Properties

Label 45.7.d.a.44.9
Level $45$
Weight $7$
Character 45.44
Analytic conductor $10.352$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,7,Mod(44,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.44"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 45.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3524337629\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 630x^{10} + 143853x^{8} - 14514820x^{6} + 700911828x^{4} - 15238290240x^{2} + 141093389376 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{20}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 44.9
Root \(8.37795 + 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 45.44
Dual form 45.7.d.a.44.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.37795 q^{2} +6.18997 q^{4} +(-60.3283 - 109.478i) q^{5} -270.176i q^{7} -484.329 q^{8} +(-505.427 - 917.203i) q^{10} -1187.10i q^{11} -526.105i q^{13} -2263.52i q^{14} -4453.84 q^{16} +6589.09 q^{17} -9088.18 q^{19} +(-373.430 - 677.668i) q^{20} -9945.48i q^{22} +8922.54 q^{23} +(-8346.00 + 13209.3i) q^{25} -4407.68i q^{26} -1672.38i q^{28} -7731.97i q^{29} +3114.29 q^{31} -6316.98 q^{32} +55203.1 q^{34} +(-29578.4 + 16299.2i) q^{35} -75996.2i q^{37} -76140.3 q^{38} +(29218.7 + 53023.5i) q^{40} +56742.3i q^{41} +126636. i q^{43} -7348.13i q^{44} +74752.5 q^{46} +182063. q^{47} +44654.2 q^{49} +(-69922.3 + 110667. i) q^{50} -3256.57i q^{52} +31815.2 q^{53} +(-129962. + 71615.8i) q^{55} +130854. i q^{56} -64778.1i q^{58} -319642. i q^{59} -359529. q^{61} +26091.3 q^{62} +232123. q^{64} +(-57597.1 + 31739.0i) q^{65} -487383. i q^{67} +40786.3 q^{68} +(-247806. + 136554. i) q^{70} -370686. i q^{71} -323083. i q^{73} -636692. i q^{74} -56255.6 q^{76} -320726. q^{77} -66000.9 q^{79} +(268693. + 487599. i) q^{80} +475384. i q^{82} +7403.28 q^{83} +(-397509. - 721363. i) q^{85} +1.06095e6i q^{86} +574948. i q^{88} -991440. i q^{89} -142141. q^{91} +55230.3 q^{92} +1.52532e6 q^{94} +(548274. + 994959. i) q^{95} +1.52751e6i q^{97} +374110. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 516 q^{4} - 1368 q^{10} + 36372 q^{16} + 4320 q^{19} - 63384 q^{25} + 60192 q^{31} + 106296 q^{34} - 221772 q^{40} - 1078968 q^{46} + 711516 q^{49} - 104112 q^{55} - 449784 q^{61} + 3964572 q^{64}+ \cdots + 5793408 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.37795 1.04724 0.523622 0.851951i \(-0.324581\pi\)
0.523622 + 0.851951i \(0.324581\pi\)
\(3\) 0 0
\(4\) 6.18997 0.0967183
\(5\) −60.3283 109.478i −0.482626 0.875826i
\(6\) 0 0
\(7\) 270.176i 0.787684i −0.919178 0.393842i \(-0.871146\pi\)
0.919178 0.393842i \(-0.128854\pi\)
\(8\) −484.329 −0.945956
\(9\) 0 0
\(10\) −505.427 917.203i −0.505427 0.917203i
\(11\) 1187.10i 0.891888i −0.895061 0.445944i \(-0.852868\pi\)
0.895061 0.445944i \(-0.147132\pi\)
\(12\) 0 0
\(13\) 526.105i 0.239465i −0.992806 0.119733i \(-0.961796\pi\)
0.992806 0.119733i \(-0.0382037\pi\)
\(14\) 2263.52i 0.824896i
\(15\) 0 0
\(16\) −4453.84 −1.08736
\(17\) 6589.09 1.34115 0.670577 0.741840i \(-0.266046\pi\)
0.670577 + 0.741840i \(0.266046\pi\)
\(18\) 0 0
\(19\) −9088.18 −1.32500 −0.662500 0.749062i \(-0.730505\pi\)
−0.662500 + 0.749062i \(0.730505\pi\)
\(20\) −373.430 677.668i −0.0466788 0.0847085i
\(21\) 0 0
\(22\) 9945.48i 0.934023i
\(23\) 8922.54 0.733339 0.366670 0.930351i \(-0.380498\pi\)
0.366670 + 0.930351i \(0.380498\pi\)
\(24\) 0 0
\(25\) −8346.00 + 13209.3i −0.534144 + 0.845394i
\(26\) 4407.68i 0.250778i
\(27\) 0 0
\(28\) 1672.38i 0.0761834i
\(29\) 7731.97i 0.317027i −0.987357 0.158514i \(-0.949330\pi\)
0.987357 0.158514i \(-0.0506702\pi\)
\(30\) 0 0
\(31\) 3114.29 0.104538 0.0522689 0.998633i \(-0.483355\pi\)
0.0522689 + 0.998633i \(0.483355\pi\)
\(32\) −6316.98 −0.192779
\(33\) 0 0
\(34\) 55203.1 1.40451
\(35\) −29578.4 + 16299.2i −0.689874 + 0.380157i
\(36\) 0 0
\(37\) 75996.2i 1.50033i −0.661251 0.750165i \(-0.729974\pi\)
0.661251 0.750165i \(-0.270026\pi\)
\(38\) −76140.3 −1.38760
\(39\) 0 0
\(40\) 29218.7 + 53023.5i 0.456543 + 0.828493i
\(41\) 56742.3i 0.823295i 0.911343 + 0.411648i \(0.135047\pi\)
−0.911343 + 0.411648i \(0.864953\pi\)
\(42\) 0 0
\(43\) 126636.i 1.59277i 0.604790 + 0.796385i \(0.293257\pi\)
−0.604790 + 0.796385i \(0.706743\pi\)
\(44\) 7348.13i 0.0862619i
\(45\) 0 0
\(46\) 74752.5 0.767984
\(47\) 182063. 1.75359 0.876797 0.480861i \(-0.159676\pi\)
0.876797 + 0.480861i \(0.159676\pi\)
\(48\) 0 0
\(49\) 44654.2 0.379554
\(50\) −69922.3 + 110667.i −0.559379 + 0.885333i
\(51\) 0 0
\(52\) 3256.57i 0.0231607i
\(53\) 31815.2 0.213701 0.106851 0.994275i \(-0.465923\pi\)
0.106851 + 0.994275i \(0.465923\pi\)
\(54\) 0 0
\(55\) −129962. + 71615.8i −0.781139 + 0.430448i
\(56\) 130854.i 0.745114i
\(57\) 0 0
\(58\) 64778.1i 0.332005i
\(59\) 319642.i 1.55635i −0.628048 0.778175i \(-0.716146\pi\)
0.628048 0.778175i \(-0.283854\pi\)
\(60\) 0 0
\(61\) −359529. −1.58396 −0.791981 0.610546i \(-0.790950\pi\)
−0.791981 + 0.610546i \(0.790950\pi\)
\(62\) 26091.3 0.109476
\(63\) 0 0
\(64\) 232123. 0.885478
\(65\) −57597.1 + 31739.0i −0.209730 + 0.115572i
\(66\) 0 0
\(67\) 487383.i 1.62049i −0.586093 0.810244i \(-0.699335\pi\)
0.586093 0.810244i \(-0.300665\pi\)
\(68\) 40786.3 0.129714
\(69\) 0 0
\(70\) −247806. + 136554.i −0.722466 + 0.398117i
\(71\) 370686.i 1.03569i −0.855473 0.517847i \(-0.826734\pi\)
0.855473 0.517847i \(-0.173266\pi\)
\(72\) 0 0
\(73\) 323083.i 0.830511i −0.909705 0.415255i \(-0.863692\pi\)
0.909705 0.415255i \(-0.136308\pi\)
\(74\) 636692.i 1.57121i
\(75\) 0 0
\(76\) −56255.6 −0.128152
\(77\) −320726. −0.702525
\(78\) 0 0
\(79\) −66000.9 −0.133866 −0.0669328 0.997757i \(-0.521321\pi\)
−0.0669328 + 0.997757i \(0.521321\pi\)
\(80\) 268693. + 487599.i 0.524790 + 0.952342i
\(81\) 0 0
\(82\) 475384.i 0.862190i
\(83\) 7403.28 0.0129476 0.00647381 0.999979i \(-0.497939\pi\)
0.00647381 + 0.999979i \(0.497939\pi\)
\(84\) 0 0
\(85\) −397509. 721363.i −0.647276 1.17462i
\(86\) 1.06095e6i 1.66802i
\(87\) 0 0
\(88\) 574948.i 0.843686i
\(89\) 991440.i 1.40636i −0.711012 0.703180i \(-0.751763\pi\)
0.711012 0.703180i \(-0.248237\pi\)
\(90\) 0 0
\(91\) −142141. −0.188623
\(92\) 55230.3 0.0709273
\(93\) 0 0
\(94\) 1.52532e6 1.83644
\(95\) 548274. + 994959.i 0.639480 + 1.16047i
\(96\) 0 0
\(97\) 1.52751e6i 1.67367i 0.547458 + 0.836833i \(0.315596\pi\)
−0.547458 + 0.836833i \(0.684404\pi\)
\(98\) 374110. 0.397486
\(99\) 0 0
\(100\) −51661.5 + 81765.0i −0.0516615 + 0.0817650i
\(101\) 452341.i 0.439037i 0.975608 + 0.219519i \(0.0704487\pi\)
−0.975608 + 0.219519i \(0.929551\pi\)
\(102\) 0 0
\(103\) 104961.i 0.0960542i −0.998846 0.0480271i \(-0.984707\pi\)
0.998846 0.0480271i \(-0.0152934\pi\)
\(104\) 254808.i 0.226523i
\(105\) 0 0
\(106\) 266546. 0.223797
\(107\) −657099. −0.536388 −0.268194 0.963365i \(-0.586427\pi\)
−0.268194 + 0.963365i \(0.586427\pi\)
\(108\) 0 0
\(109\) 1.65657e6 1.27918 0.639589 0.768717i \(-0.279105\pi\)
0.639589 + 0.768717i \(0.279105\pi\)
\(110\) −1.08881e6 + 599994.i −0.818042 + 0.450784i
\(111\) 0 0
\(112\) 1.20332e6i 0.856499i
\(113\) −1.02621e6 −0.711216 −0.355608 0.934635i \(-0.615726\pi\)
−0.355608 + 0.934635i \(0.615726\pi\)
\(114\) 0 0
\(115\) −538281. 976824.i −0.353929 0.642278i
\(116\) 47860.7i 0.0306623i
\(117\) 0 0
\(118\) 2.67794e6i 1.62988i
\(119\) 1.78021e6i 1.05641i
\(120\) 0 0
\(121\) 362349. 0.204536
\(122\) −3.01212e6 −1.65879
\(123\) 0 0
\(124\) 19277.3 0.0101107
\(125\) 1.94963e6 + 116813.i 0.998210 + 0.0598083i
\(126\) 0 0
\(127\) 375925.i 0.183523i −0.995781 0.0917615i \(-0.970750\pi\)
0.995781 0.0917615i \(-0.0292497\pi\)
\(128\) 2.34900e6 1.12009
\(129\) 0 0
\(130\) −482545. + 265908.i −0.219638 + 0.121032i
\(131\) 1.42739e6i 0.634934i 0.948269 + 0.317467i \(0.102832\pi\)
−0.948269 + 0.317467i \(0.897168\pi\)
\(132\) 0 0
\(133\) 2.45540e6i 1.04368i
\(134\) 4.08327e6i 1.69705i
\(135\) 0 0
\(136\) −3.19129e6 −1.26867
\(137\) 2.76280e6 1.07445 0.537226 0.843438i \(-0.319472\pi\)
0.537226 + 0.843438i \(0.319472\pi\)
\(138\) 0 0
\(139\) −2.33540e6 −0.869596 −0.434798 0.900528i \(-0.643180\pi\)
−0.434798 + 0.900528i \(0.643180\pi\)
\(140\) −183089. + 100892.i −0.0667235 + 0.0367681i
\(141\) 0 0
\(142\) 3.10559e6i 1.08462i
\(143\) −624540. −0.213576
\(144\) 0 0
\(145\) −846484. + 466457.i −0.277661 + 0.153006i
\(146\) 2.70677e6i 0.869747i
\(147\) 0 0
\(148\) 470414.i 0.145109i
\(149\) 5.57895e6i 1.68653i 0.537499 + 0.843265i \(0.319369\pi\)
−0.537499 + 0.843265i \(0.680631\pi\)
\(150\) 0 0
\(151\) −187475. −0.0544520 −0.0272260 0.999629i \(-0.508667\pi\)
−0.0272260 + 0.999629i \(0.508667\pi\)
\(152\) 4.40167e6 1.25339
\(153\) 0 0
\(154\) −2.68703e6 −0.735715
\(155\) −187879. 340947.i −0.0504527 0.0915570i
\(156\) 0 0
\(157\) 2.11041e6i 0.545340i −0.962108 0.272670i \(-0.912093\pi\)
0.962108 0.272670i \(-0.0879066\pi\)
\(158\) −552952. −0.140190
\(159\) 0 0
\(160\) 381092. + 691572.i 0.0930401 + 0.168841i
\(161\) 2.41065e6i 0.577639i
\(162\) 0 0
\(163\) 4.41451e6i 1.01934i 0.860370 + 0.509671i \(0.170233\pi\)
−0.860370 + 0.509671i \(0.829767\pi\)
\(164\) 351233.i 0.0796277i
\(165\) 0 0
\(166\) 62024.3 0.0135593
\(167\) 279043. 0.0599131 0.0299565 0.999551i \(-0.490463\pi\)
0.0299565 + 0.999551i \(0.490463\pi\)
\(168\) 0 0
\(169\) 4.55002e6 0.942656
\(170\) −3.33031e6 6.04354e6i −0.677856 1.23011i
\(171\) 0 0
\(172\) 783876.i 0.154050i
\(173\) −4.97675e6 −0.961187 −0.480594 0.876943i \(-0.659579\pi\)
−0.480594 + 0.876943i \(0.659579\pi\)
\(174\) 0 0
\(175\) 3.56882e6 + 2.25488e6i 0.665903 + 0.420736i
\(176\) 5.28717e6i 0.969806i
\(177\) 0 0
\(178\) 8.30623e6i 1.47280i
\(179\) 3.25828e6i 0.568106i 0.958809 + 0.284053i \(0.0916791\pi\)
−0.958809 + 0.284053i \(0.908321\pi\)
\(180\) 0 0
\(181\) 1.15053e7 1.94027 0.970137 0.242559i \(-0.0779869\pi\)
0.970137 + 0.242559i \(0.0779869\pi\)
\(182\) −1.19085e6 −0.197534
\(183\) 0 0
\(184\) −4.32145e6 −0.693706
\(185\) −8.31994e6 + 4.58472e6i −1.31403 + 0.724098i
\(186\) 0 0
\(187\) 7.82193e6i 1.19616i
\(188\) 1.12697e6 0.169605
\(189\) 0 0
\(190\) 4.59341e6 + 8.33571e6i 0.669691 + 1.21530i
\(191\) 6.07903e6i 0.872437i −0.899841 0.436218i \(-0.856317\pi\)
0.899841 0.436218i \(-0.143683\pi\)
\(192\) 0 0
\(193\) 1.12931e7i 1.57088i 0.618941 + 0.785438i \(0.287562\pi\)
−0.618941 + 0.785438i \(0.712438\pi\)
\(194\) 1.27974e7i 1.75274i
\(195\) 0 0
\(196\) 276408. 0.0367099
\(197\) 3.46877e6 0.453708 0.226854 0.973929i \(-0.427156\pi\)
0.226854 + 0.973929i \(0.427156\pi\)
\(198\) 0 0
\(199\) −5.80303e6 −0.736369 −0.368185 0.929753i \(-0.620021\pi\)
−0.368185 + 0.929753i \(0.620021\pi\)
\(200\) 4.04221e6 6.39764e6i 0.505276 0.799705i
\(201\) 0 0
\(202\) 3.78969e6i 0.459779i
\(203\) −2.08899e6 −0.249717
\(204\) 0 0
\(205\) 6.21205e6 3.42317e6i 0.721064 0.397344i
\(206\) 879358.i 0.100592i
\(207\) 0 0
\(208\) 2.34319e6i 0.260386i
\(209\) 1.07886e7i 1.18175i
\(210\) 0 0
\(211\) −1.31986e6 −0.140502 −0.0702509 0.997529i \(-0.522380\pi\)
−0.0702509 + 0.997529i \(0.522380\pi\)
\(212\) 196935. 0.0206688
\(213\) 0 0
\(214\) −5.50514e6 −0.561729
\(215\) 1.38639e7 7.63975e6i 1.39499 0.768712i
\(216\) 0 0
\(217\) 841404.i 0.0823427i
\(218\) 1.38787e7 1.33961
\(219\) 0 0
\(220\) −804461. + 443300.i −0.0755504 + 0.0416322i
\(221\) 3.46655e6i 0.321160i
\(222\) 0 0
\(223\) 1.33313e6i 0.120215i −0.998192 0.0601076i \(-0.980856\pi\)
0.998192 0.0601076i \(-0.0191444\pi\)
\(224\) 1.70669e6i 0.151849i
\(225\) 0 0
\(226\) −8.59754e6 −0.744816
\(227\) −7.97225e6 −0.681559 −0.340779 0.940143i \(-0.610691\pi\)
−0.340779 + 0.940143i \(0.610691\pi\)
\(228\) 0 0
\(229\) −1.11916e7 −0.931938 −0.465969 0.884801i \(-0.654294\pi\)
−0.465969 + 0.884801i \(0.654294\pi\)
\(230\) −4.50969e6 8.18378e6i −0.370649 0.672621i
\(231\) 0 0
\(232\) 3.74482e6i 0.299894i
\(233\) −1.33843e7 −1.05810 −0.529052 0.848589i \(-0.677452\pi\)
−0.529052 + 0.848589i \(0.677452\pi\)
\(234\) 0 0
\(235\) −1.09836e7 1.99320e7i −0.846330 1.53584i
\(236\) 1.97857e6i 0.150528i
\(237\) 0 0
\(238\) 1.49145e7i 1.10631i
\(239\) 3.17061e6i 0.232247i −0.993235 0.116123i \(-0.962953\pi\)
0.993235 0.116123i \(-0.0370468\pi\)
\(240\) 0 0
\(241\) 3.36319e6 0.240270 0.120135 0.992758i \(-0.461667\pi\)
0.120135 + 0.992758i \(0.461667\pi\)
\(242\) 3.03574e6 0.214199
\(243\) 0 0
\(244\) −2.22548e6 −0.153198
\(245\) −2.69391e6 4.88867e6i −0.183183 0.332424i
\(246\) 0 0
\(247\) 4.78134e6i 0.317291i
\(248\) −1.50834e6 −0.0988881
\(249\) 0 0
\(250\) 1.63339e7 + 978654.i 1.04537 + 0.0626339i
\(251\) 2.64563e7i 1.67305i −0.547932 0.836523i \(-0.684585\pi\)
0.547932 0.836523i \(-0.315415\pi\)
\(252\) 0 0
\(253\) 1.05920e7i 0.654056i
\(254\) 3.14948e6i 0.192193i
\(255\) 0 0
\(256\) 4.82392e6 0.287528
\(257\) −4.28701e6 −0.252554 −0.126277 0.991995i \(-0.540303\pi\)
−0.126277 + 0.991995i \(0.540303\pi\)
\(258\) 0 0
\(259\) −2.05323e7 −1.18179
\(260\) −356524. + 196463.i −0.0202847 + 0.0111779i
\(261\) 0 0
\(262\) 1.19586e7i 0.664930i
\(263\) 2.94305e7 1.61782 0.808910 0.587933i \(-0.200058\pi\)
0.808910 + 0.587933i \(0.200058\pi\)
\(264\) 0 0
\(265\) −1.91936e6 3.48308e6i −0.103138 0.187165i
\(266\) 2.05712e7i 1.09299i
\(267\) 0 0
\(268\) 3.01689e6i 0.156731i
\(269\) 1.40558e7i 0.722100i 0.932547 + 0.361050i \(0.117582\pi\)
−0.932547 + 0.361050i \(0.882418\pi\)
\(270\) 0 0
\(271\) −2.69073e6 −0.135196 −0.0675978 0.997713i \(-0.521533\pi\)
−0.0675978 + 0.997713i \(0.521533\pi\)
\(272\) −2.93468e7 −1.45832
\(273\) 0 0
\(274\) 2.31465e7 1.12521
\(275\) 1.56808e7 + 9.90756e6i 0.753996 + 0.476396i
\(276\) 0 0
\(277\) 4.16627e7i 1.96024i 0.198414 + 0.980118i \(0.436421\pi\)
−0.198414 + 0.980118i \(0.563579\pi\)
\(278\) −1.95659e7 −0.910679
\(279\) 0 0
\(280\) 1.43257e7 7.89419e6i 0.652590 0.359611i
\(281\) 1.07292e7i 0.483556i 0.970332 + 0.241778i \(0.0777305\pi\)
−0.970332 + 0.241778i \(0.922269\pi\)
\(282\) 0 0
\(283\) 5.50312e6i 0.242800i −0.992604 0.121400i \(-0.961262\pi\)
0.992604 0.121400i \(-0.0387385\pi\)
\(284\) 2.29454e6i 0.100171i
\(285\) 0 0
\(286\) −5.23236e6 −0.223666
\(287\) 1.53304e7 0.648496
\(288\) 0 0
\(289\) 1.92786e7 0.798696
\(290\) −7.09179e6 + 3.90795e6i −0.290778 + 0.160234i
\(291\) 0 0
\(292\) 1.99987e6i 0.0803256i
\(293\) 1.23547e7 0.491169 0.245584 0.969375i \(-0.421020\pi\)
0.245584 + 0.969375i \(0.421020\pi\)
\(294\) 0 0
\(295\) −3.49938e7 + 1.92834e7i −1.36309 + 0.751135i
\(296\) 3.68072e7i 1.41925i
\(297\) 0 0
\(298\) 4.67402e7i 1.76621i
\(299\) 4.69419e6i 0.175609i
\(300\) 0 0
\(301\) 3.42140e7 1.25460
\(302\) −1.57066e6 −0.0570245
\(303\) 0 0
\(304\) 4.04773e7 1.44076
\(305\) 2.16898e7 + 3.93606e7i 0.764461 + 1.38728i
\(306\) 0 0
\(307\) 4.10198e7i 1.41768i −0.705370 0.708840i \(-0.749219\pi\)
0.705370 0.708840i \(-0.250781\pi\)
\(308\) −1.98529e6 −0.0679471
\(309\) 0 0
\(310\) −1.57404e6 2.85643e6i −0.0528362 0.0958824i
\(311\) 4.55195e7i 1.51327i −0.653837 0.756635i \(-0.726842\pi\)
0.653837 0.756635i \(-0.273158\pi\)
\(312\) 0 0
\(313\) 1.47679e7i 0.481598i 0.970575 + 0.240799i \(0.0774095\pi\)
−0.970575 + 0.240799i \(0.922591\pi\)
\(314\) 1.76809e7i 0.571103i
\(315\) 0 0
\(316\) −408544. −0.0129472
\(317\) −7.38900e6 −0.231957 −0.115979 0.993252i \(-0.537000\pi\)
−0.115979 + 0.993252i \(0.537000\pi\)
\(318\) 0 0
\(319\) −9.17865e6 −0.282753
\(320\) −1.40036e7 2.54124e7i −0.427355 0.775525i
\(321\) 0 0
\(322\) 2.01963e7i 0.604929i
\(323\) −5.98829e7 −1.77703
\(324\) 0 0
\(325\) 6.94946e6 + 4.39087e6i 0.202442 + 0.127909i
\(326\) 3.69845e7i 1.06750i
\(327\) 0 0
\(328\) 2.74820e7i 0.778801i
\(329\) 4.91891e7i 1.38128i
\(330\) 0 0
\(331\) −4.89533e7 −1.34989 −0.674944 0.737869i \(-0.735832\pi\)
−0.674944 + 0.737869i \(0.735832\pi\)
\(332\) 45826.1 0.00125227
\(333\) 0 0
\(334\) 2.33781e6 0.0627436
\(335\) −5.33579e7 + 2.94030e7i −1.41927 + 0.782090i
\(336\) 0 0
\(337\) 2.52313e7i 0.659250i −0.944112 0.329625i \(-0.893078\pi\)
0.944112 0.329625i \(-0.106922\pi\)
\(338\) 3.81198e7 0.987191
\(339\) 0 0
\(340\) −2.46057e6 4.46521e6i −0.0626035 0.113607i
\(341\) 3.69698e6i 0.0932360i
\(342\) 0 0
\(343\) 4.38503e7i 1.08665i
\(344\) 6.13337e7i 1.50669i
\(345\) 0 0
\(346\) −4.16950e7 −1.00660
\(347\) 4.18476e7 1.00157 0.500787 0.865571i \(-0.333044\pi\)
0.500787 + 0.865571i \(0.333044\pi\)
\(348\) 0 0
\(349\) 1.11598e7 0.262532 0.131266 0.991347i \(-0.458096\pi\)
0.131266 + 0.991347i \(0.458096\pi\)
\(350\) 2.98994e7 + 1.88913e7i 0.697362 + 0.440613i
\(351\) 0 0
\(352\) 7.49890e6i 0.171937i
\(353\) 2.13705e7 0.485837 0.242918 0.970047i \(-0.421895\pi\)
0.242918 + 0.970047i \(0.421895\pi\)
\(354\) 0 0
\(355\) −4.05821e7 + 2.23629e7i −0.907088 + 0.499853i
\(356\) 6.13699e6i 0.136021i
\(357\) 0 0
\(358\) 2.72977e7i 0.594945i
\(359\) 2.27851e7i 0.492455i −0.969212 0.246228i \(-0.920809\pi\)
0.969212 0.246228i \(-0.0791911\pi\)
\(360\) 0 0
\(361\) 3.55491e7 0.755627
\(362\) 9.63909e7 2.03194
\(363\) 0 0
\(364\) −879847. −0.0182433
\(365\) −3.53706e7 + 1.94910e7i −0.727383 + 0.400826i
\(366\) 0 0
\(367\) 3.26916e7i 0.661360i −0.943743 0.330680i \(-0.892722\pi\)
0.943743 0.330680i \(-0.107278\pi\)
\(368\) −3.97396e7 −0.797407
\(369\) 0 0
\(370\) −6.97040e7 + 3.84105e7i −1.37611 + 0.758307i
\(371\) 8.59569e6i 0.168329i
\(372\) 0 0
\(373\) 2.20835e7i 0.425542i 0.977102 + 0.212771i \(0.0682488\pi\)
−0.977102 + 0.212771i \(0.931751\pi\)
\(374\) 6.55317e7i 1.25267i
\(375\) 0 0
\(376\) −8.81786e7 −1.65882
\(377\) −4.06783e6 −0.0759169
\(378\) 0 0
\(379\) 2.12751e7 0.390800 0.195400 0.980724i \(-0.437399\pi\)
0.195400 + 0.980724i \(0.437399\pi\)
\(380\) 3.39380e6 + 6.15877e6i 0.0618494 + 0.112239i
\(381\) 0 0
\(382\) 5.09298e7i 0.913654i
\(383\) 7.76311e7 1.38178 0.690891 0.722959i \(-0.257219\pi\)
0.690891 + 0.722959i \(0.257219\pi\)
\(384\) 0 0
\(385\) 1.93488e7 + 3.51125e7i 0.339057 + 0.615290i
\(386\) 9.46131e7i 1.64509i
\(387\) 0 0
\(388\) 9.45525e6i 0.161874i
\(389\) 7.43035e7i 1.26229i 0.775663 + 0.631147i \(0.217415\pi\)
−0.775663 + 0.631147i \(0.782585\pi\)
\(390\) 0 0
\(391\) 5.87914e7 0.983521
\(392\) −2.16273e7 −0.359042
\(393\) 0 0
\(394\) 2.90611e7 0.475143
\(395\) 3.98172e6 + 7.22567e6i 0.0646070 + 0.117243i
\(396\) 0 0
\(397\) 2.25395e7i 0.360224i 0.983646 + 0.180112i \(0.0576459\pi\)
−0.983646 + 0.180112i \(0.942354\pi\)
\(398\) −4.86175e7 −0.771157
\(399\) 0 0
\(400\) 3.71718e7 5.88320e7i 0.580809 0.919250i
\(401\) 4.85810e7i 0.753414i −0.926332 0.376707i \(-0.877056\pi\)
0.926332 0.376707i \(-0.122944\pi\)
\(402\) 0 0
\(403\) 1.63844e6i 0.0250332i
\(404\) 2.79998e6i 0.0424630i
\(405\) 0 0
\(406\) −1.75014e7 −0.261515
\(407\) −9.02153e7 −1.33813
\(408\) 0 0
\(409\) 6.71469e7 0.981423 0.490711 0.871322i \(-0.336737\pi\)
0.490711 + 0.871322i \(0.336737\pi\)
\(410\) 5.20442e7 2.86791e7i 0.755129 0.416116i
\(411\) 0 0
\(412\) 649706.i 0.00929020i
\(413\) −8.63593e7 −1.22591
\(414\) 0 0
\(415\) −446627. 810499.i −0.00624886 0.0113399i
\(416\) 3.32339e6i 0.0461638i
\(417\) 0 0
\(418\) 9.03863e7i 1.23758i
\(419\) 4.06857e7i 0.553095i −0.961000 0.276548i \(-0.910810\pi\)
0.961000 0.276548i \(-0.0891904\pi\)
\(420\) 0 0
\(421\) 9.91589e7 1.32888 0.664440 0.747342i \(-0.268670\pi\)
0.664440 + 0.747342i \(0.268670\pi\)
\(422\) −1.10578e7 −0.147140
\(423\) 0 0
\(424\) −1.54090e7 −0.202152
\(425\) −5.49926e7 + 8.70371e7i −0.716370 + 1.13380i
\(426\) 0 0
\(427\) 9.71360e7i 1.24766i
\(428\) −4.06742e6 −0.0518786
\(429\) 0 0
\(430\) 1.16151e8 6.40054e7i 1.46089 0.805029i
\(431\) 2.37118e7i 0.296164i 0.988975 + 0.148082i \(0.0473099\pi\)
−0.988975 + 0.148082i \(0.952690\pi\)
\(432\) 0 0
\(433\) 6.09661e7i 0.750974i −0.926828 0.375487i \(-0.877476\pi\)
0.926828 0.375487i \(-0.122524\pi\)
\(434\) 7.04923e6i 0.0862328i
\(435\) 0 0
\(436\) 1.02541e7 0.123720
\(437\) −8.10896e7 −0.971675
\(438\) 0 0
\(439\) 1.53212e7 0.181092 0.0905458 0.995892i \(-0.471139\pi\)
0.0905458 + 0.995892i \(0.471139\pi\)
\(440\) 6.29444e7 3.46856e7i 0.738923 0.407185i
\(441\) 0 0
\(442\) 2.90426e7i 0.336332i
\(443\) 1.12121e8 1.28966 0.644828 0.764327i \(-0.276929\pi\)
0.644828 + 0.764327i \(0.276929\pi\)
\(444\) 0 0
\(445\) −1.08541e8 + 5.98119e7i −1.23173 + 0.678746i
\(446\) 1.11689e7i 0.125895i
\(447\) 0 0
\(448\) 6.27138e7i 0.697476i
\(449\) 1.27219e8i 1.40544i 0.711468 + 0.702719i \(0.248031\pi\)
−0.711468 + 0.702719i \(0.751969\pi\)
\(450\) 0 0
\(451\) 6.73589e7 0.734287
\(452\) −6.35222e6 −0.0687876
\(453\) 0 0
\(454\) −6.67911e7 −0.713758
\(455\) 8.57510e6 + 1.55613e7i 0.0910343 + 0.165201i
\(456\) 0 0
\(457\) 7.74410e7i 0.811377i 0.914011 + 0.405688i \(0.132968\pi\)
−0.914011 + 0.405688i \(0.867032\pi\)
\(458\) −9.37629e7 −0.975965
\(459\) 0 0
\(460\) −3.33195e6 6.04652e6i −0.0342314 0.0621200i
\(461\) 2.35645e7i 0.240523i −0.992742 0.120261i \(-0.961627\pi\)
0.992742 0.120261i \(-0.0383733\pi\)
\(462\) 0 0
\(463\) 4.67479e7i 0.470998i −0.971875 0.235499i \(-0.924328\pi\)
0.971875 0.235499i \(-0.0756725\pi\)
\(464\) 3.44370e7i 0.344724i
\(465\) 0 0
\(466\) −1.12133e8 −1.10809
\(467\) 1.04192e8 1.02302 0.511511 0.859277i \(-0.329086\pi\)
0.511511 + 0.859277i \(0.329086\pi\)
\(468\) 0 0
\(469\) −1.31679e8 −1.27643
\(470\) −9.20197e7 1.66989e8i −0.886313 1.60840i
\(471\) 0 0
\(472\) 1.54812e8i 1.47224i
\(473\) 1.50330e8 1.42057
\(474\) 0 0
\(475\) 7.58499e7 1.20048e8i 0.707741 1.12015i
\(476\) 1.10195e7i 0.102174i
\(477\) 0 0
\(478\) 2.65632e7i 0.243219i
\(479\) 9.95625e7i 0.905919i 0.891531 + 0.452959i \(0.149632\pi\)
−0.891531 + 0.452959i \(0.850368\pi\)
\(480\) 0 0
\(481\) −3.99820e7 −0.359277
\(482\) 2.81766e7 0.251622
\(483\) 0 0
\(484\) 2.24293e6 0.0197824
\(485\) 1.67229e8 9.21521e7i 1.46584 0.807755i
\(486\) 0 0
\(487\) 1.90543e8i 1.64971i 0.565347 + 0.824853i \(0.308742\pi\)
−0.565347 + 0.824853i \(0.691258\pi\)
\(488\) 1.74130e8 1.49836
\(489\) 0 0
\(490\) −2.25694e7 4.09570e7i −0.191837 0.348129i
\(491\) 1.08462e8i 0.916287i −0.888878 0.458143i \(-0.848515\pi\)
0.888878 0.458143i \(-0.151485\pi\)
\(492\) 0 0
\(493\) 5.09467e7i 0.425182i
\(494\) 4.00578e7i 0.332281i
\(495\) 0 0
\(496\) −1.38705e7 −0.113671
\(497\) −1.00150e8 −0.815799
\(498\) 0 0
\(499\) −1.85918e8 −1.49631 −0.748153 0.663527i \(-0.769059\pi\)
−0.748153 + 0.663527i \(0.769059\pi\)
\(500\) 1.20681e7 + 723070.i 0.0965452 + 0.00578456i
\(501\) 0 0
\(502\) 2.21649e8i 1.75209i
\(503\) −1.39688e8 −1.09763 −0.548815 0.835944i \(-0.684921\pi\)
−0.548815 + 0.835944i \(0.684921\pi\)
\(504\) 0 0
\(505\) 4.95215e7 2.72889e7i 0.384521 0.211891i
\(506\) 8.87389e7i 0.684956i
\(507\) 0 0
\(508\) 2.32697e6i 0.0177500i
\(509\) 3.55184e7i 0.269340i 0.990891 + 0.134670i \(0.0429974\pi\)
−0.990891 + 0.134670i \(0.957003\pi\)
\(510\) 0 0
\(511\) −8.72890e7 −0.654180
\(512\) −1.09921e8 −0.818977
\(513\) 0 0
\(514\) −3.59163e7 −0.264486
\(515\) −1.14910e7 + 6.33212e6i −0.0841268 + 0.0463583i
\(516\) 0 0
\(517\) 2.16128e8i 1.56401i
\(518\) −1.72019e8 −1.23762
\(519\) 0 0
\(520\) 2.78959e7 1.53721e7i 0.198395 0.109326i
\(521\) 1.93385e8i 1.36745i −0.729742 0.683723i \(-0.760360\pi\)
0.729742 0.683723i \(-0.239640\pi\)
\(522\) 0 0
\(523\) 9.39198e6i 0.0656527i 0.999461 + 0.0328263i \(0.0104508\pi\)
−0.999461 + 0.0328263i \(0.989549\pi\)
\(524\) 8.83550e6i 0.0614098i
\(525\) 0 0
\(526\) 2.46567e8 1.69425
\(527\) 2.05203e7 0.140201
\(528\) 0 0
\(529\) −6.84242e7 −0.462214
\(530\) −1.60803e7 2.91810e7i −0.108010 0.196008i
\(531\) 0 0
\(532\) 1.51989e7i 0.100943i
\(533\) 2.98524e7 0.197150
\(534\) 0 0
\(535\) 3.96416e7 + 7.19381e7i 0.258875 + 0.469783i
\(536\) 2.36054e8i 1.53291i
\(537\) 0 0
\(538\) 1.17758e8i 0.756214i
\(539\) 5.30091e7i 0.338520i
\(540\) 0 0
\(541\) 2.07632e7 0.131130 0.0655651 0.997848i \(-0.479115\pi\)
0.0655651 + 0.997848i \(0.479115\pi\)
\(542\) −2.25428e7 −0.141583
\(543\) 0 0
\(544\) −4.16231e7 −0.258546
\(545\) −9.99382e7 1.81359e8i −0.617365 1.12034i
\(546\) 0 0
\(547\) 3.73970e7i 0.228494i −0.993452 0.114247i \(-0.963554\pi\)
0.993452 0.114247i \(-0.0364456\pi\)
\(548\) 1.71016e7 0.103919
\(549\) 0 0
\(550\) 1.31373e8 + 8.30050e7i 0.789617 + 0.498903i
\(551\) 7.02696e7i 0.420061i
\(552\) 0 0
\(553\) 1.78318e7i 0.105444i
\(554\) 3.49048e8i 2.05284i
\(555\) 0 0
\(556\) −1.44561e7 −0.0841059
\(557\) 2.13408e8 1.23494 0.617468 0.786596i \(-0.288159\pi\)
0.617468 + 0.786596i \(0.288159\pi\)
\(558\) 0 0
\(559\) 6.66240e7 0.381413
\(560\) 1.31737e8 7.25942e7i 0.750144 0.413369i
\(561\) 0 0
\(562\) 8.98882e7i 0.506400i
\(563\) −1.01902e8 −0.571029 −0.285515 0.958374i \(-0.592165\pi\)
−0.285515 + 0.958374i \(0.592165\pi\)
\(564\) 0 0
\(565\) 6.19095e7 + 1.12348e8i 0.343251 + 0.622902i
\(566\) 4.61048e7i 0.254271i
\(567\) 0 0
\(568\) 1.79534e8i 0.979720i
\(569\) 1.12478e8i 0.610566i 0.952262 + 0.305283i \(0.0987510\pi\)
−0.952262 + 0.305283i \(0.901249\pi\)
\(570\) 0 0
\(571\) 1.75933e8 0.945016 0.472508 0.881326i \(-0.343349\pi\)
0.472508 + 0.881326i \(0.343349\pi\)
\(572\) −3.86589e6 −0.0206567
\(573\) 0 0
\(574\) 1.28437e8 0.679133
\(575\) −7.44675e7 + 1.17860e8i −0.391709 + 0.619960i
\(576\) 0 0
\(577\) 1.61356e8i 0.839957i −0.907534 0.419978i \(-0.862038\pi\)
0.907534 0.419978i \(-0.137962\pi\)
\(578\) 1.61515e8 0.836428
\(579\) 0 0
\(580\) −5.23971e6 + 2.88735e6i −0.0268549 + 0.0147984i
\(581\) 2.00019e6i 0.0101986i
\(582\) 0 0
\(583\) 3.77679e7i 0.190598i
\(584\) 1.56478e8i 0.785626i
\(585\) 0 0
\(586\) 1.03507e8 0.514373
\(587\) −4.39079e7 −0.217084 −0.108542 0.994092i \(-0.534618\pi\)
−0.108542 + 0.994092i \(0.534618\pi\)
\(588\) 0 0
\(589\) −2.83032e7 −0.138513
\(590\) −2.93176e8 + 1.61555e8i −1.42749 + 0.786621i
\(591\) 0 0
\(592\) 3.38475e8i 1.63140i
\(593\) −3.94038e7 −0.188962 −0.0944808 0.995527i \(-0.530119\pi\)
−0.0944808 + 0.995527i \(0.530119\pi\)
\(594\) 0 0
\(595\) −1.94895e8 + 1.07397e8i −0.925228 + 0.509849i
\(596\) 3.45336e7i 0.163118i
\(597\) 0 0
\(598\) 3.93277e7i 0.183905i
\(599\) 1.11994e8i 0.521092i 0.965461 + 0.260546i \(0.0839026\pi\)
−0.965461 + 0.260546i \(0.916097\pi\)
\(600\) 0 0
\(601\) −3.96028e8 −1.82432 −0.912162 0.409830i \(-0.865588\pi\)
−0.912162 + 0.409830i \(0.865588\pi\)
\(602\) 2.86643e8 1.31387
\(603\) 0 0
\(604\) −1.16047e6 −0.00526650
\(605\) −2.18599e7 3.96693e7i −0.0987146 0.179138i
\(606\) 0 0
\(607\) 3.06455e8i 1.37025i −0.728425 0.685125i \(-0.759747\pi\)
0.728425 0.685125i \(-0.240253\pi\)
\(608\) 5.74098e7 0.255432
\(609\) 0 0
\(610\) 1.81716e8 + 3.29761e8i 0.800577 + 1.45281i
\(611\) 9.57844e7i 0.419924i
\(612\) 0 0
\(613\) 1.80074e7i 0.0781751i −0.999236 0.0390875i \(-0.987555\pi\)
0.999236 0.0390875i \(-0.0124451\pi\)
\(614\) 3.43661e8i 1.48465i
\(615\) 0 0
\(616\) 1.55337e8 0.664558
\(617\) 1.66217e8 0.707651 0.353825 0.935311i \(-0.384881\pi\)
0.353825 + 0.935311i \(0.384881\pi\)
\(618\) 0 0
\(619\) 1.89841e8 0.800422 0.400211 0.916423i \(-0.368937\pi\)
0.400211 + 0.916423i \(0.368937\pi\)
\(620\) −1.16297e6 2.11045e6i −0.00487970 0.00885524i
\(621\) 0 0
\(622\) 3.81360e8i 1.58476i
\(623\) −2.67863e8 −1.10777
\(624\) 0 0
\(625\) −1.04829e8 2.20489e8i −0.429380 0.903124i
\(626\) 1.23724e8i 0.504350i
\(627\) 0 0
\(628\) 1.30634e7i 0.0527443i
\(629\) 5.00746e8i 2.01217i
\(630\) 0 0
\(631\) 2.56171e8 1.01963 0.509814 0.860285i \(-0.329714\pi\)
0.509814 + 0.860285i \(0.329714\pi\)
\(632\) 3.19662e7 0.126631
\(633\) 0 0
\(634\) −6.19046e7 −0.242916
\(635\) −4.11557e7 + 2.26789e7i −0.160734 + 0.0885730i
\(636\) 0 0
\(637\) 2.34928e7i 0.0908900i
\(638\) −7.68982e7 −0.296111
\(639\) 0 0
\(640\) −1.41711e8 2.57164e8i −0.540584 0.981004i
\(641\) 4.41284e7i 0.167550i −0.996485 0.0837749i \(-0.973302\pi\)
0.996485 0.0837749i \(-0.0266977\pi\)
\(642\) 0 0
\(643\) 1.96340e8i 0.738545i 0.929321 + 0.369272i \(0.120393\pi\)
−0.929321 + 0.369272i \(0.879607\pi\)
\(644\) 1.49219e7i 0.0558683i
\(645\) 0 0
\(646\) −5.01695e8 −1.86098
\(647\) −9.99293e7 −0.368961 −0.184480 0.982836i \(-0.559060\pi\)
−0.184480 + 0.982836i \(0.559060\pi\)
\(648\) 0 0
\(649\) −3.79447e8 −1.38809
\(650\) 5.82222e7 + 3.67865e7i 0.212006 + 0.133952i
\(651\) 0 0
\(652\) 2.73257e7i 0.0985890i
\(653\) −2.49531e7 −0.0896160 −0.0448080 0.998996i \(-0.514268\pi\)
−0.0448080 + 0.998996i \(0.514268\pi\)
\(654\) 0 0
\(655\) 1.56268e8 8.61120e7i 0.556092 0.306436i
\(656\) 2.52721e8i 0.895221i
\(657\) 0 0
\(658\) 4.12103e8i 1.44653i
\(659\) 1.49890e8i 0.523739i −0.965103 0.261870i \(-0.915661\pi\)
0.965103 0.261870i \(-0.0843390\pi\)
\(660\) 0 0
\(661\) −4.68646e6 −0.0162271 −0.00811355 0.999967i \(-0.502583\pi\)
−0.00811355 + 0.999967i \(0.502583\pi\)
\(662\) −4.10128e8 −1.41366
\(663\) 0 0
\(664\) −3.58563e6 −0.0122479
\(665\) 2.68813e8 1.48130e8i 0.914084 0.503708i
\(666\) 0 0
\(667\) 6.89888e7i 0.232488i
\(668\) 1.72727e6 0.00579469
\(669\) 0 0
\(670\) −4.47029e8 + 2.46336e8i −1.48632 + 0.819038i
\(671\) 4.26798e8i 1.41272i
\(672\) 0 0
\(673\) 3.58399e8i 1.17577i 0.808945 + 0.587884i \(0.200039\pi\)
−0.808945 + 0.587884i \(0.799961\pi\)
\(674\) 2.11387e8i 0.690395i
\(675\) 0 0
\(676\) 2.81645e7 0.0911721
\(677\) 2.26026e7 0.0728437 0.0364218 0.999337i \(-0.488404\pi\)
0.0364218 + 0.999337i \(0.488404\pi\)
\(678\) 0 0
\(679\) 4.12696e8 1.31832
\(680\) 1.92525e8 + 3.49377e8i 0.612295 + 1.11114i
\(681\) 0 0
\(682\) 3.09731e7i 0.0976407i
\(683\) 5.32455e8 1.67117 0.835585 0.549361i \(-0.185129\pi\)
0.835585 + 0.549361i \(0.185129\pi\)
\(684\) 0 0
\(685\) −1.66675e8 3.02466e8i −0.518559 0.941033i
\(686\) 3.67376e8i 1.13799i
\(687\) 0 0
\(688\) 5.64018e8i 1.73192i
\(689\) 1.67381e7i 0.0511740i
\(690\) 0 0
\(691\) −5.20725e8 −1.57825 −0.789123 0.614236i \(-0.789464\pi\)
−0.789123 + 0.614236i \(0.789464\pi\)
\(692\) −3.08060e7 −0.0929644
\(693\) 0 0
\(694\) 3.50597e8 1.04889
\(695\) 1.40891e8 + 2.55676e8i 0.419690 + 0.761615i
\(696\) 0 0
\(697\) 3.73880e8i 1.10417i
\(698\) 9.34965e7 0.274934
\(699\) 0 0
\(700\) 2.20909e7 + 1.39577e7i 0.0644050 + 0.0406929i
\(701\) 2.97763e8i 0.864404i 0.901777 + 0.432202i \(0.142263\pi\)
−0.901777 + 0.432202i \(0.857737\pi\)
\(702\) 0 0
\(703\) 6.90667e8i 1.98794i
\(704\) 2.75553e8i 0.789746i
\(705\) 0 0
\(706\) 1.79041e8 0.508789
\(707\) 1.22211e8 0.345823
\(708\) 0 0
\(709\) 1.89039e8 0.530411 0.265205 0.964192i \(-0.414560\pi\)
0.265205 + 0.964192i \(0.414560\pi\)
\(710\) −3.39995e8 + 1.87355e8i −0.949942 + 0.523468i
\(711\) 0 0
\(712\) 4.80183e8i 1.33035i
\(713\) 2.77873e7 0.0766617
\(714\) 0 0
\(715\) 3.76774e7 + 6.83736e7i 0.103077 + 0.187055i
\(716\) 2.01687e7i 0.0549462i
\(717\) 0 0
\(718\) 1.90892e8i 0.515721i
\(719\) 1.30902e8i 0.352176i −0.984374 0.176088i \(-0.943656\pi\)
0.984374 0.176088i \(-0.0563443\pi\)
\(720\) 0 0
\(721\) −2.83579e7 −0.0756603
\(722\) 2.97829e8 0.791325
\(723\) 0 0
\(724\) 7.12176e7 0.187660
\(725\) 1.02134e8 + 6.45311e7i 0.268013 + 0.169338i
\(726\) 0 0
\(727\) 4.44143e8i 1.15590i 0.816073 + 0.577949i \(0.196147\pi\)
−0.816073 + 0.577949i \(0.803853\pi\)
\(728\) 6.88429e7 0.178429
\(729\) 0 0
\(730\) −2.96333e8 + 1.63295e8i −0.761747 + 0.419762i
\(731\) 8.34419e8i 2.13615i
\(732\) 0 0
\(733\) 4.71631e8i 1.19754i −0.800921 0.598770i \(-0.795656\pi\)
0.800921 0.598770i \(-0.204344\pi\)
\(734\) 2.73888e8i 0.692605i
\(735\) 0 0
\(736\) −5.63635e7 −0.141372
\(737\) −5.78573e8 −1.44529
\(738\) 0 0
\(739\) 6.40610e8 1.58731 0.793653 0.608371i \(-0.208177\pi\)
0.793653 + 0.608371i \(0.208177\pi\)
\(740\) −5.15002e7 + 2.83793e7i −0.127091 + 0.0700336i
\(741\) 0 0
\(742\) 7.20142e7i 0.176281i
\(743\) −5.44941e8 −1.32857 −0.664283 0.747481i \(-0.731263\pi\)
−0.664283 + 0.747481i \(0.731263\pi\)
\(744\) 0 0
\(745\) 6.10774e8 3.36569e8i 1.47711 0.813963i
\(746\) 1.85015e8i 0.445646i
\(747\) 0 0
\(748\) 4.84175e7i 0.115691i
\(749\) 1.77532e8i 0.422504i
\(750\) 0 0
\(751\) 5.56224e8 1.31320 0.656598 0.754241i \(-0.271995\pi\)
0.656598 + 0.754241i \(0.271995\pi\)
\(752\) −8.10881e8 −1.90679
\(753\) 0 0
\(754\) −3.40801e7 −0.0795035
\(755\) 1.13101e7 + 2.05245e7i 0.0262799 + 0.0476905i
\(756\) 0 0
\(757\) 4.02524e8i 0.927906i 0.885860 + 0.463953i \(0.153569\pi\)
−0.885860 + 0.463953i \(0.846431\pi\)
\(758\) 1.78242e8 0.409263
\(759\) 0 0
\(760\) −2.65545e8 4.81888e8i −0.604920 1.09775i
\(761\) 1.44544e8i 0.327979i −0.986462 0.163989i \(-0.947564\pi\)
0.986462 0.163989i \(-0.0524363\pi\)
\(762\) 0 0
\(763\) 4.47565e8i 1.00759i
\(764\) 3.76290e7i 0.0843806i
\(765\) 0 0
\(766\) 6.50389e8 1.44706
\(767\) −1.68165e8 −0.372691
\(768\) 0 0
\(769\) −2.64281e8 −0.581148 −0.290574 0.956853i \(-0.593846\pi\)
−0.290574 + 0.956853i \(0.593846\pi\)
\(770\) 1.62104e8 + 2.94171e8i 0.355075 + 0.644359i
\(771\) 0 0
\(772\) 6.99040e7i 0.151932i
\(773\) −1.66034e8 −0.359466 −0.179733 0.983715i \(-0.557523\pi\)
−0.179733 + 0.983715i \(0.557523\pi\)
\(774\) 0 0
\(775\) −2.59918e7 + 4.11374e7i −0.0558382 + 0.0883756i
\(776\) 7.39818e8i 1.58321i
\(777\) 0 0
\(778\) 6.22511e8i 1.32193i
\(779\) 5.15684e8i 1.09087i
\(780\) 0 0
\(781\) −4.40043e8 −0.923723
\(782\) 4.92551e8 1.02999
\(783\) 0 0
\(784\) −1.98883e8 −0.412714
\(785\) −2.31044e8 + 1.27317e8i −0.477623 + 0.263195i
\(786\) 0 0
\(787\) 2.25184e8i 0.461970i 0.972957 + 0.230985i \(0.0741948\pi\)
−0.972957 + 0.230985i \(0.925805\pi\)
\(788\) 2.14716e7 0.0438819
\(789\) 0 0
\(790\) 3.33586e7 + 6.05363e7i 0.0676592 + 0.122782i
\(791\) 2.77257e8i 0.560213i
\(792\) 0 0
\(793\) 1.89150e8i 0.379303i
\(794\) 1.88834e8i 0.377242i
\(795\) 0 0
\(796\) −3.59206e7 −0.0712204
\(797\) 5.51423e8 1.08921 0.544603 0.838694i \(-0.316680\pi\)
0.544603 + 0.838694i \(0.316680\pi\)
\(798\) 0 0
\(799\) 1.19963e9 2.35184
\(800\) 5.27215e7 8.34427e7i 0.102972 0.162974i
\(801\) 0 0
\(802\) 4.07009e8i 0.789008i
\(803\) −3.83532e8 −0.740722
\(804\) 0 0
\(805\) −2.63914e8 + 1.45430e8i −0.505912 + 0.278784i
\(806\) 1.37268e7i 0.0262158i
\(807\) 0 0
\(808\) 2.19082e8i 0.415310i
\(809\) 3.95120e7i 0.0746249i 0.999304 + 0.0373125i \(0.0118797\pi\)
−0.999304 + 0.0373125i \(0.988120\pi\)
\(810\) 0 0
\(811\) −8.11405e8 −1.52116 −0.760580 0.649244i \(-0.775085\pi\)
−0.760580 + 0.649244i \(0.775085\pi\)
\(812\) −1.29308e7 −0.0241522
\(813\) 0 0
\(814\) −7.55819e8 −1.40134
\(815\) 4.83293e8 2.66320e8i 0.892766 0.491961i
\(816\) 0 0
\(817\) 1.15089e9i 2.11042i
\(818\) 5.62553e8 1.02779
\(819\) 0 0
\(820\) 3.84524e7 2.11893e7i 0.0697401 0.0384304i
\(821\) 1.22832e8i 0.221963i 0.993822 + 0.110982i \(0.0353994\pi\)
−0.993822 + 0.110982i \(0.964601\pi\)
\(822\) 0 0
\(823\) 8.46296e8i 1.51818i 0.650987 + 0.759089i \(0.274355\pi\)
−0.650987 + 0.759089i \(0.725645\pi\)
\(824\) 5.08357e7i 0.0908630i
\(825\) 0 0
\(826\) −7.23514e8 −1.28383
\(827\) −5.80388e8 −1.02613 −0.513065 0.858350i \(-0.671490\pi\)
−0.513065 + 0.858350i \(0.671490\pi\)
\(828\) 0 0
\(829\) −6.30126e8 −1.10602 −0.553011 0.833174i \(-0.686521\pi\)
−0.553011 + 0.833174i \(0.686521\pi\)
\(830\) −3.74182e6 6.79032e6i −0.00654408 0.0118756i
\(831\) 0 0
\(832\) 1.22121e8i 0.212041i
\(833\) 2.94231e8 0.509041
\(834\) 0 0
\(835\) −1.68342e7 3.05491e7i −0.0289156 0.0524735i
\(836\) 6.67811e7i 0.114297i
\(837\) 0 0
\(838\) 3.40863e8i 0.579225i
\(839\) 2.51051e7i 0.0425085i 0.999774 + 0.0212542i \(0.00676595\pi\)
−0.999774 + 0.0212542i \(0.993234\pi\)
\(840\) 0 0
\(841\) 5.35040e8 0.899494
\(842\) 8.30748e8 1.39166
\(843\) 0 0
\(844\) −8.16992e6 −0.0135891
\(845\) −2.74495e8 4.98129e8i −0.454951 0.825603i
\(846\) 0 0
\(847\) 9.78978e7i 0.161110i
\(848\) −1.41700e8 −0.232371
\(849\) 0 0
\(850\) −4.60725e8 + 7.29192e8i −0.750213 + 1.18737i
\(851\) 6.78079e8i 1.10025i
\(852\) 0 0
\(853\) 3.53908e8i 0.570221i −0.958495 0.285111i \(-0.907970\pi\)
0.958495 0.285111i \(-0.0920303\pi\)
\(854\) 8.13800e8i 1.30660i
\(855\) 0 0
\(856\) 3.18252e8 0.507400
\(857\) 8.06395e8 1.28117 0.640583 0.767889i \(-0.278693\pi\)
0.640583 + 0.767889i \(0.278693\pi\)
\(858\) 0 0
\(859\) −9.26709e8 −1.46206 −0.731028 0.682348i \(-0.760959\pi\)
−0.731028 + 0.682348i \(0.760959\pi\)
\(860\) 8.58174e7 4.72899e7i 0.134921 0.0743486i
\(861\) 0 0
\(862\) 1.98656e8i 0.310155i
\(863\) 6.89660e8 1.07301 0.536504 0.843898i \(-0.319745\pi\)
0.536504 + 0.843898i \(0.319745\pi\)
\(864\) 0 0
\(865\) 3.00239e8 + 5.44847e8i 0.463894 + 0.841833i
\(866\) 5.10771e8i 0.786452i
\(867\) 0 0
\(868\) 5.20827e6i 0.00796405i
\(869\) 7.83499e7i 0.119393i
\(870\) 0 0
\(871\) −2.56414e8 −0.388050
\(872\) −8.02327e8 −1.21005
\(873\) 0 0
\(874\) −6.79365e8 −1.01758
\(875\) 3.15601e7 5.26742e8i 0.0471101 0.786274i
\(876\) 0 0
\(877\) 2.94275e8i 0.436269i −0.975919 0.218134i \(-0.930003\pi\)
0.975919 0.218134i \(-0.0699971\pi\)
\(878\) 1.28360e8 0.189647
\(879\) 0 0
\(880\) 5.78830e8 3.18966e8i 0.849382 0.468054i
\(881\) 6.79591e7i 0.0993847i 0.998765 + 0.0496924i \(0.0158241\pi\)
−0.998765 + 0.0496924i \(0.984176\pi\)
\(882\) 0 0
\(883\) 9.49523e8i 1.37919i −0.724196 0.689594i \(-0.757789\pi\)
0.724196 0.689594i \(-0.242211\pi\)
\(884\) 2.14579e7i 0.0310620i
\(885\) 0 0
\(886\) 9.39340e8 1.35058
\(887\) 1.87598e8 0.268817 0.134409 0.990926i \(-0.457086\pi\)
0.134409 + 0.990926i \(0.457086\pi\)
\(888\) 0 0
\(889\) −1.01566e8 −0.144558
\(890\) −9.09352e8 + 5.01101e8i −1.28992 + 0.710812i
\(891\) 0 0
\(892\) 8.25207e6i 0.0116270i
\(893\) −1.65462e9 −2.32351
\(894\) 0 0
\(895\) 3.56711e8 1.96566e8i 0.497562 0.274183i
\(896\) 6.34642e8i 0.882276i
\(897\) 0 0
\(898\) 1.06583e9i 1.47183i
\(899\) 2.40796e7i 0.0331413i
\(900\) 0 0
\(901\) 2.09633e8 0.286607
\(902\) 5.64330e8 0.768977
\(903\) 0 0
\(904\) 4.97024e8 0.672778
\(905\) −6.94096e8 1.25958e9i −0.936427 1.69934i
\(906\) 0 0
\(907\) 1.30184e9i 1.74476i −0.488832 0.872378i \(-0.662577\pi\)
0.488832 0.872378i \(-0.337423\pi\)
\(908\) −4.93480e7 −0.0659192
\(909\) 0 0
\(910\) 7.18417e7 + 1.30372e8i 0.0953350 + 0.173005i
\(911\) 1.25808e9i 1.66400i 0.554775 + 0.832000i \(0.312804\pi\)
−0.554775 + 0.832000i \(0.687196\pi\)
\(912\) 0 0
\(913\) 8.78846e6i 0.0115478i
\(914\) 6.48797e8i 0.849709i
\(915\) 0 0
\(916\) −6.92759e7 −0.0901354
\(917\) 3.85646e8 0.500127
\(918\) 0 0
\(919\) −2.32755e8 −0.299883 −0.149942 0.988695i \(-0.547909\pi\)
−0.149942 + 0.988695i \(0.547909\pi\)
\(920\) 2.60705e8 + 4.73105e8i 0.334801 + 0.607566i
\(921\) 0 0
\(922\) 1.97422e8i 0.251886i
\(923\) −1.95020e8 −0.248013
\(924\) 0 0
\(925\) 1.00385e9 + 6.34264e8i 1.26837 + 0.801392i
\(926\) 3.91651e8i 0.493250i
\(927\) 0 0
\(928\) 4.88427e7i 0.0611161i
\(929\) 1.02421e9i 1.27745i 0.769436 + 0.638724i \(0.220538\pi\)
−0.769436 + 0.638724i \(0.779462\pi\)
\(930\) 0 0
\(931\) −4.05825e8 −0.502910
\(932\) −8.28485e7 −0.102338
\(933\) 0 0
\(934\) 8.72917e8 1.07135
\(935\) −8.56331e8 + 4.71883e8i −1.04763 + 0.577298i
\(936\) 0 0
\(937\) 5.87353e8i 0.713971i 0.934110 + 0.356985i \(0.116195\pi\)
−0.934110 + 0.356985i \(0.883805\pi\)
\(938\) −1.10320e9 −1.33673
\(939\) 0 0
\(940\) −6.79880e7 1.23378e8i −0.0818556 0.148544i
\(941\) 1.44532e8i 0.173458i −0.996232 0.0867292i \(-0.972359\pi\)
0.996232 0.0867292i \(-0.0276415\pi\)
\(942\) 0 0
\(943\) 5.06285e8i 0.603755i
\(944\) 1.42363e9i 1.69232i
\(945\) 0 0
\(946\) 1.25946e9 1.48768
\(947\) −2.40595e8 −0.283294 −0.141647 0.989917i \(-0.545240\pi\)
−0.141647 + 0.989917i \(0.545240\pi\)
\(948\) 0 0
\(949\) −1.69975e8 −0.198878
\(950\) 6.35467e8 1.00576e9i 0.741177 1.17307i
\(951\) 0 0
\(952\) 8.62208e8i 0.999313i
\(953\) 1.59931e9 1.84779 0.923896 0.382644i \(-0.124986\pi\)
0.923896 + 0.382644i \(0.124986\pi\)
\(954\) 0 0
\(955\) −6.65522e8 + 3.66737e8i −0.764103 + 0.421061i
\(956\) 1.96260e7i 0.0224625i
\(957\) 0 0
\(958\) 8.34129e8i 0.948717i
\(959\) 7.46440e8i 0.846328i
\(960\) 0 0
\(961\) −8.77805e8 −0.989072
\(962\) −3.34967e8 −0.376250
\(963\) 0 0
\(964\) 2.08181e7 0.0232386
\(965\) 1.23635e9 6.81294e8i 1.37581 0.758145i
\(966\) 0 0
\(967\) 3.53519e8i 0.390960i 0.980708 + 0.195480i \(0.0626265\pi\)
−0.980708 + 0.195480i \(0.937373\pi\)
\(968\) −1.75496e8 −0.193482
\(969\) 0 0
\(970\) 1.40104e9 7.72045e8i 1.53509 0.845916i
\(971\) 1.33953e8i 0.146317i 0.997320 + 0.0731583i \(0.0233078\pi\)
−0.997320 + 0.0731583i \(0.976692\pi\)
\(972\) 0 0
\(973\) 6.30969e8i 0.684967i
\(974\) 1.59636e9i 1.72764i
\(975\) 0 0
\(976\) 1.60129e9 1.72234
\(977\) 2.99781e8 0.321455 0.160728 0.986999i \(-0.448616\pi\)
0.160728 + 0.986999i \(0.448616\pi\)
\(978\) 0 0
\(979\) −1.17694e9 −1.25431
\(980\) −1.66752e7 3.02607e7i −0.0177171 0.0321515i
\(981\) 0 0
\(982\) 9.08685e8i 0.959575i
\(983\) 1.04294e9 1.09799 0.548996 0.835825i \(-0.315010\pi\)
0.548996 + 0.835825i \(0.315010\pi\)
\(984\) 0 0
\(985\) −2.09265e8 3.79755e8i −0.218971 0.397369i
\(986\) 4.26829e8i 0.445269i
\(987\) 0 0
\(988\) 2.95963e7i 0.0306879i
\(989\) 1.12992e9i 1.16804i
\(990\) 0 0
\(991\) 3.39676e8 0.349014 0.174507 0.984656i \(-0.444167\pi\)
0.174507 + 0.984656i \(0.444167\pi\)
\(992\) −1.96729e7 −0.0201527
\(993\) 0 0
\(994\) −8.39054e8 −0.854340
\(995\) 3.50087e8 + 6.35306e8i 0.355391 + 0.644931i
\(996\) 0 0
\(997\) 1.79345e9i 1.80969i 0.425739 + 0.904846i \(0.360014\pi\)
−0.425739 + 0.904846i \(0.639986\pi\)
\(998\) −1.55761e9 −1.56700
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.7.d.a.44.9 yes 12
3.2 odd 2 inner 45.7.d.a.44.4 yes 12
4.3 odd 2 720.7.c.a.449.3 12
5.2 odd 4 225.7.c.e.26.10 12
5.3 odd 4 225.7.c.e.26.3 12
5.4 even 2 inner 45.7.d.a.44.3 12
12.11 even 2 720.7.c.a.449.10 12
15.2 even 4 225.7.c.e.26.4 12
15.8 even 4 225.7.c.e.26.9 12
15.14 odd 2 inner 45.7.d.a.44.10 yes 12
20.19 odd 2 720.7.c.a.449.9 12
60.59 even 2 720.7.c.a.449.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.7.d.a.44.3 12 5.4 even 2 inner
45.7.d.a.44.4 yes 12 3.2 odd 2 inner
45.7.d.a.44.9 yes 12 1.1 even 1 trivial
45.7.d.a.44.10 yes 12 15.14 odd 2 inner
225.7.c.e.26.3 12 5.3 odd 4
225.7.c.e.26.4 12 15.2 even 4
225.7.c.e.26.9 12 15.8 even 4
225.7.c.e.26.10 12 5.2 odd 4
720.7.c.a.449.3 12 4.3 odd 2
720.7.c.a.449.4 12 60.59 even 2
720.7.c.a.449.9 12 20.19 odd 2
720.7.c.a.449.10 12 12.11 even 2