 0
\(587\) −38.8994 −1.60555 −0.802776 0.596281i \(-0.796644\pi\)
−0.802776 + 0.596281i \(0.796644\pi\)
\(588\) 0 0
\(589\) −13.8705 −0.571526
\(590\) 0 0
\(591\) −17.5062 0.877319i −0.720109 0.0360881i
\(592\) 0 0
\(593\) 32.3325 1.32774 0.663868 0.747850i \(-0.268914\pi\)
0.663868 + 0.747850i \(0.268914\pi\)
\(594\) 0 0
\(595\) −5.70452 9.88052i −0.233863 0.405062i
\(596\) 0 0
\(597\) −5.42814 10.5934i −0.222159 0.433557i
\(598\) 0 0
\(599\) 6.65728 + 11.5307i 0.272009 + 0.471133i 0.969376 0.245581i \(-0.0789786\pi\)
−0.697367 + 0.716714i \(0.745645\pi\)
\(600\) 0 0
\(601\) 31.4231 1.28178 0.640888 0.767634i \(-0.278566\pi\)
0.640888 + 0.767634i \(0.278566\pi\)
\(602\) 0 0
\(603\) 37.3133 + 3.74931i 1.51952 + 0.152684i
\(604\) 0 0
\(605\) 11.6328 + 20.1486i 0.472940 + 0.819157i
\(606\) 0 0
\(607\) −24.1958 −0.982076 −0.491038 0.871138i \(-0.663382\pi\)
−0.491038 + 0.871138i \(0.663382\pi\)
\(608\) 0 0
\(609\) 58.3520 + 2.92429i 2.36454 + 0.118498i
\(610\) 0 0
\(611\) 0.129611 6.27519i 0.00524350 0.253867i
\(612\) 0 0
\(613\) −7.56923 13.1103i −0.305718 0.529520i 0.671703 0.740821i \(-0.265563\pi\)
−0.977421 + 0.211301i \(0.932230\pi\)
\(614\) 0 0
\(615\) 16.7244 25.8827i 0.674394 1.04369i
\(616\) 0 0
\(617\) −16.4824 −0.663556 −0.331778 0.943357i \(-0.607649\pi\)
−0.331778 + 0.943357i \(0.607649\pi\)
\(618\) 0 0
\(619\) 6.79563 11.7704i 0.273139 0.473091i −0.696525 0.717533i \(-0.745271\pi\)
0.969664 + 0.244442i \(0.0786046\pi\)
\(620\) 0 0
\(621\) 20.7008 25.9251i 0.830695 1.04034i
\(622\) 0 0
\(623\) 7.44130 12.8887i 0.298129 0.516375i
\(624\) 0 0
\(625\) 4.26955 + 7.39507i 0.170782 + 0.295803i
\(626\) 0 0
\(627\) −5.72913 11.1808i −0.228800 0.446517i
\(628\) 0 0
\(629\) −3.39000 −0.135168
\(630\) 0 0
\(631\) −5.94680 + 10.3002i −0.236738 + 0.410043i −0.959776 0.280765i \(-0.909412\pi\)
0.723038 + 0.690808i \(0.242745\pi\)
\(632\) 0 0
\(633\) 13.6704 + 26.6787i 0.543350 + 1.06038i
\(634\) 0 0
\(635\) 8.14995 14.1161i 0.323421 0.560182i
\(636\) 0 0
\(637\) 0.396034 19.1742i 0.0156915 0.759710i
\(638\) 0 0
\(639\) 20.9035 + 2.10042i 0.826931 + 0.0830915i
\(640\) 0 0
\(641\) −4.02473 6.97104i −0.158967 0.275340i 0.775529 0.631312i \(-0.217483\pi\)
−0.934497 + 0.355972i \(0.884150\pi\)
\(642\) 0 0
\(643\) −22.8273 −0.900220 −0.450110 0.892973i \(-0.648615\pi\)
−0.450110 + 0.892973i \(0.648615\pi\)
\(644\) 0 0
\(645\) −16.0256 31.2750i −0.631007 1.23145i
\(646\) 0 0
\(647\) 3.91414 + 6.77949i 0.153881 + 0.266529i 0.932651 0.360780i \(-0.117490\pi\)
−0.778770 + 0.627309i \(0.784156\pi\)
\(648\) 0 0
\(649\) 14.8624 0.583402
\(650\) 0 0
\(651\) −26.5443 51.8028i −1.04035 2.03031i
\(652\) 0 0
\(653\) −8.13086 + 14.0831i −0.318185 + 0.551113i −0.980109 0.198458i \(-0.936407\pi\)
0.661924 + 0.749571i \(0.269740\pi\)
\(654\) 0 0
\(655\) 4.09845 7.09873i 0.160140 0.277370i
\(656\) 0 0
\(657\) −2.74857 6.09817i −0.107232 0.237912i
\(658\) 0 0
\(659\) 13.6404 + 23.6259i 0.531355 + 0.920334i 0.999330 + 0.0365923i \(0.0116503\pi\)
−0.467975 + 0.883742i \(0.655016\pi\)
\(660\) 0 0
\(661\) −0.279409 + 0.483951i −0.0108678 + 0.0188235i −0.871408 0.490559i \(-0.836793\pi\)
0.860540 + 0.509382i \(0.170126\pi\)
\(662\) 0 0
\(663\) −10.1711 6.87398i −0.395012 0.266963i
\(664\) 0 0
\(665\) 4.20392 + 7.28141i 0.163021 + 0.282361i
\(666\) 0 0
\(667\) −30.6803 + 53.1398i −1.18795 + 2.05758i
\(668\) 0 0
\(669\) 21.2876 32.9447i 0.823025 1.27372i
\(670\) 0 0
\(671\) −11.9666 20.7267i −0.461964 0.800145i
\(672\) 0 0
\(673\) −17.1310 −0.660352 −0.330176 0.943919i \(-0.607108\pi\)
−0.330176 + 0.943919i \(0.607108\pi\)
\(674\) 0 0
\(675\) −7.34565 + 9.19948i −0.282734 + 0.354088i
\(676\) 0 0
\(677\) −21.0208 + 36.4091i −0.807896 + 1.39932i 0.106423 + 0.994321i \(0.466060\pi\)
−0.914319 + 0.404996i \(0.867273\pi\)
\(678\) 0 0
\(679\) 8.38512 14.5235i 0.321791 0.557359i
\(680\) 0 0
\(681\) −26.8408 1.34512i −1.02854 0.0515451i
\(682\) 0 0
\(683\) 10.4554 18.1093i 0.400065 0.692933i −0.593668 0.804710i \(-0.702321\pi\)
0.993733 + 0.111777i \(0.0356542\pi\)
\(684\) 0 0
\(685\) 0.0101669 0.0176095i 0.000388456 0.000672825i
\(686\) 0 0
\(687\) 11.5552 + 0.579084i 0.440857 + 0.0220934i
\(688\) 0 0
\(689\) 24.7285 13.6040i 0.942082 0.518273i
\(690\) 0 0
\(691\) 23.7611 0.903914 0.451957 0.892040i \(-0.350726\pi\)
0.451957 + 0.892040i \(0.350726\pi\)
\(692\) 0 0
\(693\) 30.7933 42.7936i 1.16974 1.62559i
\(694\) 0 0
\(695\) −0.867164 1.50197i −0.0328934 0.0569731i
\(696\) 0 0
\(697\) 10.5750 + 18.3165i 0.400558 + 0.693787i
\(698\) 0 0
\(699\) −14.1232 + 21.8571i −0.534189 + 0.826712i
\(700\) 0 0
\(701\) 30.8413 1.16486 0.582429 0.812881i \(-0.302102\pi\)
0.582429 + 0.812881i \(0.302102\pi\)
\(702\) 0 0
\(703\) 2.49824 0.0942231
\(704\) 0 0
\(705\) −2.70592 + 4.18769i −0.101911 + 0.157717i
\(706\) 0 0
\(707\) 8.14969 + 14.1157i 0.306501 + 0.530875i
\(708\) 0 0
\(709\) −5.50757 9.53938i −0.206841 0.358259i 0.743877 0.668317i \(-0.232985\pi\)
−0.950718 + 0.310058i \(0.899652\pi\)
\(710\) 0 0
\(711\) 50.7194 + 5.09637i 1.90213 + 0.191129i
\(712\) 0 0
\(713\) 61.1320 2.28941
\(714\) 0 0
\(715\) −25.5391 15.4568i −0.955107 0.578052i
\(716\) 0 0
\(717\) 14.7400 + 0.738689i 0.550474 + 0.0275868i
\(718\) 0 0
\(719\) −18.1480 + 31.4332i −0.676805 + 1.17226i 0.299133 + 0.954212i \(0.403303\pi\)
−0.975938 + 0.218049i \(0.930031\pi\)
\(720\) 0 0
\(721\) 12.1977 21.1270i 0.454265 0.786811i
\(722\) 0 0
\(723\) 31.7217 + 1.58972i 1.17974 + 0.0591225i
\(724\) 0 0
\(725\) 10.8869 18.8566i 0.404328 0.700317i
\(726\) 0 0
\(727\) 20.2911 35.1452i 0.752556 1.30346i −0.194025 0.980997i \(-0.562154\pi\)
0.946580 0.322468i \(-0.104512\pi\)
\(728\) 0 0
\(729\) 25.7906 + 7.99031i 0.955207 + 0.295937i
\(730\) 0 0
\(731\) 24.1190 0.892074
\(732\) 0 0
\(733\) 18.4885 + 32.0230i 0.682888 + 1.18280i 0.974095 + 0.226137i \(0.0726098\pi\)
−0.291207 + 0.956660i \(0.594057\pi\)
\(734\) 0 0
\(735\) −8.26810 + 12.7957i −0.304974 + 0.471978i
\(736\) 0 0
\(737\) −31.2945 + 54.2037i −1.15275 + 1.99662i
\(738\) 0 0
\(739\) 10.1289 + 17.5438i 0.372598 + 0.645359i 0.989964 0.141317i \(-0.0451337\pi\)
−0.617366 + 0.786676i \(0.711800\pi\)
\(740\) 0 0
\(741\) 7.49554 + 5.06575i 0.275356 + 0.186095i
\(742\) 0 0
\(743\) 22.1214 38.3154i 0.811555 1.40565i −0.100220 0.994965i \(-0.531955\pi\)
0.911775 0.410689i \(-0.134712\pi\)
\(744\) 0 0
\(745\) −14.0188 24.2813i −0.513609 0.889597i
\(746\) 0 0
\(747\) 13.2670 + 1.33309i 0.485413 + 0.0487752i
\(748\) 0 0
\(749\) −14.2267 + 24.6414i −0.519833 + 0.900378i
\(750\) 0 0
\(751\) 5.14141 8.90518i 0.187613 0.324955i −0.756841 0.653599i \(-0.773258\pi\)
0.944454 + 0.328644i \(0.106592\pi\)
\(752\) 0 0
\(753\) 9.13931 + 17.8359i 0.333055 + 0.649978i
\(754\) 0 0
\(755\) 13.6319 0.496115
\(756\) 0 0
\(757\) −1.24016 2.14801i −0.0450743 0.0780709i 0.842608 0.538527i \(-0.181019\pi\)
−0.887682 + 0.460456i \(0.847686\pi\)
\(758\) 0 0
\(759\) 25.2502 + 49.2773i 0.916523 + 1.78865i
\(760\) 0 0
\(761\) −16.1632 −0.585917 −0.292958 0.956125i \(-0.594640\pi\)
−0.292958 + 0.956125i \(0.594640\pi\)
\(762\) 0 0
\(763\) −16.8039 29.1052i −0.608342 1.05368i
\(764\) 0 0
\(765\) 4.00709 + 8.89040i 0.144877 + 0.321433i
\(766\) 0 0
\(767\) −9.37722 + 5.15874i −0.338592 + 0.186271i
\(768\) 0 0
\(769\) −6.67875 + 11.5679i −0.240842 + 0.417151i −0.960954 0.276707i \(-0.910757\pi\)
0.720112 + 0.693857i \(0.244090\pi\)
\(770\) 0 0
\(771\) 4.43043 + 8.64626i 0.159558 + 0.311387i
\(772\) 0 0
\(773\) −0.835057 + 1.44636i −0.0300349 + 0.0520220i −0.880652 0.473763i \(-0.842895\pi\)
0.850617 + 0.525785i \(0.176229\pi\)
\(774\) 0 0
\(775\) −21.6926 −0.779222
\(776\) 0 0
\(777\) 4.78093 + 9.33028i 0.171515 + 0.334722i
\(778\) 0 0
\(779\) −7.79323 13.4983i −0.279221 0.483626i
\(780\) 0 0
\(781\) −17.5317 + 30.3658i −0.627333 + 1.08657i
\(782\) 0 0
\(783\) −49.3758 7.47345i −1.76455 0.267079i
\(784\) 0 0
\(785\) −1.09221 + 1.89176i −0.0389825 + 0.0675197i
\(786\) 0 0
\(787\) 38.8003 1.38308 0.691540 0.722338i \(-0.256933\pi\)
0.691540 + 0.722338i \(0.256933\pi\)
\(788\) 0 0
\(789\) 20.9676 32.4495i 0.746467 1.15523i
\(790\) 0 0
\(791\) 16.0474 + 27.7949i 0.570580 + 0.988273i
\(792\) 0 0
\(793\) 14.7443 + 8.92359i 0.523587 + 0.316886i
\(794\) 0 0
\(795\) −22.3917 1.12215i −0.794153 0.0397987i
\(796\) 0 0
\(797\) −50.8826 −1.80235 −0.901177 0.433452i \(-0.857295\pi\)
−0.901177 + 0.433452i \(0.857295\pi\)
\(798\) 0 0
\(799\) −1.71098 2.96351i −0.0605302 0.104841i
\(800\) 0 0
\(801\) −7.42988 + 10.3253i −0.262522 + 0.364828i
\(802\) 0 0
\(803\) 11.1638 0.393962
\(804\) 0 0
\(805\) −18.5281 32.0916i −0.653029 1.13108i
\(806\) 0 0
\(807\) −10.2605 20.0239i −0.361185 0.704876i
\(808\) 0 0
\(809\) 4.23379 + 7.33314i 0.148852 + 0.257820i 0.930804 0.365520i \(-0.119109\pi\)
−0.781951 + 0.623340i \(0.785775\pi\)
\(810\) 0 0
\(811\) 4.41113 0.154896 0.0774479 0.996996i \(-0.475323\pi\)
0.0774479 + 0.996996i \(0.475323\pi\)
\(812\) 0 0
\(813\) −47.0230 2.35654i −1.64917 0.0826476i
\(814\) 0 0
\(815\) −15.3286 −0.536938
\(816\) 0 0
\(817\) −17.7744 −0.621848
\(818\) 0 0
\(819\) −4.57491 + 37.6883i −0.159860 + 1.31693i
\(820\) 0 0
\(821\) 23.6244 0.824498 0.412249 0.911071i \(-0.364743\pi\)
0.412249 + 0.911071i \(0.364743\pi\)
\(822\) 0 0
\(823\) −24.9167 −0.868543 −0.434271 0.900782i \(-0.642994\pi\)
−0.434271 + 0.900782i \(0.642994\pi\)
\(824\) 0 0
\(825\) −8.95999 17.4860i −0.311947 0.608784i
\(826\) 0 0
\(827\) 3.01028 0.104678 0.0523389 0.998629i \(-0.483332\pi\)
0.0523389 + 0.998629i \(0.483332\pi\)
\(828\) 0 0
\(829\) −3.60061 6.23644i −0.125054 0.216601i 0.796700 0.604375i \(-0.206577\pi\)
−0.921754 + 0.387775i \(0.873244\pi\)
\(830\) 0 0
\(831\) −0.382102 0.0191489i −0.0132550 0.000664268i
\(832\) 0 0
\(833\) −5.22801 9.05519i −0.181140 0.313744i
\(834\) 0 0
\(835\) 16.5579 0.573008
\(836\) 0 0
\(837\) 18.1478 + 46.3242i 0.627281 + 1.60120i
\(838\) 0 0
\(839\) 21.5124 + 37.2606i 0.742690 + 1.28638i 0.951266 + 0.308371i \(0.0997839\pi\)
−0.208576 + 0.978006i \(0.566883\pi\)
\(840\) 0 0
\(841\) 63.3636 2.18495
\(842\) 0 0
\(843\) −14.8966 29.0716i −0.513065 1.00128i
\(844\) 0 0
\(845\) 21.4785 + 0.887635i 0.738883 + 0.0305356i
\(846\) 0 0
\(847\) 24.6912 + 42.7664i 0.848400 + 1.46947i
\(848\) 0 0
\(849\) 1.16796 + 2.27935i 0.0400844 + 0.0782272i
\(850\) 0 0
\(851\) −11.0106 −0.377438
\(852\) 0 0
\(853\) −4.75065 + 8.22837i −0.162659 + 0.281734i −0.935822 0.352474i \(-0.885340\pi\)
0.773162 + 0.634208i \(0.218674\pi\)
\(854\) 0 0
\(855\) −2.95300 6.55174i −0.100991 0.224065i
\(856\) 0 0
\(857\) −12.3253 + 21.3480i −0.421024 + 0.729234i −0.996040 0.0889077i \(-0.971662\pi\)
0.575016 + 0.818142i \(0.304996\pi\)
\(858\) 0 0
\(859\) 4.10381 + 7.10801i 0.140020 + 0.242522i 0.927504 0.373813i \(-0.121950\pi\)
−0.787484 + 0.616335i \(0.788617\pi\)
\(860\) 0 0
\(861\) 35.4984 54.9375i 1.20978 1.87226i
\(862\) 0 0
\(863\) 16.3550 0.556731 0.278366 0.960475i \(-0.410207\pi\)
0.278366 + 0.960475i \(0.410207\pi\)
\(864\) 0 0
\(865\) 6.95220 12.0416i 0.236382 0.409425i
\(866\) 0 0
\(867\) 22.7234 + 1.13878i 0.771727 + 0.0386749i
\(868\) 0 0
\(869\) −42.5381 + 73.6782i −1.44301 + 2.49936i
\(870\) 0 0
\(871\) 0.930719 45.0612i 0.0315362 1.52684i
\(872\) 0 0
\(873\) −8.37225 + 11.6350i −0.283358 + 0.393784i
\(874\) 0 0
\(875\) 21.0844 + 36.5193i 0.712784 + 1.23458i
\(876\) 0 0
\(877\) −23.8414 −0.805068 −0.402534 0.915405i \(-0.631870\pi\)
−0.402534 + 0.915405i \(0.631870\pi\)
\(878\) 0 0
\(879\) 8.75727 13.5528i 0.295375 0.457124i
\(880\) 0 0
\(881\) −16.2280 28.1076i −0.546734 0.946971i −0.998496 0.0548320i \(-0.982538\pi\)
0.451762 0.892139i \(-0.350796\pi\)
\(882\) 0 0
\(883\) −46.3015 −1.55817 −0.779084 0.626920i \(-0.784315\pi\)
−0.779084 + 0.626920i \(0.784315\pi\)
\(884\) 0 0
\(885\) 8.49109 + 0.425528i 0.285425 + 0.0143040i
\(886\) 0 0
\(887\) 6.56726 11.3748i 0.220507 0.381929i −0.734455 0.678657i \(-0.762562\pi\)
0.954962 + 0.296728i \(0.0958955\pi\)
\(888\) 0 0
\(889\) 17.2987 29.9622i 0.580180 1.00490i
\(890\) 0 0
\(891\) −29.8452 + 33.7625i −0.999851 + 1.13109i
\(892\) 0 0
\(893\) 1.26090 + 2.18395i 0.0421945 + 0.0730830i
\(894\) 0 0
\(895\) −6.79113 + 11.7626i −0.227002 + 0.393180i
\(896\) 0 0
\(897\) −33.0353 22.3264i −1.10302 0.745458i
\(898\) 0 0
\(899\) −46.0098 79.6913i −1.53451 2.65785i
\(900\) 0 0
\(901\) 7.69376 13.3260i 0.256316 0.443953i
\(902\) 0 0
\(903\) −34.0151 66.3827i −1.13195 2.20908i
\(904\) 0 0
\(905\) 9.06820 + 15.7066i 0.301437 + 0.522105i
\(906\) 0 0
\(907\) −34.7907 −1.15521 −0.577603 0.816318i \(-0.696012\pi\)
−0.577603 + 0.816318i \(0.696012\pi\)
\(908\) 0 0
\(909\) −5.72467 12.7012i −0.189875 0.421271i
\(910\) 0 0
\(911\) −14.7500 + 25.5478i −0.488690 + 0.846435i −0.999915 0.0130113i \(-0.995858\pi\)
0.511226 + 0.859446i \(0.329192\pi\)
\(912\) 0 0
\(913\) −11.1269 + 19.2724i −0.368248 + 0.637824i
\(914\) 0 0
\(915\) −6.24321 12.1840i −0.206394 0.402791i
\(916\) 0 0
\(917\) 8.69918 15.0674i 0.287272 0.497570i
\(918\) 0 0
\(919\) −10.4757 + 18.1445i −0.345562 + 0.598530i −0.985456 0.169933i \(-0.945645\pi\)
0.639894 + 0.768463i \(0.278978\pi\)
\(920\) 0 0
\(921\) −3.13262 + 4.84805i −0.103223 + 0.159749i
\(922\) 0 0
\(923\) 0.521404 25.2440i 0.0171622 0.830918i
\(924\) 0 0
\(925\) 3.90709 0.128464
\(926\) 0 0
\(927\) −12.1790 + 16.9252i −0.400009 + 0.555895i
\(928\) 0 0
\(929\) −21.6851 37.5598i −0.711466 1.23230i −0.964307 0.264788i \(-0.914698\pi\)
0.252841 0.967508i \(-0.418635\pi\)
\(930\) 0 0
\(931\) 3.85276 + 6.67318i 0.126269 + 0.218705i
\(932\) 0 0
\(933\) 14.6681 + 0.735087i 0.480212 + 0.0240657i
\(934\) 0 0
\(935\) −16.2755 −0.532265
\(936\) 0 0
\(937\) −19.9060 −0.650300 −0.325150 0.945663i \(-0.605415\pi\)
−0.325150 + 0.945663i \(0.605415\pi\)
\(938\) 0 0
\(939\) −0.340550 0.664606i −0.0111134 0.0216886i
\(940\) 0 0
\(941\) 1.29883 + 2.24964i 0.0423407 + 0.0733362i 0.886419 0.462884i \(-0.153185\pi\)
−0.844078 + 0.536220i \(0.819852\pi\)
\(942\) 0 0
\(943\) 34.3473 + 59.4913i 1.11850 + 1.93730i
\(944\) 0 0
\(945\) 18.8178 23.5668i 0.612143 0.766630i
\(946\) 0 0
\(947\) −12.2640 −0.398527 −0.199263 0.979946i \(-0.563855\pi\)
−0.199263 + 0.979946i \(0.563855\pi\)
\(948\) 0 0
\(949\) −7.04362 + 3.87495i −0.228646 + 0.125786i
\(950\) 0 0
\(951\) −4.67549 9.12451i −0.151613 0.295883i
\(952\) 0 0
\(953\) 16.3572 28.3315i 0.529862 0.917747i −0.469532 0.882916i \(-0.655577\pi\)
0.999393 0.0348314i \(-0.0110894\pi\)
\(954\) 0 0
\(955\) 1.20331 2.08420i 0.0389383 0.0674432i
\(956\) 0 0
\(957\) 45.2335 70.0035i 1.46219 2.26289i
\(958\) 0 0
\(959\) 0.0215797 0.0373771i 0.000696844 0.00120697i
\(960\) 0 0
\(961\) −30.3384 + 52.5476i −0.978658 + 1.69508i
\(962\) 0 0
\(963\) 14.2049 19.7406i 0.457746 0.636132i
\(964\) 0 0
\(965\) 17.0723 0.549577
\(966\) 0 0
\(967\) −1.72209 2.98275i −0.0553787 0.0959187i 0.837007 0.547192i \(-0.184303\pi\)
−0.892386 + 0.451273i \(0.850970\pi\)
\(968\) 0 0
\(969\) 4.92615 + 0.246873i 0.158251 + 0.00793069i
\(970\) 0 0
\(971\) −26.3611 + 45.6588i −0.845969 + 1.46526i 0.0388082 + 0.999247i \(0.487644\pi\)
−0.884777 + 0.466014i \(0.845689\pi\)
\(972\) 0 0
\(973\) −1.84060 3.18801i −0.0590070 0.102203i
\(974\) 0 0
\(975\) 11.7225 + 7.92251i 0.375422 + 0.253723i
\(976\) 0 0
\(977\) 9.01116 15.6078i 0.288293 0.499337i −0.685110 0.728440i \(-0.740246\pi\)
0.973402 + 0.229103i \(0.0735791\pi\)
\(978\) 0 0
\(979\) −10.6153 18.3863i −0.339267 0.587628i
\(980\) 0 0
\(981\) 11.8037 + 26.1886i 0.376865 + 0.836138i
\(982\) 0 0
\(983\) 18.6651 32.3288i 0.595323 1.03113i −0.398178 0.917308i \(-0.630358\pi\)
0.993501 0.113821i \(-0.0363091\pi\)
\(984\) 0 0
\(985\) 8.36715 14.4923i 0.266600 0.461764i
\(986\) 0 0
\(987\) −5.74345 + 8.88858i −0.182816 + 0.282927i
\(988\) 0 0
\(989\) 78.3377 2.49099
\(990\) 0 0
\(991\) −11.9106 20.6298i −0.378353 0.655326i 0.612470 0.790494i \(-0.290176\pi\)
−0.990823 + 0.135168i \(0.956843\pi\)
\(992\) 0 0
\(993\) −22.5943 1.13231i −0.717008 0.0359326i
\(994\) 0 0
\(995\) 11.3640 0.360263
\(996\) 0 0
\(997\) −20.2639 35.0982i −0.641766 1.11157i −0.985038 0.172335i \(-0.944869\pi\)
0.343273 0.939236i \(-0.388464\pi\)
\(998\) 0 0
\(999\) −3.26863 8.34352i −0.103415 0.263977i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.j.a.133.10 28
3.2 odd 2 1404.2.j.a.289.5 28
9.4 even 3 468.2.k.a.445.1 yes 28
9.5 odd 6 1404.2.k.a.1225.5 28
13.9 even 3 468.2.k.a.61.1 yes 28
39.35 odd 6 1404.2.k.a.1153.5 28
117.22 even 3 inner 468.2.j.a.373.10 yes 28
117.113 odd 6 1404.2.j.a.685.5 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.10 28 1.1 even 1 trivial
468.2.j.a.373.10 yes 28 117.22 even 3 inner
468.2.k.a.61.1 yes 28 13.9 even 3
468.2.k.a.445.1 yes 28 9.4 even 3
1404.2.j.a.289.5 28 3.2 odd 2
1404.2.j.a.685.5 28 117.113 odd 6
1404.2.k.a.1153.5 28 39.35 odd 6
1404.2.k.a.1225.5 28 9.5 odd 6