Properties

Label 153.3.i.a.101.18
Level $153$
Weight $3$
Character 153.101
Analytic conductor $4.169$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(50,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.50"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.18
Character \(\chi\) \(=\) 153.101
Dual form 153.3.i.a.50.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.129772 - 0.0749237i) q^{2} +(1.81198 - 2.39097i) q^{3} +(-1.98877 - 3.44466i) q^{4} +(-1.38111 - 2.39215i) q^{5} +(-0.414284 + 0.174521i) q^{6} +(2.73699 + 1.58020i) q^{7} +1.19542i q^{8} +(-2.43349 - 8.66476i) q^{9} +0.413911i q^{10} +(-6.09900 + 10.5638i) q^{11} +(-11.8397 - 1.48653i) q^{12} +(-8.45595 - 14.6461i) q^{13} +(-0.236789 - 0.410131i) q^{14} +(-8.22210 - 1.03233i) q^{15} +(-7.86553 + 13.6235i) q^{16} +(4.71123 - 16.3341i) q^{17} +(-0.333398 + 1.30677i) q^{18} +9.05723 q^{19} +(-5.49342 + 9.51489i) q^{20} +(8.73757 - 3.68078i) q^{21} +(1.58296 - 0.913920i) q^{22} +(10.2096 + 17.6835i) q^{23} +(2.85820 + 2.16606i) q^{24} +(8.68508 - 15.0430i) q^{25} +2.53421i q^{26} +(-25.1266 - 9.88192i) q^{27} -12.5706i q^{28} +(1.08463 - 1.87864i) q^{29} +(0.989651 + 0.749997i) q^{30} +(38.1700 - 22.0374i) q^{31} +(6.18249 - 3.56946i) q^{32} +(14.2065 + 33.7238i) q^{33} +(-1.83520 + 1.76673i) q^{34} -8.72972i q^{35} +(-25.0075 + 25.6148i) q^{36} -62.4071i q^{37} +(-1.17537 - 0.678602i) q^{38} +(-50.3405 - 6.32050i) q^{39} +(2.85961 - 1.65100i) q^{40} +(31.2890 + 54.1941i) q^{41} +(-1.40967 - 0.176991i) q^{42} +(-14.0734 + 24.3759i) q^{43} +48.5181 q^{44} +(-17.3665 + 17.7883i) q^{45} -3.05976i q^{46} +(37.6889 + 21.7597i) q^{47} +(18.3212 + 43.4917i) q^{48} +(-19.5059 - 33.7853i) q^{49} +(-2.25415 + 1.30144i) q^{50} +(-30.5178 - 40.8615i) q^{51} +(-33.6339 + 58.2557i) q^{52} +66.8350i q^{53} +(2.52034 + 3.16498i) q^{54} +33.6935 q^{55} +(-1.88900 + 3.27184i) q^{56} +(16.4115 - 21.6556i) q^{57} +(-0.281509 + 0.162529i) q^{58} +(68.5161 - 39.5578i) q^{59} +(12.7959 + 30.3754i) q^{60} +(65.5511 + 37.8459i) q^{61} -6.60451 q^{62} +(7.03163 - 27.5608i) q^{63} +61.8545 q^{64} +(-23.3572 + 40.4558i) q^{65} +(0.683120 - 5.44080i) q^{66} +(-10.6797 - 18.4979i) q^{67} +(-65.6351 + 16.2563i) q^{68} +(60.7803 + 7.63127i) q^{69} +(-0.654064 + 1.13287i) q^{70} -80.2879 q^{71} +(10.3580 - 2.90903i) q^{72} +23.7538i q^{73} +(-4.67578 + 8.09868i) q^{74} +(-20.2302 - 48.0233i) q^{75} +(-18.0128 - 31.1990i) q^{76} +(-33.3858 + 19.2753i) q^{77} +(6.05922 + 4.59192i) q^{78} +(6.49716 + 3.75114i) q^{79} +43.4526 q^{80} +(-69.1562 + 42.1713i) q^{81} -9.37714i q^{82} +(-12.4098 - 7.16481i) q^{83} +(-30.0561 - 22.7777i) q^{84} +(-45.5805 + 11.2893i) q^{85} +(3.65266 - 2.10887i) q^{86} +(-2.52645 - 5.99737i) q^{87} +(-12.6281 - 7.29084i) q^{88} -115.581i q^{89} +(3.58644 - 1.00725i) q^{90} -53.4484i q^{91} +(40.6091 - 70.3370i) q^{92} +(16.4721 - 131.195i) q^{93} +(-3.26063 - 5.64758i) q^{94} +(-12.5090 - 21.6663i) q^{95} +(2.66803 - 21.2499i) q^{96} +(9.98636 + 5.76563i) q^{97} +5.84583i q^{98} +(106.375 + 27.1395i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 6 q^{2} + 62 q^{4} - 8 q^{9} - 2 q^{13} - 106 q^{16} - 2 q^{18} - 32 q^{19} - 28 q^{21} - 132 q^{25} + 180 q^{30} - 98 q^{33} - 27 q^{34} + 158 q^{36} - 102 q^{38} + 110 q^{42} + 58 q^{43} - 312 q^{47}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.129772 0.0749237i −0.0648859 0.0374619i 0.467206 0.884148i \(-0.345261\pi\)
−0.532092 + 0.846687i \(0.678594\pi\)
\(3\) 1.81198 2.39097i 0.603992 0.796991i
\(4\) −1.98877 3.44466i −0.497193 0.861164i
\(5\) −1.38111 2.39215i −0.276222 0.478430i 0.694221 0.719762i \(-0.255749\pi\)
−0.970443 + 0.241332i \(0.922416\pi\)
\(6\) −0.414284 + 0.174521i −0.0690473 + 0.0290868i
\(7\) 2.73699 + 1.58020i 0.390999 + 0.225743i 0.682593 0.730799i \(-0.260852\pi\)
−0.291594 + 0.956542i \(0.594186\pi\)
\(8\) 1.19542i 0.149427i
\(9\) −2.43349 8.66476i −0.270388 0.962751i
\(10\) 0.413911i 0.0413911i
\(11\) −6.09900 + 10.5638i −0.554455 + 0.960344i 0.443491 + 0.896279i \(0.353740\pi\)
−0.997946 + 0.0640648i \(0.979594\pi\)
\(12\) −11.8397 1.48653i −0.986640 0.123878i
\(13\) −8.45595 14.6461i −0.650458 1.12663i −0.983012 0.183542i \(-0.941244\pi\)
0.332554 0.943084i \(-0.392090\pi\)
\(14\) −0.236789 0.410131i −0.0169135 0.0292951i
\(15\) −8.22210 1.03233i −0.548140 0.0688217i
\(16\) −7.86553 + 13.6235i −0.491595 + 0.851468i
\(17\) 4.71123 16.3341i 0.277131 0.960832i
\(18\) −0.333398 + 1.30677i −0.0185221 + 0.0725982i
\(19\) 9.05723 0.476696 0.238348 0.971180i \(-0.423394\pi\)
0.238348 + 0.971180i \(0.423394\pi\)
\(20\) −5.49342 + 9.51489i −0.274671 + 0.475745i
\(21\) 8.73757 3.68078i 0.416075 0.175275i
\(22\) 1.58296 0.913920i 0.0719525 0.0415418i
\(23\) 10.2096 + 17.6835i 0.443895 + 0.768849i 0.997975 0.0636149i \(-0.0202629\pi\)
−0.554079 + 0.832464i \(0.686930\pi\)
\(24\) 2.85820 + 2.16606i 0.119092 + 0.0902526i
\(25\) 8.68508 15.0430i 0.347403 0.601720i
\(26\) 2.53421i 0.0974695i
\(27\) −25.1266 9.88192i −0.930616 0.365997i
\(28\) 12.5706i 0.448952i
\(29\) 1.08463 1.87864i 0.0374011 0.0647807i −0.846719 0.532040i \(-0.821425\pi\)
0.884120 + 0.467260i \(0.154759\pi\)
\(30\) 0.989651 + 0.749997i 0.0329884 + 0.0249999i
\(31\) 38.1700 22.0374i 1.23129 0.710885i 0.263991 0.964525i \(-0.414961\pi\)
0.967299 + 0.253640i \(0.0816278\pi\)
\(32\) 6.18249 3.56946i 0.193203 0.111546i
\(33\) 14.2065 + 33.7238i 0.430499 + 1.02193i
\(34\) −1.83520 + 1.76673i −0.0539765 + 0.0519626i
\(35\) 8.72972i 0.249421i
\(36\) −25.0075 + 25.6148i −0.694652 + 0.711522i
\(37\) 62.4071i 1.68668i −0.537381 0.843340i \(-0.680586\pi\)
0.537381 0.843340i \(-0.319414\pi\)
\(38\) −1.17537 0.678602i −0.0309309 0.0178579i
\(39\) −50.3405 6.32050i −1.29078 0.162064i
\(40\) 2.85961 1.65100i 0.0714903 0.0412750i
\(41\) 31.2890 + 54.1941i 0.763145 + 1.32181i 0.941222 + 0.337790i \(0.109679\pi\)
−0.178076 + 0.984017i \(0.556987\pi\)
\(42\) −1.40967 0.176991i −0.0335635 0.00421407i
\(43\) −14.0734 + 24.3759i −0.327289 + 0.566881i −0.981973 0.189022i \(-0.939468\pi\)
0.654684 + 0.755903i \(0.272802\pi\)
\(44\) 48.5181 1.10268
\(45\) −17.3665 + 17.7883i −0.385922 + 0.395295i
\(46\) 3.05976i 0.0665166i
\(47\) 37.6889 + 21.7597i 0.801891 + 0.462972i 0.844132 0.536136i \(-0.180116\pi\)
−0.0422410 + 0.999107i \(0.513450\pi\)
\(48\) 18.3212 + 43.4917i 0.381693 + 0.906077i
\(49\) −19.5059 33.7853i −0.398080 0.689495i
\(50\) −2.25415 + 1.30144i −0.0450831 + 0.0260287i
\(51\) −30.5178 40.8615i −0.598389 0.801206i
\(52\) −33.6339 + 58.2557i −0.646807 + 1.12030i
\(53\) 66.8350i 1.26104i 0.776174 + 0.630518i \(0.217158\pi\)
−0.776174 + 0.630518i \(0.782842\pi\)
\(54\) 2.52034 + 3.16498i 0.0466729 + 0.0586107i
\(55\) 33.6935 0.612610
\(56\) −1.88900 + 3.27184i −0.0337321 + 0.0584257i
\(57\) 16.4115 21.6556i 0.287921 0.379923i
\(58\) −0.281509 + 0.162529i −0.00485361 + 0.00280223i
\(59\) 68.5161 39.5578i 1.16129 0.670471i 0.209678 0.977771i \(-0.432759\pi\)
0.951613 + 0.307299i \(0.0994252\pi\)
\(60\) 12.7959 + 30.3754i 0.213265 + 0.506256i
\(61\) 65.5511 + 37.8459i 1.07461 + 0.620425i 0.929437 0.368981i \(-0.120293\pi\)
0.145171 + 0.989407i \(0.453627\pi\)
\(62\) −6.60451 −0.106524
\(63\) 7.03163 27.5608i 0.111613 0.437473i
\(64\) 61.8545 0.966476
\(65\) −23.3572 + 40.4558i −0.359341 + 0.622397i
\(66\) 0.683120 5.44080i 0.0103503 0.0824364i
\(67\) −10.6797 18.4979i −0.159399 0.276087i 0.775253 0.631651i \(-0.217622\pi\)
−0.934652 + 0.355563i \(0.884289\pi\)
\(68\) −65.6351 + 16.2563i −0.965222 + 0.239064i
\(69\) 60.7803 + 7.63127i 0.880874 + 0.110598i
\(70\) −0.654064 + 1.13287i −0.00934377 + 0.0161839i
\(71\) −80.2879 −1.13082 −0.565408 0.824811i \(-0.691281\pi\)
−0.565408 + 0.824811i \(0.691281\pi\)
\(72\) 10.3580 2.90903i 0.143861 0.0404033i
\(73\) 23.7538i 0.325394i 0.986676 + 0.162697i \(0.0520193\pi\)
−0.986676 + 0.162697i \(0.947981\pi\)
\(74\) −4.67578 + 8.09868i −0.0631862 + 0.109442i
\(75\) −20.2302 48.0233i −0.269736 0.640311i
\(76\) −18.0128 31.1990i −0.237010 0.410514i
\(77\) −33.3858 + 19.2753i −0.433582 + 0.250329i
\(78\) 6.05922 + 4.59192i 0.0776823 + 0.0588708i
\(79\) 6.49716 + 3.75114i 0.0822426 + 0.0474828i 0.540557 0.841307i \(-0.318213\pi\)
−0.458315 + 0.888790i \(0.651547\pi\)
\(80\) 43.4526 0.543157
\(81\) −69.1562 + 42.1713i −0.853781 + 0.520633i
\(82\) 9.37714i 0.114355i
\(83\) −12.4098 7.16481i −0.149516 0.0863230i 0.423376 0.905954i \(-0.360845\pi\)
−0.572892 + 0.819631i \(0.694178\pi\)
\(84\) −30.0561 22.7777i −0.357810 0.271163i
\(85\) −45.5805 + 11.2893i −0.536241 + 0.132815i
\(86\) 3.65266 2.10887i 0.0424728 0.0245217i
\(87\) −2.52645 5.99737i −0.0290396 0.0689353i
\(88\) −12.6281 7.29084i −0.143501 0.0828504i
\(89\) 115.581i 1.29867i −0.760504 0.649333i \(-0.775048\pi\)
0.760504 0.649333i \(-0.224952\pi\)
\(90\) 3.58644 1.00725i 0.0398494 0.0111917i
\(91\) 53.4484i 0.587346i
\(92\) 40.6091 70.3370i 0.441403 0.764533i
\(93\) 16.4721 131.195i 0.177120 1.41070i
\(94\) −3.26063 5.64758i −0.0346876 0.0600807i
\(95\) −12.5090 21.6663i −0.131674 0.228066i
\(96\) 2.66803 21.2499i 0.0277920 0.221353i
\(97\) 9.98636 + 5.76563i 0.102952 + 0.0594395i 0.550592 0.834774i \(-0.314402\pi\)
−0.447640 + 0.894214i \(0.647735\pi\)
\(98\) 5.84583i 0.0596513i
\(99\) 106.375 + 27.1395i 1.07449 + 0.274137i
\(100\) −69.0906 −0.690906
\(101\) −64.3415 37.1476i −0.637045 0.367798i 0.146431 0.989221i \(-0.453222\pi\)
−0.783475 + 0.621423i \(0.786555\pi\)
\(102\) 0.898858 + 7.58918i 0.00881233 + 0.0744037i
\(103\) 4.63237 + 8.02349i 0.0449744 + 0.0778980i 0.887636 0.460545i \(-0.152346\pi\)
−0.842662 + 0.538443i \(0.819013\pi\)
\(104\) 17.5082 10.1084i 0.168348 0.0971959i
\(105\) −20.8725 15.8180i −0.198786 0.150648i
\(106\) 5.00753 8.67329i 0.0472408 0.0818235i
\(107\) −45.5617 −0.425811 −0.212905 0.977073i \(-0.568293\pi\)
−0.212905 + 0.977073i \(0.568293\pi\)
\(108\) 15.9313 + 106.205i 0.147512 + 0.983384i
\(109\) 158.516i 1.45428i 0.686490 + 0.727140i \(0.259151\pi\)
−0.686490 + 0.727140i \(0.740849\pi\)
\(110\) −4.37247 2.52445i −0.0397497 0.0229495i
\(111\) −149.214 113.080i −1.34427 1.01874i
\(112\) −43.0557 + 24.8582i −0.384426 + 0.221949i
\(113\) −27.6157 47.8318i −0.244387 0.423291i 0.717572 0.696484i \(-0.245253\pi\)
−0.961959 + 0.273194i \(0.911920\pi\)
\(114\) −3.75226 + 1.58067i −0.0329146 + 0.0138656i
\(115\) 28.2011 48.8458i 0.245227 0.424746i
\(116\) −8.62835 −0.0743824
\(117\) −106.328 + 108.910i −0.908785 + 0.930856i
\(118\) −11.8553 −0.100468
\(119\) 38.7058 37.2617i 0.325259 0.313123i
\(120\) 1.23406 9.82882i 0.0102838 0.0819069i
\(121\) −13.8956 24.0679i −0.114840 0.198909i
\(122\) −5.67112 9.82267i −0.0464846 0.0805137i
\(123\) 186.271 + 23.3873i 1.51440 + 0.190140i
\(124\) −151.823 87.6550i −1.22438 0.706895i
\(125\) −117.036 −0.936285
\(126\) −2.97746 + 3.04977i −0.0236307 + 0.0242046i
\(127\) 164.891 1.29835 0.649176 0.760638i \(-0.275114\pi\)
0.649176 + 0.760638i \(0.275114\pi\)
\(128\) −32.7569 18.9122i −0.255913 0.147752i
\(129\) 32.7813 + 77.8176i 0.254119 + 0.603237i
\(130\) 6.06221 3.50002i 0.0466324 0.0269232i
\(131\) −0.0321956 0.0557644i −0.000245768 0.000425682i 0.865902 0.500213i \(-0.166745\pi\)
−0.866148 + 0.499787i \(0.833412\pi\)
\(132\) 87.9136 116.005i 0.666012 0.878829i
\(133\) 24.7896 + 14.3123i 0.186388 + 0.107611i
\(134\) 3.20066i 0.0238856i
\(135\) 11.0636 + 73.7547i 0.0819524 + 0.546331i
\(136\) 19.5261 + 5.63188i 0.143574 + 0.0414109i
\(137\) 62.9889 + 36.3666i 0.459773 + 0.265450i 0.711949 0.702231i \(-0.247813\pi\)
−0.252176 + 0.967681i \(0.581146\pi\)
\(138\) −7.31581 5.54421i −0.0530131 0.0401755i
\(139\) −21.6096 + 12.4763i −0.155465 + 0.0897578i −0.575714 0.817651i \(-0.695276\pi\)
0.420249 + 0.907409i \(0.361943\pi\)
\(140\) −30.0709 + 17.3614i −0.214792 + 0.124010i
\(141\) 120.318 50.6850i 0.853320 0.359468i
\(142\) 10.4191 + 6.01547i 0.0733740 + 0.0423625i
\(143\) 206.291 1.44260
\(144\) 137.185 + 35.0003i 0.952674 + 0.243057i
\(145\) −5.99198 −0.0413240
\(146\) 1.77972 3.08257i 0.0121899 0.0211135i
\(147\) −116.124 14.5799i −0.789958 0.0991831i
\(148\) −214.971 + 124.114i −1.45251 + 0.838606i
\(149\) 18.2046 10.5104i 0.122179 0.0705398i −0.437665 0.899138i \(-0.644194\pi\)
0.559844 + 0.828598i \(0.310861\pi\)
\(150\) −0.972773 + 7.74779i −0.00648516 + 0.0516519i
\(151\) −121.688 + 210.770i −0.805882 + 1.39583i 0.109811 + 0.993952i \(0.464975\pi\)
−0.915694 + 0.401877i \(0.868358\pi\)
\(152\) 10.8272i 0.0712313i
\(153\) −152.996 1.07269i −0.999975 0.00701102i
\(154\) 5.77671 0.0375111
\(155\) −105.434 60.8722i −0.680218 0.392724i
\(156\) 78.3439 + 185.976i 0.502204 + 1.19215i
\(157\) −22.7702 39.4391i −0.145033 0.251205i 0.784352 0.620316i \(-0.212996\pi\)
−0.929385 + 0.369111i \(0.879662\pi\)
\(158\) −0.562099 0.973584i −0.00355759 0.00616192i
\(159\) 159.801 + 121.103i 1.00503 + 0.761656i
\(160\) −17.0774 9.85963i −0.106734 0.0616227i
\(161\) 64.5328i 0.400825i
\(162\) 12.1342 0.291196i 0.0749022 0.00179750i
\(163\) 157.251i 0.964732i −0.875970 0.482366i \(-0.839778\pi\)
0.875970 0.482366i \(-0.160222\pi\)
\(164\) 124.453 215.559i 0.758861 1.31439i
\(165\) 61.0519 80.5603i 0.370011 0.488244i
\(166\) 1.07363 + 1.85958i 0.00646764 + 0.0112023i
\(167\) −46.0342 79.7336i −0.275654 0.477447i 0.694646 0.719352i \(-0.255561\pi\)
−0.970300 + 0.241905i \(0.922228\pi\)
\(168\) 4.40006 + 10.4450i 0.0261908 + 0.0621728i
\(169\) −58.5063 + 101.336i −0.346191 + 0.599621i
\(170\) 6.76089 + 1.95003i 0.0397699 + 0.0114708i
\(171\) −22.0407 78.4788i −0.128893 0.458940i
\(172\) 111.955 0.650903
\(173\) −22.7265 + 39.3635i −0.131367 + 0.227535i −0.924204 0.381900i \(-0.875270\pi\)
0.792837 + 0.609434i \(0.208603\pi\)
\(174\) −0.121484 + 0.967580i −0.000698187 + 0.00556081i
\(175\) 47.5419 27.4483i 0.271668 0.156848i
\(176\) −95.9437 166.179i −0.545135 0.944201i
\(177\) 29.5679 235.498i 0.167050 1.33050i
\(178\) −8.65978 + 14.9992i −0.0486505 + 0.0842651i
\(179\) 294.556i 1.64556i 0.568357 + 0.822782i \(0.307579\pi\)
−0.568357 + 0.822782i \(0.692421\pi\)
\(180\) 95.8125 + 24.4448i 0.532292 + 0.135804i
\(181\) 279.929i 1.54657i 0.634058 + 0.773285i \(0.281388\pi\)
−0.634058 + 0.773285i \(0.718612\pi\)
\(182\) −4.00456 + 6.93610i −0.0220031 + 0.0381104i
\(183\) 209.266 88.1549i 1.14353 0.481721i
\(184\) −21.1392 + 12.2047i −0.114887 + 0.0663299i
\(185\) −149.287 + 86.1911i −0.806958 + 0.465898i
\(186\) −11.9672 + 15.7912i −0.0643398 + 0.0848989i
\(187\) 143.817 + 149.390i 0.769072 + 0.798879i
\(188\) 173.100i 0.920746i
\(189\) −53.1559 66.7519i −0.281248 0.353184i
\(190\) 3.74889i 0.0197310i
\(191\) 247.642 + 142.976i 1.29656 + 0.748567i 0.979808 0.199942i \(-0.0640755\pi\)
0.316749 + 0.948510i \(0.397409\pi\)
\(192\) 112.079 147.892i 0.583743 0.770272i
\(193\) 121.814 70.3291i 0.631159 0.364400i −0.150042 0.988680i \(-0.547941\pi\)
0.781201 + 0.624280i \(0.214608\pi\)
\(194\) −0.863965 1.49643i −0.00445343 0.00771356i
\(195\) 54.4061 + 129.151i 0.279006 + 0.662315i
\(196\) −77.5857 + 134.382i −0.395845 + 0.685624i
\(197\) −347.281 −1.76285 −0.881423 0.472327i \(-0.843414\pi\)
−0.881423 + 0.472327i \(0.843414\pi\)
\(198\) −11.7710 11.4919i −0.0594496 0.0580400i
\(199\) 55.1047i 0.276908i 0.990369 + 0.138454i \(0.0442133\pi\)
−0.990369 + 0.138454i \(0.955787\pi\)
\(200\) 17.9826 + 10.3823i 0.0899131 + 0.0519114i
\(201\) −63.5793 7.98269i −0.316315 0.0397149i
\(202\) 5.56647 + 9.64141i 0.0275568 + 0.0477298i
\(203\) 5.93726 3.42788i 0.0292476 0.0168861i
\(204\) −80.0607 + 186.388i −0.392454 + 0.913665i
\(205\) 86.4269 149.696i 0.421595 0.730223i
\(206\) 1.38830i 0.00673931i
\(207\) 128.379 131.496i 0.620186 0.635248i
\(208\) 266.042 1.27905
\(209\) −55.2401 + 95.6786i −0.264307 + 0.457792i
\(210\) 1.52352 + 3.61658i 0.00725484 + 0.0172218i
\(211\) −285.929 + 165.081i −1.35511 + 0.782374i −0.988960 0.148181i \(-0.952658\pi\)
−0.366152 + 0.930555i \(0.619325\pi\)
\(212\) 230.223 132.920i 1.08596 0.626979i
\(213\) −145.480 + 191.966i −0.683003 + 0.901250i
\(214\) 5.91263 + 3.41366i 0.0276291 + 0.0159517i
\(215\) 77.7477 0.361617
\(216\) 11.8130 30.0368i 0.0546898 0.139059i
\(217\) 139.294 0.641910
\(218\) 11.8766 20.5710i 0.0544800 0.0943622i
\(219\) 56.7946 + 43.0412i 0.259336 + 0.196535i
\(220\) −67.0088 116.063i −0.304585 0.527558i
\(221\) −279.070 + 69.1194i −1.26276 + 0.312757i
\(222\) 10.8913 + 25.8543i 0.0490601 + 0.116461i
\(223\) −1.03255 + 1.78843i −0.00463026 + 0.00801984i −0.868331 0.495985i \(-0.834807\pi\)
0.863701 + 0.504005i \(0.168141\pi\)
\(224\) 22.5619 0.100723
\(225\) −151.479 38.6471i −0.673240 0.171765i
\(226\) 8.27629i 0.0366208i
\(227\) −99.7577 + 172.785i −0.439461 + 0.761169i −0.997648 0.0685463i \(-0.978164\pi\)
0.558187 + 0.829715i \(0.311497\pi\)
\(228\) −107.235 13.4639i −0.470328 0.0590520i
\(229\) 69.4180 + 120.235i 0.303135 + 0.525046i 0.976844 0.213951i \(-0.0686332\pi\)
−0.673709 + 0.738997i \(0.735300\pi\)
\(230\) −7.31941 + 4.22587i −0.0318235 + 0.0183733i
\(231\) −14.4075 + 114.751i −0.0623703 + 0.496757i
\(232\) 2.24575 + 1.29659i 0.00967997 + 0.00558873i
\(233\) 325.344 1.39633 0.698164 0.715938i \(-0.254001\pi\)
0.698164 + 0.715938i \(0.254001\pi\)
\(234\) 21.9583 6.16697i 0.0938389 0.0263546i
\(235\) 120.210i 0.511532i
\(236\) −272.526 157.343i −1.15477 0.666708i
\(237\) 20.7416 8.73756i 0.0875171 0.0368674i
\(238\) −7.81471 + 1.93553i −0.0328349 + 0.00813247i
\(239\) 147.606 85.2204i 0.617598 0.356571i −0.158335 0.987385i \(-0.550613\pi\)
0.775933 + 0.630815i \(0.217279\pi\)
\(240\) 78.7350 103.894i 0.328063 0.432891i
\(241\) 20.3122 + 11.7272i 0.0842829 + 0.0486607i 0.541549 0.840669i \(-0.317838\pi\)
−0.457266 + 0.889330i \(0.651171\pi\)
\(242\) 4.16445i 0.0172085i
\(243\) −24.4790 + 241.764i −0.100737 + 0.994913i
\(244\) 301.068i 1.23389i
\(245\) −53.8796 + 93.3222i −0.219917 + 0.380907i
\(246\) −22.4205 16.9911i −0.0911402 0.0690697i
\(247\) −76.5875 132.654i −0.310071 0.537059i
\(248\) 26.3439 + 45.6290i 0.106225 + 0.183988i
\(249\) −39.6171 + 16.6891i −0.159105 + 0.0670243i
\(250\) 15.1879 + 8.76875i 0.0607517 + 0.0350750i
\(251\) 335.935i 1.33839i −0.743088 0.669194i \(-0.766640\pi\)
0.743088 0.669194i \(-0.233360\pi\)
\(252\) −108.922 + 30.5906i −0.432229 + 0.121391i
\(253\) −249.073 −0.984479
\(254\) −21.3982 12.3542i −0.0842447 0.0486387i
\(255\) −55.5984 + 129.437i −0.218033 + 0.507598i
\(256\) −120.875 209.362i −0.472168 0.817819i
\(257\) −46.1536 + 26.6468i −0.179586 + 0.103684i −0.587098 0.809516i \(-0.699730\pi\)
0.407512 + 0.913200i \(0.366396\pi\)
\(258\) 1.57630 12.5546i 0.00610967 0.0486613i
\(259\) 98.6159 170.808i 0.380756 0.659489i
\(260\) 185.809 0.714648
\(261\) −18.9174 4.82643i −0.0724805 0.0184921i
\(262\) 0.00964885i 3.68277e-5i
\(263\) 43.3604 + 25.0342i 0.164869 + 0.0951869i 0.580164 0.814500i \(-0.302988\pi\)
−0.415295 + 0.909687i \(0.636322\pi\)
\(264\) −40.3140 + 16.9826i −0.152705 + 0.0643281i
\(265\) 159.879 92.3064i 0.603318 0.348326i
\(266\) −2.14466 3.71465i −0.00806261 0.0139649i
\(267\) −276.352 209.430i −1.03502 0.784383i
\(268\) −42.4792 + 73.5761i −0.158504 + 0.274538i
\(269\) −299.181 −1.11220 −0.556098 0.831117i \(-0.687702\pi\)
−0.556098 + 0.831117i \(0.687702\pi\)
\(270\) 4.09024 10.4002i 0.0151490 0.0385193i
\(271\) −159.041 −0.586868 −0.293434 0.955979i \(-0.594798\pi\)
−0.293434 + 0.955979i \(0.594798\pi\)
\(272\) 185.472 + 192.660i 0.681881 + 0.708309i
\(273\) −127.794 96.8473i −0.468109 0.354752i
\(274\) −5.44945 9.43873i −0.0198885 0.0344479i
\(275\) 105.941 + 183.494i 0.385238 + 0.667253i
\(276\) −94.5912 224.544i −0.342722 0.813566i
\(277\) 175.498 + 101.324i 0.633567 + 0.365790i 0.782132 0.623112i \(-0.214132\pi\)
−0.148565 + 0.988903i \(0.547465\pi\)
\(278\) 3.73909 0.0134500
\(279\) −283.836 277.106i −1.01733 0.993211i
\(280\) 10.4356 0.0372702
\(281\) −368.933 213.003i −1.31293 0.758019i −0.330348 0.943859i \(-0.607166\pi\)
−0.982580 + 0.185840i \(0.940499\pi\)
\(282\) −19.4114 2.43720i −0.0688347 0.00864254i
\(283\) 402.896 232.612i 1.42366 0.821950i 0.427050 0.904228i \(-0.359553\pi\)
0.996609 + 0.0822775i \(0.0262194\pi\)
\(284\) 159.674 + 276.564i 0.562234 + 0.973818i
\(285\) −74.4695 9.35001i −0.261296 0.0328071i
\(286\) −26.7708 15.4561i −0.0936042 0.0540424i
\(287\) 197.771i 0.689099i
\(288\) −45.9736 44.8835i −0.159630 0.155846i
\(289\) −244.609 153.908i −0.846396 0.532553i
\(290\) 0.777590 + 0.448942i 0.00268135 + 0.00154808i
\(291\) 31.8805 13.4299i 0.109555 0.0461510i
\(292\) 81.8236 47.2409i 0.280218 0.161784i
\(293\) 302.277 174.519i 1.03166 0.595630i 0.114201 0.993458i \(-0.463569\pi\)
0.917460 + 0.397828i \(0.130236\pi\)
\(294\) 13.9772 + 10.5925i 0.0475415 + 0.0360289i
\(295\) −189.257 109.267i −0.641548 0.370398i
\(296\) 74.6024 0.252035
\(297\) 257.638 205.162i 0.867467 0.690782i
\(298\) −3.14992 −0.0105702
\(299\) 172.664 299.062i 0.577470 1.00021i
\(300\) −125.190 + 165.194i −0.417301 + 0.550645i
\(301\) −77.0376 + 44.4777i −0.255939 + 0.147766i
\(302\) 31.5834 18.2347i 0.104581 0.0603797i
\(303\) −205.404 + 86.5282i −0.677901 + 0.285572i
\(304\) −71.2399 + 123.391i −0.234342 + 0.405892i
\(305\) 209.078i 0.685500i
\(306\) 19.7742 + 11.6023i 0.0646216 + 0.0379159i
\(307\) 171.450 0.558468 0.279234 0.960223i \(-0.409920\pi\)
0.279234 + 0.960223i \(0.409920\pi\)
\(308\) 132.794 + 76.6684i 0.431148 + 0.248923i
\(309\) 27.5777 + 3.46251i 0.0892482 + 0.0112055i
\(310\) 9.12155 + 15.7990i 0.0294244 + 0.0509645i
\(311\) 213.902 + 370.488i 0.687786 + 1.19128i 0.972552 + 0.232684i \(0.0747507\pi\)
−0.284766 + 0.958597i \(0.591916\pi\)
\(312\) 7.55562 60.1778i 0.0242167 0.192878i
\(313\) −303.815 175.407i −0.970654 0.560407i −0.0712184 0.997461i \(-0.522689\pi\)
−0.899436 + 0.437053i \(0.856022\pi\)
\(314\) 6.82412i 0.0217329i
\(315\) −75.6410 + 21.2437i −0.240130 + 0.0674404i
\(316\) 29.8407i 0.0944324i
\(317\) −85.4313 + 147.971i −0.269499 + 0.466787i −0.968733 0.248107i \(-0.920192\pi\)
0.699233 + 0.714894i \(0.253525\pi\)
\(318\) −11.6641 27.6886i −0.0366795 0.0870712i
\(319\) 13.2304 + 22.9156i 0.0414745 + 0.0718359i
\(320\) −85.4278 147.965i −0.266962 0.462391i
\(321\) −82.5568 + 108.937i −0.257186 + 0.339367i
\(322\) 4.83504 8.37454i 0.0150157 0.0260079i
\(323\) 42.6707 147.942i 0.132108 0.458025i
\(324\) 282.802 + 154.350i 0.872844 + 0.476390i
\(325\) −293.762 −0.903884
\(326\) −11.7819 + 20.4068i −0.0361407 + 0.0625975i
\(327\) 379.008 + 287.228i 1.15905 + 0.878373i
\(328\) −64.7844 + 37.4033i −0.197513 + 0.114034i
\(329\) 68.7694 + 119.112i 0.209025 + 0.362043i
\(330\) −13.9587 + 5.88022i −0.0422990 + 0.0178188i
\(331\) 277.160 480.056i 0.837343 1.45032i −0.0547661 0.998499i \(-0.517441\pi\)
0.892109 0.451821i \(-0.149225\pi\)
\(332\) 56.9967i 0.171677i
\(333\) −540.743 + 151.867i −1.62385 + 0.456058i
\(334\) 13.7962i 0.0413061i
\(335\) −29.4998 + 51.0951i −0.0880590 + 0.152523i
\(336\) −18.5806 + 147.988i −0.0552993 + 0.440439i
\(337\) 475.857 274.736i 1.41204 0.815242i 0.416460 0.909154i \(-0.363271\pi\)
0.995580 + 0.0939126i \(0.0299374\pi\)
\(338\) 15.1849 8.76702i 0.0449258 0.0259379i
\(339\) −164.404 20.6417i −0.484966 0.0608899i
\(340\) 129.537 + 134.557i 0.380991 + 0.395757i
\(341\) 537.626i 1.57661i
\(342\) −3.01966 + 11.8357i −0.00882942 + 0.0346073i
\(343\) 278.153i 0.810942i
\(344\) −29.1393 16.8236i −0.0847072 0.0489057i
\(345\) −65.6891 155.935i −0.190403 0.451987i
\(346\) 5.89852 3.40551i 0.0170477 0.00984252i
\(347\) 255.193 + 442.007i 0.735426 + 1.27380i 0.954536 + 0.298095i \(0.0963512\pi\)
−0.219110 + 0.975700i \(0.570315\pi\)
\(348\) −15.6344 + 20.6301i −0.0449263 + 0.0592820i
\(349\) 69.4543 120.298i 0.199010 0.344695i −0.749198 0.662346i \(-0.769561\pi\)
0.948208 + 0.317651i \(0.102894\pi\)
\(350\) −8.22613 −0.0235032
\(351\) 67.7376 + 451.569i 0.192985 + 1.28652i
\(352\) 87.0806i 0.247388i
\(353\) 257.287 + 148.545i 0.728859 + 0.420807i 0.818005 0.575212i \(-0.195080\pi\)
−0.0891457 + 0.996019i \(0.528414\pi\)
\(354\) −21.4815 + 28.3456i −0.0606821 + 0.0800724i
\(355\) 110.886 + 192.061i 0.312356 + 0.541016i
\(356\) −398.138 + 229.865i −1.11836 + 0.645688i
\(357\) −18.9576 160.062i −0.0531026 0.448352i
\(358\) 22.0692 38.2250i 0.0616459 0.106774i
\(359\) 251.878i 0.701611i −0.936448 0.350805i \(-0.885908\pi\)
0.936448 0.350805i \(-0.114092\pi\)
\(360\) −21.2644 20.7602i −0.0590677 0.0576672i
\(361\) −278.967 −0.772760
\(362\) 20.9733 36.3269i 0.0579374 0.100351i
\(363\) −82.7243 10.3864i −0.227891 0.0286128i
\(364\) −184.111 + 106.297i −0.505801 + 0.292024i
\(365\) 56.8226 32.8065i 0.155678 0.0898810i
\(366\) −33.7616 4.23894i −0.0922449 0.0115818i
\(367\) 409.800 + 236.598i 1.11662 + 0.644681i 0.940536 0.339694i \(-0.110324\pi\)
0.176084 + 0.984375i \(0.443657\pi\)
\(368\) −321.215 −0.872867
\(369\) 393.437 402.992i 1.06623 1.09212i
\(370\) 25.8310 0.0698136
\(371\) −105.613 + 182.927i −0.284670 + 0.493064i
\(372\) −484.680 + 204.176i −1.30290 + 0.548859i
\(373\) 171.228 + 296.575i 0.459055 + 0.795107i 0.998911 0.0466504i \(-0.0148547\pi\)
−0.539856 + 0.841757i \(0.681521\pi\)
\(374\) −7.47043 30.1619i −0.0199744 0.0806468i
\(375\) −212.066 + 279.829i −0.565508 + 0.746210i
\(376\) −26.0119 + 45.0538i −0.0691805 + 0.119824i
\(377\) −36.6864 −0.0973115
\(378\) 1.89683 + 12.6451i 0.00501808 + 0.0334528i
\(379\) 144.860i 0.382216i 0.981569 + 0.191108i \(0.0612081\pi\)
−0.981569 + 0.191108i \(0.938792\pi\)
\(380\) −49.7552 + 86.1786i −0.130935 + 0.226786i
\(381\) 298.778 394.249i 0.784194 1.03477i
\(382\) −21.4246 37.1086i −0.0560855 0.0971429i
\(383\) 188.695 108.943i 0.492677 0.284447i −0.233007 0.972475i \(-0.574857\pi\)
0.725684 + 0.688028i \(0.241523\pi\)
\(384\) −104.573 + 44.0524i −0.272326 + 0.114720i
\(385\) 92.2189 + 53.2426i 0.239530 + 0.138292i
\(386\) −21.0773 −0.0546044
\(387\) 245.459 + 62.6243i 0.634260 + 0.161820i
\(388\) 45.8661i 0.118212i
\(389\) 65.1167 + 37.5951i 0.167395 + 0.0966456i 0.581357 0.813649i \(-0.302522\pi\)
−0.413962 + 0.910294i \(0.635855\pi\)
\(390\) 2.61613 20.8365i 0.00670801 0.0534269i
\(391\) 336.945 83.4537i 0.861752 0.213437i
\(392\) 40.3874 23.3177i 0.103029 0.0594839i
\(393\) −0.191669 0.0240649i −0.000487706 6.12339e-5i
\(394\) 45.0672 + 26.0196i 0.114384 + 0.0660395i
\(395\) 20.7229i 0.0524631i
\(396\) −118.068 420.398i −0.298153 1.06161i
\(397\) 547.908i 1.38012i 0.723752 + 0.690060i \(0.242416\pi\)
−0.723752 + 0.690060i \(0.757584\pi\)
\(398\) 4.12865 7.15104i 0.0103735 0.0179674i
\(399\) 79.1382 33.3377i 0.198341 0.0835531i
\(400\) 136.625 + 236.642i 0.341563 + 0.591605i
\(401\) −352.711 610.913i −0.879577 1.52347i −0.851805 0.523858i \(-0.824492\pi\)
−0.0277720 0.999614i \(-0.508841\pi\)
\(402\) 7.65270 + 5.79953i 0.0190366 + 0.0144267i
\(403\) −645.527 372.695i −1.60180 0.924802i
\(404\) 295.512i 0.731467i
\(405\) 196.392 + 107.189i 0.484919 + 0.264664i
\(406\) −1.02732 −0.00253034
\(407\) 659.255 + 380.621i 1.61979 + 0.935187i
\(408\) 48.8464 36.4815i 0.119722 0.0894154i
\(409\) 281.335 + 487.286i 0.687860 + 1.19141i 0.972529 + 0.232783i \(0.0747832\pi\)
−0.284668 + 0.958626i \(0.591883\pi\)
\(410\) −22.4315 + 12.9509i −0.0547111 + 0.0315875i
\(411\) 201.086 84.7092i 0.489260 0.206105i
\(412\) 18.4255 31.9138i 0.0447220 0.0774607i
\(413\) 250.037 0.605417
\(414\) −26.5121 + 7.44591i −0.0640389 + 0.0179853i
\(415\) 39.5815i 0.0953772i
\(416\) −104.558 60.3664i −0.251340 0.145111i
\(417\) −9.32557 + 74.2748i −0.0223635 + 0.178117i
\(418\) 14.3372 8.27759i 0.0342995 0.0198028i
\(419\) −300.580 520.620i −0.717375 1.24253i −0.962036 0.272921i \(-0.912010\pi\)
0.244662 0.969608i \(-0.421323\pi\)
\(420\) −12.9770 + 103.357i −0.0308976 + 0.246088i
\(421\) 167.946 290.891i 0.398921 0.690952i −0.594672 0.803969i \(-0.702718\pi\)
0.993593 + 0.113017i \(0.0360513\pi\)
\(422\) 49.4739 0.117237
\(423\) 96.8269 379.517i 0.228905 0.897204i
\(424\) −79.8955 −0.188433
\(425\) −204.797 212.734i −0.481875 0.500551i
\(426\) 33.2620 14.0119i 0.0780798 0.0328918i
\(427\) 119.608 + 207.168i 0.280113 + 0.485171i
\(428\) 90.6120 + 156.945i 0.211710 + 0.366693i
\(429\) 373.795 493.237i 0.871317 1.14974i
\(430\) −10.0895 5.82515i −0.0234638 0.0135469i
\(431\) 260.303 0.603952 0.301976 0.953316i \(-0.402354\pi\)
0.301976 + 0.953316i \(0.402354\pi\)
\(432\) 332.260 264.586i 0.769121 0.612467i
\(433\) −11.2018 −0.0258703 −0.0129351 0.999916i \(-0.504118\pi\)
−0.0129351 + 0.999916i \(0.504118\pi\)
\(434\) −18.0765 10.4365i −0.0416509 0.0240471i
\(435\) −10.8573 + 14.3267i −0.0249594 + 0.0329349i
\(436\) 546.035 315.253i 1.25237 0.723058i
\(437\) 92.4706 + 160.164i 0.211603 + 0.366508i
\(438\) −4.14552 9.84080i −0.00946466 0.0224676i
\(439\) −214.805 124.018i −0.489305 0.282500i 0.234981 0.972000i \(-0.424497\pi\)
−0.724286 + 0.689500i \(0.757830\pi\)
\(440\) 40.2778i 0.0915404i
\(441\) −245.274 + 251.230i −0.556176 + 0.569683i
\(442\) 41.3941 + 11.9392i 0.0936518 + 0.0270118i
\(443\) −713.529 411.956i −1.61067 0.929923i −0.989214 0.146478i \(-0.953206\pi\)
−0.621461 0.783445i \(-0.713460\pi\)
\(444\) −92.7701 + 738.881i −0.208942 + 1.66415i
\(445\) −276.488 + 159.630i −0.621321 + 0.358720i
\(446\) 0.267991 0.154725i 0.000600877 0.000346916i
\(447\) 7.85614 62.5714i 0.0175753 0.139981i
\(448\) 169.295 + 97.7425i 0.377891 + 0.218175i
\(449\) 124.936 0.278253 0.139126 0.990275i \(-0.455571\pi\)
0.139126 + 0.990275i \(0.455571\pi\)
\(450\) 16.7621 + 16.3647i 0.0372491 + 0.0363660i
\(451\) −763.325 −1.69252
\(452\) −109.843 + 190.253i −0.243015 + 0.420914i
\(453\) 283.450 + 672.864i 0.625717 + 1.48535i
\(454\) 25.8915 14.9484i 0.0570296 0.0329261i
\(455\) −127.857 + 73.8181i −0.281004 + 0.162238i
\(456\) 25.8874 + 19.6185i 0.0567707 + 0.0430231i
\(457\) 433.428 750.719i 0.948419 1.64271i 0.199663 0.979865i \(-0.436015\pi\)
0.748756 0.662846i \(-0.230651\pi\)
\(458\) 20.8042i 0.0454241i
\(459\) −279.790 + 363.866i −0.609565 + 0.792736i
\(460\) −224.342 −0.487701
\(461\) 251.349 + 145.116i 0.545225 + 0.314786i 0.747194 0.664606i \(-0.231401\pi\)
−0.201969 + 0.979392i \(0.564734\pi\)
\(462\) 10.4673 13.8120i 0.0226564 0.0298960i
\(463\) 175.796 + 304.487i 0.379689 + 0.657640i 0.991017 0.133737i \(-0.0426978\pi\)
−0.611328 + 0.791377i \(0.709364\pi\)
\(464\) 17.0624 + 29.5530i 0.0367724 + 0.0636917i
\(465\) −336.587 + 141.790i −0.723844 + 0.304925i
\(466\) −42.2205 24.3760i −0.0906019 0.0523090i
\(467\) 394.357i 0.844447i −0.906492 0.422224i \(-0.861250\pi\)
0.906492 0.422224i \(-0.138750\pi\)
\(468\) 586.620 + 149.665i 1.25346 + 0.319798i
\(469\) 67.5046i 0.143933i
\(470\) −9.00658 + 15.5999i −0.0191629 + 0.0331912i
\(471\) −135.557 17.0198i −0.287807 0.0361355i
\(472\) 47.2880 + 81.9052i 0.100186 + 0.173528i
\(473\) −171.668 297.337i −0.362933 0.628619i
\(474\) −3.34632 0.420147i −0.00705975 0.000886386i
\(475\) 78.6628 136.248i 0.165606 0.286838i
\(476\) −205.331 59.2232i −0.431367 0.124419i
\(477\) 579.109 162.642i 1.21407 0.340969i
\(478\) −25.5401 −0.0534312
\(479\) 172.631 299.005i 0.360398 0.624227i −0.627628 0.778513i \(-0.715974\pi\)
0.988026 + 0.154286i \(0.0493076\pi\)
\(480\) −54.5179 + 22.9661i −0.113579 + 0.0478461i
\(481\) −914.024 + 527.712i −1.90026 + 1.09711i
\(482\) −1.75730 3.04373i −0.00364584 0.00631479i
\(483\) 154.296 + 116.932i 0.319454 + 0.242095i
\(484\) −55.2705 + 95.7313i −0.114195 + 0.197792i
\(485\) 31.8519i 0.0656739i
\(486\) 21.2905 29.5401i 0.0438077 0.0607820i
\(487\) 592.593i 1.21682i −0.793622 0.608412i \(-0.791807\pi\)
0.793622 0.608412i \(-0.208193\pi\)
\(488\) −45.2416 + 78.3608i −0.0927082 + 0.160575i
\(489\) −375.984 284.936i −0.768882 0.582690i
\(490\) 13.9841 8.07373i 0.0285390 0.0164770i
\(491\) 107.710 62.1865i 0.219369 0.126653i −0.386289 0.922378i \(-0.626243\pi\)
0.605658 + 0.795725i \(0.292910\pi\)
\(492\) −289.890 688.152i −0.589208 1.39868i
\(493\) −25.5760 26.5673i −0.0518783 0.0538890i
\(494\) 22.9529i 0.0464634i
\(495\) −81.9930 291.947i −0.165642 0.589791i
\(496\) 693.344i 1.39787i
\(497\) −219.747 126.871i −0.442147 0.255274i
\(498\) 6.39159 + 0.802496i 0.0128345 + 0.00161144i
\(499\) −272.670 + 157.426i −0.546434 + 0.315484i −0.747682 0.664056i \(-0.768833\pi\)
0.201249 + 0.979540i \(0.435500\pi\)
\(500\) 232.757 + 403.147i 0.465514 + 0.806295i
\(501\) −274.054 34.4088i −0.547014 0.0686802i
\(502\) −25.1695 + 43.5949i −0.0501385 + 0.0868425i
\(503\) 158.607 0.315323 0.157661 0.987493i \(-0.449605\pi\)
0.157661 + 0.987493i \(0.449605\pi\)
\(504\) 32.9466 + 8.40572i 0.0653702 + 0.0166780i
\(505\) 205.220i 0.406375i
\(506\) 32.3227 + 18.6615i 0.0638788 + 0.0368804i
\(507\) 136.279 + 323.505i 0.268795 + 0.638077i
\(508\) −327.930 567.992i −0.645532 1.11809i
\(509\) −575.309 + 332.155i −1.13027 + 0.652563i −0.944003 0.329936i \(-0.892973\pi\)
−0.186269 + 0.982499i \(0.559640\pi\)
\(510\) 16.9130 12.6317i 0.0331628 0.0247680i
\(511\) −37.5357 + 65.0138i −0.0734555 + 0.127229i
\(512\) 187.523i 0.366256i
\(513\) −227.578 89.5029i −0.443621 0.174470i
\(514\) 7.98591 0.0155368
\(515\) 12.7956 22.1626i 0.0248458 0.0430343i
\(516\) 202.860 267.682i 0.393140 0.518764i
\(517\) −459.729 + 265.425i −0.889224 + 0.513394i
\(518\) −25.5951 + 14.7773i −0.0494114 + 0.0285277i
\(519\) 52.9371 + 125.664i 0.101998 + 0.242127i
\(520\) −48.3615 27.9215i −0.0930029 0.0536953i
\(521\) −924.333 −1.77415 −0.887076 0.461624i \(-0.847267\pi\)
−0.887076 + 0.461624i \(0.847267\pi\)
\(522\) 2.09333 + 2.04370i 0.00401021 + 0.00391513i
\(523\) −619.916 −1.18531 −0.592654 0.805457i \(-0.701920\pi\)
−0.592654 + 0.805457i \(0.701920\pi\)
\(524\) −0.128059 + 0.221805i −0.000244388 + 0.000423293i
\(525\) 20.5166 163.407i 0.0390792 0.311252i
\(526\) −3.75131 6.49745i −0.00713176 0.0123526i
\(527\) −180.135 727.297i −0.341813 1.38007i
\(528\) −571.178 71.7142i −1.08178 0.135822i
\(529\) 56.0286 97.0444i 0.105914 0.183449i
\(530\) −27.6638 −0.0521958
\(531\) −509.493 497.413i −0.959496 0.936747i
\(532\) 113.855i 0.214014i
\(533\) 529.156 916.525i 0.992788 1.71956i
\(534\) 20.1713 + 47.8834i 0.0377740 + 0.0896694i
\(535\) 62.9257 + 108.991i 0.117618 + 0.203721i
\(536\) 22.1126 12.7667i 0.0412549 0.0238185i
\(537\) 704.275 + 533.728i 1.31150 + 0.993907i
\(538\) 38.8252 + 22.4157i 0.0721658 + 0.0416649i
\(539\) 475.867 0.882869
\(540\) 232.057 184.792i 0.429735 0.342207i
\(541\) 757.243i 1.39971i 0.714285 + 0.699855i \(0.246752\pi\)
−0.714285 + 0.699855i \(0.753248\pi\)
\(542\) 20.6390 + 11.9160i 0.0380794 + 0.0219852i
\(543\) 669.303 + 507.225i 1.23260 + 0.934116i
\(544\) −29.1769 117.802i −0.0536341 0.216548i
\(545\) 379.195 218.928i 0.695771 0.401704i
\(546\) 9.32786 + 22.1428i 0.0170840 + 0.0405546i
\(547\) −670.522 387.126i −1.22582 0.707726i −0.259666 0.965699i \(-0.583612\pi\)
−0.966152 + 0.257972i \(0.916946\pi\)
\(548\) 289.300i 0.527920i
\(549\) 168.408 660.083i 0.306754 1.20234i
\(550\) 31.7499i 0.0577270i
\(551\) 9.82377 17.0153i 0.0178290 0.0308807i
\(552\) −9.12254 + 72.6577i −0.0165263 + 0.131626i
\(553\) 11.8551 + 20.5337i 0.0214378 + 0.0371314i
\(554\) −15.1831 26.2979i −0.0274064 0.0474692i
\(555\) −64.4245 + 513.118i −0.116080 + 0.924537i
\(556\) 85.9533 + 49.6252i 0.154592 + 0.0892539i
\(557\) 375.595i 0.674318i −0.941448 0.337159i \(-0.890534\pi\)
0.941448 0.337159i \(-0.109466\pi\)
\(558\) 16.0720 + 57.2265i 0.0288029 + 0.102557i
\(559\) 476.017 0.851550
\(560\) 118.929 + 68.6639i 0.212374 + 0.122614i
\(561\) 617.780 73.1695i 1.10121 0.130427i
\(562\) 31.9180 + 55.2836i 0.0567936 + 0.0983695i
\(563\) −267.021 + 154.165i −0.474283 + 0.273827i −0.718031 0.696011i \(-0.754956\pi\)
0.243748 + 0.969839i \(0.421623\pi\)
\(564\) −413.878 313.653i −0.733826 0.556123i
\(565\) −76.2807 + 132.122i −0.135010 + 0.233844i
\(566\) −69.7126 −0.123167
\(567\) −255.919 + 6.14155i −0.451356 + 0.0108317i
\(568\) 95.9774i 0.168974i
\(569\) 127.010 + 73.3291i 0.223216 + 0.128874i 0.607438 0.794367i \(-0.292197\pi\)
−0.384223 + 0.923240i \(0.625531\pi\)
\(570\) 8.96350 + 6.79290i 0.0157254 + 0.0119174i
\(571\) 431.255 248.985i 0.755262 0.436051i −0.0723301 0.997381i \(-0.523044\pi\)
0.827592 + 0.561330i \(0.189710\pi\)
\(572\) −410.267 710.603i −0.717250 1.24231i
\(573\) 790.574 333.036i 1.37971 0.581215i
\(574\) 14.8178 25.6651i 0.0258149 0.0447128i
\(575\) 354.684 0.616842
\(576\) −150.522 535.954i −0.261324 0.930476i
\(577\) 442.364 0.766662 0.383331 0.923611i \(-0.374777\pi\)
0.383331 + 0.923611i \(0.374777\pi\)
\(578\) 20.2119 + 38.2999i 0.0349687 + 0.0662628i
\(579\) 52.5683 418.688i 0.0907915 0.723122i
\(580\) 11.9167 + 20.6403i 0.0205460 + 0.0355868i
\(581\) −22.6437 39.2200i −0.0389736 0.0675043i
\(582\) −5.14341 0.645780i −0.00883747 0.00110959i
\(583\) −706.030 407.626i −1.21103 0.699188i
\(584\) −28.3956 −0.0486226
\(585\) 407.380 + 103.936i 0.696376 + 0.177668i
\(586\) −52.3026 −0.0892536
\(587\) −396.514 228.928i −0.675492 0.389996i 0.122662 0.992448i \(-0.460857\pi\)
−0.798155 + 0.602453i \(0.794190\pi\)
\(588\) 180.721 + 429.003i 0.307349 + 0.729597i
\(589\) 345.714 199.598i 0.586951 0.338877i
\(590\) 16.3734 + 28.3596i 0.0277516 + 0.0480672i
\(591\) −629.264 + 830.338i −1.06474 + 1.40497i
\(592\) 850.203 + 490.865i 1.43615 + 0.829164i
\(593\) 578.833i 0.976109i 0.872813 + 0.488055i \(0.162293\pi\)
−0.872813 + 0.488055i \(0.837707\pi\)
\(594\) −48.8056 + 7.32109i −0.0821644 + 0.0123251i
\(595\) −142.593 41.1278i −0.239651 0.0691223i
\(596\) −72.4097 41.8057i −0.121493 0.0701439i
\(597\) 131.754 + 99.8484i 0.220693 + 0.167250i
\(598\) −44.8137 + 25.8732i −0.0749393 + 0.0432662i
\(599\) −432.584 + 249.752i −0.722176 + 0.416949i −0.815553 0.578682i \(-0.803567\pi\)
0.0933770 + 0.995631i \(0.470234\pi\)
\(600\) 57.4078 24.1835i 0.0956796 0.0403059i
\(601\) 720.962 + 416.247i 1.19960 + 0.692591i 0.960467 0.278395i \(-0.0898023\pi\)
0.239136 + 0.970986i \(0.423136\pi\)
\(602\) 13.3297 0.0221424
\(603\) −134.290 + 137.552i −0.222704 + 0.228112i
\(604\) 968.041 1.60272
\(605\) −38.3828 + 66.4809i −0.0634426 + 0.109886i
\(606\) 33.1387 + 4.16072i 0.0546843 + 0.00686588i
\(607\) −945.923 + 546.129i −1.55836 + 0.899718i −0.560942 + 0.827855i \(0.689561\pi\)
−0.997415 + 0.0718628i \(0.977106\pi\)
\(608\) 55.9962 32.3294i 0.0920990 0.0531734i
\(609\) 2.56220 20.4070i 0.00420723 0.0335091i
\(610\) −15.6649 + 27.1324i −0.0256801 + 0.0444793i
\(611\) 735.995i 1.20458i
\(612\) 300.580 + 529.153i 0.491143 + 0.864629i
\(613\) 53.8085 0.0877790 0.0438895 0.999036i \(-0.486025\pi\)
0.0438895 + 0.999036i \(0.486025\pi\)
\(614\) −22.2493 12.8456i −0.0362367 0.0209212i
\(615\) −201.315 477.889i −0.327342 0.777056i
\(616\) −23.0420 39.9099i −0.0374058 0.0647888i
\(617\) 70.0923 + 121.403i 0.113602 + 0.196764i 0.917220 0.398381i \(-0.130428\pi\)
−0.803618 + 0.595145i \(0.797095\pi\)
\(618\) −3.31938 2.51556i −0.00537116 0.00407049i
\(619\) −274.717 158.608i −0.443807 0.256232i 0.261404 0.965230i \(-0.415815\pi\)
−0.705211 + 0.708997i \(0.749148\pi\)
\(620\) 484.244i 0.781039i
\(621\) −81.7853 545.218i −0.131699 0.877967i
\(622\) 64.1052i 0.103063i
\(623\) 182.642 316.345i 0.293165 0.507776i
\(624\) 482.062 636.099i 0.772535 1.01939i
\(625\) −55.4880 96.1080i −0.0887807 0.153773i
\(626\) 26.2844 + 45.5259i 0.0419878 + 0.0727250i
\(627\) 128.671 + 305.445i 0.205217 + 0.487153i
\(628\) −90.5695 + 156.871i −0.144219 + 0.249795i
\(629\) −1019.37 294.015i −1.62062 0.467432i
\(630\) 11.4077 + 2.91047i 0.0181075 + 0.00461980i
\(631\) −152.848 −0.242232 −0.121116 0.992638i \(-0.538647\pi\)
−0.121116 + 0.992638i \(0.538647\pi\)
\(632\) −4.48417 + 7.76681i −0.00709520 + 0.0122893i
\(633\) −123.392 + 982.770i −0.194931 + 1.55256i
\(634\) 22.1731 12.8017i 0.0349734 0.0201919i
\(635\) −227.732 394.444i −0.358633 0.621171i
\(636\) 99.3522 791.305i 0.156214 1.24419i
\(637\) −329.882 + 571.373i −0.517869 + 0.896975i
\(638\) 3.96507i 0.00621484i
\(639\) 195.380 + 695.676i 0.305759 + 1.08869i
\(640\) 104.479i 0.163249i
\(641\) −318.805 + 552.187i −0.497356 + 0.861447i −0.999995 0.00304989i \(-0.999029\pi\)
0.502639 + 0.864496i \(0.332363\pi\)
\(642\) 18.8755 7.95146i 0.0294011 0.0123855i
\(643\) 121.948 70.4067i 0.189655 0.109497i −0.402166 0.915567i \(-0.631743\pi\)
0.591821 + 0.806069i \(0.298409\pi\)
\(644\) 222.293 128.341i 0.345176 0.199288i
\(645\) 140.877 185.893i 0.218414 0.288205i
\(646\) −16.6218 + 16.0017i −0.0257304 + 0.0247704i
\(647\) 997.613i 1.54191i 0.636892 + 0.770953i \(0.280220\pi\)
−0.636892 + 0.770953i \(0.719780\pi\)
\(648\) −50.4122 82.6704i −0.0777966 0.127578i
\(649\) 965.053i 1.48698i
\(650\) 38.1221 + 22.0098i 0.0586493 + 0.0338612i
\(651\) 252.398 333.049i 0.387708 0.511596i
\(652\) −541.677 + 312.737i −0.830793 + 0.479658i
\(653\) 327.153 + 566.646i 0.501000 + 0.867758i 0.999999 + 0.00115542i \(0.000367782\pi\)
−0.498999 + 0.866603i \(0.666299\pi\)
\(654\) −27.6644 65.6708i −0.0423003 0.100414i
\(655\) −0.0889312 + 0.154033i −0.000135773 + 0.000235165i
\(656\) −984.416 −1.50063
\(657\) 205.821 57.8046i 0.313274 0.0879827i
\(658\) 20.6098i 0.0313219i
\(659\) −63.6237 36.7332i −0.0965459 0.0557408i 0.450950 0.892549i \(-0.351085\pi\)
−0.547496 + 0.836809i \(0.684419\pi\)
\(660\) −398.921 50.0865i −0.604425 0.0758886i
\(661\) 559.494 + 969.071i 0.846435 + 1.46607i 0.884369 + 0.466788i \(0.154589\pi\)
−0.0379339 + 0.999280i \(0.512078\pi\)
\(662\) −71.9352 + 41.5318i −0.108663 + 0.0627368i
\(663\) −340.406 + 792.492i −0.513432 + 1.19531i
\(664\) 8.56492 14.8349i 0.0128990 0.0223417i
\(665\) 79.0671i 0.118898i
\(666\) 81.5516 + 20.8064i 0.122450 + 0.0312409i
\(667\) 44.2946 0.0664087
\(668\) −183.103 + 317.144i −0.274107 + 0.474767i
\(669\) 2.40512 + 5.70937i 0.00359510 + 0.00853419i
\(670\) 7.65647 4.42047i 0.0114276 0.00659771i
\(671\) −799.592 + 461.645i −1.19164 + 0.687995i
\(672\) 40.8815 53.9448i 0.0608356 0.0802750i
\(673\) 505.859 + 292.058i 0.751648 + 0.433964i 0.826289 0.563246i \(-0.190448\pi\)
−0.0746413 + 0.997210i \(0.523781\pi\)
\(674\) −82.3371 −0.122162
\(675\) −366.880 + 292.154i −0.543526 + 0.432821i
\(676\) 465.423 0.688496
\(677\) 533.325 923.745i 0.787776 1.36447i −0.139550 0.990215i \(-0.544566\pi\)
0.927326 0.374254i \(-0.122101\pi\)
\(678\) 19.7884 + 14.9964i 0.0291864 + 0.0221186i
\(679\) 18.2217 + 31.5609i 0.0268361 + 0.0464815i
\(680\) −13.4953 54.4876i −0.0198461 0.0801288i
\(681\) 232.367 + 551.601i 0.341214 + 0.809986i
\(682\) 40.2809 69.7686i 0.0590629 0.102300i
\(683\) 1096.38 1.60524 0.802621 0.596489i \(-0.203438\pi\)
0.802621 + 0.596489i \(0.203438\pi\)
\(684\) −226.498 + 231.999i −0.331138 + 0.339180i
\(685\) 200.905i 0.293292i
\(686\) −20.8403 + 36.0964i −0.0303794 + 0.0526186i
\(687\) 413.263 + 51.8872i 0.601548 + 0.0755273i
\(688\) −221.390 383.458i −0.321787 0.557352i
\(689\) 978.874 565.153i 1.42072 0.820252i
\(690\) −3.15867 + 25.1577i −0.00457778 + 0.0364604i
\(691\) 450.025 + 259.822i 0.651267 + 0.376009i 0.788941 0.614468i \(-0.210629\pi\)
−0.137675 + 0.990478i \(0.543963\pi\)
\(692\) 180.792 0.261259
\(693\) 248.260 + 242.374i 0.358240 + 0.349746i
\(694\) 76.4800i 0.110202i
\(695\) 59.6905 + 34.4623i 0.0858857 + 0.0495861i
\(696\) 7.16935 3.02015i 0.0103008 0.00433930i
\(697\) 1032.62 255.758i 1.48153 0.366941i
\(698\) −18.0264 + 10.4076i −0.0258258 + 0.0149105i
\(699\) 589.516 777.889i 0.843370 1.11286i
\(700\) −189.100 109.177i −0.270143 0.155967i
\(701\) 926.951i 1.32233i 0.750242 + 0.661163i \(0.229937\pi\)
−0.750242 + 0.661163i \(0.770063\pi\)
\(702\) 25.0428 63.6761i 0.0356736 0.0907067i
\(703\) 565.236i 0.804034i
\(704\) −377.250 + 653.417i −0.535867 + 0.928149i
\(705\) −287.419 217.817i −0.407686 0.308961i
\(706\) −22.2591 38.5538i −0.0315284 0.0546088i
\(707\) −117.401 203.345i −0.166056 0.287617i
\(708\) −870.013 + 366.501i −1.22883 + 0.517656i
\(709\) −865.153 499.496i −1.22024 0.704508i −0.255274 0.966869i \(-0.582166\pi\)
−0.964970 + 0.262361i \(0.915499\pi\)
\(710\) 33.2321i 0.0468058i
\(711\) 16.6919 65.4247i 0.0234767 0.0920179i
\(712\) 138.168 0.194056
\(713\) 779.400 + 449.987i 1.09313 + 0.631117i
\(714\) −9.53227 + 22.1919i −0.0133505 + 0.0310811i
\(715\) −284.911 493.480i −0.398477 0.690182i
\(716\) 1014.64 585.805i 1.41710 0.818163i
\(717\) 63.6989 507.339i 0.0888409 0.707586i
\(718\) −18.8717 + 32.6867i −0.0262836 + 0.0455246i
\(719\) 659.825 0.917698 0.458849 0.888514i \(-0.348262\pi\)
0.458849 + 0.888514i \(0.348262\pi\)
\(720\) −105.742 376.506i −0.146863 0.522926i
\(721\) 29.2803i 0.0406107i
\(722\) 36.2020 + 20.9012i 0.0501412 + 0.0289491i
\(723\) 64.8446 27.3164i 0.0896883 0.0377820i
\(724\) 964.260 556.716i 1.33185 0.768944i
\(725\) −18.8402 32.6322i −0.0259865 0.0450100i
\(726\) 9.95708 + 7.54588i 0.0137150 + 0.0103938i
\(727\) −373.310 + 646.592i −0.513494 + 0.889398i 0.486383 + 0.873746i \(0.338316\pi\)
−0.999877 + 0.0156524i \(0.995017\pi\)
\(728\) 63.8931 0.0877652
\(729\) 533.695 + 496.599i 0.732092 + 0.681206i
\(730\) −9.83196 −0.0134684
\(731\) 331.856 + 344.718i 0.453975 + 0.471570i
\(732\) −719.845 545.528i −0.983395 0.745256i
\(733\) −333.459 577.568i −0.454924 0.787951i 0.543760 0.839241i \(-0.317000\pi\)
−0.998684 + 0.0512897i \(0.983667\pi\)
\(734\) −35.4536 61.4074i −0.0483019 0.0836613i
\(735\) 125.502 + 297.922i 0.170751 + 0.405336i
\(736\) 126.241 + 72.8854i 0.171523 + 0.0990291i
\(737\) 260.543 0.353518
\(738\) −81.2507 + 22.8192i −0.110096 + 0.0309203i
\(739\) −1026.55 −1.38911 −0.694554 0.719440i \(-0.744398\pi\)
−0.694554 + 0.719440i \(0.744398\pi\)
\(740\) 593.797 + 342.829i 0.802429 + 0.463282i
\(741\) −455.946 57.2462i −0.615311 0.0772553i
\(742\) 27.4111 15.8258i 0.0369422 0.0213286i
\(743\) 609.448 + 1055.59i 0.820253 + 1.42072i 0.905494 + 0.424359i \(0.139500\pi\)
−0.0852417 + 0.996360i \(0.527166\pi\)
\(744\) 156.832 + 19.6910i 0.210796 + 0.0264665i
\(745\) −50.2851 29.0321i −0.0674968 0.0389693i
\(746\) 51.3161i 0.0687883i
\(747\) −31.8822 + 124.964i −0.0426803 + 0.167287i
\(748\) 228.580 792.502i 0.305588 1.05949i
\(749\) −124.702 71.9968i −0.166491 0.0961238i
\(750\) 48.4859 20.4251i 0.0646479 0.0272335i
\(751\) 84.1112 48.5616i 0.111999 0.0646626i −0.442954 0.896544i \(-0.646070\pi\)
0.554953 + 0.831882i \(0.312736\pi\)
\(752\) −592.886 + 342.303i −0.788412 + 0.455190i
\(753\) −803.212 608.706i −1.06668 0.808375i
\(754\) 4.76086 + 2.74868i 0.00631414 + 0.00364547i
\(755\) 672.259 0.890409
\(756\) −124.222 + 315.858i −0.164315 + 0.417802i
\(757\) −183.164 −0.241960 −0.120980 0.992655i \(-0.538604\pi\)
−0.120980 + 0.992655i \(0.538604\pi\)
\(758\) 10.8535 18.7987i 0.0143185 0.0248004i
\(759\) −451.314 + 595.527i −0.594617 + 0.784620i
\(760\) 25.9002 14.9535i 0.0340792 0.0196756i
\(761\) −926.306 + 534.803i −1.21722 + 0.702764i −0.964323 0.264729i \(-0.914717\pi\)
−0.252899 + 0.967493i \(0.581384\pi\)
\(762\) −68.3116 + 28.7768i −0.0896477 + 0.0377649i
\(763\) −250.488 + 433.858i −0.328293 + 0.568621i
\(764\) 1137.39i 1.48873i
\(765\) 208.738 + 367.472i 0.272861 + 0.480355i
\(766\) −32.6498 −0.0426237
\(767\) −1158.74 668.998i −1.51074 0.872227i
\(768\) −719.600 90.3493i −0.936979 0.117642i
\(769\) −316.206 547.685i −0.411192 0.712205i 0.583829 0.811877i \(-0.301554\pi\)
−0.995020 + 0.0996721i \(0.968221\pi\)
\(770\) −7.97827 13.8188i −0.0103614 0.0179465i
\(771\) −19.9175 + 158.635i −0.0258333 + 0.205753i
\(772\) −484.519 279.737i −0.627616 0.362354i
\(773\) 7.38633i 0.00955541i 0.999989 + 0.00477771i \(0.00152080\pi\)
−0.999989 + 0.00477771i \(0.998479\pi\)
\(774\) −27.1616 26.5175i −0.0350924 0.0342604i
\(775\) 765.588i 0.987855i
\(776\) −6.89232 + 11.9379i −0.00888186 + 0.0153838i
\(777\) −229.707 545.287i −0.295633 0.701785i
\(778\) −5.63353 9.75757i −0.00724105 0.0125419i
\(779\) 283.391 + 490.848i 0.363789 + 0.630100i
\(780\) 336.681 444.263i 0.431642 0.569568i
\(781\) 489.676 848.144i 0.626986 1.08597i
\(782\) −49.9786 14.4153i −0.0639113 0.0184338i
\(783\) −45.8177 + 36.4856i −0.0585156 + 0.0465972i
\(784\) 613.697 0.782777
\(785\) −62.8963 + 108.940i −0.0801226 + 0.138776i
\(786\) 0.0230701 + 0.0174835i 2.93513e−5 + 2.22436e-5i
\(787\) −363.589 + 209.918i −0.461994 + 0.266732i −0.712882 0.701284i \(-0.752611\pi\)
0.250888 + 0.968016i \(0.419277\pi\)
\(788\) 690.663 + 1196.26i 0.876475 + 1.51810i
\(789\) 138.424 58.3123i 0.175442 0.0739066i
\(790\) −1.55264 + 2.68925i −0.00196537 + 0.00340411i
\(791\) 174.554i 0.220675i
\(792\) −32.4430 + 127.162i −0.0409634 + 0.160558i
\(793\) 1280.09i 1.61424i
\(794\) 41.0513 71.1029i 0.0517019 0.0895503i
\(795\) 68.9954 549.524i 0.0867867 0.691225i
\(796\) 189.817 109.591i 0.238463 0.137677i
\(797\) 1351.72 780.418i 1.69601 0.979194i 0.746545 0.665335i \(-0.231711\pi\)
0.949470 0.313859i \(-0.101622\pi\)
\(798\) −12.7677 1.60305i −0.0159996 0.00200883i
\(799\) 532.987 513.101i 0.667067 0.642178i
\(800\) 124.004i 0.155005i
\(801\) −1001.48 + 281.266i −1.25029 + 0.351144i
\(802\) 105.706i 0.131802i
\(803\) −250.930 144.874i −0.312490 0.180416i
\(804\) 98.9471 + 234.884i 0.123069 + 0.292145i
\(805\) 154.372 89.1269i 0.191767 0.110717i
\(806\) 55.8475 + 96.7306i 0.0692896 + 0.120013i
\(807\) −542.108 + 715.332i −0.671757 + 0.886409i
\(808\) 44.4068 76.9148i 0.0549589 0.0951916i
\(809\) −474.700 −0.586774 −0.293387 0.955994i \(-0.594782\pi\)
−0.293387 + 0.955994i \(0.594782\pi\)
\(810\) −17.4552 28.6246i −0.0215496 0.0353390i
\(811\) 291.146i 0.358997i 0.983758 + 0.179498i \(0.0574475\pi\)
−0.983758 + 0.179498i \(0.942553\pi\)
\(812\) −23.6157 13.6345i −0.0290834 0.0167913i
\(813\) −288.179 + 380.263i −0.354463 + 0.467728i
\(814\) −57.0351 98.7878i −0.0700677 0.121361i
\(815\) −376.169 + 217.181i −0.461557 + 0.266480i
\(816\) 796.715 94.3625i 0.976366 0.115640i
\(817\) −127.466 + 220.778i −0.156017 + 0.270230i
\(818\) 84.3147i 0.103074i
\(819\) −463.118 + 130.066i −0.565468 + 0.158811i
\(820\) −687.534 −0.838456
\(821\) 88.4256 153.158i 0.107705 0.186550i −0.807135 0.590367i \(-0.798983\pi\)
0.914840 + 0.403816i \(0.132317\pi\)
\(822\) −32.4420 4.07325i −0.0394672 0.00495530i
\(823\) −38.5079 + 22.2325i −0.0467896 + 0.0270140i −0.523212 0.852202i \(-0.675267\pi\)
0.476423 + 0.879216i \(0.341933\pi\)
\(824\) −9.59141 + 5.53760i −0.0116401 + 0.00672039i
\(825\) 630.692 + 79.1865i 0.764475 + 0.0959836i
\(826\) −32.4478 18.7337i −0.0392830 0.0226801i
\(827\) −900.292 −1.08862 −0.544312 0.838883i \(-0.683209\pi\)
−0.544312 + 0.838883i \(0.683209\pi\)
\(828\) −708.276 180.704i −0.855405 0.218241i
\(829\) −537.393 −0.648242 −0.324121 0.946016i \(-0.605069\pi\)
−0.324121 + 0.946016i \(0.605069\pi\)
\(830\) 2.96560 5.13656i 0.00357301 0.00618863i
\(831\) 560.261 236.015i 0.674201 0.284013i
\(832\) −523.038 905.929i −0.628652 1.08886i
\(833\) −643.750 + 159.442i −0.772809 + 0.191407i
\(834\) 6.77515 8.94007i 0.00812368 0.0107195i
\(835\) −127.157 + 220.242i −0.152283 + 0.263763i
\(836\) 439.440 0.525646
\(837\) −1176.86 + 176.534i −1.40604 + 0.210913i
\(838\) 90.0823i 0.107497i
\(839\) −519.335 + 899.515i −0.618993 + 1.07213i 0.370677 + 0.928762i \(0.379126\pi\)
−0.989670 + 0.143366i \(0.954208\pi\)
\(840\) 18.9091 24.9513i 0.0225109 0.0297040i
\(841\) 418.147 + 724.252i 0.497202 + 0.861180i
\(842\) −43.5893 + 25.1663i −0.0517687 + 0.0298887i
\(843\) −1177.78 + 496.151i −1.39713 + 0.588554i
\(844\) 1137.29 + 656.617i 1.34750 + 0.777982i
\(845\) 323.214 0.382502
\(846\) −41.0002 + 41.9960i −0.0484636 + 0.0496406i
\(847\) 87.8316i 0.103697i
\(848\) −910.526 525.692i −1.07373 0.619920i
\(849\) 173.868 1384.80i 0.204792 1.63109i
\(850\) 10.6380 + 42.9511i 0.0125153 + 0.0505307i
\(851\) 1103.58 637.151i 1.29680 0.748709i
\(852\) 950.583 + 119.350i 1.11571 + 0.140083i
\(853\) 197.058 + 113.771i 0.231017 + 0.133378i 0.611041 0.791599i \(-0.290751\pi\)
−0.380024 + 0.924977i \(0.624084\pi\)
\(854\) 35.8461i 0.0419743i
\(855\) −157.292 + 161.112i −0.183968 + 0.188436i
\(856\) 54.4652i 0.0636276i
\(857\) −467.534 + 809.793i −0.545547 + 0.944916i 0.453025 + 0.891498i \(0.350345\pi\)
−0.998572 + 0.0534180i \(0.982988\pi\)
\(858\) −85.4632 + 36.0021i −0.0996075 + 0.0419605i
\(859\) −264.570 458.248i −0.307997 0.533467i 0.669927 0.742427i \(-0.266325\pi\)
−0.977924 + 0.208960i \(0.932992\pi\)
\(860\) −154.622 267.814i −0.179794 0.311412i
\(861\) 472.866 + 358.357i 0.549205 + 0.416210i
\(862\) −33.7800 19.5029i −0.0391880 0.0226252i
\(863\) 271.514i 0.314616i −0.987550 0.157308i \(-0.949718\pi\)
0.987550 0.157308i \(-0.0502815\pi\)
\(864\) −190.618 + 28.5937i −0.220623 + 0.0330945i
\(865\) 125.551 0.145146
\(866\) 1.45368 + 0.839284i 0.00167862 + 0.000969150i
\(867\) −811.214 + 305.975i −0.935656 + 0.352912i
\(868\) −277.025 479.821i −0.319153 0.552790i
\(869\) −79.2524 + 45.7564i −0.0911995 + 0.0526541i
\(870\) 2.48238 1.04572i 0.00285331 0.00120198i
\(871\) −180.615 + 312.834i −0.207365 + 0.359166i
\(872\) −189.493 −0.217308
\(873\) 25.6561 100.560i 0.0293884 0.115189i
\(874\) 27.7130i 0.0317082i
\(875\) −320.325 184.940i −0.366086 0.211360i
\(876\) 35.3107 281.237i 0.0403090 0.321047i
\(877\) −88.4609 + 51.0729i −0.100868 + 0.0582359i −0.549585 0.835438i \(-0.685214\pi\)
0.448718 + 0.893674i \(0.351881\pi\)
\(878\) 18.5837 + 32.1880i 0.0211660 + 0.0366605i
\(879\) 130.446 1038.96i 0.148403 1.18198i
\(880\) −265.017 + 459.024i −0.301156 + 0.521618i
\(881\) −1034.23 −1.17392 −0.586961 0.809615i \(-0.699676\pi\)
−0.586961 + 0.809615i \(0.699676\pi\)
\(882\) 50.6527 14.2258i 0.0574294 0.0161290i
\(883\) 823.510 0.932628 0.466314 0.884619i \(-0.345582\pi\)
0.466314 + 0.884619i \(0.345582\pi\)
\(884\) 793.100 + 823.838i 0.897172 + 0.931943i
\(885\) −604.183 + 254.517i −0.682693 + 0.287590i
\(886\) 61.7306 + 106.921i 0.0696733 + 0.120678i
\(887\) 496.209 + 859.460i 0.559424 + 0.968952i 0.997545 + 0.0700351i \(0.0223111\pi\)
−0.438120 + 0.898916i \(0.644356\pi\)
\(888\) 135.178 178.372i 0.152227 0.200870i
\(889\) 451.304 + 260.561i 0.507654 + 0.293094i
\(890\) 47.8404 0.0537533
\(891\) −23.7041 987.754i −0.0266040 1.10859i
\(892\) 8.21401 0.00920853
\(893\) 341.357 + 197.082i 0.382259 + 0.220697i
\(894\) −5.70759 + 7.53138i −0.00638432 + 0.00842436i
\(895\) 704.622 406.814i 0.787288 0.454541i
\(896\) −59.7702 103.525i −0.0667078 0.115541i
\(897\) −402.187 954.727i −0.448369 1.06436i
\(898\) −16.2131 9.36064i −0.0180547 0.0104239i
\(899\) 95.6101i 0.106352i
\(900\) 168.131 + 598.653i 0.186813 + 0.665170i
\(901\) 1091.69 + 314.875i 1.21164 + 0.349473i
\(902\) 99.0581 + 57.1912i 0.109820 + 0.0634049i
\(903\) −33.2453 + 264.787i −0.0368165 + 0.293230i
\(904\) 57.1789 33.0123i 0.0632510 0.0365180i
\(905\) 669.633 386.613i 0.739926 0.427196i
\(906\) 13.6297 108.556i 0.0150438 0.119819i
\(907\) −67.6442 39.0544i −0.0745801 0.0430589i 0.462246 0.886752i \(-0.347044\pi\)
−0.536826 + 0.843693i \(0.680377\pi\)
\(908\) 793.581 0.873988
\(909\) −165.300 + 647.902i −0.181849 + 0.712764i
\(910\) 22.1229 0.0243109
\(911\) 442.812 766.974i 0.486073 0.841903i −0.513799 0.857911i \(-0.671762\pi\)
0.999872 + 0.0160076i \(0.00509560\pi\)
\(912\) 165.940 + 393.914i 0.181952 + 0.431924i
\(913\) 151.375 87.3963i 0.165799 0.0957244i
\(914\) −112.493 + 64.9480i −0.123078 + 0.0710591i
\(915\) −499.898 378.843i −0.546337 0.414036i
\(916\) 276.113 478.242i 0.301434 0.522098i
\(917\) 0.203502i 0.000221922i
\(918\) 63.5711 26.2566i 0.0692495 0.0286020i
\(919\) −11.6428 −0.0126690 −0.00633450 0.999980i \(-0.502016\pi\)
−0.00633450 + 0.999980i \(0.502016\pi\)
\(920\) 58.3910 + 33.7120i 0.0634684 + 0.0366435i
\(921\) 310.662 409.931i 0.337310 0.445093i
\(922\) −21.7453 37.6640i −0.0235849 0.0408503i
\(923\) 678.911 + 1175.91i 0.735548 + 1.27401i
\(924\) 423.931 178.584i 0.458799 0.193273i
\(925\) −938.790 542.011i −1.01491 0.585958i
\(926\) 52.6851i 0.0568954i
\(927\) 58.2488 59.6635i 0.0628359 0.0643619i
\(928\) 15.4862i 0.0166877i
\(929\) −207.366 + 359.168i −0.223214 + 0.386618i −0.955782 0.294076i \(-0.904988\pi\)
0.732568 + 0.680694i \(0.238322\pi\)
\(930\) 54.3030 + 6.81801i 0.0583903 + 0.00733119i
\(931\) −176.670 306.001i −0.189763 0.328680i
\(932\) −647.036 1120.70i −0.694244 1.20247i
\(933\) 1273.41 + 159.883i 1.36486 + 0.171364i
\(934\) −29.5467 + 51.1764i −0.0316346 + 0.0547927i
\(935\) 158.738 550.355i 0.169773 0.588615i
\(936\) −130.193 127.106i −0.139095 0.135797i
\(937\) 434.596 0.463817 0.231908 0.972738i \(-0.425503\pi\)
0.231908 + 0.972738i \(0.425503\pi\)
\(938\) −5.05770 + 8.76019i −0.00539200 + 0.00933922i
\(939\) −969.899 + 408.578i −1.03291 + 0.435121i
\(940\) −414.082 + 239.070i −0.440513 + 0.254330i
\(941\) −762.435 1320.58i −0.810239 1.40337i −0.912697 0.408637i \(-0.866004\pi\)
0.102458 0.994737i \(-0.467329\pi\)
\(942\) 16.3163 + 12.3651i 0.0173209 + 0.0131265i
\(943\) −638.895 + 1106.60i −0.677513 + 1.17349i
\(944\) 1244.57i 1.31840i
\(945\) −86.2664 + 219.349i −0.0912872 + 0.232115i
\(946\) 51.4479i 0.0543847i
\(947\) 201.357 348.761i 0.212626 0.368280i −0.739909 0.672707i \(-0.765132\pi\)
0.952536 + 0.304427i \(0.0984650\pi\)
\(948\) −71.3482 54.0705i −0.0752618 0.0570364i
\(949\) 347.901 200.861i 0.366598 0.211655i
\(950\) −20.4164 + 11.7874i −0.0214910 + 0.0124078i
\(951\) 198.996 + 472.384i 0.209249 + 0.496724i
\(952\) 44.5432 + 46.2695i 0.0467891 + 0.0486025i
\(953\) 671.106i 0.704203i −0.935962 0.352102i \(-0.885467\pi\)
0.935962 0.352102i \(-0.114533\pi\)
\(954\) −87.3378 22.2826i −0.0915490 0.0233571i
\(955\) 789.864i 0.827082i
\(956\) −587.110 338.968i −0.614132 0.354569i
\(957\) 78.7637 + 9.88917i 0.0823027 + 0.0103335i
\(958\) −44.8051 + 25.8683i −0.0467695 + 0.0270024i
\(959\) 114.933 + 199.070i 0.119847 + 0.207581i
\(960\) −508.574 63.8539i −0.529764 0.0665145i
\(961\) 490.798 850.087i 0.510716 0.884586i
\(962\) 158.153 0.164400
\(963\) 110.874 + 394.782i 0.115134 + 0.409950i
\(964\) 93.2912i 0.0967751i
\(965\) −336.476 194.264i −0.348680 0.201310i
\(966\) −11.2623 26.7349i −0.0116587 0.0276759i
\(967\) −409.830 709.846i −0.423816 0.734070i 0.572493 0.819909i \(-0.305976\pi\)
−0.996309 + 0.0858390i \(0.972643\pi\)
\(968\) 28.7712 16.6110i 0.0297223 0.0171602i
\(969\) −276.407 370.092i −0.285250 0.381932i
\(970\) −2.38646 + 4.13347i −0.00246027 + 0.00426131i
\(971\) 877.715i 0.903929i 0.892036 + 0.451965i \(0.149277\pi\)
−0.892036 + 0.451965i \(0.850723\pi\)
\(972\) 881.477 396.492i 0.906869 0.407913i
\(973\) −78.8605 −0.0810488
\(974\) −44.3993 + 76.9018i −0.0455845 + 0.0789546i
\(975\) −532.290 + 702.378i −0.545939 + 0.720387i
\(976\) −1031.19 + 595.357i −1.05654 + 0.609996i
\(977\) −966.293 + 557.890i −0.989041 + 0.571023i −0.904988 0.425438i \(-0.860120\pi\)
−0.0840537 + 0.996461i \(0.526787\pi\)
\(978\) 27.4436 + 65.1467i 0.0280609 + 0.0666121i
\(979\) 1220.98 + 704.930i 1.24717 + 0.720051i
\(980\) 428.617 0.437365
\(981\) 1373.51 385.749i 1.40011 0.393220i
\(982\) −18.6370 −0.0189786
\(983\) −546.561 + 946.671i −0.556013 + 0.963043i 0.441811 + 0.897108i \(0.354336\pi\)
−0.997824 + 0.0659348i \(0.978997\pi\)
\(984\) −27.9575 + 222.672i −0.0284121 + 0.226292i
\(985\) 479.633 + 830.748i 0.486937 + 0.843399i
\(986\) 1.32852 + 5.36393i 0.00134739 + 0.00544009i
\(987\) 409.402 + 51.4024i 0.414794 + 0.0520795i
\(988\) −304.630 + 527.635i −0.308330 + 0.534044i
\(989\) −574.735 −0.581128
\(990\) −11.2334 + 44.0296i −0.0113468 + 0.0444744i
\(991\) 672.370i 0.678477i 0.940700 + 0.339238i \(0.110169\pi\)
−0.940700 + 0.339238i \(0.889831\pi\)
\(992\) 157.324 272.492i 0.158592 0.274690i
\(993\) −645.592 1532.53i −0.650143 1.54334i
\(994\) 19.0113 + 32.9286i 0.0191261 + 0.0331273i
\(995\) 131.819 76.1056i 0.132481 0.0764881i
\(996\) 136.278 + 103.277i 0.136825 + 0.103691i
\(997\) 264.679 + 152.813i 0.265476 + 0.153272i 0.626830 0.779156i \(-0.284352\pi\)
−0.361354 + 0.932429i \(0.617685\pi\)
\(998\) 47.1799 0.0472744
\(999\) −616.702 + 1568.08i −0.617320 + 1.56965i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.i.a.101.18 yes 68
3.2 odd 2 459.3.i.a.305.17 68
9.4 even 3 459.3.i.a.152.18 68
9.5 odd 6 inner 153.3.i.a.50.17 68
17.16 even 2 inner 153.3.i.a.101.17 yes 68
51.50 odd 2 459.3.i.a.305.18 68
153.50 odd 6 inner 153.3.i.a.50.18 yes 68
153.67 even 6 459.3.i.a.152.17 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.17 68 9.5 odd 6 inner
153.3.i.a.50.18 yes 68 153.50 odd 6 inner
153.3.i.a.101.17 yes 68 17.16 even 2 inner
153.3.i.a.101.18 yes 68 1.1 even 1 trivial
459.3.i.a.152.17 68 153.67 even 6
459.3.i.a.152.18 68 9.4 even 3
459.3.i.a.305.17 68 3.2 odd 2
459.3.i.a.305.18 68 51.50 odd 2