Properties

Label 2-45-15.14-c6-0-11
Degree $2$
Conductor $45$
Sign $-0.436 + 0.899i$
Analytic cond. $10.3524$
Root an. cond. $3.21751$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.37·2-s + 6.18·4-s + (−60.3 − 109. i)5-s − 270. i·7-s − 484.·8-s + (−505. − 917. i)10-s − 1.18e3i·11-s − 526. i·13-s − 2.26e3i·14-s − 4.45e3·16-s + 6.58e3·17-s − 9.08e3·19-s + (−373. − 677. i)20-s − 9.94e3i·22-s + 8.92e3·23-s + ⋯
L(s)  = 1  + 1.04·2-s + 0.0967·4-s + (−0.482 − 0.875i)5-s − 0.787i·7-s − 0.945·8-s + (−0.505 − 0.917i)10-s − 0.891i·11-s − 0.239i·13-s − 0.824i·14-s − 1.08·16-s + 1.34·17-s − 1.32·19-s + (−0.0466 − 0.0847i)20-s − 0.934i·22-s + 0.733·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.436 + 0.899i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.436 + 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $-0.436 + 0.899i$
Analytic conductor: \(10.3524\)
Root analytic conductor: \(3.21751\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{45} (44, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :3),\ -0.436 + 0.899i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.959389 - 1.53172i\)
\(L(\frac12)\) \(\approx\) \(0.959389 - 1.53172i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (60.3 + 109. i)T \)
good2 \( 1 - 8.37T + 64T^{2} \)
7 \( 1 + 270. iT - 1.17e5T^{2} \)
11 \( 1 + 1.18e3iT - 1.77e6T^{2} \)
13 \( 1 + 526. iT - 4.82e6T^{2} \)
17 \( 1 - 6.58e3T + 2.41e7T^{2} \)
19 \( 1 + 9.08e3T + 4.70e7T^{2} \)
23 \( 1 - 8.92e3T + 1.48e8T^{2} \)
29 \( 1 + 7.73e3iT - 5.94e8T^{2} \)
31 \( 1 - 3.11e3T + 8.87e8T^{2} \)
37 \( 1 + 7.59e4iT - 2.56e9T^{2} \)
41 \( 1 - 5.67e4iT - 4.75e9T^{2} \)
43 \( 1 - 1.26e5iT - 6.32e9T^{2} \)
47 \( 1 - 1.82e5T + 1.07e10T^{2} \)
53 \( 1 - 3.18e4T + 2.21e10T^{2} \)
59 \( 1 + 3.19e5iT - 4.21e10T^{2} \)
61 \( 1 + 3.59e5T + 5.15e10T^{2} \)
67 \( 1 + 4.87e5iT - 9.04e10T^{2} \)
71 \( 1 + 3.70e5iT - 1.28e11T^{2} \)
73 \( 1 + 3.23e5iT - 1.51e11T^{2} \)
79 \( 1 + 6.60e4T + 2.43e11T^{2} \)
83 \( 1 - 7.40e3T + 3.26e11T^{2} \)
89 \( 1 + 9.91e5iT - 4.96e11T^{2} \)
97 \( 1 - 1.52e6iT - 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.03368973003921390877976869609, −13.06037935136067182127899873443, −12.24736099993751120684968199495, −10.88918997881441639780944081325, −9.159191792494955053643867426004, −7.87273135904628673360055431523, −5.96057966843679878323316994321, −4.62833247453272525057936951865, −3.47392080392460841180517067104, −0.60867861073591449190105460913, 2.67744495647792951729532820976, 4.13394851637830763759365721559, 5.64283405797301429322764247889, 7.04131169782325112854075847643, 8.759028497958050315413120030897, 10.31441678784652386724029503069, 11.86849290704495385697700188165, 12.51610884733125554002086884805, 13.93431839407139444262578283895, 14.97337475713652269308436659703

Graph of the $Z$-function along the critical line