Properties

Label 153.3.i.a.50.17
Level $153$
Weight $3$
Character 153.50
Analytic conductor $4.169$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(50,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.50"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 50.17
Character \(\chi\) \(=\) 153.50
Dual form 153.3.i.a.101.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.129772 + 0.0749237i) q^{2} +(-1.81198 - 2.39097i) q^{3} +(-1.98877 + 3.44466i) q^{4} +(1.38111 - 2.39215i) q^{5} +(0.414284 + 0.174521i) q^{6} +(-2.73699 + 1.58020i) q^{7} -1.19542i q^{8} +(-2.43349 + 8.66476i) q^{9} +0.413911i q^{10} +(6.09900 + 10.5638i) q^{11} +(11.8397 - 1.48653i) q^{12} +(-8.45595 + 14.6461i) q^{13} +(0.236789 - 0.410131i) q^{14} +(-8.22210 + 1.03233i) q^{15} +(-7.86553 - 13.6235i) q^{16} +(-4.71123 + 16.3341i) q^{17} +(-0.333398 - 1.30677i) q^{18} +9.05723 q^{19} +(5.49342 + 9.51489i) q^{20} +(8.73757 + 3.68078i) q^{21} +(-1.58296 - 0.913920i) q^{22} +(-10.2096 + 17.6835i) q^{23} +(-2.85820 + 2.16606i) q^{24} +(8.68508 + 15.0430i) q^{25} -2.53421i q^{26} +(25.1266 - 9.88192i) q^{27} -12.5706i q^{28} +(-1.08463 - 1.87864i) q^{29} +(0.989651 - 0.749997i) q^{30} +(-38.1700 - 22.0374i) q^{31} +(6.18249 + 3.56946i) q^{32} +(14.2065 - 33.7238i) q^{33} +(-0.612431 - 2.47269i) q^{34} +8.72972i q^{35} +(-25.0075 - 25.6148i) q^{36} -62.4071i q^{37} +(-1.17537 + 0.678602i) q^{38} +(50.3405 - 6.32050i) q^{39} +(-2.85961 - 1.65100i) q^{40} +(-31.2890 + 54.1941i) q^{41} +(-1.40967 + 0.176991i) q^{42} +(-14.0734 - 24.3759i) q^{43} -48.5181 q^{44} +(17.3665 + 17.7883i) q^{45} -3.05976i q^{46} +(37.6889 - 21.7597i) q^{47} +(-18.3212 + 43.4917i) q^{48} +(-19.5059 + 33.7853i) q^{49} +(-2.25415 - 1.30144i) q^{50} +(47.5911 - 18.3326i) q^{51} +(-33.6339 - 58.2557i) q^{52} -66.8350i q^{53} +(-2.52034 + 3.16498i) q^{54} +33.6935 q^{55} +(1.88900 + 3.27184i) q^{56} +(-16.4115 - 21.6556i) q^{57} +(0.281509 + 0.162529i) q^{58} +(68.5161 + 39.5578i) q^{59} +(12.7959 - 30.3754i) q^{60} +(-65.5511 + 37.8459i) q^{61} +6.60451 q^{62} +(-7.03163 - 27.5608i) q^{63} +61.8545 q^{64} +(23.3572 + 40.4558i) q^{65} +(0.683120 + 5.44080i) q^{66} +(-10.6797 + 18.4979i) q^{67} +(-46.8959 - 48.7135i) q^{68} +(60.7803 - 7.63127i) q^{69} +(-0.654064 - 1.13287i) q^{70} +80.2879 q^{71} +(10.3580 + 2.90903i) q^{72} +23.7538i q^{73} +(4.67578 + 8.09868i) q^{74} +(20.2302 - 48.0233i) q^{75} +(-18.0128 + 31.1990i) q^{76} +(-33.3858 - 19.2753i) q^{77} +(-6.05922 + 4.59192i) q^{78} +(-6.49716 + 3.75114i) q^{79} -43.4526 q^{80} +(-69.1562 - 42.1713i) q^{81} -9.37714i q^{82} +(-12.4098 + 7.16481i) q^{83} +(-30.0561 + 22.7777i) q^{84} +(32.5670 + 33.8292i) q^{85} +(3.65266 + 2.10887i) q^{86} +(-2.52645 + 5.99737i) q^{87} +(12.6281 - 7.29084i) q^{88} +115.581i q^{89} +(-3.58644 - 1.00725i) q^{90} -53.4484i q^{91} +(-40.6091 - 70.3370i) q^{92} +(16.4721 + 131.195i) q^{93} +(-3.26063 + 5.64758i) q^{94} +(12.5090 - 21.6663i) q^{95} +(-2.66803 - 21.2499i) q^{96} +(-9.98636 + 5.76563i) q^{97} -5.84583i q^{98} +(-106.375 + 27.1395i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 6 q^{2} + 62 q^{4} - 8 q^{9} - 2 q^{13} - 106 q^{16} - 2 q^{18} - 32 q^{19} - 28 q^{21} - 132 q^{25} + 180 q^{30} - 98 q^{33} - 27 q^{34} + 158 q^{36} - 102 q^{38} + 110 q^{42} + 58 q^{43} - 312 q^{47}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.129772 + 0.0749237i −0.0648859 + 0.0374619i −0.532092 0.846687i \(-0.678594\pi\)
0.467206 + 0.884148i \(0.345261\pi\)
\(3\) −1.81198 2.39097i −0.603992 0.796991i
\(4\) −1.98877 + 3.44466i −0.497193 + 0.861164i
\(5\) 1.38111 2.39215i 0.276222 0.478430i −0.694221 0.719762i \(-0.744251\pi\)
0.970443 + 0.241332i \(0.0775842\pi\)
\(6\) 0.414284 + 0.174521i 0.0690473 + 0.0290868i
\(7\) −2.73699 + 1.58020i −0.390999 + 0.225743i −0.682593 0.730799i \(-0.739148\pi\)
0.291594 + 0.956542i \(0.405814\pi\)
\(8\) 1.19542i 0.149427i
\(9\) −2.43349 + 8.66476i −0.270388 + 0.962751i
\(10\) 0.413911i 0.0413911i
\(11\) 6.09900 + 10.5638i 0.554455 + 0.960344i 0.997946 + 0.0640648i \(0.0204064\pi\)
−0.443491 + 0.896279i \(0.646260\pi\)
\(12\) 11.8397 1.48653i 0.986640 0.123878i
\(13\) −8.45595 + 14.6461i −0.650458 + 1.12663i 0.332554 + 0.943084i \(0.392090\pi\)
−0.983012 + 0.183542i \(0.941244\pi\)
\(14\) 0.236789 0.410131i 0.0169135 0.0292951i
\(15\) −8.22210 + 1.03233i −0.548140 + 0.0688217i
\(16\) −7.86553 13.6235i −0.491595 0.851468i
\(17\) −4.71123 + 16.3341i −0.277131 + 0.960832i
\(18\) −0.333398 1.30677i −0.0185221 0.0725982i
\(19\) 9.05723 0.476696 0.238348 0.971180i \(-0.423394\pi\)
0.238348 + 0.971180i \(0.423394\pi\)
\(20\) 5.49342 + 9.51489i 0.274671 + 0.475745i
\(21\) 8.73757 + 3.68078i 0.416075 + 0.175275i
\(22\) −1.58296 0.913920i −0.0719525 0.0415418i
\(23\) −10.2096 + 17.6835i −0.443895 + 0.768849i −0.997975 0.0636149i \(-0.979737\pi\)
0.554079 + 0.832464i \(0.313070\pi\)
\(24\) −2.85820 + 2.16606i −0.119092 + 0.0902526i
\(25\) 8.68508 + 15.0430i 0.347403 + 0.601720i
\(26\) 2.53421i 0.0974695i
\(27\) 25.1266 9.88192i 0.930616 0.365997i
\(28\) 12.5706i 0.448952i
\(29\) −1.08463 1.87864i −0.0374011 0.0647807i 0.846719 0.532040i \(-0.178575\pi\)
−0.884120 + 0.467260i \(0.845241\pi\)
\(30\) 0.989651 0.749997i 0.0329884 0.0249999i
\(31\) −38.1700 22.0374i −1.23129 0.710885i −0.263991 0.964525i \(-0.585039\pi\)
−0.967299 + 0.253640i \(0.918372\pi\)
\(32\) 6.18249 + 3.56946i 0.193203 + 0.111546i
\(33\) 14.2065 33.7238i 0.430499 1.02193i
\(34\) −0.612431 2.47269i −0.0180127 0.0727263i
\(35\) 8.72972i 0.249421i
\(36\) −25.0075 25.6148i −0.694652 0.711522i
\(37\) 62.4071i 1.68668i −0.537381 0.843340i \(-0.680586\pi\)
0.537381 0.843340i \(-0.319414\pi\)
\(38\) −1.17537 + 0.678602i −0.0309309 + 0.0178579i
\(39\) 50.3405 6.32050i 1.29078 0.162064i
\(40\) −2.85961 1.65100i −0.0714903 0.0412750i
\(41\) −31.2890 + 54.1941i −0.763145 + 1.32181i 0.178076 + 0.984017i \(0.443013\pi\)
−0.941222 + 0.337790i \(0.890321\pi\)
\(42\) −1.40967 + 0.176991i −0.0335635 + 0.00421407i
\(43\) −14.0734 24.3759i −0.327289 0.566881i 0.654684 0.755903i \(-0.272802\pi\)
−0.981973 + 0.189022i \(0.939468\pi\)
\(44\) −48.5181 −1.10268
\(45\) 17.3665 + 17.7883i 0.385922 + 0.395295i
\(46\) 3.05976i 0.0665166i
\(47\) 37.6889 21.7597i 0.801891 0.462972i −0.0422410 0.999107i \(-0.513450\pi\)
0.844132 + 0.536136i \(0.180116\pi\)
\(48\) −18.3212 + 43.4917i −0.381693 + 0.906077i
\(49\) −19.5059 + 33.7853i −0.398080 + 0.689495i
\(50\) −2.25415 1.30144i −0.0450831 0.0260287i
\(51\) 47.5911 18.3326i 0.933159 0.359464i
\(52\) −33.6339 58.2557i −0.646807 1.12030i
\(53\) 66.8350i 1.26104i −0.776174 0.630518i \(-0.782842\pi\)
0.776174 0.630518i \(-0.217158\pi\)
\(54\) −2.52034 + 3.16498i −0.0466729 + 0.0586107i
\(55\) 33.6935 0.612610
\(56\) 1.88900 + 3.27184i 0.0337321 + 0.0584257i
\(57\) −16.4115 21.6556i −0.287921 0.379923i
\(58\) 0.281509 + 0.162529i 0.00485361 + 0.00280223i
\(59\) 68.5161 + 39.5578i 1.16129 + 0.670471i 0.951613 0.307299i \(-0.0994252\pi\)
0.209678 + 0.977771i \(0.432759\pi\)
\(60\) 12.7959 30.3754i 0.213265 0.506256i
\(61\) −65.5511 + 37.8459i −1.07461 + 0.620425i −0.929437 0.368981i \(-0.879707\pi\)
−0.145171 + 0.989407i \(0.546373\pi\)
\(62\) 6.60451 0.106524
\(63\) −7.03163 27.5608i −0.111613 0.437473i
\(64\) 61.8545 0.966476
\(65\) 23.3572 + 40.4558i 0.359341 + 0.622397i
\(66\) 0.683120 + 5.44080i 0.0103503 + 0.0824364i
\(67\) −10.6797 + 18.4979i −0.159399 + 0.276087i −0.934652 0.355563i \(-0.884289\pi\)
0.775253 + 0.631651i \(0.217622\pi\)
\(68\) −46.8959 48.7135i −0.689646 0.716375i
\(69\) 60.7803 7.63127i 0.880874 0.110598i
\(70\) −0.654064 1.13287i −0.00934377 0.0161839i
\(71\) 80.2879 1.13082 0.565408 0.824811i \(-0.308719\pi\)
0.565408 + 0.824811i \(0.308719\pi\)
\(72\) 10.3580 + 2.90903i 0.143861 + 0.0404033i
\(73\) 23.7538i 0.325394i 0.986676 + 0.162697i \(0.0520193\pi\)
−0.986676 + 0.162697i \(0.947981\pi\)
\(74\) 4.67578 + 8.09868i 0.0631862 + 0.109442i
\(75\) 20.2302 48.0233i 0.269736 0.640311i
\(76\) −18.0128 + 31.1990i −0.237010 + 0.410514i
\(77\) −33.3858 19.2753i −0.433582 0.250329i
\(78\) −6.05922 + 4.59192i −0.0776823 + 0.0588708i
\(79\) −6.49716 + 3.75114i −0.0822426 + 0.0474828i −0.540557 0.841307i \(-0.681787\pi\)
0.458315 + 0.888790i \(0.348453\pi\)
\(80\) −43.4526 −0.543157
\(81\) −69.1562 42.1713i −0.853781 0.520633i
\(82\) 9.37714i 0.114355i
\(83\) −12.4098 + 7.16481i −0.149516 + 0.0863230i −0.572892 0.819631i \(-0.694178\pi\)
0.423376 + 0.905954i \(0.360845\pi\)
\(84\) −30.0561 + 22.7777i −0.357810 + 0.271163i
\(85\) 32.5670 + 33.8292i 0.383141 + 0.397991i
\(86\) 3.65266 + 2.10887i 0.0424728 + 0.0245217i
\(87\) −2.52645 + 5.99737i −0.0290396 + 0.0689353i
\(88\) 12.6281 7.29084i 0.143501 0.0828504i
\(89\) 115.581i 1.29867i 0.760504 + 0.649333i \(0.224952\pi\)
−0.760504 + 0.649333i \(0.775048\pi\)
\(90\) −3.58644 1.00725i −0.0398494 0.0111917i
\(91\) 53.4484i 0.587346i
\(92\) −40.6091 70.3370i −0.441403 0.764533i
\(93\) 16.4721 + 131.195i 0.177120 + 1.41070i
\(94\) −3.26063 + 5.64758i −0.0346876 + 0.0600807i
\(95\) 12.5090 21.6663i 0.131674 0.228066i
\(96\) −2.66803 21.2499i −0.0277920 0.221353i
\(97\) −9.98636 + 5.76563i −0.102952 + 0.0594395i −0.550592 0.834774i \(-0.685598\pi\)
0.447640 + 0.894214i \(0.352265\pi\)
\(98\) 5.84583i 0.0596513i
\(99\) −106.375 + 27.1395i −1.07449 + 0.274137i
\(100\) −69.0906 −0.690906
\(101\) −64.3415 + 37.1476i −0.637045 + 0.367798i −0.783475 0.621423i \(-0.786555\pi\)
0.146431 + 0.989221i \(0.453222\pi\)
\(102\) −4.80243 + 5.94476i −0.0470827 + 0.0582820i
\(103\) 4.63237 8.02349i 0.0449744 0.0778980i −0.842662 0.538443i \(-0.819013\pi\)
0.887636 + 0.460545i \(0.152346\pi\)
\(104\) 17.5082 + 10.1084i 0.168348 + 0.0971959i
\(105\) 20.8725 15.8180i 0.198786 0.150648i
\(106\) 5.00753 + 8.67329i 0.0472408 + 0.0818235i
\(107\) 45.5617 0.425811 0.212905 0.977073i \(-0.431707\pi\)
0.212905 + 0.977073i \(0.431707\pi\)
\(108\) −15.9313 + 106.205i −0.147512 + 0.983384i
\(109\) 158.516i 1.45428i 0.686490 + 0.727140i \(0.259151\pi\)
−0.686490 + 0.727140i \(0.740849\pi\)
\(110\) −4.37247 + 2.52445i −0.0397497 + 0.0229495i
\(111\) −149.214 + 113.080i −1.34427 + 1.01874i
\(112\) 43.0557 + 24.8582i 0.384426 + 0.221949i
\(113\) 27.6157 47.8318i 0.244387 0.423291i −0.717572 0.696484i \(-0.754747\pi\)
0.961959 + 0.273194i \(0.0880800\pi\)
\(114\) 3.75226 + 1.58067i 0.0329146 + 0.0138656i
\(115\) 28.2011 + 48.8458i 0.245227 + 0.424746i
\(116\) 8.62835 0.0743824
\(117\) −106.328 108.910i −0.908785 0.930856i
\(118\) −11.8553 −0.100468
\(119\) −12.9166 52.1511i −0.108543 0.438244i
\(120\) 1.23406 + 9.82882i 0.0102838 + 0.0819069i
\(121\) −13.8956 + 24.0679i −0.114840 + 0.198909i
\(122\) 5.67112 9.82267i 0.0464846 0.0805137i
\(123\) 186.271 23.3873i 1.51440 0.190140i
\(124\) 151.823 87.6550i 1.22438 0.706895i
\(125\) 117.036 0.936285
\(126\) 2.97746 + 3.04977i 0.0236307 + 0.0242046i
\(127\) 164.891 1.29835 0.649176 0.760638i \(-0.275114\pi\)
0.649176 + 0.760638i \(0.275114\pi\)
\(128\) −32.7569 + 18.9122i −0.255913 + 0.147752i
\(129\) −32.7813 + 77.8176i −0.254119 + 0.603237i
\(130\) −6.06221 3.50002i −0.0466324 0.0269232i
\(131\) 0.0321956 0.0557644i 0.000245768 0.000425682i −0.865902 0.500213i \(-0.833255\pi\)
0.866148 + 0.499787i \(0.166588\pi\)
\(132\) 87.9136 + 116.005i 0.666012 + 0.878829i
\(133\) −24.7896 + 14.3123i −0.186388 + 0.107611i
\(134\) 3.20066i 0.0238856i
\(135\) 11.0636 73.7547i 0.0819524 0.546331i
\(136\) 19.5261 + 5.63188i 0.143574 + 0.0414109i
\(137\) 62.9889 36.3666i 0.459773 0.265450i −0.252176 0.967681i \(-0.581146\pi\)
0.711949 + 0.702231i \(0.247813\pi\)
\(138\) −7.31581 + 5.54421i −0.0530131 + 0.0401755i
\(139\) 21.6096 + 12.4763i 0.155465 + 0.0897578i 0.575714 0.817651i \(-0.304724\pi\)
−0.420249 + 0.907409i \(0.638057\pi\)
\(140\) −30.0709 17.3614i −0.214792 0.124010i
\(141\) −120.318 50.6850i −0.853320 0.359468i
\(142\) −10.4191 + 6.01547i −0.0733740 + 0.0423625i
\(143\) −206.291 −1.44260
\(144\) 137.185 35.0003i 0.952674 0.243057i
\(145\) −5.99198 −0.0413240
\(146\) −1.77972 3.08257i −0.0121899 0.0211135i
\(147\) 116.124 14.5799i 0.789958 0.0991831i
\(148\) 214.971 + 124.114i 1.45251 + 0.838606i
\(149\) 18.2046 + 10.5104i 0.122179 + 0.0705398i 0.559844 0.828598i \(-0.310861\pi\)
−0.437665 + 0.899138i \(0.644194\pi\)
\(150\) 0.972773 + 7.74779i 0.00648516 + 0.0516519i
\(151\) −121.688 210.770i −0.805882 1.39583i −0.915694 0.401877i \(-0.868358\pi\)
0.109811 0.993952i \(-0.464975\pi\)
\(152\) 10.8272i 0.0712313i
\(153\) −130.067 80.5707i −0.850109 0.526606i
\(154\) 5.77671 0.0375111
\(155\) −105.434 + 60.8722i −0.680218 + 0.392724i
\(156\) −78.3439 + 185.976i −0.502204 + 1.19215i
\(157\) −22.7702 + 39.4391i −0.145033 + 0.251205i −0.929385 0.369111i \(-0.879662\pi\)
0.784352 + 0.620316i \(0.212996\pi\)
\(158\) 0.562099 0.973584i 0.00355759 0.00616192i
\(159\) −159.801 + 121.103i −1.00503 + 0.761656i
\(160\) 17.0774 9.85963i 0.106734 0.0616227i
\(161\) 64.5328i 0.400825i
\(162\) 12.1342 + 0.291196i 0.0749022 + 0.00179750i
\(163\) 157.251i 0.964732i −0.875970 0.482366i \(-0.839778\pi\)
0.875970 0.482366i \(-0.160222\pi\)
\(164\) −124.453 215.559i −0.758861 1.31439i
\(165\) −61.0519 80.5603i −0.370011 0.488244i
\(166\) 1.07363 1.85958i 0.00646764 0.0112023i
\(167\) 46.0342 79.7336i 0.275654 0.477447i −0.694646 0.719352i \(-0.744439\pi\)
0.970300 + 0.241905i \(0.0777722\pi\)
\(168\) 4.40006 10.4450i 0.0261908 0.0621728i
\(169\) −58.5063 101.336i −0.346191 0.599621i
\(170\) −6.76089 1.95003i −0.0397699 0.0114708i
\(171\) −22.0407 + 78.4788i −0.128893 + 0.458940i
\(172\) 111.955 0.650903
\(173\) 22.7265 + 39.3635i 0.131367 + 0.227535i 0.924204 0.381900i \(-0.124730\pi\)
−0.792837 + 0.609434i \(0.791397\pi\)
\(174\) −0.121484 0.967580i −0.000698187 0.00556081i
\(175\) −47.5419 27.4483i −0.271668 0.156848i
\(176\) 95.9437 166.179i 0.545135 0.944201i
\(177\) −29.5679 235.498i −0.167050 1.33050i
\(178\) −8.65978 14.9992i −0.0486505 0.0842651i
\(179\) 294.556i 1.64556i −0.568357 0.822782i \(-0.692421\pi\)
0.568357 0.822782i \(-0.307579\pi\)
\(180\) −95.8125 + 24.4448i −0.532292 + 0.135804i
\(181\) 279.929i 1.54657i 0.634058 + 0.773285i \(0.281388\pi\)
−0.634058 + 0.773285i \(0.718612\pi\)
\(182\) 4.00456 + 6.93610i 0.0220031 + 0.0381104i
\(183\) 209.266 + 88.1549i 1.14353 + 0.481721i
\(184\) 21.1392 + 12.2047i 0.114887 + 0.0663299i
\(185\) −149.287 86.1911i −0.806958 0.465898i
\(186\) −11.9672 15.7912i −0.0643398 0.0848989i
\(187\) −201.284 + 49.8536i −1.07639 + 0.266597i
\(188\) 173.100i 0.920746i
\(189\) −53.1559 + 66.7519i −0.281248 + 0.353184i
\(190\) 3.74889i 0.0197310i
\(191\) 247.642 142.976i 1.29656 0.748567i 0.316749 0.948510i \(-0.397409\pi\)
0.979808 + 0.199942i \(0.0640755\pi\)
\(192\) −112.079 147.892i −0.583743 0.770272i
\(193\) −121.814 70.3291i −0.631159 0.364400i 0.150042 0.988680i \(-0.452059\pi\)
−0.781201 + 0.624280i \(0.785392\pi\)
\(194\) 0.863965 1.49643i 0.00445343 0.00771356i
\(195\) 54.4061 129.151i 0.279006 0.662315i
\(196\) −77.5857 134.382i −0.395845 0.685624i
\(197\) 347.281 1.76285 0.881423 0.472327i \(-0.156586\pi\)
0.881423 + 0.472327i \(0.156586\pi\)
\(198\) 11.7710 11.4919i 0.0594496 0.0580400i
\(199\) 55.1047i 0.276908i 0.990369 + 0.138454i \(0.0442133\pi\)
−0.990369 + 0.138454i \(0.955787\pi\)
\(200\) 17.9826 10.3823i 0.0899131 0.0519114i
\(201\) 63.5793 7.98269i 0.316315 0.0397149i
\(202\) 5.56647 9.64141i 0.0275568 0.0477298i
\(203\) 5.93726 + 3.42788i 0.0292476 + 0.0168861i
\(204\) −31.4983 + 200.394i −0.154403 + 0.982326i
\(205\) 86.4269 + 149.696i 0.421595 + 0.730223i
\(206\) 1.38830i 0.00673931i
\(207\) −128.379 131.496i −0.620186 0.635248i
\(208\) 266.042 1.27905
\(209\) 55.2401 + 95.6786i 0.264307 + 0.457792i
\(210\) −1.52352 + 3.61658i −0.00725484 + 0.0172218i
\(211\) 285.929 + 165.081i 1.35511 + 0.782374i 0.988960 0.148181i \(-0.0473419\pi\)
0.366152 + 0.930555i \(0.380675\pi\)
\(212\) 230.223 + 132.920i 1.08596 + 0.626979i
\(213\) −145.480 191.966i −0.683003 0.901250i
\(214\) −5.91263 + 3.41366i −0.0276291 + 0.0159517i
\(215\) −77.7477 −0.361617
\(216\) −11.8130 30.0368i −0.0546898 0.139059i
\(217\) 139.294 0.641910
\(218\) −11.8766 20.5710i −0.0544800 0.0943622i
\(219\) 56.7946 43.0412i 0.259336 0.196535i
\(220\) −67.0088 + 116.063i −0.304585 + 0.527558i
\(221\) −199.394 207.122i −0.902236 0.937204i
\(222\) 10.8913 25.8543i 0.0490601 0.116461i
\(223\) −1.03255 1.78843i −0.00463026 0.00801984i 0.863701 0.504005i \(-0.168141\pi\)
−0.868331 + 0.495985i \(0.834807\pi\)
\(224\) −22.5619 −0.100723
\(225\) −151.479 + 38.6471i −0.673240 + 0.171765i
\(226\) 8.27629i 0.0366208i
\(227\) 99.7577 + 172.785i 0.439461 + 0.761169i 0.997648 0.0685463i \(-0.0218361\pi\)
−0.558187 + 0.829715i \(0.688503\pi\)
\(228\) 107.235 13.4639i 0.470328 0.0590520i
\(229\) 69.4180 120.235i 0.303135 0.525046i −0.673709 0.738997i \(-0.735300\pi\)
0.976844 + 0.213951i \(0.0686332\pi\)
\(230\) −7.31941 4.22587i −0.0318235 0.0183733i
\(231\) 14.4075 + 114.751i 0.0623703 + 0.496757i
\(232\) −2.24575 + 1.29659i −0.00967997 + 0.00558873i
\(233\) −325.344 −1.39633 −0.698164 0.715938i \(-0.745999\pi\)
−0.698164 + 0.715938i \(0.745999\pi\)
\(234\) 21.9583 + 6.16697i 0.0938389 + 0.0263546i
\(235\) 120.210i 0.511532i
\(236\) −272.526 + 157.343i −1.15477 + 0.666708i
\(237\) 20.7416 + 8.73756i 0.0875171 + 0.0368674i
\(238\) 5.58357 + 5.79997i 0.0234604 + 0.0243696i
\(239\) 147.606 + 85.2204i 0.617598 + 0.356571i 0.775933 0.630815i \(-0.217279\pi\)
−0.158335 + 0.987385i \(0.550613\pi\)
\(240\) 78.7350 + 103.894i 0.328063 + 0.432891i
\(241\) −20.3122 + 11.7272i −0.0842829 + 0.0486607i −0.541549 0.840669i \(-0.682162\pi\)
0.457266 + 0.889330i \(0.348829\pi\)
\(242\) 4.16445i 0.0172085i
\(243\) 24.4790 + 241.764i 0.100737 + 0.994913i
\(244\) 301.068i 1.23389i
\(245\) 53.8796 + 93.3222i 0.219917 + 0.380907i
\(246\) −22.4205 + 16.9911i −0.0911402 + 0.0690697i
\(247\) −76.5875 + 132.654i −0.310071 + 0.537059i
\(248\) −26.3439 + 45.6290i −0.106225 + 0.183988i
\(249\) 39.6171 + 16.6891i 0.159105 + 0.0670243i
\(250\) −15.1879 + 8.76875i −0.0607517 + 0.0350750i
\(251\) 335.935i 1.33839i 0.743088 + 0.669194i \(0.233360\pi\)
−0.743088 + 0.669194i \(0.766640\pi\)
\(252\) 108.922 + 30.5906i 0.432229 + 0.121391i
\(253\) −249.073 −0.984479
\(254\) −21.3982 + 12.3542i −0.0842447 + 0.0486387i
\(255\) 21.8741 139.165i 0.0857807 0.545743i
\(256\) −120.875 + 209.362i −0.472168 + 0.817819i
\(257\) −46.1536 26.6468i −0.179586 0.103684i 0.407512 0.913200i \(-0.366396\pi\)
−0.587098 + 0.809516i \(0.699730\pi\)
\(258\) −1.57630 12.5546i −0.00610967 0.0486613i
\(259\) 98.6159 + 170.808i 0.380756 + 0.659489i
\(260\) −185.809 −0.714648
\(261\) 18.9174 4.82643i 0.0724805 0.0184921i
\(262\) 0.00964885i 3.68277e-5i
\(263\) 43.3604 25.0342i 0.164869 0.0951869i −0.415295 0.909687i \(-0.636322\pi\)
0.580164 + 0.814500i \(0.302988\pi\)
\(264\) −40.3140 16.9826i −0.152705 0.0643281i
\(265\) −159.879 92.3064i −0.603318 0.348326i
\(266\) 2.14466 3.71465i 0.00806261 0.0139649i
\(267\) 276.352 209.430i 1.03502 0.784383i
\(268\) −42.4792 73.5761i −0.158504 0.274538i
\(269\) 299.181 1.11220 0.556098 0.831117i \(-0.312298\pi\)
0.556098 + 0.831117i \(0.312298\pi\)
\(270\) 4.09024 + 10.4002i 0.0151490 + 0.0385193i
\(271\) −159.041 −0.586868 −0.293434 0.955979i \(-0.594798\pi\)
−0.293434 + 0.955979i \(0.594798\pi\)
\(272\) 259.584 64.2932i 0.954354 0.236372i
\(273\) −127.794 + 96.8473i −0.468109 + 0.354752i
\(274\) −5.44945 + 9.43873i −0.0198885 + 0.0344479i
\(275\) −105.941 + 183.494i −0.385238 + 0.667253i
\(276\) −94.5912 + 224.544i −0.342722 + 0.813566i
\(277\) −175.498 + 101.324i −0.633567 + 0.365790i −0.782132 0.623112i \(-0.785868\pi\)
0.148565 + 0.988903i \(0.452535\pi\)
\(278\) −3.73909 −0.0134500
\(279\) 283.836 277.106i 1.01733 0.993211i
\(280\) 10.4356 0.0372702
\(281\) −368.933 + 213.003i −1.31293 + 0.758019i −0.982580 0.185840i \(-0.940499\pi\)
−0.330348 + 0.943859i \(0.607166\pi\)
\(282\) 19.4114 2.43720i 0.0688347 0.00864254i
\(283\) −402.896 232.612i −1.42366 0.821950i −0.427050 0.904228i \(-0.640447\pi\)
−0.996609 + 0.0822775i \(0.973781\pi\)
\(284\) −159.674 + 276.564i −0.562234 + 0.973818i
\(285\) −74.4695 + 9.35001i −0.261296 + 0.0328071i
\(286\) 26.7708 15.4561i 0.0936042 0.0540424i
\(287\) 197.771i 0.689099i
\(288\) −45.9736 + 44.8835i −0.159630 + 0.155846i
\(289\) −244.609 153.908i −0.846396 0.532553i
\(290\) 0.777590 0.448942i 0.00268135 0.00154808i
\(291\) 31.8805 + 13.4299i 0.109555 + 0.0461510i
\(292\) −81.8236 47.2409i −0.280218 0.161784i
\(293\) 302.277 + 174.519i 1.03166 + 0.595630i 0.917460 0.397828i \(-0.130236\pi\)
0.114201 + 0.993458i \(0.463569\pi\)
\(294\) −13.9772 + 10.5925i −0.0475415 + 0.0360289i
\(295\) 189.257 109.267i 0.641548 0.370398i
\(296\) −74.6024 −0.252035
\(297\) 257.638 + 205.162i 0.867467 + 0.690782i
\(298\) −3.14992 −0.0105702
\(299\) −172.664 299.062i −0.577470 1.00021i
\(300\) 125.190 + 165.194i 0.417301 + 0.550645i
\(301\) 77.0376 + 44.4777i 0.255939 + 0.147766i
\(302\) 31.5834 + 18.2347i 0.104581 + 0.0603797i
\(303\) 205.404 + 86.5282i 0.677901 + 0.285572i
\(304\) −71.2399 123.391i −0.234342 0.405892i
\(305\) 209.078i 0.685500i
\(306\) 22.9156 + 0.710716i 0.0748877 + 0.00232260i
\(307\) 171.450 0.558468 0.279234 0.960223i \(-0.409920\pi\)
0.279234 + 0.960223i \(0.409920\pi\)
\(308\) 132.794 76.6684i 0.431148 0.248923i
\(309\) −27.5777 + 3.46251i −0.0892482 + 0.0112055i
\(310\) 9.12155 15.7990i 0.0294244 0.0509645i
\(311\) −213.902 + 370.488i −0.687786 + 1.19128i 0.284766 + 0.958597i \(0.408084\pi\)
−0.972552 + 0.232684i \(0.925249\pi\)
\(312\) −7.55562 60.1778i −0.0242167 0.192878i
\(313\) 303.815 175.407i 0.970654 0.560407i 0.0712184 0.997461i \(-0.477311\pi\)
0.899436 + 0.437053i \(0.143978\pi\)
\(314\) 6.82412i 0.0217329i
\(315\) −75.6410 21.2437i −0.240130 0.0674404i
\(316\) 29.8407i 0.0944324i
\(317\) 85.4313 + 147.971i 0.269499 + 0.466787i 0.968733 0.248107i \(-0.0798084\pi\)
−0.699233 + 0.714894i \(0.746475\pi\)
\(318\) 11.6641 27.6886i 0.0366795 0.0870712i
\(319\) 13.2304 22.9156i 0.0414745 0.0718359i
\(320\) 85.4278 147.965i 0.266962 0.462391i
\(321\) −82.5568 108.937i −0.257186 0.339367i
\(322\) 4.83504 + 8.37454i 0.0150157 + 0.0260079i
\(323\) −42.6707 + 147.942i −0.132108 + 0.458025i
\(324\) 282.802 154.350i 0.872844 0.476390i
\(325\) −293.762 −0.903884
\(326\) 11.7819 + 20.4068i 0.0361407 + 0.0625975i
\(327\) 379.008 287.228i 1.15905 0.878373i
\(328\) 64.7844 + 37.4033i 0.197513 + 0.114034i
\(329\) −68.7694 + 119.112i −0.209025 + 0.362043i
\(330\) 13.9587 + 5.88022i 0.0422990 + 0.0178188i
\(331\) 277.160 + 480.056i 0.837343 + 1.45032i 0.892109 + 0.451821i \(0.149225\pi\)
−0.0547661 + 0.998499i \(0.517441\pi\)
\(332\) 56.9967i 0.171677i
\(333\) 540.743 + 151.867i 1.62385 + 0.456058i
\(334\) 13.7962i 0.0413061i
\(335\) 29.4998 + 51.0951i 0.0880590 + 0.152523i
\(336\) −18.5806 147.988i −0.0552993 0.440439i
\(337\) −475.857 274.736i −1.41204 0.815242i −0.416460 0.909154i \(-0.636729\pi\)
−0.995580 + 0.0939126i \(0.970063\pi\)
\(338\) 15.1849 + 8.76702i 0.0449258 + 0.0259379i
\(339\) −164.404 + 20.6417i −0.484966 + 0.0608899i
\(340\) −181.298 + 44.9035i −0.533231 + 0.132069i
\(341\) 537.626i 1.57661i
\(342\) −3.01966 11.8357i −0.00882942 0.0346073i
\(343\) 278.153i 0.810942i
\(344\) −29.1393 + 16.8236i −0.0847072 + 0.0489057i
\(345\) 65.6891 155.935i 0.190403 0.451987i
\(346\) −5.89852 3.40551i −0.0170477 0.00984252i
\(347\) −255.193 + 442.007i −0.735426 + 1.27380i 0.219110 + 0.975700i \(0.429685\pi\)
−0.954536 + 0.298095i \(0.903649\pi\)
\(348\) −15.6344 20.6301i −0.0449263 0.0592820i
\(349\) 69.4543 + 120.298i 0.199010 + 0.344695i 0.948208 0.317651i \(-0.102894\pi\)
−0.749198 + 0.662346i \(0.769561\pi\)
\(350\) 8.22613 0.0235032
\(351\) −67.7376 + 451.569i −0.192985 + 1.28652i
\(352\) 87.0806i 0.247388i
\(353\) 257.287 148.545i 0.728859 0.420807i −0.0891457 0.996019i \(-0.528414\pi\)
0.818005 + 0.575212i \(0.195080\pi\)
\(354\) 21.4815 + 28.3456i 0.0606821 + 0.0800724i
\(355\) 110.886 192.061i 0.312356 0.541016i
\(356\) −398.138 229.865i −1.11836 0.645688i
\(357\) −101.287 + 125.380i −0.283717 + 0.351204i
\(358\) 22.0692 + 38.2250i 0.0616459 + 0.106774i
\(359\) 251.878i 0.701611i 0.936448 + 0.350805i \(0.114092\pi\)
−0.936448 + 0.350805i \(0.885908\pi\)
\(360\) 21.2644 20.7602i 0.0590677 0.0576672i
\(361\) −278.967 −0.772760
\(362\) −20.9733 36.3269i −0.0579374 0.100351i
\(363\) 82.7243 10.3864i 0.227891 0.0286128i
\(364\) 184.111 + 106.297i 0.505801 + 0.292024i
\(365\) 56.8226 + 32.8065i 0.155678 + 0.0898810i
\(366\) −33.7616 + 4.23894i −0.0922449 + 0.0115818i
\(367\) −409.800 + 236.598i −1.11662 + 0.644681i −0.940536 0.339694i \(-0.889676\pi\)
−0.176084 + 0.984375i \(0.556343\pi\)
\(368\) 321.215 0.872867
\(369\) −393.437 402.992i −1.06623 1.09212i
\(370\) 25.8310 0.0698136
\(371\) 105.613 + 182.927i 0.284670 + 0.493064i
\(372\) −484.680 204.176i −1.30290 0.548859i
\(373\) 171.228 296.575i 0.459055 0.795107i −0.539856 0.841757i \(-0.681521\pi\)
0.998911 + 0.0466504i \(0.0148547\pi\)
\(374\) 22.3858 21.5505i 0.0598550 0.0576218i
\(375\) −212.066 279.829i −0.565508 0.746210i
\(376\) −26.0119 45.0538i −0.0691805 0.119824i
\(377\) 36.6864 0.0973115
\(378\) 1.89683 12.6451i 0.00501808 0.0334528i
\(379\) 144.860i 0.382216i 0.981569 + 0.191108i \(0.0612081\pi\)
−0.981569 + 0.191108i \(0.938792\pi\)
\(380\) 49.7552 + 86.1786i 0.130935 + 0.226786i
\(381\) −298.778 394.249i −0.784194 1.03477i
\(382\) −21.4246 + 37.1086i −0.0560855 + 0.0971429i
\(383\) 188.695 + 108.943i 0.492677 + 0.284447i 0.725684 0.688028i \(-0.241523\pi\)
−0.233007 + 0.972475i \(0.574857\pi\)
\(384\) 104.573 + 44.0524i 0.272326 + 0.114720i
\(385\) −92.2189 + 53.2426i −0.239530 + 0.138292i
\(386\) 21.0773 0.0546044
\(387\) 245.459 62.6243i 0.634260 0.161820i
\(388\) 45.8661i 0.118212i
\(389\) 65.1167 37.5951i 0.167395 0.0966456i −0.413962 0.910294i \(-0.635855\pi\)
0.581357 + 0.813649i \(0.302522\pi\)
\(390\) 2.61613 + 20.8365i 0.00670801 + 0.0534269i
\(391\) −240.746 250.076i −0.615718 0.639581i
\(392\) 40.3874 + 23.3177i 0.103029 + 0.0594839i
\(393\) −0.191669 + 0.0240649i −0.000487706 + 6.12339e-5i
\(394\) −45.0672 + 26.0196i −0.114384 + 0.0660395i
\(395\) 20.7229i 0.0524631i
\(396\) 118.068 420.398i 0.298153 1.06161i
\(397\) 547.908i 1.38012i 0.723752 + 0.690060i \(0.242416\pi\)
−0.723752 + 0.690060i \(0.757584\pi\)
\(398\) −4.12865 7.15104i −0.0103735 0.0179674i
\(399\) 79.1382 + 33.3377i 0.198341 + 0.0835531i
\(400\) 136.625 236.642i 0.341563 0.591605i
\(401\) 352.711 610.913i 0.879577 1.52347i 0.0277720 0.999614i \(-0.491159\pi\)
0.851805 0.523858i \(-0.175508\pi\)
\(402\) −7.65270 + 5.79953i −0.0190366 + 0.0144267i
\(403\) 645.527 372.695i 1.60180 0.924802i
\(404\) 295.512i 0.731467i
\(405\) −196.392 + 107.189i −0.484919 + 0.264664i
\(406\) −1.02732 −0.00253034
\(407\) 659.255 380.621i 1.61979 0.935187i
\(408\) −21.9151 56.8911i −0.0537135 0.139439i
\(409\) 281.335 487.286i 0.687860 1.19141i −0.284668 0.958626i \(-0.591883\pi\)
0.972529 0.232783i \(-0.0747832\pi\)
\(410\) −22.4315 12.9509i −0.0547111 0.0315875i
\(411\) −201.086 84.7092i −0.489260 0.206105i
\(412\) 18.4255 + 31.9138i 0.0447220 + 0.0774607i
\(413\) −250.037 −0.605417
\(414\) 26.5121 + 7.44591i 0.0640389 + 0.0179853i
\(415\) 39.5815i 0.0953772i
\(416\) −104.558 + 60.3664i −0.251340 + 0.145111i
\(417\) −9.32557 74.2748i −0.0223635 0.178117i
\(418\) −14.3372 8.27759i −0.0342995 0.0198028i
\(419\) 300.580 520.620i 0.717375 1.24253i −0.244662 0.969608i \(-0.578677\pi\)
0.962036 0.272921i \(-0.0879897\pi\)
\(420\) 12.9770 + 103.357i 0.0308976 + 0.246088i
\(421\) 167.946 + 290.891i 0.398921 + 0.690952i 0.993593 0.113017i \(-0.0360513\pi\)
−0.594672 + 0.803969i \(0.702718\pi\)
\(422\) −49.4739 −0.117237
\(423\) 96.8269 + 379.517i 0.228905 + 0.897204i
\(424\) −79.8955 −0.188433
\(425\) −286.632 + 70.9923i −0.674428 + 0.167041i
\(426\) 33.2620 + 14.0119i 0.0780798 + 0.0328918i
\(427\) 119.608 207.168i 0.280113 0.485171i
\(428\) −90.6120 + 156.945i −0.211710 + 0.366693i
\(429\) 373.795 + 493.237i 0.871317 + 1.14974i
\(430\) 10.0895 5.82515i 0.0234638 0.0135469i
\(431\) −260.303 −0.603952 −0.301976 0.953316i \(-0.597646\pi\)
−0.301976 + 0.953316i \(0.597646\pi\)
\(432\) −332.260 264.586i −0.769121 0.612467i
\(433\) −11.2018 −0.0258703 −0.0129351 0.999916i \(-0.504118\pi\)
−0.0129351 + 0.999916i \(0.504118\pi\)
\(434\) −18.0765 + 10.4365i −0.0416509 + 0.0240471i
\(435\) 10.8573 + 14.3267i 0.0249594 + 0.0329349i
\(436\) −546.035 315.253i −1.25237 0.723058i
\(437\) −92.4706 + 160.164i −0.211603 + 0.366508i
\(438\) −4.14552 + 9.84080i −0.00946466 + 0.0224676i
\(439\) 214.805 124.018i 0.489305 0.282500i −0.234981 0.972000i \(-0.575503\pi\)
0.724286 + 0.689500i \(0.242170\pi\)
\(440\) 40.2778i 0.0915404i
\(441\) −245.274 251.230i −0.556176 0.569683i
\(442\) 41.3941 + 11.9392i 0.0936518 + 0.0270118i
\(443\) −713.529 + 411.956i −1.61067 + 0.929923i −0.621461 + 0.783445i \(0.713460\pi\)
−0.989214 + 0.146478i \(0.953206\pi\)
\(444\) −92.7701 738.881i −0.208942 1.66415i
\(445\) 276.488 + 159.630i 0.621321 + 0.358720i
\(446\) 0.267991 + 0.154725i 0.000600877 + 0.000346916i
\(447\) −7.85614 62.5714i −0.0175753 0.139981i
\(448\) −169.295 + 97.7425i −0.377891 + 0.218175i
\(449\) −124.936 −0.278253 −0.139126 0.990275i \(-0.544429\pi\)
−0.139126 + 0.990275i \(0.544429\pi\)
\(450\) 16.7621 16.3647i 0.0372491 0.0363660i
\(451\) −763.325 −1.69252
\(452\) 109.843 + 190.253i 0.243015 + 0.420914i
\(453\) −283.450 + 672.864i −0.625717 + 1.48535i
\(454\) −25.8915 14.9484i −0.0570296 0.0329261i
\(455\) −127.857 73.8181i −0.281004 0.162238i
\(456\) −25.8874 + 19.6185i −0.0567707 + 0.0430231i
\(457\) 433.428 + 750.719i 0.948419 + 1.64271i 0.748756 + 0.662846i \(0.230651\pi\)
0.199663 + 0.979865i \(0.436015\pi\)
\(458\) 20.8042i 0.0454241i
\(459\) 43.0354 + 456.978i 0.0937589 + 0.995595i
\(460\) −224.342 −0.487701
\(461\) 251.349 145.116i 0.545225 0.314786i −0.201969 0.979392i \(-0.564734\pi\)
0.747194 + 0.664606i \(0.231401\pi\)
\(462\) −10.4673 13.8120i −0.0226564 0.0298960i
\(463\) 175.796 304.487i 0.379689 0.657640i −0.611328 0.791377i \(-0.709364\pi\)
0.991017 + 0.133737i \(0.0426978\pi\)
\(464\) −17.0624 + 29.5530i −0.0367724 + 0.0636917i
\(465\) 336.587 + 141.790i 0.723844 + 0.304925i
\(466\) 42.2205 24.3760i 0.0906019 0.0523090i
\(467\) 394.357i 0.844447i 0.906492 + 0.422224i \(0.138750\pi\)
−0.906492 + 0.422224i \(0.861250\pi\)
\(468\) 586.620 149.665i 1.25346 0.319798i
\(469\) 67.5046i 0.143933i
\(470\) 9.00658 + 15.5999i 0.0191629 + 0.0331912i
\(471\) 135.557 17.0198i 0.287807 0.0361355i
\(472\) 47.2880 81.9052i 0.100186 0.173528i
\(473\) 171.668 297.337i 0.362933 0.628619i
\(474\) −3.34632 + 0.420147i −0.00705975 + 0.000886386i
\(475\) 78.6628 + 136.248i 0.165606 + 0.286838i
\(476\) 205.331 + 59.2232i 0.431367 + 0.124419i
\(477\) 579.109 + 162.642i 1.21407 + 0.340969i
\(478\) −25.5401 −0.0534312
\(479\) −172.631 299.005i −0.360398 0.624227i 0.627628 0.778513i \(-0.284026\pi\)
−0.988026 + 0.154286i \(0.950692\pi\)
\(480\) −54.5179 22.9661i −0.113579 0.0478461i
\(481\) 914.024 + 527.712i 1.90026 + 1.09711i
\(482\) 1.75730 3.04373i 0.00364584 0.00631479i
\(483\) −154.296 + 116.932i −0.319454 + 0.242095i
\(484\) −55.2705 95.7313i −0.114195 0.197792i
\(485\) 31.8519i 0.0656739i
\(486\) −21.2905 29.5401i −0.0438077 0.0607820i
\(487\) 592.593i 1.21682i −0.793622 0.608412i \(-0.791807\pi\)
0.793622 0.608412i \(-0.208193\pi\)
\(488\) 45.2416 + 78.3608i 0.0927082 + 0.160575i
\(489\) −375.984 + 284.936i −0.768882 + 0.582690i
\(490\) −13.9841 8.07373i −0.0285390 0.0164770i
\(491\) 107.710 + 62.1865i 0.219369 + 0.126653i 0.605658 0.795725i \(-0.292910\pi\)
−0.386289 + 0.922378i \(0.626243\pi\)
\(492\) −289.890 + 688.152i −0.589208 + 1.39868i
\(493\) 35.7959 8.86584i 0.0726084 0.0179835i
\(494\) 22.9529i 0.0464634i
\(495\) −81.9930 + 291.947i −0.165642 + 0.589791i
\(496\) 693.344i 1.39787i
\(497\) −219.747 + 126.871i −0.442147 + 0.255274i
\(498\) −6.39159 + 0.802496i −0.0128345 + 0.00161144i
\(499\) 272.670 + 157.426i 0.546434 + 0.315484i 0.747682 0.664056i \(-0.231167\pi\)
−0.201249 + 0.979540i \(0.564500\pi\)
\(500\) −232.757 + 403.147i −0.465514 + 0.806295i
\(501\) −274.054 + 34.4088i −0.547014 + 0.0686802i
\(502\) −25.1695 43.5949i −0.0501385 0.0868425i
\(503\) −158.607 −0.315323 −0.157661 0.987493i \(-0.550395\pi\)
−0.157661 + 0.987493i \(0.550395\pi\)
\(504\) −32.9466 + 8.40572i −0.0653702 + 0.0166780i
\(505\) 205.220i 0.406375i
\(506\) 32.3227 18.6615i 0.0638788 0.0368804i
\(507\) −136.279 + 323.505i −0.268795 + 0.638077i
\(508\) −327.930 + 567.992i −0.645532 + 1.11809i
\(509\) −575.309 332.155i −1.13027 0.652563i −0.186269 0.982499i \(-0.559640\pi\)
−0.944003 + 0.329936i \(0.892973\pi\)
\(510\) 7.58809 + 19.6985i 0.0148786 + 0.0386245i
\(511\) −37.5357 65.0138i −0.0734555 0.127229i
\(512\) 187.523i 0.366256i
\(513\) 227.578 89.5029i 0.443621 0.174470i
\(514\) 7.98591 0.0155368
\(515\) −12.7956 22.1626i −0.0248458 0.0430343i
\(516\) −202.860 267.682i −0.393140 0.518764i
\(517\) 459.729 + 265.425i 0.889224 + 0.513394i
\(518\) −25.5951 14.7773i −0.0494114 0.0285277i
\(519\) 52.9371 125.664i 0.101998 0.242127i
\(520\) 48.3615 27.9215i 0.0930029 0.0536953i
\(521\) 924.333 1.77415 0.887076 0.461624i \(-0.152733\pi\)
0.887076 + 0.461624i \(0.152733\pi\)
\(522\) −2.09333 + 2.04370i −0.00401021 + 0.00391513i
\(523\) −619.916 −1.18531 −0.592654 0.805457i \(-0.701920\pi\)
−0.592654 + 0.805457i \(0.701920\pi\)
\(524\) 0.128059 + 0.221805i 0.000244388 + 0.000423293i
\(525\) 20.5166 + 163.407i 0.0390792 + 0.311252i
\(526\) −3.75131 + 6.49745i −0.00713176 + 0.0123526i
\(527\) 539.790 519.650i 1.02427 0.986054i
\(528\) −571.178 + 71.7142i −1.08178 + 0.135822i
\(529\) 56.0286 + 97.0444i 0.105914 + 0.183449i
\(530\) 27.6638 0.0521958
\(531\) −509.493 + 497.413i −0.959496 + 0.936747i
\(532\) 113.855i 0.214014i
\(533\) −529.156 916.525i −0.992788 1.71956i
\(534\) −20.1713 + 47.8834i −0.0377740 + 0.0896694i
\(535\) 62.9257 108.991i 0.117618 0.203721i
\(536\) 22.1126 + 12.7667i 0.0412549 + 0.0238185i
\(537\) −704.275 + 533.728i −1.31150 + 0.993907i
\(538\) −38.8252 + 22.4157i −0.0721658 + 0.0416649i
\(539\) −475.867 −0.882869
\(540\) 232.057 + 184.792i 0.429735 + 0.342207i
\(541\) 757.243i 1.39971i 0.714285 + 0.699855i \(0.246752\pi\)
−0.714285 + 0.699855i \(0.753248\pi\)
\(542\) 20.6390 11.9160i 0.0380794 0.0219852i
\(543\) 669.303 507.225i 1.23260 0.934116i
\(544\) −87.4312 + 84.1691i −0.160719 + 0.154723i
\(545\) 379.195 + 218.928i 0.695771 + 0.401704i
\(546\) 9.32786 22.1428i 0.0170840 0.0405546i
\(547\) 670.522 387.126i 1.22582 0.707726i 0.259666 0.965699i \(-0.416388\pi\)
0.966152 + 0.257972i \(0.0830544\pi\)
\(548\) 289.300i 0.527920i
\(549\) −168.408 660.083i −0.306754 1.20234i
\(550\) 31.7499i 0.0577270i
\(551\) −9.82377 17.0153i −0.0178290 0.0308807i
\(552\) −9.12254 72.6577i −0.0165263 0.131626i
\(553\) 11.8551 20.5337i 0.0214378 0.0371314i
\(554\) 15.1831 26.2979i 0.0274064 0.0474692i
\(555\) 64.4245 + 513.118i 0.116080 + 0.924537i
\(556\) −85.9533 + 49.6252i −0.154592 + 0.0892539i
\(557\) 375.595i 0.674318i 0.941448 + 0.337159i \(0.109466\pi\)
−0.941448 + 0.337159i \(0.890534\pi\)
\(558\) −16.0720 + 57.2265i −0.0288029 + 0.102557i
\(559\) 476.017 0.851550
\(560\) 118.929 68.6639i 0.212374 0.122614i
\(561\) 483.920 + 390.931i 0.862603 + 0.696847i
\(562\) 31.9180 55.2836i 0.0567936 0.0983695i
\(563\) −267.021 154.165i −0.474283 0.273827i 0.243748 0.969839i \(-0.421623\pi\)
−0.718031 + 0.696011i \(0.754956\pi\)
\(564\) 413.878 313.653i 0.733826 0.556123i
\(565\) −76.2807 132.122i −0.135010 0.233844i
\(566\) 69.7126 0.123167
\(567\) 255.919 + 6.14155i 0.451356 + 0.0108317i
\(568\) 95.9774i 0.168974i
\(569\) 127.010 73.3291i 0.223216 0.128874i −0.384223 0.923240i \(-0.625531\pi\)
0.607438 + 0.794367i \(0.292197\pi\)
\(570\) 8.96350 6.79290i 0.0157254 0.0119174i
\(571\) −431.255 248.985i −0.755262 0.436051i 0.0723301 0.997381i \(-0.476956\pi\)
−0.827592 + 0.561330i \(0.810290\pi\)
\(572\) 410.267 710.603i 0.717250 1.24231i
\(573\) −790.574 333.036i −1.37971 0.581215i
\(574\) 14.8178 + 25.6651i 0.0258149 + 0.0447128i
\(575\) −354.684 −0.616842
\(576\) −150.522 + 535.954i −0.261324 + 0.930476i
\(577\) 442.364 0.766662 0.383331 0.923611i \(-0.374777\pi\)
0.383331 + 0.923611i \(0.374777\pi\)
\(578\) 43.2746 + 1.64590i 0.0748696 + 0.00284758i
\(579\) 52.5683 + 418.688i 0.0907915 + 0.723122i
\(580\) 11.9167 20.6403i 0.0205460 0.0355868i
\(581\) 22.6437 39.2200i 0.0389736 0.0675043i
\(582\) −5.14341 + 0.645780i −0.00883747 + 0.00110959i
\(583\) 706.030 407.626i 1.21103 0.699188i
\(584\) 28.3956 0.0486226
\(585\) −407.380 + 103.936i −0.696376 + 0.177668i
\(586\) −52.3026 −0.0892536
\(587\) −396.514 + 228.928i −0.675492 + 0.389996i −0.798155 0.602453i \(-0.794190\pi\)
0.122662 + 0.992448i \(0.460857\pi\)
\(588\) −180.721 + 429.003i −0.307349 + 0.729597i
\(589\) −345.714 199.598i −0.586951 0.338877i
\(590\) −16.3734 + 28.3596i −0.0277516 + 0.0480672i
\(591\) −629.264 830.338i −1.06474 1.40497i
\(592\) −850.203 + 490.865i −1.43615 + 0.829164i
\(593\) 578.833i 0.976109i −0.872813 0.488055i \(-0.837707\pi\)
0.872813 0.488055i \(-0.162293\pi\)
\(594\) −48.8056 7.32109i −0.0821644 0.0123251i
\(595\) −142.593 41.1278i −0.239651 0.0691223i
\(596\) −72.4097 + 41.8057i −0.121493 + 0.0701439i
\(597\) 131.754 99.8484i 0.220693 0.167250i
\(598\) 44.8137 + 25.8732i 0.0749393 + 0.0432662i
\(599\) −432.584 249.752i −0.722176 0.416949i 0.0933770 0.995631i \(-0.470234\pi\)
−0.815553 + 0.578682i \(0.803567\pi\)
\(600\) −57.4078 24.1835i −0.0956796 0.0403059i
\(601\) −720.962 + 416.247i −1.19960 + 0.692591i −0.960467 0.278395i \(-0.910198\pi\)
−0.239136 + 0.970986i \(0.576864\pi\)
\(602\) −13.3297 −0.0221424
\(603\) −134.290 137.552i −0.222704 0.228112i
\(604\) 968.041 1.60272
\(605\) 38.3828 + 66.4809i 0.0634426 + 0.109886i
\(606\) −33.1387 + 4.16072i −0.0546843 + 0.00686588i
\(607\) 945.923 + 546.129i 1.55836 + 0.899718i 0.997415 + 0.0718628i \(0.0228944\pi\)
0.560942 + 0.827855i \(0.310439\pi\)
\(608\) 55.9962 + 32.3294i 0.0920990 + 0.0531734i
\(609\) −2.56220 20.4070i −0.00420723 0.0335091i
\(610\) −15.6649 27.1324i −0.0256801 0.0444793i
\(611\) 735.995i 1.20458i
\(612\) 536.212 287.798i 0.876163 0.470259i
\(613\) 53.8085 0.0877790 0.0438895 0.999036i \(-0.486025\pi\)
0.0438895 + 0.999036i \(0.486025\pi\)
\(614\) −22.2493 + 12.8456i −0.0362367 + 0.0209212i
\(615\) 201.315 477.889i 0.327342 0.777056i
\(616\) −23.0420 + 39.9099i −0.0374058 + 0.0647888i
\(617\) −70.0923 + 121.403i −0.113602 + 0.196764i −0.917220 0.398381i \(-0.869572\pi\)
0.803618 + 0.595145i \(0.202905\pi\)
\(618\) 3.31938 2.51556i 0.00537116 0.00407049i
\(619\) 274.717 158.608i 0.443807 0.256232i −0.261404 0.965230i \(-0.584185\pi\)
0.705211 + 0.708997i \(0.250852\pi\)
\(620\) 484.244i 0.781039i
\(621\) −81.7853 + 545.218i −0.131699 + 0.877967i
\(622\) 64.1052i 0.103063i
\(623\) −182.642 316.345i −0.293165 0.507776i
\(624\) −482.062 636.099i −0.772535 1.01939i
\(625\) −55.4880 + 96.1080i −0.0887807 + 0.153773i
\(626\) −26.2844 + 45.5259i −0.0419878 + 0.0727250i
\(627\) 128.671 305.445i 0.205217 0.487153i
\(628\) −90.5695 156.871i −0.144219 0.249795i
\(629\) 1019.37 + 294.015i 1.62062 + 0.467432i
\(630\) 11.4077 2.91047i 0.0181075 0.00461980i
\(631\) −152.848 −0.242232 −0.121116 0.992638i \(-0.538647\pi\)
−0.121116 + 0.992638i \(0.538647\pi\)
\(632\) 4.48417 + 7.76681i 0.00709520 + 0.0122893i
\(633\) −123.392 982.770i −0.194931 1.55256i
\(634\) −22.1731 12.8017i −0.0349734 0.0201919i
\(635\) 227.732 394.444i 0.358633 0.621171i
\(636\) −99.3522 791.305i −0.156214 1.24419i
\(637\) −329.882 571.373i −0.517869 0.896975i
\(638\) 3.96507i 0.00621484i
\(639\) −195.380 + 695.676i −0.305759 + 1.08869i
\(640\) 104.479i 0.163249i
\(641\) 318.805 + 552.187i 0.497356 + 0.861447i 0.999995 0.00304989i \(-0.000970811\pi\)
−0.502639 + 0.864496i \(0.667637\pi\)
\(642\) 18.8755 + 7.95146i 0.0294011 + 0.0123855i
\(643\) −121.948 70.4067i −0.189655 0.109497i 0.402166 0.915567i \(-0.368257\pi\)
−0.591821 + 0.806069i \(0.701591\pi\)
\(644\) 222.293 + 128.341i 0.345176 + 0.199288i
\(645\) 140.877 + 185.893i 0.218414 + 0.288205i
\(646\) −5.54693 22.3958i −0.00858657 0.0346684i
\(647\) 997.613i 1.54191i −0.636892 0.770953i \(-0.719780\pi\)
0.636892 0.770953i \(-0.280220\pi\)
\(648\) −50.4122 + 82.6704i −0.0777966 + 0.127578i
\(649\) 965.053i 1.48698i
\(650\) 38.1221 22.0098i 0.0586493 0.0338612i
\(651\) −252.398 333.049i −0.387708 0.511596i
\(652\) 541.677 + 312.737i 0.830793 + 0.479658i
\(653\) −327.153 + 566.646i −0.501000 + 0.867758i 0.498999 + 0.866603i \(0.333701\pi\)
−0.999999 + 0.00115542i \(0.999632\pi\)
\(654\) −27.6644 + 65.6708i −0.0423003 + 0.100414i
\(655\) −0.0889312 0.154033i −0.000135773 0.000235165i
\(656\) 984.416 1.50063
\(657\) −205.821 57.8046i −0.313274 0.0879827i
\(658\) 20.6098i 0.0313219i
\(659\) −63.6237 + 36.7332i −0.0965459 + 0.0557408i −0.547496 0.836809i \(-0.684419\pi\)
0.450950 + 0.892549i \(0.351085\pi\)
\(660\) 398.921 50.0865i 0.604425 0.0758886i
\(661\) 559.494 969.071i 0.846435 1.46607i −0.0379339 0.999280i \(-0.512078\pi\)
0.884369 0.466788i \(-0.154589\pi\)
\(662\) −71.9352 41.5318i −0.108663 0.0627368i
\(663\) −133.926 + 852.046i −0.202000 + 1.28514i
\(664\) 8.56492 + 14.8349i 0.0128990 + 0.0223417i
\(665\) 79.0671i 0.118898i
\(666\) −81.5516 + 20.8064i −0.122450 + 0.0312409i
\(667\) 44.2946 0.0664087
\(668\) 183.103 + 317.144i 0.274107 + 0.474767i
\(669\) −2.40512 + 5.70937i −0.00359510 + 0.00853419i
\(670\) −7.65647 4.42047i −0.0114276 0.00659771i
\(671\) −799.592 461.645i −1.19164 0.687995i
\(672\) 40.8815 + 53.9448i 0.0608356 + 0.0802750i
\(673\) −505.859 + 292.058i −0.751648 + 0.433964i −0.826289 0.563246i \(-0.809552\pi\)
0.0746413 + 0.997210i \(0.476219\pi\)
\(674\) 82.3371 0.122162
\(675\) 366.880 + 292.154i 0.543526 + 0.432821i
\(676\) 465.423 0.688496
\(677\) −533.325 923.745i −0.787776 1.36447i −0.927326 0.374254i \(-0.877899\pi\)
0.139550 0.990215i \(-0.455434\pi\)
\(678\) 19.7884 14.9964i 0.0291864 0.0221186i
\(679\) 18.2217 31.5609i 0.0268361 0.0464815i
\(680\) 40.4400 38.9311i 0.0594705 0.0572516i
\(681\) 232.367 551.601i 0.341214 0.809986i
\(682\) 40.2809 + 69.7686i 0.0590629 + 0.102300i
\(683\) −1096.38 −1.60524 −0.802621 0.596489i \(-0.796562\pi\)
−0.802621 + 0.596489i \(0.796562\pi\)
\(684\) −226.498 231.999i −0.331138 0.339180i
\(685\) 200.905i 0.293292i
\(686\) 20.8403 + 36.0964i 0.0303794 + 0.0526186i
\(687\) −413.263 + 51.8872i −0.601548 + 0.0755273i
\(688\) −221.390 + 383.458i −0.321787 + 0.557352i
\(689\) 978.874 + 565.153i 1.42072 + 0.820252i
\(690\) 3.15867 + 25.1577i 0.00457778 + 0.0364604i
\(691\) −450.025 + 259.822i −0.651267 + 0.376009i −0.788941 0.614468i \(-0.789371\pi\)
0.137675 + 0.990478i \(0.456037\pi\)
\(692\) −180.792 −0.261259
\(693\) 248.260 242.374i 0.358240 0.349746i
\(694\) 76.4800i 0.110202i
\(695\) 59.6905 34.4623i 0.0858857 0.0495861i
\(696\) 7.16935 + 3.02015i 0.0103008 + 0.00433930i
\(697\) −737.804 766.399i −1.05854 1.09957i
\(698\) −18.0264 10.4076i −0.0258258 0.0149105i
\(699\) 589.516 + 777.889i 0.843370 + 1.11286i
\(700\) 189.100 109.177i 0.270143 0.155967i
\(701\) 926.951i 1.32233i −0.750242 0.661163i \(-0.770063\pi\)
0.750242 0.661163i \(-0.229937\pi\)
\(702\) −25.0428 63.6761i −0.0356736 0.0907067i
\(703\) 565.236i 0.804034i
\(704\) 377.250 + 653.417i 0.535867 + 0.928149i
\(705\) −287.419 + 217.817i −0.407686 + 0.308961i
\(706\) −22.2591 + 38.5538i −0.0315284 + 0.0546088i
\(707\) 117.401 203.345i 0.166056 0.287617i
\(708\) 870.013 + 366.501i 1.22883 + 0.517656i
\(709\) 865.153 499.496i 1.22024 0.704508i 0.255274 0.966869i \(-0.417834\pi\)
0.964970 + 0.262361i \(0.0845010\pi\)
\(710\) 33.2321i 0.0468058i
\(711\) −16.6919 65.4247i −0.0234767 0.0920179i
\(712\) 138.168 0.194056
\(713\) 779.400 449.987i 1.09313 0.631117i
\(714\) 3.75028 23.8596i 0.00525249 0.0334168i
\(715\) −284.911 + 493.480i −0.398477 + 0.690182i
\(716\) 1014.64 + 585.805i 1.41710 + 0.818163i
\(717\) −63.6989 507.339i −0.0888409 0.707586i
\(718\) −18.8717 32.6867i −0.0262836 0.0455246i
\(719\) −659.825 −0.917698 −0.458849 0.888514i \(-0.651738\pi\)
−0.458849 + 0.888514i \(0.651738\pi\)
\(720\) 105.742 376.506i 0.146863 0.522926i
\(721\) 29.2803i 0.0406107i
\(722\) 36.2020 20.9012i 0.0501412 0.0289491i
\(723\) 64.8446 + 27.3164i 0.0896883 + 0.0377820i
\(724\) −964.260 556.716i −1.33185 0.768944i
\(725\) 18.8402 32.6322i 0.0259865 0.0450100i
\(726\) −9.95708 + 7.54588i −0.0137150 + 0.0103938i
\(727\) −373.310 646.592i −0.513494 0.889398i −0.999877 0.0156524i \(-0.995017\pi\)
0.486383 0.873746i \(-0.338316\pi\)
\(728\) −63.8931 −0.0877652
\(729\) 533.695 496.599i 0.732092 0.681206i
\(730\) −9.83196 −0.0134684
\(731\) 464.462 115.037i 0.635379 0.157369i
\(732\) −719.845 + 545.528i −0.983395 + 0.745256i
\(733\) −333.459 + 577.568i −0.454924 + 0.787951i −0.998684 0.0512897i \(-0.983667\pi\)
0.543760 + 0.839241i \(0.317000\pi\)
\(734\) 35.4536 61.4074i 0.0483019 0.0836613i
\(735\) 125.502 297.922i 0.170751 0.405336i
\(736\) −126.241 + 72.8854i −0.171523 + 0.0990291i
\(737\) −260.543 −0.353518
\(738\) 81.2507 + 22.8192i 0.110096 + 0.0309203i
\(739\) −1026.55 −1.38911 −0.694554 0.719440i \(-0.744398\pi\)
−0.694554 + 0.719440i \(0.744398\pi\)
\(740\) 593.797 342.829i 0.802429 0.463282i
\(741\) 455.946 57.2462i 0.615311 0.0772553i
\(742\) −27.4111 15.8258i −0.0369422 0.0213286i
\(743\) −609.448 + 1055.59i −0.820253 + 1.42072i 0.0852417 + 0.996360i \(0.472834\pi\)
−0.905494 + 0.424359i \(0.860500\pi\)
\(744\) 156.832 19.6910i 0.210796 0.0264665i
\(745\) 50.2851 29.0321i 0.0674968 0.0389693i
\(746\) 51.3161i 0.0687883i
\(747\) −31.8822 124.964i −0.0426803 0.167287i
\(748\) 228.580 792.502i 0.305588 1.05949i
\(749\) −124.702 + 71.9968i −0.166491 + 0.0961238i
\(750\) 48.4859 + 20.4251i 0.0646479 + 0.0272335i
\(751\) −84.1112 48.5616i −0.111999 0.0646626i 0.442954 0.896544i \(-0.353930\pi\)
−0.554953 + 0.831882i \(0.687264\pi\)
\(752\) −592.886 342.303i −0.788412 0.455190i
\(753\) 803.212 608.706i 1.06668 0.808375i
\(754\) −4.76086 + 2.74868i −0.00631414 + 0.00364547i
\(755\) −672.259 −0.890409
\(756\) −124.222 315.858i −0.164315 0.417802i
\(757\) −183.164 −0.241960 −0.120980 0.992655i \(-0.538604\pi\)
−0.120980 + 0.992655i \(0.538604\pi\)
\(758\) −10.8535 18.7987i −0.0143185 0.0248004i
\(759\) 451.314 + 595.527i 0.594617 + 0.784620i
\(760\) −25.9002 14.9535i −0.0340792 0.0196756i
\(761\) −926.306 534.803i −1.21722 0.702764i −0.252899 0.967493i \(-0.581384\pi\)
−0.964323 + 0.264729i \(0.914717\pi\)
\(762\) 68.3116 + 28.7768i 0.0896477 + 0.0377649i
\(763\) −250.488 433.858i −0.328293 0.568621i
\(764\) 1137.39i 1.48873i
\(765\) −372.374 + 199.862i −0.486763 + 0.261258i
\(766\) −32.6498 −0.0426237
\(767\) −1158.74 + 668.998i −1.51074 + 0.872227i
\(768\) 719.600 90.3493i 0.936979 0.117642i
\(769\) −316.206 + 547.685i −0.411192 + 0.712205i −0.995020 0.0996721i \(-0.968221\pi\)
0.583829 + 0.811877i \(0.301554\pi\)
\(770\) 7.97827 13.8188i 0.0103614 0.0179465i
\(771\) 19.9175 + 158.635i 0.0258333 + 0.205753i
\(772\) 484.519 279.737i 0.627616 0.362354i
\(773\) 7.38633i 0.00955541i −0.999989 0.00477771i \(-0.998479\pi\)
0.999989 0.00477771i \(-0.00152080\pi\)
\(774\) −27.1616 + 26.5175i −0.0350924 + 0.0342604i
\(775\) 765.588i 0.987855i
\(776\) 6.89232 + 11.9379i 0.00888186 + 0.0153838i
\(777\) 229.707 545.287i 0.295633 0.701785i
\(778\) −5.63353 + 9.75757i −0.00724105 + 0.0125419i
\(779\) −283.391 + 490.848i −0.363789 + 0.630100i
\(780\) 336.681 + 444.263i 0.431642 + 0.569568i
\(781\) 489.676 + 848.144i 0.626986 + 1.08597i
\(782\) 49.9786 + 14.4153i 0.0639113 + 0.0184338i
\(783\) −45.8177 36.4856i −0.0585156 0.0465972i
\(784\) 613.697 0.782777
\(785\) 62.8963 + 108.940i 0.0801226 + 0.138776i
\(786\) 0.0230701 0.0174835i 2.93513e−5 2.22436e-5i
\(787\) 363.589 + 209.918i 0.461994 + 0.266732i 0.712882 0.701284i \(-0.247389\pi\)
−0.250888 + 0.968016i \(0.580723\pi\)
\(788\) −690.663 + 1196.26i −0.876475 + 1.51810i
\(789\) −138.424 58.3123i −0.175442 0.0739066i
\(790\) −1.55264 2.68925i −0.00196537 0.00340411i
\(791\) 174.554i 0.220675i
\(792\) 32.4430 + 127.162i 0.0409634 + 0.160558i
\(793\) 1280.09i 1.61424i
\(794\) −41.0513 71.1029i −0.0517019 0.0895503i
\(795\) 68.9954 + 549.524i 0.0867867 + 0.691225i
\(796\) −189.817 109.591i −0.238463 0.137677i
\(797\) 1351.72 + 780.418i 1.69601 + 0.979194i 0.949470 + 0.313859i \(0.101622\pi\)
0.746545 + 0.665335i \(0.231711\pi\)
\(798\) −12.7677 + 1.60305i −0.0159996 + 0.00200883i
\(799\) 177.865 + 718.130i 0.222609 + 0.898786i
\(800\) 124.004i 0.155005i
\(801\) −1001.48 281.266i −1.25029 0.351144i
\(802\) 105.706i 0.131802i
\(803\) −250.930 + 144.874i −0.312490 + 0.180416i
\(804\) −98.9471 + 234.884i −0.123069 + 0.292145i
\(805\) −154.372 89.1269i −0.191767 0.110717i
\(806\) −55.8475 + 96.7306i −0.0692896 + 0.120013i
\(807\) −542.108 715.332i −0.671757 0.886409i
\(808\) 44.4068 + 76.9148i 0.0549589 + 0.0951916i
\(809\) 474.700 0.586774 0.293387 0.955994i \(-0.405218\pi\)
0.293387 + 0.955994i \(0.405218\pi\)
\(810\) 17.4552 28.6246i 0.0215496 0.0353390i
\(811\) 291.146i 0.358997i 0.983758 + 0.179498i \(0.0574475\pi\)
−0.983758 + 0.179498i \(0.942553\pi\)
\(812\) −23.6157 + 13.6345i −0.0290834 + 0.0167913i
\(813\) 288.179 + 380.263i 0.354463 + 0.467728i
\(814\) −57.0351 + 98.7878i −0.0700677 + 0.121361i
\(815\) −376.169 217.181i −0.461557 0.266480i
\(816\) −624.084 504.161i −0.764809 0.617845i
\(817\) −127.466 220.778i −0.156017 0.270230i
\(818\) 84.3147i 0.103074i
\(819\) 463.118 + 130.066i 0.565468 + 0.158811i
\(820\) −687.534 −0.838456
\(821\) −88.4256 153.158i −0.107705 0.186550i 0.807135 0.590367i \(-0.201017\pi\)
−0.914840 + 0.403816i \(0.867683\pi\)
\(822\) 32.4420 4.07325i 0.0394672 0.00495530i
\(823\) 38.5079 + 22.2325i 0.0467896 + 0.0270140i 0.523212 0.852202i \(-0.324733\pi\)
−0.476423 + 0.879216i \(0.658067\pi\)
\(824\) −9.59141 5.53760i −0.0116401 0.00672039i
\(825\) 630.692 79.1865i 0.764475 0.0959836i
\(826\) 32.4478 18.7337i 0.0392830 0.0226801i
\(827\) 900.292 1.08862 0.544312 0.838883i \(-0.316791\pi\)
0.544312 + 0.838883i \(0.316791\pi\)
\(828\) 708.276 180.704i 0.855405 0.218241i
\(829\) −537.393 −0.648242 −0.324121 0.946016i \(-0.605069\pi\)
−0.324121 + 0.946016i \(0.605069\pi\)
\(830\) −2.96560 5.13656i −0.00357301 0.00618863i
\(831\) 560.261 + 236.015i 0.674201 + 0.284013i
\(832\) −523.038 + 905.929i −0.628652 + 1.08886i
\(833\) −459.956 477.783i −0.552168 0.573569i
\(834\) 6.77515 + 8.94007i 0.00812368 + 0.0107195i
\(835\) −127.157 220.242i −0.152283 0.263763i
\(836\) −439.440 −0.525646
\(837\) −1176.86 176.534i −1.40604 0.210913i
\(838\) 90.0823i 0.107497i
\(839\) 519.335 + 899.515i 0.618993 + 1.07213i 0.989670 + 0.143366i \(0.0457925\pi\)
−0.370677 + 0.928762i \(0.620874\pi\)
\(840\) −18.9091 24.9513i −0.0225109 0.0297040i
\(841\) 418.147 724.252i 0.497202 0.861180i
\(842\) −43.5893 25.1663i −0.0517687 0.0298887i
\(843\) 1177.78 + 496.151i 1.39713 + 0.588554i
\(844\) −1137.29 + 656.617i −1.34750 + 0.777982i
\(845\) −323.214 −0.382502
\(846\) −41.0002 41.9960i −0.0484636 0.0496406i
\(847\) 87.8316i 0.103697i
\(848\) −910.526 + 525.692i −1.07373 + 0.619920i
\(849\) 173.868 + 1384.80i 0.204792 + 1.63109i
\(850\) 31.8777 30.6883i 0.0375032 0.0361039i
\(851\) 1103.58 + 637.151i 1.29680 + 0.748709i
\(852\) 950.583 119.350i 1.11571 0.140083i
\(853\) −197.058 + 113.771i −0.231017 + 0.133378i −0.611041 0.791599i \(-0.709249\pi\)
0.380024 + 0.924977i \(0.375916\pi\)
\(854\) 35.8461i 0.0419743i
\(855\) 157.292 + 161.112i 0.183968 + 0.188436i
\(856\) 54.4652i 0.0636276i
\(857\) 467.534 + 809.793i 0.545547 + 0.944916i 0.998572 + 0.0534180i \(0.0170116\pi\)
−0.453025 + 0.891498i \(0.649655\pi\)
\(858\) −85.4632 36.0021i −0.0996075 0.0419605i
\(859\) −264.570 + 458.248i −0.307997 + 0.533467i −0.977924 0.208960i \(-0.932992\pi\)
0.669927 + 0.742427i \(0.266325\pi\)
\(860\) 154.622 267.814i 0.179794 0.311412i
\(861\) −472.866 + 358.357i −0.549205 + 0.416210i
\(862\) 33.7800 19.5029i 0.0391880 0.0226252i
\(863\) 271.514i 0.314616i 0.987550 + 0.157308i \(0.0502815\pi\)
−0.987550 + 0.157308i \(0.949718\pi\)
\(864\) 190.618 + 28.5937i 0.220623 + 0.0330945i
\(865\) 125.551 0.145146
\(866\) 1.45368 0.839284i 0.00167862 0.000969150i
\(867\) 75.2352 + 863.730i 0.0867765 + 0.996228i
\(868\) −277.025 + 479.821i −0.319153 + 0.552790i
\(869\) −79.2524 45.7564i −0.0911995 0.0526541i
\(870\) −2.48238 1.04572i −0.00285331 0.00120198i
\(871\) −180.615 312.834i −0.207365 0.359166i
\(872\) 189.493 0.217308
\(873\) −25.6561 100.560i −0.0293884 0.115189i
\(874\) 27.7130i 0.0317082i
\(875\) −320.325 + 184.940i −0.366086 + 0.211360i
\(876\) 35.3107 + 281.237i 0.0403090 + 0.321047i
\(877\) 88.4609 + 51.0729i 0.100868 + 0.0582359i 0.549585 0.835438i \(-0.314786\pi\)
−0.448718 + 0.893674i \(0.648119\pi\)
\(878\) −18.5837 + 32.1880i −0.0211660 + 0.0366605i
\(879\) −130.446 1038.96i −0.148403 1.18198i
\(880\) −265.017 459.024i −0.301156 0.521618i
\(881\) 1034.23 1.17392 0.586961 0.809615i \(-0.300324\pi\)
0.586961 + 0.809615i \(0.300324\pi\)
\(882\) 50.6527 + 14.2258i 0.0574294 + 0.0161290i
\(883\) 823.510 0.932628 0.466314 0.884619i \(-0.345582\pi\)
0.466314 + 0.884619i \(0.345582\pi\)
\(884\) 1110.01 274.926i 1.25567 0.311002i
\(885\) −604.183 254.517i −0.682693 0.287590i
\(886\) 61.7306 106.921i 0.0696733 0.120678i
\(887\) −496.209 + 859.460i −0.559424 + 0.968952i 0.438120 + 0.898916i \(0.355644\pi\)
−0.997545 + 0.0700351i \(0.977689\pi\)
\(888\) 135.178 + 178.372i 0.152227 + 0.200870i
\(889\) −451.304 + 260.561i −0.507654 + 0.293094i
\(890\) −47.8404 −0.0537533
\(891\) 23.7041 987.754i 0.0266040 1.10859i
\(892\) 8.21401 0.00920853
\(893\) 341.357 197.082i 0.382259 0.220697i
\(894\) 5.70759 + 7.53138i 0.00638432 + 0.00842436i
\(895\) −704.622 406.814i −0.787288 0.454541i
\(896\) 59.7702 103.525i 0.0667078 0.115541i
\(897\) −402.187 + 954.727i −0.448369 + 1.06436i
\(898\) 16.2131 9.36064i 0.0180547 0.0104239i
\(899\) 95.6101i 0.106352i
\(900\) 168.131 598.653i 0.186813 0.665170i
\(901\) 1091.69 + 314.875i 1.21164 + 0.349473i
\(902\) 99.0581 57.1912i 0.109820 0.0634049i
\(903\) −33.2453 264.787i −0.0368165 0.293230i
\(904\) −57.1789 33.0123i −0.0632510 0.0365180i
\(905\) 669.633 + 386.613i 0.739926 + 0.427196i
\(906\) −13.6297 108.556i −0.0150438 0.119819i
\(907\) 67.6442 39.0544i 0.0745801 0.0430589i −0.462246 0.886752i \(-0.652956\pi\)
0.536826 + 0.843693i \(0.319623\pi\)
\(908\) −793.581 −0.873988
\(909\) −165.300 647.902i −0.181849 0.712764i
\(910\) 22.1229 0.0243109
\(911\) −442.812 766.974i −0.486073 0.841903i 0.513799 0.857911i \(-0.328238\pi\)
−0.999872 + 0.0160076i \(0.994904\pi\)
\(912\) −165.940 + 393.914i −0.181952 + 0.431924i
\(913\) −151.375 87.3963i −0.165799 0.0957244i
\(914\) −112.493 64.9480i −0.123078 0.0710591i
\(915\) 499.898 378.843i 0.546337 0.414036i
\(916\) 276.113 + 478.242i 0.301434 + 0.522098i
\(917\) 0.203502i 0.000221922i
\(918\) −39.8233 56.0785i −0.0433805 0.0610877i
\(919\) −11.6428 −0.0126690 −0.00633450 0.999980i \(-0.502016\pi\)
−0.00633450 + 0.999980i \(0.502016\pi\)
\(920\) 58.3910 33.7120i 0.0634684 0.0366435i
\(921\) −310.662 409.931i −0.337310 0.445093i
\(922\) −21.7453 + 37.6640i −0.0235849 + 0.0408503i
\(923\) −678.911 + 1175.91i −0.735548 + 1.27401i
\(924\) −423.931 178.584i −0.458799 0.193273i
\(925\) 938.790 542.011i 1.01491 0.585958i
\(926\) 52.6851i 0.0568954i
\(927\) 58.2488 + 59.6635i 0.0628359 + 0.0643619i
\(928\) 15.4862i 0.0166877i
\(929\) 207.366 + 359.168i 0.223214 + 0.386618i 0.955782 0.294076i \(-0.0950118\pi\)
−0.732568 + 0.680694i \(0.761678\pi\)
\(930\) −54.3030 + 6.81801i −0.0583903 + 0.00733119i
\(931\) −176.670 + 306.001i −0.189763 + 0.328680i
\(932\) 647.036 1120.70i 0.694244 1.20247i
\(933\) 1273.41 159.883i 1.36486 0.171364i
\(934\) −29.5467 51.1764i −0.0316346 0.0547927i
\(935\) −158.738 + 550.355i −0.169773 + 0.588615i
\(936\) −130.193 + 127.106i −0.139095 + 0.135797i
\(937\) 434.596 0.463817 0.231908 0.972738i \(-0.425503\pi\)
0.231908 + 0.972738i \(0.425503\pi\)
\(938\) 5.05770 + 8.76019i 0.00539200 + 0.00933922i
\(939\) −969.899 408.578i −1.03291 0.435121i
\(940\) 414.082 + 239.070i 0.440513 + 0.254330i
\(941\) 762.435 1320.58i 0.810239 1.40337i −0.102458 0.994737i \(-0.532671\pi\)
0.912697 0.408637i \(-0.133996\pi\)
\(942\) −16.3163 + 12.3651i −0.0173209 + 0.0131265i
\(943\) −638.895 1106.60i −0.677513 1.17349i
\(944\) 1244.57i 1.31840i
\(945\) 86.2664 + 219.349i 0.0912872 + 0.232115i
\(946\) 51.4479i 0.0543847i
\(947\) −201.357 348.761i −0.212626 0.368280i 0.739909 0.672707i \(-0.234868\pi\)
−0.952536 + 0.304427i \(0.901535\pi\)
\(948\) −71.3482 + 54.0705i −0.0752618 + 0.0570364i
\(949\) −347.901 200.861i −0.366598 0.211655i
\(950\) −20.4164 11.7874i −0.0214910 0.0124078i
\(951\) 198.996 472.384i 0.209249 0.496724i
\(952\) −62.3422 + 15.4408i −0.0654855 + 0.0162193i
\(953\) 671.106i 0.704203i 0.935962 + 0.352102i \(0.114533\pi\)
−0.935962 + 0.352102i \(0.885467\pi\)
\(954\) −87.3378 + 22.2826i −0.0915490 + 0.0233571i
\(955\) 789.864i 0.827082i
\(956\) −587.110 + 338.968i −0.614132 + 0.354569i
\(957\) −78.7637 + 9.88917i −0.0823027 + 0.0103335i
\(958\) 44.8051 + 25.8683i 0.0467695 + 0.0270024i
\(959\) −114.933 + 199.070i −0.119847 + 0.207581i
\(960\) −508.574 + 63.8539i −0.529764 + 0.0665145i
\(961\) 490.798 + 850.087i 0.510716 + 0.884586i
\(962\) −158.153 −0.164400
\(963\) −110.874 + 394.782i −0.115134 + 0.409950i
\(964\) 93.2912i 0.0967751i
\(965\) −336.476 + 194.264i −0.348680 + 0.201310i
\(966\) 11.2623 26.7349i 0.0116587 0.0276759i
\(967\) −409.830 + 709.846i −0.423816 + 0.734070i −0.996309 0.0858390i \(-0.972643\pi\)
0.572493 + 0.819909i \(0.305976\pi\)
\(968\) 28.7712 + 16.6110i 0.0297223 + 0.0171602i
\(969\) 431.044 166.043i 0.444834 0.171355i
\(970\) −2.38646 4.13347i −0.00246027 0.00426131i
\(971\) 877.715i 0.903929i −0.892036 0.451965i \(-0.850723\pi\)
0.892036 0.451965i \(-0.149277\pi\)
\(972\) −881.477 396.492i −0.906869 0.407913i
\(973\) −78.8605 −0.0810488
\(974\) 44.3993 + 76.9018i 0.0455845 + 0.0789546i
\(975\) 532.290 + 702.378i 0.545939 + 0.720387i
\(976\) 1031.19 + 595.357i 1.05654 + 0.609996i
\(977\) −966.293 557.890i −0.989041 0.571023i −0.0840537 0.996461i \(-0.526787\pi\)
−0.904988 + 0.425438i \(0.860120\pi\)
\(978\) 27.4436 65.1467i 0.0280609 0.0666121i
\(979\) −1220.98 + 704.930i −1.24717 + 0.720051i
\(980\) −428.617 −0.437365
\(981\) −1373.51 385.749i −1.40011 0.393220i
\(982\) −18.6370 −0.0189786
\(983\) 546.561 + 946.671i 0.556013 + 0.963043i 0.997824 + 0.0659348i \(0.0210029\pi\)
−0.441811 + 0.897108i \(0.645664\pi\)
\(984\) −27.9575 222.672i −0.0284121 0.226292i
\(985\) 479.633 830.748i 0.486937 0.843399i
\(986\) −3.98104 + 3.83250i −0.00403756 + 0.00388692i
\(987\) 409.402 51.4024i 0.414794 0.0520795i
\(988\) −304.630 527.635i −0.308330 0.534044i
\(989\) 574.735 0.581128
\(990\) −11.2334 44.0296i −0.0113468 0.0444744i
\(991\) 672.370i 0.678477i 0.940700 + 0.339238i \(0.110169\pi\)
−0.940700 + 0.339238i \(0.889831\pi\)
\(992\) −157.324 272.492i −0.158592 0.274690i
\(993\) 645.592 1532.53i 0.650143 1.54334i
\(994\) 19.0113 32.9286i 0.0191261 0.0331273i
\(995\) 131.819 + 76.1056i 0.132481 + 0.0764881i
\(996\) −136.278 + 103.277i −0.136825 + 0.103691i
\(997\) −264.679 + 152.813i −0.265476 + 0.153272i −0.626830 0.779156i \(-0.715648\pi\)
0.361354 + 0.932429i \(0.382315\pi\)
\(998\) −47.1799 −0.0472744
\(999\) −616.702 1568.08i −0.617320 1.56965i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.i.a.50.17 68
3.2 odd 2 459.3.i.a.152.18 68
9.2 odd 6 inner 153.3.i.a.101.18 yes 68
9.7 even 3 459.3.i.a.305.17 68
17.16 even 2 inner 153.3.i.a.50.18 yes 68
51.50 odd 2 459.3.i.a.152.17 68
153.16 even 6 459.3.i.a.305.18 68
153.101 odd 6 inner 153.3.i.a.101.17 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.17 68 1.1 even 1 trivial
153.3.i.a.50.18 yes 68 17.16 even 2 inner
153.3.i.a.101.17 yes 68 153.101 odd 6 inner
153.3.i.a.101.18 yes 68 9.2 odd 6 inner
459.3.i.a.152.17 68 51.50 odd 2
459.3.i.a.152.18 68 3.2 odd 2
459.3.i.a.305.17 68 9.7 even 3
459.3.i.a.305.18 68 153.16 even 6