Defining parameters
Level: | \( N \) | = | \( 459 = 3^{3} \cdot 17 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 15 \) | ||
Sturm bound: | \(46656\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(459))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16032 | 12442 | 3590 |
Cusp forms | 15072 | 11962 | 3110 |
Eisenstein series | 960 | 480 | 480 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(459))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
459.3.b | \(\chi_{459}(188, \cdot)\) | 459.3.b.a | 4 | 1 |
459.3.b.b | 4 | |||
459.3.b.c | 10 | |||
459.3.b.d | 12 | |||
459.3.b.e | 12 | |||
459.3.c | \(\chi_{459}(458, \cdot)\) | 459.3.c.a | 2 | 1 |
459.3.c.b | 2 | |||
459.3.c.c | 2 | |||
459.3.c.d | 2 | |||
459.3.c.e | 10 | |||
459.3.c.f | 10 | |||
459.3.c.g | 20 | |||
459.3.g | \(\chi_{459}(242, \cdot)\) | 459.3.g.a | 48 | 2 |
459.3.g.b | 48 | |||
459.3.i | \(\chi_{459}(152, \cdot)\) | 459.3.i.a | 68 | 2 |
459.3.j | \(\chi_{459}(35, \cdot)\) | 459.3.j.a | 64 | 2 |
459.3.k | \(\chi_{459}(26, \cdot)\) | n/a | 192 | 4 |
459.3.n | \(\chi_{459}(89, \cdot)\) | n/a | 136 | 4 |
459.3.q | \(\chi_{459}(28, \cdot)\) | n/a | 384 | 8 |
459.3.s | \(\chi_{459}(86, \cdot)\) | n/a | 576 | 6 |
459.3.t | \(\chi_{459}(50, \cdot)\) | n/a | 636 | 6 |
459.3.u | \(\chi_{459}(8, \cdot)\) | n/a | 272 | 8 |
459.3.w | \(\chi_{459}(38, \cdot)\) | n/a | 1272 | 12 |
459.3.z | \(\chi_{459}(10, \cdot)\) | n/a | 544 | 16 |
459.3.bb | \(\chi_{459}(2, \cdot)\) | n/a | 2544 | 24 |
459.3.bc | \(\chi_{459}(7, \cdot)\) | n/a | 5088 | 48 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(459))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(459)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(153))\)\(^{\oplus 2}\)