Properties

Label 459.3
Level 459
Weight 3
Dimension 11962
Nonzero newspaces 15
Sturm bound 46656
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 15 \)
Sturm bound: \(46656\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(459))\).

Total New Old
Modular forms 16032 12442 3590
Cusp forms 15072 11962 3110
Eisenstein series 960 480 480

Trace form

\( 11962 q - 58 q^{2} - 84 q^{3} - 86 q^{4} - 22 q^{5} - 60 q^{6} - 90 q^{7} - 46 q^{8} - 96 q^{9} - 118 q^{10} - 58 q^{11} - 66 q^{12} - 66 q^{13} - 22 q^{14} - 78 q^{15} - 86 q^{16} - 55 q^{17} - 318 q^{18}+ \cdots - 1122 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(459))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
459.3.b \(\chi_{459}(188, \cdot)\) 459.3.b.a 4 1
459.3.b.b 4
459.3.b.c 10
459.3.b.d 12
459.3.b.e 12
459.3.c \(\chi_{459}(458, \cdot)\) 459.3.c.a 2 1
459.3.c.b 2
459.3.c.c 2
459.3.c.d 2
459.3.c.e 10
459.3.c.f 10
459.3.c.g 20
459.3.g \(\chi_{459}(242, \cdot)\) 459.3.g.a 48 2
459.3.g.b 48
459.3.i \(\chi_{459}(152, \cdot)\) 459.3.i.a 68 2
459.3.j \(\chi_{459}(35, \cdot)\) 459.3.j.a 64 2
459.3.k \(\chi_{459}(26, \cdot)\) n/a 192 4
459.3.n \(\chi_{459}(89, \cdot)\) n/a 136 4
459.3.q \(\chi_{459}(28, \cdot)\) n/a 384 8
459.3.s \(\chi_{459}(86, \cdot)\) n/a 576 6
459.3.t \(\chi_{459}(50, \cdot)\) n/a 636 6
459.3.u \(\chi_{459}(8, \cdot)\) n/a 272 8
459.3.w \(\chi_{459}(38, \cdot)\) n/a 1272 12
459.3.z \(\chi_{459}(10, \cdot)\) n/a 544 16
459.3.bb \(\chi_{459}(2, \cdot)\) n/a 2544 24
459.3.bc \(\chi_{459}(7, \cdot)\) n/a 5088 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(459))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(459)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(153))\)\(^{\oplus 2}\)