Properties

Label 459.3.i.a.152.17
Level $459$
Weight $3$
Character 459.152
Analytic conductor $12.507$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(152,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.152"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.17
Character \(\chi\) \(=\) 459.152
Dual form 459.3.i.a.305.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.129772 - 0.0749237i) q^{2} +(-1.98877 + 3.44466i) q^{4} +(1.38111 - 2.39215i) q^{5} +(2.73699 - 1.58020i) q^{7} +1.19542i q^{8} -0.413911i q^{10} +(6.09900 + 10.5638i) q^{11} +(-8.45595 + 14.6461i) q^{13} +(0.236789 - 0.410131i) q^{14} +(-7.86553 - 13.6235i) q^{16} +(-4.71123 - 16.3341i) q^{17} +9.05723 q^{19} +(5.49342 + 9.51489i) q^{20} +(1.58296 + 0.913920i) q^{22} +(-10.2096 + 17.6835i) q^{23} +(8.68508 + 15.0430i) q^{25} +2.53421i q^{26} +12.5706i q^{28} +(-1.08463 - 1.87864i) q^{29} +(38.1700 + 22.0374i) q^{31} +(-6.18249 - 3.56946i) q^{32} +(-1.83520 - 1.76673i) q^{34} -8.72972i q^{35} +62.4071i q^{37} +(1.17537 - 0.678602i) q^{38} +(2.85961 + 1.65100i) q^{40} +(-31.2890 + 54.1941i) q^{41} +(-14.0734 - 24.3759i) q^{43} -48.5181 q^{44} +3.05976i q^{46} +(-37.6889 + 21.7597i) q^{47} +(-19.5059 + 33.7853i) q^{49} +(2.25415 + 1.30144i) q^{50} +(-33.6339 - 58.2557i) q^{52} +66.8350i q^{53} +33.6935 q^{55} +(1.88900 + 3.27184i) q^{56} +(-0.281509 - 0.162529i) q^{58} +(-68.5161 - 39.5578i) q^{59} +(65.5511 - 37.8459i) q^{61} +6.60451 q^{62} +61.8545 q^{64} +(23.3572 + 40.4558i) q^{65} +(-10.6797 + 18.4979i) q^{67} +(65.6351 + 16.2563i) q^{68} +(-0.654064 - 1.13287i) q^{70} +80.2879 q^{71} -23.7538i q^{73} +(4.67578 + 8.09868i) q^{74} +(-18.0128 + 31.1990i) q^{76} +(33.3858 + 19.2753i) q^{77} +(6.49716 - 3.75114i) q^{79} -43.4526 q^{80} +9.37714i q^{82} +(12.4098 - 7.16481i) q^{83} +(-45.5805 - 11.2893i) q^{85} +(-3.65266 - 2.10887i) q^{86} +(-12.6281 + 7.29084i) q^{88} -115.581i q^{89} +53.4484i q^{91} +(-40.6091 - 70.3370i) q^{92} +(-3.26063 + 5.64758i) q^{94} +(12.5090 - 21.6663i) q^{95} +(9.98636 - 5.76563i) q^{97} +5.84583i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 62 q^{4} - 2 q^{13} - 106 q^{16} - 32 q^{19} - 132 q^{25} - 27 q^{34} + 102 q^{38} + 58 q^{43} + 312 q^{47} + 152 q^{49} + 90 q^{50} + 70 q^{52} + 92 q^{55} + 258 q^{59} - 16 q^{64} + 82 q^{67}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.129772 0.0749237i 0.0648859 0.0374619i −0.467206 0.884148i \(-0.654739\pi\)
0.532092 + 0.846687i \(0.321406\pi\)
\(3\) 0 0
\(4\) −1.98877 + 3.44466i −0.497193 + 0.861164i
\(5\) 1.38111 2.39215i 0.276222 0.478430i −0.694221 0.719762i \(-0.744251\pi\)
0.970443 + 0.241332i \(0.0775842\pi\)
\(6\) 0 0
\(7\) 2.73699 1.58020i 0.390999 0.225743i −0.291594 0.956542i \(-0.594186\pi\)
0.682593 + 0.730799i \(0.260852\pi\)
\(8\) 1.19542i 0.149427i
\(9\) 0 0
\(10\) 0.413911i 0.0413911i
\(11\) 6.09900 + 10.5638i 0.554455 + 0.960344i 0.997946 + 0.0640648i \(0.0204064\pi\)
−0.443491 + 0.896279i \(0.646260\pi\)
\(12\) 0 0
\(13\) −8.45595 + 14.6461i −0.650458 + 1.12663i 0.332554 + 0.943084i \(0.392090\pi\)
−0.983012 + 0.183542i \(0.941244\pi\)
\(14\) 0.236789 0.410131i 0.0169135 0.0292951i
\(15\) 0 0
\(16\) −7.86553 13.6235i −0.491595 0.851468i
\(17\) −4.71123 16.3341i −0.277131 0.960832i
\(18\) 0 0
\(19\) 9.05723 0.476696 0.238348 0.971180i \(-0.423394\pi\)
0.238348 + 0.971180i \(0.423394\pi\)
\(20\) 5.49342 + 9.51489i 0.274671 + 0.475745i
\(21\) 0 0
\(22\) 1.58296 + 0.913920i 0.0719525 + 0.0415418i
\(23\) −10.2096 + 17.6835i −0.443895 + 0.768849i −0.997975 0.0636149i \(-0.979737\pi\)
0.554079 + 0.832464i \(0.313070\pi\)
\(24\) 0 0
\(25\) 8.68508 + 15.0430i 0.347403 + 0.601720i
\(26\) 2.53421i 0.0974695i
\(27\) 0 0
\(28\) 12.5706i 0.448952i
\(29\) −1.08463 1.87864i −0.0374011 0.0647807i 0.846719 0.532040i \(-0.178575\pi\)
−0.884120 + 0.467260i \(0.845241\pi\)
\(30\) 0 0
\(31\) 38.1700 + 22.0374i 1.23129 + 0.710885i 0.967299 0.253640i \(-0.0816278\pi\)
0.263991 + 0.964525i \(0.414961\pi\)
\(32\) −6.18249 3.56946i −0.193203 0.111546i
\(33\) 0 0
\(34\) −1.83520 1.76673i −0.0539765 0.0519626i
\(35\) 8.72972i 0.249421i
\(36\) 0 0
\(37\) 62.4071i 1.68668i 0.537381 + 0.843340i \(0.319414\pi\)
−0.537381 + 0.843340i \(0.680586\pi\)
\(38\) 1.17537 0.678602i 0.0309309 0.0178579i
\(39\) 0 0
\(40\) 2.85961 + 1.65100i 0.0714903 + 0.0412750i
\(41\) −31.2890 + 54.1941i −0.763145 + 1.32181i 0.178076 + 0.984017i \(0.443013\pi\)
−0.941222 + 0.337790i \(0.890321\pi\)
\(42\) 0 0
\(43\) −14.0734 24.3759i −0.327289 0.566881i 0.654684 0.755903i \(-0.272802\pi\)
−0.981973 + 0.189022i \(0.939468\pi\)
\(44\) −48.5181 −1.10268
\(45\) 0 0
\(46\) 3.05976i 0.0665166i
\(47\) −37.6889 + 21.7597i −0.801891 + 0.462972i −0.844132 0.536136i \(-0.819884\pi\)
0.0422410 + 0.999107i \(0.486550\pi\)
\(48\) 0 0
\(49\) −19.5059 + 33.7853i −0.398080 + 0.689495i
\(50\) 2.25415 + 1.30144i 0.0450831 + 0.0260287i
\(51\) 0 0
\(52\) −33.6339 58.2557i −0.646807 1.12030i
\(53\) 66.8350i 1.26104i 0.776174 + 0.630518i \(0.217158\pi\)
−0.776174 + 0.630518i \(0.782842\pi\)
\(54\) 0 0
\(55\) 33.6935 0.612610
\(56\) 1.88900 + 3.27184i 0.0337321 + 0.0584257i
\(57\) 0 0
\(58\) −0.281509 0.162529i −0.00485361 0.00280223i
\(59\) −68.5161 39.5578i −1.16129 0.670471i −0.209678 0.977771i \(-0.567241\pi\)
−0.951613 + 0.307299i \(0.900575\pi\)
\(60\) 0 0
\(61\) 65.5511 37.8459i 1.07461 0.620425i 0.145171 0.989407i \(-0.453627\pi\)
0.929437 + 0.368981i \(0.120293\pi\)
\(62\) 6.60451 0.106524
\(63\) 0 0
\(64\) 61.8545 0.966476
\(65\) 23.3572 + 40.4558i 0.359341 + 0.622397i
\(66\) 0 0
\(67\) −10.6797 + 18.4979i −0.159399 + 0.276087i −0.934652 0.355563i \(-0.884289\pi\)
0.775253 + 0.631651i \(0.217622\pi\)
\(68\) 65.6351 + 16.2563i 0.965222 + 0.239064i
\(69\) 0 0
\(70\) −0.654064 1.13287i −0.00934377 0.0161839i
\(71\) 80.2879 1.13082 0.565408 0.824811i \(-0.308719\pi\)
0.565408 + 0.824811i \(0.308719\pi\)
\(72\) 0 0
\(73\) 23.7538i 0.325394i −0.986676 0.162697i \(-0.947981\pi\)
0.986676 0.162697i \(-0.0520193\pi\)
\(74\) 4.67578 + 8.09868i 0.0631862 + 0.109442i
\(75\) 0 0
\(76\) −18.0128 + 31.1990i −0.237010 + 0.410514i
\(77\) 33.3858 + 19.2753i 0.433582 + 0.250329i
\(78\) 0 0
\(79\) 6.49716 3.75114i 0.0822426 0.0474828i −0.458315 0.888790i \(-0.651547\pi\)
0.540557 + 0.841307i \(0.318213\pi\)
\(80\) −43.4526 −0.543157
\(81\) 0 0
\(82\) 9.37714i 0.114355i
\(83\) 12.4098 7.16481i 0.149516 0.0863230i −0.423376 0.905954i \(-0.639155\pi\)
0.572892 + 0.819631i \(0.305822\pi\)
\(84\) 0 0
\(85\) −45.5805 11.2893i −0.536241 0.132815i
\(86\) −3.65266 2.10887i −0.0424728 0.0245217i
\(87\) 0 0
\(88\) −12.6281 + 7.29084i −0.143501 + 0.0828504i
\(89\) 115.581i 1.29867i −0.760504 0.649333i \(-0.775048\pi\)
0.760504 0.649333i \(-0.224952\pi\)
\(90\) 0 0
\(91\) 53.4484i 0.587346i
\(92\) −40.6091 70.3370i −0.441403 0.764533i
\(93\) 0 0
\(94\) −3.26063 + 5.64758i −0.0346876 + 0.0600807i
\(95\) 12.5090 21.6663i 0.131674 0.228066i
\(96\) 0 0
\(97\) 9.98636 5.76563i 0.102952 0.0594395i −0.447640 0.894214i \(-0.647735\pi\)
0.550592 + 0.834774i \(0.314402\pi\)
\(98\) 5.84583i 0.0596513i
\(99\) 0 0
\(100\) −69.0906 −0.690906
\(101\) 64.3415 37.1476i 0.637045 0.367798i −0.146431 0.989221i \(-0.546778\pi\)
0.783475 + 0.621423i \(0.213445\pi\)
\(102\) 0 0
\(103\) 4.63237 8.02349i 0.0449744 0.0778980i −0.842662 0.538443i \(-0.819013\pi\)
0.887636 + 0.460545i \(0.152346\pi\)
\(104\) −17.5082 10.1084i −0.168348 0.0971959i
\(105\) 0 0
\(106\) 5.00753 + 8.67329i 0.0472408 + 0.0818235i
\(107\) 45.5617 0.425811 0.212905 0.977073i \(-0.431707\pi\)
0.212905 + 0.977073i \(0.431707\pi\)
\(108\) 0 0
\(109\) 158.516i 1.45428i −0.686490 0.727140i \(-0.740849\pi\)
0.686490 0.727140i \(-0.259151\pi\)
\(110\) 4.37247 2.52445i 0.0397497 0.0229495i
\(111\) 0 0
\(112\) −43.0557 24.8582i −0.384426 0.221949i
\(113\) 27.6157 47.8318i 0.244387 0.423291i −0.717572 0.696484i \(-0.754747\pi\)
0.961959 + 0.273194i \(0.0880800\pi\)
\(114\) 0 0
\(115\) 28.2011 + 48.8458i 0.245227 + 0.424746i
\(116\) 8.62835 0.0743824
\(117\) 0 0
\(118\) −11.8553 −0.100468
\(119\) −38.7058 37.2617i −0.325259 0.313123i
\(120\) 0 0
\(121\) −13.8956 + 24.0679i −0.114840 + 0.198909i
\(122\) 5.67112 9.82267i 0.0464846 0.0805137i
\(123\) 0 0
\(124\) −151.823 + 87.6550i −1.22438 + 0.706895i
\(125\) 117.036 0.936285
\(126\) 0 0
\(127\) 164.891 1.29835 0.649176 0.760638i \(-0.275114\pi\)
0.649176 + 0.760638i \(0.275114\pi\)
\(128\) 32.7569 18.9122i 0.255913 0.147752i
\(129\) 0 0
\(130\) 6.06221 + 3.50002i 0.0466324 + 0.0269232i
\(131\) 0.0321956 0.0557644i 0.000245768 0.000425682i −0.865902 0.500213i \(-0.833255\pi\)
0.866148 + 0.499787i \(0.166588\pi\)
\(132\) 0 0
\(133\) 24.7896 14.3123i 0.186388 0.107611i
\(134\) 3.20066i 0.0238856i
\(135\) 0 0
\(136\) 19.5261 5.63188i 0.143574 0.0414109i
\(137\) −62.9889 + 36.3666i −0.459773 + 0.265450i −0.711949 0.702231i \(-0.752187\pi\)
0.252176 + 0.967681i \(0.418854\pi\)
\(138\) 0 0
\(139\) −21.6096 12.4763i −0.155465 0.0897578i 0.420249 0.907409i \(-0.361943\pi\)
−0.575714 + 0.817651i \(0.695276\pi\)
\(140\) 30.0709 + 17.3614i 0.214792 + 0.124010i
\(141\) 0 0
\(142\) 10.4191 6.01547i 0.0733740 0.0423625i
\(143\) −206.291 −1.44260
\(144\) 0 0
\(145\) −5.99198 −0.0413240
\(146\) −1.77972 3.08257i −0.0121899 0.0211135i
\(147\) 0 0
\(148\) −214.971 124.114i −1.45251 0.838606i
\(149\) −18.2046 10.5104i −0.122179 0.0705398i 0.437665 0.899138i \(-0.355806\pi\)
−0.559844 + 0.828598i \(0.689139\pi\)
\(150\) 0 0
\(151\) −121.688 210.770i −0.805882 1.39583i −0.915694 0.401877i \(-0.868358\pi\)
0.109811 0.993952i \(-0.464975\pi\)
\(152\) 10.8272i 0.0712313i
\(153\) 0 0
\(154\) 5.77671 0.0375111
\(155\) 105.434 60.8722i 0.680218 0.392724i
\(156\) 0 0
\(157\) −22.7702 + 39.4391i −0.145033 + 0.251205i −0.929385 0.369111i \(-0.879662\pi\)
0.784352 + 0.620316i \(0.212996\pi\)
\(158\) 0.562099 0.973584i 0.00355759 0.00616192i
\(159\) 0 0
\(160\) −17.0774 + 9.85963i −0.106734 + 0.0616227i
\(161\) 64.5328i 0.400825i
\(162\) 0 0
\(163\) 157.251i 0.964732i 0.875970 + 0.482366i \(0.160222\pi\)
−0.875970 + 0.482366i \(0.839778\pi\)
\(164\) −124.453 215.559i −0.758861 1.31439i
\(165\) 0 0
\(166\) 1.07363 1.85958i 0.00646764 0.0112023i
\(167\) 46.0342 79.7336i 0.275654 0.477447i −0.694646 0.719352i \(-0.744439\pi\)
0.970300 + 0.241905i \(0.0777722\pi\)
\(168\) 0 0
\(169\) −58.5063 101.336i −0.346191 0.599621i
\(170\) −6.76089 + 1.95003i −0.0397699 + 0.0114708i
\(171\) 0 0
\(172\) 111.955 0.650903
\(173\) 22.7265 + 39.3635i 0.131367 + 0.227535i 0.924204 0.381900i \(-0.124730\pi\)
−0.792837 + 0.609434i \(0.791397\pi\)
\(174\) 0 0
\(175\) 47.5419 + 27.4483i 0.271668 + 0.156848i
\(176\) 95.9437 166.179i 0.545135 0.944201i
\(177\) 0 0
\(178\) −8.65978 14.9992i −0.0486505 0.0842651i
\(179\) 294.556i 1.64556i 0.568357 + 0.822782i \(0.307579\pi\)
−0.568357 + 0.822782i \(0.692421\pi\)
\(180\) 0 0
\(181\) 279.929i 1.54657i −0.634058 0.773285i \(-0.718612\pi\)
0.634058 0.773285i \(-0.281388\pi\)
\(182\) 4.00456 + 6.93610i 0.0220031 + 0.0381104i
\(183\) 0 0
\(184\) −21.1392 12.2047i −0.114887 0.0663299i
\(185\) 149.287 + 86.1911i 0.806958 + 0.465898i
\(186\) 0 0
\(187\) 143.817 149.390i 0.769072 0.798879i
\(188\) 173.100i 0.920746i
\(189\) 0 0
\(190\) 3.74889i 0.0197310i
\(191\) −247.642 + 142.976i −1.29656 + 0.748567i −0.979808 0.199942i \(-0.935925\pi\)
−0.316749 + 0.948510i \(0.602591\pi\)
\(192\) 0 0
\(193\) 121.814 + 70.3291i 0.631159 + 0.364400i 0.781201 0.624280i \(-0.214608\pi\)
−0.150042 + 0.988680i \(0.547941\pi\)
\(194\) 0.863965 1.49643i 0.00445343 0.00771356i
\(195\) 0 0
\(196\) −77.5857 134.382i −0.395845 0.685624i
\(197\) 347.281 1.76285 0.881423 0.472327i \(-0.156586\pi\)
0.881423 + 0.472327i \(0.156586\pi\)
\(198\) 0 0
\(199\) 55.1047i 0.276908i −0.990369 0.138454i \(-0.955787\pi\)
0.990369 0.138454i \(-0.0442133\pi\)
\(200\) −17.9826 + 10.3823i −0.0899131 + 0.0519114i
\(201\) 0 0
\(202\) 5.56647 9.64141i 0.0275568 0.0477298i
\(203\) −5.93726 3.42788i −0.0292476 0.0168861i
\(204\) 0 0
\(205\) 86.4269 + 149.696i 0.421595 + 0.730223i
\(206\) 1.38830i 0.00673931i
\(207\) 0 0
\(208\) 266.042 1.27905
\(209\) 55.2401 + 95.6786i 0.264307 + 0.457792i
\(210\) 0 0
\(211\) −285.929 165.081i −1.35511 0.782374i −0.366152 0.930555i \(-0.619325\pi\)
−0.988960 + 0.148181i \(0.952658\pi\)
\(212\) −230.223 132.920i −1.08596 0.626979i
\(213\) 0 0
\(214\) 5.91263 3.41366i 0.0276291 0.0159517i
\(215\) −77.7477 −0.361617
\(216\) 0 0
\(217\) 139.294 0.641910
\(218\) −11.8766 20.5710i −0.0544800 0.0943622i
\(219\) 0 0
\(220\) −67.0088 + 116.063i −0.304585 + 0.527558i
\(221\) 279.070 + 69.1194i 1.26276 + 0.312757i
\(222\) 0 0
\(223\) −1.03255 1.78843i −0.00463026 0.00801984i 0.863701 0.504005i \(-0.168141\pi\)
−0.868331 + 0.495985i \(0.834807\pi\)
\(224\) −22.5619 −0.100723
\(225\) 0 0
\(226\) 8.27629i 0.0366208i
\(227\) 99.7577 + 172.785i 0.439461 + 0.761169i 0.997648 0.0685463i \(-0.0218361\pi\)
−0.558187 + 0.829715i \(0.688503\pi\)
\(228\) 0 0
\(229\) 69.4180 120.235i 0.303135 0.525046i −0.673709 0.738997i \(-0.735300\pi\)
0.976844 + 0.213951i \(0.0686332\pi\)
\(230\) 7.31941 + 4.22587i 0.0318235 + 0.0183733i
\(231\) 0 0
\(232\) 2.24575 1.29659i 0.00967997 0.00558873i
\(233\) −325.344 −1.39633 −0.698164 0.715938i \(-0.745999\pi\)
−0.698164 + 0.715938i \(0.745999\pi\)
\(234\) 0 0
\(235\) 120.210i 0.511532i
\(236\) 272.526 157.343i 1.15477 0.666708i
\(237\) 0 0
\(238\) −7.81471 1.93553i −0.0328349 0.00813247i
\(239\) −147.606 85.2204i −0.617598 0.356571i 0.158335 0.987385i \(-0.449387\pi\)
−0.775933 + 0.630815i \(0.782721\pi\)
\(240\) 0 0
\(241\) 20.3122 11.7272i 0.0842829 0.0486607i −0.457266 0.889330i \(-0.651171\pi\)
0.541549 + 0.840669i \(0.317838\pi\)
\(242\) 4.16445i 0.0172085i
\(243\) 0 0
\(244\) 301.068i 1.23389i
\(245\) 53.8796 + 93.3222i 0.219917 + 0.380907i
\(246\) 0 0
\(247\) −76.5875 + 132.654i −0.310071 + 0.537059i
\(248\) −26.3439 + 45.6290i −0.106225 + 0.183988i
\(249\) 0 0
\(250\) 15.1879 8.76875i 0.0607517 0.0350750i
\(251\) 335.935i 1.33839i −0.743088 0.669194i \(-0.766640\pi\)
0.743088 0.669194i \(-0.233360\pi\)
\(252\) 0 0
\(253\) −249.073 −0.984479
\(254\) 21.3982 12.3542i 0.0842447 0.0486387i
\(255\) 0 0
\(256\) −120.875 + 209.362i −0.472168 + 0.817819i
\(257\) 46.1536 + 26.6468i 0.179586 + 0.103684i 0.587098 0.809516i \(-0.300270\pi\)
−0.407512 + 0.913200i \(0.633604\pi\)
\(258\) 0 0
\(259\) 98.6159 + 170.808i 0.380756 + 0.659489i
\(260\) −185.809 −0.714648
\(261\) 0 0
\(262\) 0.00964885i 3.68277e-5i
\(263\) −43.3604 + 25.0342i −0.164869 + 0.0951869i −0.580164 0.814500i \(-0.697012\pi\)
0.415295 + 0.909687i \(0.363678\pi\)
\(264\) 0 0
\(265\) 159.879 + 92.3064i 0.603318 + 0.348326i
\(266\) 2.14466 3.71465i 0.00806261 0.0139649i
\(267\) 0 0
\(268\) −42.4792 73.5761i −0.158504 0.274538i
\(269\) 299.181 1.11220 0.556098 0.831117i \(-0.312298\pi\)
0.556098 + 0.831117i \(0.312298\pi\)
\(270\) 0 0
\(271\) −159.041 −0.586868 −0.293434 0.955979i \(-0.594798\pi\)
−0.293434 + 0.955979i \(0.594798\pi\)
\(272\) −185.472 + 192.660i −0.681881 + 0.708309i
\(273\) 0 0
\(274\) −5.44945 + 9.43873i −0.0198885 + 0.0344479i
\(275\) −105.941 + 183.494i −0.385238 + 0.667253i
\(276\) 0 0
\(277\) 175.498 101.324i 0.633567 0.365790i −0.148565 0.988903i \(-0.547465\pi\)
0.782132 + 0.623112i \(0.214132\pi\)
\(278\) −3.73909 −0.0134500
\(279\) 0 0
\(280\) 10.4356 0.0372702
\(281\) 368.933 213.003i 1.31293 0.758019i 0.330348 0.943859i \(-0.392834\pi\)
0.982580 + 0.185840i \(0.0595007\pi\)
\(282\) 0 0
\(283\) 402.896 + 232.612i 1.42366 + 0.821950i 0.996609 0.0822775i \(-0.0262194\pi\)
0.427050 + 0.904228i \(0.359553\pi\)
\(284\) −159.674 + 276.564i −0.562234 + 0.973818i
\(285\) 0 0
\(286\) −26.7708 + 15.4561i −0.0936042 + 0.0540424i
\(287\) 197.771i 0.689099i
\(288\) 0 0
\(289\) −244.609 + 153.908i −0.846396 + 0.532553i
\(290\) −0.777590 + 0.448942i −0.00268135 + 0.00154808i
\(291\) 0 0
\(292\) 81.8236 + 47.2409i 0.280218 + 0.161784i
\(293\) −302.277 174.519i −1.03166 0.595630i −0.114201 0.993458i \(-0.536431\pi\)
−0.917460 + 0.397828i \(0.869764\pi\)
\(294\) 0 0
\(295\) −189.257 + 109.267i −0.641548 + 0.370398i
\(296\) −74.6024 −0.252035
\(297\) 0 0
\(298\) −3.14992 −0.0105702
\(299\) −172.664 299.062i −0.577470 1.00021i
\(300\) 0 0
\(301\) −77.0376 44.4777i −0.255939 0.147766i
\(302\) −31.5834 18.2347i −0.104581 0.0603797i
\(303\) 0 0
\(304\) −71.2399 123.391i −0.234342 0.405892i
\(305\) 209.078i 0.685500i
\(306\) 0 0
\(307\) 171.450 0.558468 0.279234 0.960223i \(-0.409920\pi\)
0.279234 + 0.960223i \(0.409920\pi\)
\(308\) −132.794 + 76.6684i −0.431148 + 0.248923i
\(309\) 0 0
\(310\) 9.12155 15.7990i 0.0294244 0.0509645i
\(311\) −213.902 + 370.488i −0.687786 + 1.19128i 0.284766 + 0.958597i \(0.408084\pi\)
−0.972552 + 0.232684i \(0.925249\pi\)
\(312\) 0 0
\(313\) −303.815 + 175.407i −0.970654 + 0.560407i −0.899436 0.437053i \(-0.856022\pi\)
−0.0712184 + 0.997461i \(0.522689\pi\)
\(314\) 6.82412i 0.0217329i
\(315\) 0 0
\(316\) 29.8407i 0.0944324i
\(317\) 85.4313 + 147.971i 0.269499 + 0.466787i 0.968733 0.248107i \(-0.0798084\pi\)
−0.699233 + 0.714894i \(0.746475\pi\)
\(318\) 0 0
\(319\) 13.2304 22.9156i 0.0414745 0.0718359i
\(320\) 85.4278 147.965i 0.266962 0.462391i
\(321\) 0 0
\(322\) 4.83504 + 8.37454i 0.0150157 + 0.0260079i
\(323\) −42.6707 147.942i −0.132108 0.458025i
\(324\) 0 0
\(325\) −293.762 −0.903884
\(326\) 11.7819 + 20.4068i 0.0361407 + 0.0625975i
\(327\) 0 0
\(328\) −64.7844 37.4033i −0.197513 0.114034i
\(329\) −68.7694 + 119.112i −0.209025 + 0.362043i
\(330\) 0 0
\(331\) 277.160 + 480.056i 0.837343 + 1.45032i 0.892109 + 0.451821i \(0.149225\pi\)
−0.0547661 + 0.998499i \(0.517441\pi\)
\(332\) 56.9967i 0.171677i
\(333\) 0 0
\(334\) 13.7962i 0.0413061i
\(335\) 29.4998 + 51.0951i 0.0880590 + 0.152523i
\(336\) 0 0
\(337\) 475.857 + 274.736i 1.41204 + 0.815242i 0.995580 0.0939126i \(-0.0299374\pi\)
0.416460 + 0.909154i \(0.363271\pi\)
\(338\) −15.1849 8.76702i −0.0449258 0.0259379i
\(339\) 0 0
\(340\) 129.537 134.557i 0.380991 0.395757i
\(341\) 537.626i 1.57661i
\(342\) 0 0
\(343\) 278.153i 0.810942i
\(344\) 29.1393 16.8236i 0.0847072 0.0489057i
\(345\) 0 0
\(346\) 5.89852 + 3.40551i 0.0170477 + 0.00984252i
\(347\) −255.193 + 442.007i −0.735426 + 1.27380i 0.219110 + 0.975700i \(0.429685\pi\)
−0.954536 + 0.298095i \(0.903649\pi\)
\(348\) 0 0
\(349\) 69.4543 + 120.298i 0.199010 + 0.344695i 0.948208 0.317651i \(-0.102894\pi\)
−0.749198 + 0.662346i \(0.769561\pi\)
\(350\) 8.22613 0.0235032
\(351\) 0 0
\(352\) 87.0806i 0.247388i
\(353\) −257.287 + 148.545i −0.728859 + 0.420807i −0.818005 0.575212i \(-0.804920\pi\)
0.0891457 + 0.996019i \(0.471586\pi\)
\(354\) 0 0
\(355\) 110.886 192.061i 0.312356 0.541016i
\(356\) 398.138 + 229.865i 1.11836 + 0.645688i
\(357\) 0 0
\(358\) 22.0692 + 38.2250i 0.0616459 + 0.106774i
\(359\) 251.878i 0.701611i −0.936448 0.350805i \(-0.885908\pi\)
0.936448 0.350805i \(-0.114092\pi\)
\(360\) 0 0
\(361\) −278.967 −0.772760
\(362\) −20.9733 36.3269i −0.0579374 0.100351i
\(363\) 0 0
\(364\) −184.111 106.297i −0.505801 0.292024i
\(365\) −56.8226 32.8065i −0.155678 0.0898810i
\(366\) 0 0
\(367\) 409.800 236.598i 1.11662 0.644681i 0.176084 0.984375i \(-0.443657\pi\)
0.940536 + 0.339694i \(0.110324\pi\)
\(368\) 321.215 0.872867
\(369\) 0 0
\(370\) 25.8310 0.0698136
\(371\) 105.613 + 182.927i 0.284670 + 0.493064i
\(372\) 0 0
\(373\) 171.228 296.575i 0.459055 0.795107i −0.539856 0.841757i \(-0.681521\pi\)
0.998911 + 0.0466504i \(0.0148547\pi\)
\(374\) 7.47043 30.1619i 0.0199744 0.0806468i
\(375\) 0 0
\(376\) −26.0119 45.0538i −0.0691805 0.119824i
\(377\) 36.6864 0.0973115
\(378\) 0 0
\(379\) 144.860i 0.382216i −0.981569 0.191108i \(-0.938792\pi\)
0.981569 0.191108i \(-0.0612081\pi\)
\(380\) 49.7552 + 86.1786i 0.130935 + 0.226786i
\(381\) 0 0
\(382\) −21.4246 + 37.1086i −0.0560855 + 0.0971429i
\(383\) −188.695 108.943i −0.492677 0.284447i 0.233007 0.972475i \(-0.425143\pi\)
−0.725684 + 0.688028i \(0.758477\pi\)
\(384\) 0 0
\(385\) 92.2189 53.2426i 0.239530 0.138292i
\(386\) 21.0773 0.0546044
\(387\) 0 0
\(388\) 45.8661i 0.118212i
\(389\) −65.1167 + 37.5951i −0.167395 + 0.0966456i −0.581357 0.813649i \(-0.697478\pi\)
0.413962 + 0.910294i \(0.364145\pi\)
\(390\) 0 0
\(391\) 336.945 + 83.4537i 0.861752 + 0.213437i
\(392\) −40.3874 23.3177i −0.103029 0.0594839i
\(393\) 0 0
\(394\) 45.0672 26.0196i 0.114384 0.0660395i
\(395\) 20.7229i 0.0524631i
\(396\) 0 0
\(397\) 547.908i 1.38012i −0.723752 0.690060i \(-0.757584\pi\)
0.723752 0.690060i \(-0.242416\pi\)
\(398\) −4.12865 7.15104i −0.0103735 0.0179674i
\(399\) 0 0
\(400\) 136.625 236.642i 0.341563 0.591605i
\(401\) 352.711 610.913i 0.879577 1.52347i 0.0277720 0.999614i \(-0.491159\pi\)
0.851805 0.523858i \(-0.175508\pi\)
\(402\) 0 0
\(403\) −645.527 + 372.695i −1.60180 + 0.924802i
\(404\) 295.512i 0.731467i
\(405\) 0 0
\(406\) −1.02732 −0.00253034
\(407\) −659.255 + 380.621i −1.61979 + 0.935187i
\(408\) 0 0
\(409\) 281.335 487.286i 0.687860 1.19141i −0.284668 0.958626i \(-0.591883\pi\)
0.972529 0.232783i \(-0.0747832\pi\)
\(410\) 22.4315 + 12.9509i 0.0547111 + 0.0315875i
\(411\) 0 0
\(412\) 18.4255 + 31.9138i 0.0447220 + 0.0774607i
\(413\) −250.037 −0.605417
\(414\) 0 0
\(415\) 39.5815i 0.0953772i
\(416\) 104.558 60.3664i 0.251340 0.145111i
\(417\) 0 0
\(418\) 14.3372 + 8.27759i 0.0342995 + 0.0198028i
\(419\) 300.580 520.620i 0.717375 1.24253i −0.244662 0.969608i \(-0.578677\pi\)
0.962036 0.272921i \(-0.0879897\pi\)
\(420\) 0 0
\(421\) 167.946 + 290.891i 0.398921 + 0.690952i 0.993593 0.113017i \(-0.0360513\pi\)
−0.594672 + 0.803969i \(0.702718\pi\)
\(422\) −49.4739 −0.117237
\(423\) 0 0
\(424\) −79.8955 −0.188433
\(425\) 204.797 212.734i 0.481875 0.500551i
\(426\) 0 0
\(427\) 119.608 207.168i 0.280113 0.485171i
\(428\) −90.6120 + 156.945i −0.211710 + 0.366693i
\(429\) 0 0
\(430\) −10.0895 + 5.82515i −0.0234638 + 0.0135469i
\(431\) −260.303 −0.603952 −0.301976 0.953316i \(-0.597646\pi\)
−0.301976 + 0.953316i \(0.597646\pi\)
\(432\) 0 0
\(433\) −11.2018 −0.0258703 −0.0129351 0.999916i \(-0.504118\pi\)
−0.0129351 + 0.999916i \(0.504118\pi\)
\(434\) 18.0765 10.4365i 0.0416509 0.0240471i
\(435\) 0 0
\(436\) 546.035 + 315.253i 1.25237 + 0.723058i
\(437\) −92.4706 + 160.164i −0.211603 + 0.366508i
\(438\) 0 0
\(439\) −214.805 + 124.018i −0.489305 + 0.282500i −0.724286 0.689500i \(-0.757830\pi\)
0.234981 + 0.972000i \(0.424497\pi\)
\(440\) 40.2778i 0.0915404i
\(441\) 0 0
\(442\) 41.3941 11.9392i 0.0936518 0.0270118i
\(443\) 713.529 411.956i 1.61067 0.929923i 0.621461 0.783445i \(-0.286540\pi\)
0.989214 0.146478i \(-0.0467937\pi\)
\(444\) 0 0
\(445\) −276.488 159.630i −0.621321 0.358720i
\(446\) −0.267991 0.154725i −0.000600877 0.000346916i
\(447\) 0 0
\(448\) 169.295 97.7425i 0.377891 0.218175i
\(449\) −124.936 −0.278253 −0.139126 0.990275i \(-0.544429\pi\)
−0.139126 + 0.990275i \(0.544429\pi\)
\(450\) 0 0
\(451\) −763.325 −1.69252
\(452\) 109.843 + 190.253i 0.243015 + 0.420914i
\(453\) 0 0
\(454\) 25.8915 + 14.9484i 0.0570296 + 0.0329261i
\(455\) 127.857 + 73.8181i 0.281004 + 0.162238i
\(456\) 0 0
\(457\) 433.428 + 750.719i 0.948419 + 1.64271i 0.748756 + 0.662846i \(0.230651\pi\)
0.199663 + 0.979865i \(0.436015\pi\)
\(458\) 20.8042i 0.0454241i
\(459\) 0 0
\(460\) −224.342 −0.487701
\(461\) −251.349 + 145.116i −0.545225 + 0.314786i −0.747194 0.664606i \(-0.768599\pi\)
0.201969 + 0.979392i \(0.435266\pi\)
\(462\) 0 0
\(463\) 175.796 304.487i 0.379689 0.657640i −0.611328 0.791377i \(-0.709364\pi\)
0.991017 + 0.133737i \(0.0426978\pi\)
\(464\) −17.0624 + 29.5530i −0.0367724 + 0.0636917i
\(465\) 0 0
\(466\) −42.2205 + 24.3760i −0.0906019 + 0.0523090i
\(467\) 394.357i 0.844447i −0.906492 0.422224i \(-0.861250\pi\)
0.906492 0.422224i \(-0.138750\pi\)
\(468\) 0 0
\(469\) 67.5046i 0.143933i
\(470\) 9.00658 + 15.5999i 0.0191629 + 0.0331912i
\(471\) 0 0
\(472\) 47.2880 81.9052i 0.100186 0.173528i
\(473\) 171.668 297.337i 0.362933 0.628619i
\(474\) 0 0
\(475\) 78.6628 + 136.248i 0.165606 + 0.286838i
\(476\) 205.331 59.2232i 0.431367 0.124419i
\(477\) 0 0
\(478\) −25.5401 −0.0534312
\(479\) −172.631 299.005i −0.360398 0.624227i 0.627628 0.778513i \(-0.284026\pi\)
−0.988026 + 0.154286i \(0.950692\pi\)
\(480\) 0 0
\(481\) −914.024 527.712i −1.90026 1.09711i
\(482\) 1.75730 3.04373i 0.00364584 0.00631479i
\(483\) 0 0
\(484\) −55.2705 95.7313i −0.114195 0.197792i
\(485\) 31.8519i 0.0656739i
\(486\) 0 0
\(487\) 592.593i 1.21682i 0.793622 + 0.608412i \(0.208193\pi\)
−0.793622 + 0.608412i \(0.791807\pi\)
\(488\) 45.2416 + 78.3608i 0.0927082 + 0.160575i
\(489\) 0 0
\(490\) 13.9841 + 8.07373i 0.0285390 + 0.0164770i
\(491\) −107.710 62.1865i −0.219369 0.126653i 0.386289 0.922378i \(-0.373757\pi\)
−0.605658 + 0.795725i \(0.707090\pi\)
\(492\) 0 0
\(493\) −25.5760 + 26.5673i −0.0518783 + 0.0538890i
\(494\) 22.9529i 0.0464634i
\(495\) 0 0
\(496\) 693.344i 1.39787i
\(497\) 219.747 126.871i 0.442147 0.255274i
\(498\) 0 0
\(499\) −272.670 157.426i −0.546434 0.315484i 0.201249 0.979540i \(-0.435500\pi\)
−0.747682 + 0.664056i \(0.768833\pi\)
\(500\) −232.757 + 403.147i −0.465514 + 0.806295i
\(501\) 0 0
\(502\) −25.1695 43.5949i −0.0501385 0.0868425i
\(503\) −158.607 −0.315323 −0.157661 0.987493i \(-0.550395\pi\)
−0.157661 + 0.987493i \(0.550395\pi\)
\(504\) 0 0
\(505\) 205.220i 0.406375i
\(506\) −32.3227 + 18.6615i −0.0638788 + 0.0368804i
\(507\) 0 0
\(508\) −327.930 + 567.992i −0.645532 + 1.11809i
\(509\) 575.309 + 332.155i 1.13027 + 0.652563i 0.944003 0.329936i \(-0.107027\pi\)
0.186269 + 0.982499i \(0.440360\pi\)
\(510\) 0 0
\(511\) −37.5357 65.0138i −0.0734555 0.127229i
\(512\) 187.523i 0.366256i
\(513\) 0 0
\(514\) 7.98591 0.0155368
\(515\) −12.7956 22.1626i −0.0248458 0.0430343i
\(516\) 0 0
\(517\) −459.729 265.425i −0.889224 0.513394i
\(518\) 25.5951 + 14.7773i 0.0494114 + 0.0285277i
\(519\) 0 0
\(520\) −48.3615 + 27.9215i −0.0930029 + 0.0536953i
\(521\) 924.333 1.77415 0.887076 0.461624i \(-0.152733\pi\)
0.887076 + 0.461624i \(0.152733\pi\)
\(522\) 0 0
\(523\) −619.916 −1.18531 −0.592654 0.805457i \(-0.701920\pi\)
−0.592654 + 0.805457i \(0.701920\pi\)
\(524\) 0.128059 + 0.221805i 0.000244388 + 0.000423293i
\(525\) 0 0
\(526\) −3.75131 + 6.49745i −0.00713176 + 0.0123526i
\(527\) 180.135 727.297i 0.341813 1.38007i
\(528\) 0 0
\(529\) 56.0286 + 97.0444i 0.105914 + 0.183449i
\(530\) 27.6638 0.0521958
\(531\) 0 0
\(532\) 113.855i 0.214014i
\(533\) −529.156 916.525i −0.992788 1.71956i
\(534\) 0 0
\(535\) 62.9257 108.991i 0.117618 0.203721i
\(536\) −22.1126 12.7667i −0.0412549 0.0238185i
\(537\) 0 0
\(538\) 38.8252 22.4157i 0.0721658 0.0416649i
\(539\) −475.867 −0.882869
\(540\) 0 0
\(541\) 757.243i 1.39971i −0.714285 0.699855i \(-0.753248\pi\)
0.714285 0.699855i \(-0.246752\pi\)
\(542\) −20.6390 + 11.9160i −0.0380794 + 0.0219852i
\(543\) 0 0
\(544\) −29.1769 + 117.802i −0.0536341 + 0.216548i
\(545\) −379.195 218.928i −0.695771 0.401704i
\(546\) 0 0
\(547\) −670.522 + 387.126i −1.22582 + 0.707726i −0.966152 0.257972i \(-0.916946\pi\)
−0.259666 + 0.965699i \(0.583612\pi\)
\(548\) 289.300i 0.527920i
\(549\) 0 0
\(550\) 31.7499i 0.0577270i
\(551\) −9.82377 17.0153i −0.0178290 0.0308807i
\(552\) 0 0
\(553\) 11.8551 20.5337i 0.0214378 0.0371314i
\(554\) 15.1831 26.2979i 0.0274064 0.0474692i
\(555\) 0 0
\(556\) 85.9533 49.6252i 0.154592 0.0892539i
\(557\) 375.595i 0.674318i −0.941448 0.337159i \(-0.890534\pi\)
0.941448 0.337159i \(-0.109466\pi\)
\(558\) 0 0
\(559\) 476.017 0.851550
\(560\) −118.929 + 68.6639i −0.212374 + 0.122614i
\(561\) 0 0
\(562\) 31.9180 55.2836i 0.0567936 0.0983695i
\(563\) 267.021 + 154.165i 0.474283 + 0.273827i 0.718031 0.696011i \(-0.245044\pi\)
−0.243748 + 0.969839i \(0.578377\pi\)
\(564\) 0 0
\(565\) −76.2807 132.122i −0.135010 0.233844i
\(566\) 69.7126 0.123167
\(567\) 0 0
\(568\) 95.9774i 0.168974i
\(569\) −127.010 + 73.3291i −0.223216 + 0.128874i −0.607438 0.794367i \(-0.707803\pi\)
0.384223 + 0.923240i \(0.374469\pi\)
\(570\) 0 0
\(571\) 431.255 + 248.985i 0.755262 + 0.436051i 0.827592 0.561330i \(-0.189710\pi\)
−0.0723301 + 0.997381i \(0.523044\pi\)
\(572\) 410.267 710.603i 0.717250 1.24231i
\(573\) 0 0
\(574\) 14.8178 + 25.6651i 0.0258149 + 0.0447128i
\(575\) −354.684 −0.616842
\(576\) 0 0
\(577\) 442.364 0.766662 0.383331 0.923611i \(-0.374777\pi\)
0.383331 + 0.923611i \(0.374777\pi\)
\(578\) −20.2119 + 38.2999i −0.0349687 + 0.0662628i
\(579\) 0 0
\(580\) 11.9167 20.6403i 0.0205460 0.0355868i
\(581\) 22.6437 39.2200i 0.0389736 0.0675043i
\(582\) 0 0
\(583\) −706.030 + 407.626i −1.21103 + 0.699188i
\(584\) 28.3956 0.0486226
\(585\) 0 0
\(586\) −52.3026 −0.0892536
\(587\) 396.514 228.928i 0.675492 0.389996i −0.122662 0.992448i \(-0.539143\pi\)
0.798155 + 0.602453i \(0.205810\pi\)
\(588\) 0 0
\(589\) 345.714 + 199.598i 0.586951 + 0.338877i
\(590\) −16.3734 + 28.3596i −0.0277516 + 0.0480672i
\(591\) 0 0
\(592\) 850.203 490.865i 1.43615 0.829164i
\(593\) 578.833i 0.976109i 0.872813 + 0.488055i \(0.162293\pi\)
−0.872813 + 0.488055i \(0.837707\pi\)
\(594\) 0 0
\(595\) −142.593 + 41.1278i −0.239651 + 0.0691223i
\(596\) 72.4097 41.8057i 0.121493 0.0701439i
\(597\) 0 0
\(598\) −44.8137 25.8732i −0.0749393 0.0432662i
\(599\) 432.584 + 249.752i 0.722176 + 0.416949i 0.815553 0.578682i \(-0.196433\pi\)
−0.0933770 + 0.995631i \(0.529766\pi\)
\(600\) 0 0
\(601\) 720.962 416.247i 1.19960 0.692591i 0.239136 0.970986i \(-0.423136\pi\)
0.960467 + 0.278395i \(0.0898023\pi\)
\(602\) −13.3297 −0.0221424
\(603\) 0 0
\(604\) 968.041 1.60272
\(605\) 38.3828 + 66.4809i 0.0634426 + 0.109886i
\(606\) 0 0
\(607\) −945.923 546.129i −1.55836 0.899718i −0.997415 0.0718628i \(-0.977106\pi\)
−0.560942 0.827855i \(-0.689561\pi\)
\(608\) −55.9962 32.3294i −0.0920990 0.0531734i
\(609\) 0 0
\(610\) −15.6649 27.1324i −0.0256801 0.0444793i
\(611\) 735.995i 1.20458i
\(612\) 0 0
\(613\) 53.8085 0.0877790 0.0438895 0.999036i \(-0.486025\pi\)
0.0438895 + 0.999036i \(0.486025\pi\)
\(614\) 22.2493 12.8456i 0.0362367 0.0209212i
\(615\) 0 0
\(616\) −23.0420 + 39.9099i −0.0374058 + 0.0647888i
\(617\) −70.0923 + 121.403i −0.113602 + 0.196764i −0.917220 0.398381i \(-0.869572\pi\)
0.803618 + 0.595145i \(0.202905\pi\)
\(618\) 0 0
\(619\) −274.717 + 158.608i −0.443807 + 0.256232i −0.705211 0.708997i \(-0.749148\pi\)
0.261404 + 0.965230i \(0.415815\pi\)
\(620\) 484.244i 0.781039i
\(621\) 0 0
\(622\) 64.1052i 0.103063i
\(623\) −182.642 316.345i −0.293165 0.507776i
\(624\) 0 0
\(625\) −55.4880 + 96.1080i −0.0887807 + 0.153773i
\(626\) −26.2844 + 45.5259i −0.0419878 + 0.0727250i
\(627\) 0 0
\(628\) −90.5695 156.871i −0.144219 0.249795i
\(629\) 1019.37 294.015i 1.62062 0.467432i
\(630\) 0 0
\(631\) −152.848 −0.242232 −0.121116 0.992638i \(-0.538647\pi\)
−0.121116 + 0.992638i \(0.538647\pi\)
\(632\) 4.48417 + 7.76681i 0.00709520 + 0.0122893i
\(633\) 0 0
\(634\) 22.1731 + 12.8017i 0.0349734 + 0.0201919i
\(635\) 227.732 394.444i 0.358633 0.621171i
\(636\) 0 0
\(637\) −329.882 571.373i −0.517869 0.896975i
\(638\) 3.96507i 0.00621484i
\(639\) 0 0
\(640\) 104.479i 0.163249i
\(641\) 318.805 + 552.187i 0.497356 + 0.861447i 0.999995 0.00304989i \(-0.000970811\pi\)
−0.502639 + 0.864496i \(0.667637\pi\)
\(642\) 0 0
\(643\) 121.948 + 70.4067i 0.189655 + 0.109497i 0.591821 0.806069i \(-0.298409\pi\)
−0.402166 + 0.915567i \(0.631743\pi\)
\(644\) −222.293 128.341i −0.345176 0.199288i
\(645\) 0 0
\(646\) −16.6218 16.0017i −0.0257304 0.0247704i
\(647\) 997.613i 1.54191i 0.636892 + 0.770953i \(0.280220\pi\)
−0.636892 + 0.770953i \(0.719780\pi\)
\(648\) 0 0
\(649\) 965.053i 1.48698i
\(650\) −38.1221 + 22.0098i −0.0586493 + 0.0338612i
\(651\) 0 0
\(652\) −541.677 312.737i −0.830793 0.479658i
\(653\) −327.153 + 566.646i −0.501000 + 0.867758i 0.498999 + 0.866603i \(0.333701\pi\)
−0.999999 + 0.00115542i \(0.999632\pi\)
\(654\) 0 0
\(655\) −0.0889312 0.154033i −0.000135773 0.000235165i
\(656\) 984.416 1.50063
\(657\) 0 0
\(658\) 20.6098i 0.0313219i
\(659\) 63.6237 36.7332i 0.0965459 0.0557408i −0.450950 0.892549i \(-0.648915\pi\)
0.547496 + 0.836809i \(0.315581\pi\)
\(660\) 0 0
\(661\) 559.494 969.071i 0.846435 1.46607i −0.0379339 0.999280i \(-0.512078\pi\)
0.884369 0.466788i \(-0.154589\pi\)
\(662\) 71.9352 + 41.5318i 0.108663 + 0.0627368i
\(663\) 0 0
\(664\) 8.56492 + 14.8349i 0.0128990 + 0.0223417i
\(665\) 79.0671i 0.118898i
\(666\) 0 0
\(667\) 44.2946 0.0664087
\(668\) 183.103 + 317.144i 0.274107 + 0.474767i
\(669\) 0 0
\(670\) 7.65647 + 4.42047i 0.0114276 + 0.00659771i
\(671\) 799.592 + 461.645i 1.19164 + 0.687995i
\(672\) 0 0
\(673\) 505.859 292.058i 0.751648 0.433964i −0.0746413 0.997210i \(-0.523781\pi\)
0.826289 + 0.563246i \(0.190448\pi\)
\(674\) 82.3371 0.122162
\(675\) 0 0
\(676\) 465.423 0.688496
\(677\) −533.325 923.745i −0.787776 1.36447i −0.927326 0.374254i \(-0.877899\pi\)
0.139550 0.990215i \(-0.455434\pi\)
\(678\) 0 0
\(679\) 18.2217 31.5609i 0.0268361 0.0464815i
\(680\) 13.4953 54.4876i 0.0198461 0.0801288i
\(681\) 0 0
\(682\) 40.2809 + 69.7686i 0.0590629 + 0.102300i
\(683\) −1096.38 −1.60524 −0.802621 0.596489i \(-0.796562\pi\)
−0.802621 + 0.596489i \(0.796562\pi\)
\(684\) 0 0
\(685\) 200.905i 0.293292i
\(686\) 20.8403 + 36.0964i 0.0303794 + 0.0526186i
\(687\) 0 0
\(688\) −221.390 + 383.458i −0.321787 + 0.557352i
\(689\) −978.874 565.153i −1.42072 0.820252i
\(690\) 0 0
\(691\) 450.025 259.822i 0.651267 0.376009i −0.137675 0.990478i \(-0.543963\pi\)
0.788941 + 0.614468i \(0.210629\pi\)
\(692\) −180.792 −0.261259
\(693\) 0 0
\(694\) 76.4800i 0.110202i
\(695\) −59.6905 + 34.4623i −0.0858857 + 0.0495861i
\(696\) 0 0
\(697\) 1032.62 + 255.758i 1.48153 + 0.366941i
\(698\) 18.0264 + 10.4076i 0.0258258 + 0.0149105i
\(699\) 0 0
\(700\) −189.100 + 109.177i −0.270143 + 0.155967i
\(701\) 926.951i 1.32233i 0.750242 + 0.661163i \(0.229937\pi\)
−0.750242 + 0.661163i \(0.770063\pi\)
\(702\) 0 0
\(703\) 565.236i 0.804034i
\(704\) 377.250 + 653.417i 0.535867 + 0.928149i
\(705\) 0 0
\(706\) −22.2591 + 38.5538i −0.0315284 + 0.0546088i
\(707\) 117.401 203.345i 0.166056 0.287617i
\(708\) 0 0
\(709\) −865.153 + 499.496i −1.22024 + 0.704508i −0.964970 0.262361i \(-0.915499\pi\)
−0.255274 + 0.966869i \(0.582166\pi\)
\(710\) 33.2321i 0.0468058i
\(711\) 0 0
\(712\) 138.168 0.194056
\(713\) −779.400 + 449.987i −1.09313 + 0.631117i
\(714\) 0 0
\(715\) −284.911 + 493.480i −0.398477 + 0.690182i
\(716\) −1014.64 585.805i −1.41710 0.818163i
\(717\) 0 0
\(718\) −18.8717 32.6867i −0.0262836 0.0455246i
\(719\) −659.825 −0.917698 −0.458849 0.888514i \(-0.651738\pi\)
−0.458849 + 0.888514i \(0.651738\pi\)
\(720\) 0 0
\(721\) 29.2803i 0.0406107i
\(722\) −36.2020 + 20.9012i −0.0501412 + 0.0289491i
\(723\) 0 0
\(724\) 964.260 + 556.716i 1.33185 + 0.768944i
\(725\) 18.8402 32.6322i 0.0259865 0.0450100i
\(726\) 0 0
\(727\) −373.310 646.592i −0.513494 0.889398i −0.999877 0.0156524i \(-0.995017\pi\)
0.486383 0.873746i \(-0.338316\pi\)
\(728\) −63.8931 −0.0877652
\(729\) 0 0
\(730\) −9.83196 −0.0134684
\(731\) −331.856 + 344.718i −0.453975 + 0.471570i
\(732\) 0 0
\(733\) −333.459 + 577.568i −0.454924 + 0.787951i −0.998684 0.0512897i \(-0.983667\pi\)
0.543760 + 0.839241i \(0.317000\pi\)
\(734\) 35.4536 61.4074i 0.0483019 0.0836613i
\(735\) 0 0
\(736\) 126.241 72.8854i 0.171523 0.0990291i
\(737\) −260.543 −0.353518
\(738\) 0 0
\(739\) −1026.55 −1.38911 −0.694554 0.719440i \(-0.744398\pi\)
−0.694554 + 0.719440i \(0.744398\pi\)
\(740\) −593.797 + 342.829i −0.802429 + 0.463282i
\(741\) 0 0
\(742\) 27.4111 + 15.8258i 0.0369422 + 0.0213286i
\(743\) −609.448 + 1055.59i −0.820253 + 1.42072i 0.0852417 + 0.996360i \(0.472834\pi\)
−0.905494 + 0.424359i \(0.860500\pi\)
\(744\) 0 0
\(745\) −50.2851 + 29.0321i −0.0674968 + 0.0389693i
\(746\) 51.3161i 0.0687883i
\(747\) 0 0
\(748\) 228.580 + 792.502i 0.305588 + 1.05949i
\(749\) 124.702 71.9968i 0.166491 0.0961238i
\(750\) 0 0
\(751\) 84.1112 + 48.5616i 0.111999 + 0.0646626i 0.554953 0.831882i \(-0.312736\pi\)
−0.442954 + 0.896544i \(0.646070\pi\)
\(752\) 592.886 + 342.303i 0.788412 + 0.455190i
\(753\) 0 0
\(754\) 4.76086 2.74868i 0.00631414 0.00364547i
\(755\) −672.259 −0.890409
\(756\) 0 0
\(757\) −183.164 −0.241960 −0.120980 0.992655i \(-0.538604\pi\)
−0.120980 + 0.992655i \(0.538604\pi\)
\(758\) −10.8535 18.7987i −0.0143185 0.0248004i
\(759\) 0 0
\(760\) 25.9002 + 14.9535i 0.0340792 + 0.0196756i
\(761\) 926.306 + 534.803i 1.21722 + 0.702764i 0.964323 0.264729i \(-0.0852825\pi\)
0.252899 + 0.967493i \(0.418616\pi\)
\(762\) 0 0
\(763\) −250.488 433.858i −0.328293 0.568621i
\(764\) 1137.39i 1.48873i
\(765\) 0 0
\(766\) −32.6498 −0.0426237
\(767\) 1158.74 668.998i 1.51074 0.872227i
\(768\) 0 0
\(769\) −316.206 + 547.685i −0.411192 + 0.712205i −0.995020 0.0996721i \(-0.968221\pi\)
0.583829 + 0.811877i \(0.301554\pi\)
\(770\) 7.97827 13.8188i 0.0103614 0.0179465i
\(771\) 0 0
\(772\) −484.519 + 279.737i −0.627616 + 0.362354i
\(773\) 7.38633i 0.00955541i 0.999989 + 0.00477771i \(0.00152080\pi\)
−0.999989 + 0.00477771i \(0.998479\pi\)
\(774\) 0 0
\(775\) 765.588i 0.987855i
\(776\) 6.89232 + 11.9379i 0.00888186 + 0.0153838i
\(777\) 0 0
\(778\) −5.63353 + 9.75757i −0.00724105 + 0.0125419i
\(779\) −283.391 + 490.848i −0.363789 + 0.630100i
\(780\) 0 0
\(781\) 489.676 + 848.144i 0.626986 + 1.08597i
\(782\) 49.9786 14.4153i 0.0639113 0.0184338i
\(783\) 0 0
\(784\) 613.697 0.782777
\(785\) 62.8963 + 108.940i 0.0801226 + 0.138776i
\(786\) 0 0
\(787\) −363.589 209.918i −0.461994 0.266732i 0.250888 0.968016i \(-0.419277\pi\)
−0.712882 + 0.701284i \(0.752611\pi\)
\(788\) −690.663 + 1196.26i −0.876475 + 1.51810i
\(789\) 0 0
\(790\) −1.55264 2.68925i −0.00196537 0.00340411i
\(791\) 174.554i 0.220675i
\(792\) 0 0
\(793\) 1280.09i 1.61424i
\(794\) −41.0513 71.1029i −0.0517019 0.0895503i
\(795\) 0 0
\(796\) 189.817 + 109.591i 0.238463 + 0.137677i
\(797\) −1351.72 780.418i −1.69601 0.979194i −0.949470 0.313859i \(-0.898378\pi\)
−0.746545 0.665335i \(-0.768289\pi\)
\(798\) 0 0
\(799\) 532.987 + 513.101i 0.667067 + 0.642178i
\(800\) 124.004i 0.155005i
\(801\) 0 0
\(802\) 105.706i 0.131802i
\(803\) 250.930 144.874i 0.312490 0.180416i
\(804\) 0 0
\(805\) 154.372 + 89.1269i 0.191767 + 0.110717i
\(806\) −55.8475 + 96.7306i −0.0692896 + 0.120013i
\(807\) 0 0
\(808\) 44.4068 + 76.9148i 0.0549589 + 0.0951916i
\(809\) 474.700 0.586774 0.293387 0.955994i \(-0.405218\pi\)
0.293387 + 0.955994i \(0.405218\pi\)
\(810\) 0 0
\(811\) 291.146i 0.358997i −0.983758 0.179498i \(-0.942553\pi\)
0.983758 0.179498i \(-0.0574475\pi\)
\(812\) 23.6157 13.6345i 0.0290834 0.0167913i
\(813\) 0 0
\(814\) −57.0351 + 98.7878i −0.0700677 + 0.121361i
\(815\) 376.169 + 217.181i 0.461557 + 0.266480i
\(816\) 0 0
\(817\) −127.466 220.778i −0.156017 0.270230i
\(818\) 84.3147i 0.103074i
\(819\) 0 0
\(820\) −687.534 −0.838456
\(821\) −88.4256 153.158i −0.107705 0.186550i 0.807135 0.590367i \(-0.201017\pi\)
−0.914840 + 0.403816i \(0.867683\pi\)
\(822\) 0 0
\(823\) −38.5079 22.2325i −0.0467896 0.0270140i 0.476423 0.879216i \(-0.341933\pi\)
−0.523212 + 0.852202i \(0.675267\pi\)
\(824\) 9.59141 + 5.53760i 0.0116401 + 0.00672039i
\(825\) 0 0
\(826\) −32.4478 + 18.7337i −0.0392830 + 0.0226801i
\(827\) 900.292 1.08862 0.544312 0.838883i \(-0.316791\pi\)
0.544312 + 0.838883i \(0.316791\pi\)
\(828\) 0 0
\(829\) −537.393 −0.648242 −0.324121 0.946016i \(-0.605069\pi\)
−0.324121 + 0.946016i \(0.605069\pi\)
\(830\) −2.96560 5.13656i −0.00357301 0.00618863i
\(831\) 0 0
\(832\) −523.038 + 905.929i −0.628652 + 1.08886i
\(833\) 643.750 + 159.442i 0.772809 + 0.191407i
\(834\) 0 0
\(835\) −127.157 220.242i −0.152283 0.263763i
\(836\) −439.440 −0.525646
\(837\) 0 0
\(838\) 90.0823i 0.107497i
\(839\) 519.335 + 899.515i 0.618993 + 1.07213i 0.989670 + 0.143366i \(0.0457925\pi\)
−0.370677 + 0.928762i \(0.620874\pi\)
\(840\) 0 0
\(841\) 418.147 724.252i 0.497202 0.861180i
\(842\) 43.5893 + 25.1663i 0.0517687 + 0.0298887i
\(843\) 0 0
\(844\) 1137.29 656.617i 1.34750 0.777982i
\(845\) −323.214 −0.382502
\(846\) 0 0
\(847\) 87.8316i 0.103697i
\(848\) 910.526 525.692i 1.07373 0.619920i
\(849\) 0 0
\(850\) 10.6380 42.9511i 0.0125153 0.0505307i
\(851\) −1103.58 637.151i −1.29680 0.748709i
\(852\) 0 0
\(853\) 197.058 113.771i 0.231017 0.133378i −0.380024 0.924977i \(-0.624084\pi\)
0.611041 + 0.791599i \(0.290751\pi\)
\(854\) 35.8461i 0.0419743i
\(855\) 0 0
\(856\) 54.4652i 0.0636276i
\(857\) 467.534 + 809.793i 0.545547 + 0.944916i 0.998572 + 0.0534180i \(0.0170116\pi\)
−0.453025 + 0.891498i \(0.649655\pi\)
\(858\) 0 0
\(859\) −264.570 + 458.248i −0.307997 + 0.533467i −0.977924 0.208960i \(-0.932992\pi\)
0.669927 + 0.742427i \(0.266325\pi\)
\(860\) 154.622 267.814i 0.179794 0.311412i
\(861\) 0 0
\(862\) −33.7800 + 19.5029i −0.0391880 + 0.0226252i
\(863\) 271.514i 0.314616i −0.987550 0.157308i \(-0.949718\pi\)
0.987550 0.157308i \(-0.0502815\pi\)
\(864\) 0 0
\(865\) 125.551 0.145146
\(866\) −1.45368 + 0.839284i −0.00167862 + 0.000969150i
\(867\) 0 0
\(868\) −277.025 + 479.821i −0.319153 + 0.552790i
\(869\) 79.2524 + 45.7564i 0.0911995 + 0.0526541i
\(870\) 0 0
\(871\) −180.615 312.834i −0.207365 0.359166i
\(872\) 189.493 0.217308
\(873\) 0 0
\(874\) 27.7130i 0.0317082i
\(875\) 320.325 184.940i 0.366086 0.211360i
\(876\) 0 0
\(877\) −88.4609 51.0729i −0.100868 0.0582359i 0.448718 0.893674i \(-0.351881\pi\)
−0.549585 + 0.835438i \(0.685214\pi\)
\(878\) −18.5837 + 32.1880i −0.0211660 + 0.0366605i
\(879\) 0 0
\(880\) −265.017 459.024i −0.301156 0.521618i
\(881\) 1034.23 1.17392 0.586961 0.809615i \(-0.300324\pi\)
0.586961 + 0.809615i \(0.300324\pi\)
\(882\) 0 0
\(883\) 823.510 0.932628 0.466314 0.884619i \(-0.345582\pi\)
0.466314 + 0.884619i \(0.345582\pi\)
\(884\) −793.100 + 823.838i −0.897172 + 0.931943i
\(885\) 0 0
\(886\) 61.7306 106.921i 0.0696733 0.120678i
\(887\) −496.209 + 859.460i −0.559424 + 0.968952i 0.438120 + 0.898916i \(0.355644\pi\)
−0.997545 + 0.0700351i \(0.977689\pi\)
\(888\) 0 0
\(889\) 451.304 260.561i 0.507654 0.293094i
\(890\) −47.8404 −0.0537533
\(891\) 0 0
\(892\) 8.21401 0.00920853
\(893\) −341.357 + 197.082i −0.382259 + 0.220697i
\(894\) 0 0
\(895\) 704.622 + 406.814i 0.787288 + 0.454541i
\(896\) 59.7702 103.525i 0.0667078 0.115541i
\(897\) 0 0
\(898\) −16.2131 + 9.36064i −0.0180547 + 0.0104239i
\(899\) 95.6101i 0.106352i
\(900\) 0 0
\(901\) 1091.69 314.875i 1.21164 0.349473i
\(902\) −99.0581 + 57.1912i −0.109820 + 0.0634049i
\(903\) 0 0
\(904\) 57.1789 + 33.0123i 0.0632510 + 0.0365180i
\(905\) −669.633 386.613i −0.739926 0.427196i
\(906\) 0 0
\(907\) −67.6442 + 39.0544i −0.0745801 + 0.0430589i −0.536826 0.843693i \(-0.680377\pi\)
0.462246 + 0.886752i \(0.347044\pi\)
\(908\) −793.581 −0.873988
\(909\) 0 0
\(910\) 22.1229 0.0243109
\(911\) −442.812 766.974i −0.486073 0.841903i 0.513799 0.857911i \(-0.328238\pi\)
−0.999872 + 0.0160076i \(0.994904\pi\)
\(912\) 0 0
\(913\) 151.375 + 87.3963i 0.165799 + 0.0957244i
\(914\) 112.493 + 64.9480i 0.123078 + 0.0710591i
\(915\) 0 0
\(916\) 276.113 + 478.242i 0.301434 + 0.522098i
\(917\) 0.203502i 0.000221922i
\(918\) 0 0
\(919\) −11.6428 −0.0126690 −0.00633450 0.999980i \(-0.502016\pi\)
−0.00633450 + 0.999980i \(0.502016\pi\)
\(920\) −58.3910 + 33.7120i −0.0634684 + 0.0366435i
\(921\) 0 0
\(922\) −21.7453 + 37.6640i −0.0235849 + 0.0408503i
\(923\) −678.911 + 1175.91i −0.735548 + 1.27401i
\(924\) 0 0
\(925\) −938.790 + 542.011i −1.01491 + 0.585958i
\(926\) 52.6851i 0.0568954i
\(927\) 0 0
\(928\) 15.4862i 0.0166877i
\(929\) 207.366 + 359.168i 0.223214 + 0.386618i 0.955782 0.294076i \(-0.0950118\pi\)
−0.732568 + 0.680694i \(0.761678\pi\)
\(930\) 0 0
\(931\) −176.670 + 306.001i −0.189763 + 0.328680i
\(932\) 647.036 1120.70i 0.694244 1.20247i
\(933\) 0 0
\(934\) −29.5467 51.1764i −0.0316346 0.0547927i
\(935\) −158.738 550.355i −0.169773 0.588615i
\(936\) 0 0
\(937\) 434.596 0.463817 0.231908 0.972738i \(-0.425503\pi\)
0.231908 + 0.972738i \(0.425503\pi\)
\(938\) 5.05770 + 8.76019i 0.00539200 + 0.00933922i
\(939\) 0 0
\(940\) −414.082 239.070i −0.440513 0.254330i
\(941\) 762.435 1320.58i 0.810239 1.40337i −0.102458 0.994737i \(-0.532671\pi\)
0.912697 0.408637i \(-0.133996\pi\)
\(942\) 0 0
\(943\) −638.895 1106.60i −0.677513 1.17349i
\(944\) 1244.57i 1.31840i
\(945\) 0 0
\(946\) 51.4479i 0.0543847i
\(947\) −201.357 348.761i −0.212626 0.368280i 0.739909 0.672707i \(-0.234868\pi\)
−0.952536 + 0.304427i \(0.901535\pi\)
\(948\) 0 0
\(949\) 347.901 + 200.861i 0.366598 + 0.211655i
\(950\) 20.4164 + 11.7874i 0.0214910 + 0.0124078i
\(951\) 0 0
\(952\) 44.5432 46.2695i 0.0467891 0.0486025i
\(953\) 671.106i 0.704203i −0.935962 0.352102i \(-0.885467\pi\)
0.935962 0.352102i \(-0.114533\pi\)
\(954\) 0 0
\(955\) 789.864i 0.827082i
\(956\) 587.110 338.968i 0.614132 0.354569i
\(957\) 0 0
\(958\) −44.8051 25.8683i −0.0467695 0.0270024i
\(959\) −114.933 + 199.070i −0.119847 + 0.207581i
\(960\) 0 0
\(961\) 490.798 + 850.087i 0.510716 + 0.884586i
\(962\) −158.153 −0.164400
\(963\) 0 0
\(964\) 93.2912i 0.0967751i
\(965\) 336.476 194.264i 0.348680 0.201310i
\(966\) 0 0
\(967\) −409.830 + 709.846i −0.423816 + 0.734070i −0.996309 0.0858390i \(-0.972643\pi\)
0.572493 + 0.819909i \(0.305976\pi\)
\(968\) −28.7712 16.6110i −0.0297223 0.0171602i
\(969\) 0 0
\(970\) −2.38646 4.13347i −0.00246027 0.00426131i
\(971\) 877.715i 0.903929i 0.892036 + 0.451965i \(0.149277\pi\)
−0.892036 + 0.451965i \(0.850723\pi\)
\(972\) 0 0
\(973\) −78.8605 −0.0810488
\(974\) 44.3993 + 76.9018i 0.0455845 + 0.0789546i
\(975\) 0 0
\(976\) −1031.19 595.357i −1.05654 0.609996i
\(977\) 966.293 + 557.890i 0.989041 + 0.571023i 0.904988 0.425438i \(-0.139880\pi\)
0.0840537 + 0.996461i \(0.473213\pi\)
\(978\) 0 0
\(979\) 1220.98 704.930i 1.24717 0.720051i
\(980\) −428.617 −0.437365
\(981\) 0 0
\(982\) −18.6370 −0.0189786
\(983\) 546.561 + 946.671i 0.556013 + 0.963043i 0.997824 + 0.0659348i \(0.0210029\pi\)
−0.441811 + 0.897108i \(0.645664\pi\)
\(984\) 0 0
\(985\) 479.633 830.748i 0.486937 0.843399i
\(986\) −1.32852 + 5.36393i −0.00134739 + 0.00544009i
\(987\) 0 0
\(988\) −304.630 527.635i −0.308330 0.534044i
\(989\) 574.735 0.581128
\(990\) 0 0
\(991\) 672.370i 0.678477i −0.940700 0.339238i \(-0.889831\pi\)
0.940700 0.339238i \(-0.110169\pi\)
\(992\) −157.324 272.492i −0.158592 0.274690i
\(993\) 0 0
\(994\) 19.0113 32.9286i 0.0191261 0.0331273i
\(995\) −131.819 76.1056i −0.132481 0.0764881i
\(996\) 0 0
\(997\) 264.679 152.813i 0.265476 0.153272i −0.361354 0.932429i \(-0.617685\pi\)
0.626830 + 0.779156i \(0.284352\pi\)
\(998\) −47.1799 −0.0472744
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.i.a.152.17 68
3.2 odd 2 153.3.i.a.50.18 yes 68
9.2 odd 6 inner 459.3.i.a.305.18 68
9.7 even 3 153.3.i.a.101.17 yes 68
17.16 even 2 inner 459.3.i.a.152.18 68
51.50 odd 2 153.3.i.a.50.17 68
153.16 even 6 153.3.i.a.101.18 yes 68
153.101 odd 6 inner 459.3.i.a.305.17 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.17 68 51.50 odd 2
153.3.i.a.50.18 yes 68 3.2 odd 2
153.3.i.a.101.17 yes 68 9.7 even 3
153.3.i.a.101.18 yes 68 153.16 even 6
459.3.i.a.152.17 68 1.1 even 1 trivial
459.3.i.a.152.18 68 17.16 even 2 inner
459.3.i.a.305.17 68 153.101 odd 6 inner
459.3.i.a.305.18 68 9.2 odd 6 inner