Properties

Label 720.7.c.a.449.10
Level $720$
Weight $7$
Character 720.449
Analytic conductor $165.639$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,7,Mod(449,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.449"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 720.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4320] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(165.638940206\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 630x^{10} + 143853x^{8} - 14514820x^{6} + 700911828x^{4} - 15238290240x^{2} + 141093389376 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{20}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.10
Root \(-8.37795 + 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 720.449
Dual form 720.7.c.a.449.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(60.3283 + 109.478i) q^{5} +270.176i q^{7} -1187.10i q^{11} -526.105i q^{13} -6589.09 q^{17} +9088.18 q^{19} +8922.54 q^{23} +(-8346.00 + 13209.3i) q^{25} +7731.97i q^{29} -3114.29 q^{31} +(-29578.4 + 16299.2i) q^{35} -75996.2i q^{37} -56742.3i q^{41} -126636. i q^{43} +182063. q^{47} +44654.2 q^{49} -31815.2 q^{53} +(129962. - 71615.8i) q^{55} -319642. i q^{59} -359529. q^{61} +(57597.1 - 31739.0i) q^{65} +487383. i q^{67} -370686. i q^{71} -323083. i q^{73} +320726. q^{77} +66000.9 q^{79} +7403.28 q^{83} +(-397509. - 721363. i) q^{85} +991440. i q^{89} +142141. q^{91} +(548274. + 994959. i) q^{95} +1.52751e6i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4320 q^{19} - 63384 q^{25} - 60192 q^{31} + 711516 q^{49} + 104112 q^{55} - 449784 q^{61} - 4324608 q^{79} - 3305772 q^{85} - 631152 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 60.3283 + 109.478i 0.482626 + 0.875826i
\(6\) 0 0
\(7\) 270.176i 0.787684i 0.919178 + 0.393842i \(0.128854\pi\)
−0.919178 + 0.393842i \(0.871146\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1187.10i 0.891888i −0.895061 0.445944i \(-0.852868\pi\)
0.895061 0.445944i \(-0.147132\pi\)
\(12\) 0 0
\(13\) 526.105i 0.239465i −0.992806 0.119733i \(-0.961796\pi\)
0.992806 0.119733i \(-0.0382037\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6589.09 −1.34115 −0.670577 0.741840i \(-0.733954\pi\)
−0.670577 + 0.741840i \(0.733954\pi\)
\(18\) 0 0
\(19\) 9088.18 1.32500 0.662500 0.749062i \(-0.269495\pi\)
0.662500 + 0.749062i \(0.269495\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8922.54 0.733339 0.366670 0.930351i \(-0.380498\pi\)
0.366670 + 0.930351i \(0.380498\pi\)
\(24\) 0 0
\(25\) −8346.00 + 13209.3i −0.534144 + 0.845394i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7731.97i 0.317027i 0.987357 + 0.158514i \(0.0506702\pi\)
−0.987357 + 0.158514i \(0.949330\pi\)
\(30\) 0 0
\(31\) −3114.29 −0.104538 −0.0522689 0.998633i \(-0.516645\pi\)
−0.0522689 + 0.998633i \(0.516645\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −29578.4 + 16299.2i −0.689874 + 0.380157i
\(36\) 0 0
\(37\) 75996.2i 1.50033i −0.661251 0.750165i \(-0.729974\pi\)
0.661251 0.750165i \(-0.270026\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 56742.3i 0.823295i −0.911343 0.411648i \(-0.864953\pi\)
0.911343 0.411648i \(-0.135047\pi\)
\(42\) 0 0
\(43\) 126636.i 1.59277i −0.604790 0.796385i \(-0.706743\pi\)
0.604790 0.796385i \(-0.293257\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 182063. 1.75359 0.876797 0.480861i \(-0.159676\pi\)
0.876797 + 0.480861i \(0.159676\pi\)
\(48\) 0 0
\(49\) 44654.2 0.379554
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −31815.2 −0.213701 −0.106851 0.994275i \(-0.534077\pi\)
−0.106851 + 0.994275i \(0.534077\pi\)
\(54\) 0 0
\(55\) 129962. 71615.8i 0.781139 0.430448i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 319642.i 1.55635i −0.628048 0.778175i \(-0.716146\pi\)
0.628048 0.778175i \(-0.283854\pi\)
\(60\) 0 0
\(61\) −359529. −1.58396 −0.791981 0.610546i \(-0.790950\pi\)
−0.791981 + 0.610546i \(0.790950\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 57597.1 31739.0i 0.209730 0.115572i
\(66\) 0 0
\(67\) 487383.i 1.62049i 0.586093 + 0.810244i \(0.300665\pi\)
−0.586093 + 0.810244i \(0.699335\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 370686.i 1.03569i −0.855473 0.517847i \(-0.826734\pi\)
0.855473 0.517847i \(-0.173266\pi\)
\(72\) 0 0
\(73\) 323083.i 0.830511i −0.909705 0.415255i \(-0.863692\pi\)
0.909705 0.415255i \(-0.136308\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 320726. 0.702525
\(78\) 0 0
\(79\) 66000.9 0.133866 0.0669328 0.997757i \(-0.478679\pi\)
0.0669328 + 0.997757i \(0.478679\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7403.28 0.0129476 0.00647381 0.999979i \(-0.497939\pi\)
0.00647381 + 0.999979i \(0.497939\pi\)
\(84\) 0 0
\(85\) −397509. 721363.i −0.647276 1.17462i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 991440.i 1.40636i 0.711012 + 0.703180i \(0.248237\pi\)
−0.711012 + 0.703180i \(0.751763\pi\)
\(90\) 0 0
\(91\) 142141. 0.188623
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 548274. + 994959.i 0.639480 + 1.16047i
\(96\) 0 0
\(97\) 1.52751e6i 1.67367i 0.547458 + 0.836833i \(0.315596\pi\)
−0.547458 + 0.836833i \(0.684404\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 452341.i 0.439037i −0.975608 0.219519i \(-0.929551\pi\)
0.975608 0.219519i \(-0.0704487\pi\)
\(102\) 0 0
\(103\) 104961.i 0.0960542i 0.998846 + 0.0480271i \(0.0152934\pi\)
−0.998846 + 0.0480271i \(0.984707\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −657099. −0.536388 −0.268194 0.963365i \(-0.586427\pi\)
−0.268194 + 0.963365i \(0.586427\pi\)
\(108\) 0 0
\(109\) 1.65657e6 1.27918 0.639589 0.768717i \(-0.279105\pi\)
0.639589 + 0.768717i \(0.279105\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.02621e6 0.711216 0.355608 0.934635i \(-0.384274\pi\)
0.355608 + 0.934635i \(0.384274\pi\)
\(114\) 0 0
\(115\) 538281. + 976824.i 0.353929 + 0.642278i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.78021e6i 1.05641i
\(120\) 0 0
\(121\) 362349. 0.204536
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.94963e6 116813.i −0.998210 0.0598083i
\(126\) 0 0
\(127\) 375925.i 0.183523i 0.995781 + 0.0917615i \(0.0292497\pi\)
−0.995781 + 0.0917615i \(0.970750\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.42739e6i 0.634934i 0.948269 + 0.317467i \(0.102832\pi\)
−0.948269 + 0.317467i \(0.897168\pi\)
\(132\) 0 0
\(133\) 2.45540e6i 1.04368i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.76280e6 −1.07445 −0.537226 0.843438i \(-0.680528\pi\)
−0.537226 + 0.843438i \(0.680528\pi\)
\(138\) 0 0
\(139\) 2.33540e6 0.869596 0.434798 0.900528i \(-0.356820\pi\)
0.434798 + 0.900528i \(0.356820\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −624540. −0.213576
\(144\) 0 0
\(145\) −846484. + 466457.i −0.277661 + 0.153006i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.57895e6i 1.68653i −0.537499 0.843265i \(-0.680631\pi\)
0.537499 0.843265i \(-0.319369\pi\)
\(150\) 0 0
\(151\) 187475. 0.0544520 0.0272260 0.999629i \(-0.491333\pi\)
0.0272260 + 0.999629i \(0.491333\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −187879. 340947.i −0.0504527 0.0915570i
\(156\) 0 0
\(157\) 2.11041e6i 0.545340i −0.962108 0.272670i \(-0.912093\pi\)
0.962108 0.272670i \(-0.0879066\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.41065e6i 0.577639i
\(162\) 0 0
\(163\) 4.41451e6i 1.01934i −0.860370 0.509671i \(-0.829767\pi\)
0.860370 0.509671i \(-0.170233\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 279043. 0.0599131 0.0299565 0.999551i \(-0.490463\pi\)
0.0299565 + 0.999551i \(0.490463\pi\)
\(168\) 0 0
\(169\) 4.55002e6 0.942656
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.97675e6 0.961187 0.480594 0.876943i \(-0.340421\pi\)
0.480594 + 0.876943i \(0.340421\pi\)
\(174\) 0 0
\(175\) −3.56882e6 2.25488e6i −0.665903 0.420736i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.25828e6i 0.568106i 0.958809 + 0.284053i \(0.0916791\pi\)
−0.958809 + 0.284053i \(0.908321\pi\)
\(180\) 0 0
\(181\) 1.15053e7 1.94027 0.970137 0.242559i \(-0.0779869\pi\)
0.970137 + 0.242559i \(0.0779869\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.31994e6 4.58472e6i 1.31403 0.724098i
\(186\) 0 0
\(187\) 7.82193e6i 1.19616i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.07903e6i 0.872437i −0.899841 0.436218i \(-0.856317\pi\)
0.899841 0.436218i \(-0.143683\pi\)
\(192\) 0 0
\(193\) 1.12931e7i 1.57088i 0.618941 + 0.785438i \(0.287562\pi\)
−0.618941 + 0.785438i \(0.712438\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.46877e6 −0.453708 −0.226854 0.973929i \(-0.572844\pi\)
−0.226854 + 0.973929i \(0.572844\pi\)
\(198\) 0 0
\(199\) 5.80303e6 0.736369 0.368185 0.929753i \(-0.379979\pi\)
0.368185 + 0.929753i \(0.379979\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.08899e6 −0.249717
\(204\) 0 0
\(205\) 6.21205e6 3.42317e6i 0.721064 0.397344i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.07886e7i 1.18175i
\(210\) 0 0
\(211\) 1.31986e6 0.140502 0.0702509 0.997529i \(-0.477620\pi\)
0.0702509 + 0.997529i \(0.477620\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.38639e7 7.63975e6i 1.39499 0.768712i
\(216\) 0 0
\(217\) 841404.i 0.0823427i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.46655e6i 0.321160i
\(222\) 0 0
\(223\) 1.33313e6i 0.120215i 0.998192 + 0.0601076i \(0.0191444\pi\)
−0.998192 + 0.0601076i \(0.980856\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.97225e6 −0.681559 −0.340779 0.940143i \(-0.610691\pi\)
−0.340779 + 0.940143i \(0.610691\pi\)
\(228\) 0 0
\(229\) −1.11916e7 −0.931938 −0.465969 0.884801i \(-0.654294\pi\)
−0.465969 + 0.884801i \(0.654294\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.33843e7 1.05810 0.529052 0.848589i \(-0.322548\pi\)
0.529052 + 0.848589i \(0.322548\pi\)
\(234\) 0 0
\(235\) 1.09836e7 + 1.99320e7i 0.846330 + 1.53584i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.17061e6i 0.232247i −0.993235 0.116123i \(-0.962953\pi\)
0.993235 0.116123i \(-0.0370468\pi\)
\(240\) 0 0
\(241\) 3.36319e6 0.240270 0.120135 0.992758i \(-0.461667\pi\)
0.120135 + 0.992758i \(0.461667\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.69391e6 + 4.88867e6i 0.183183 + 0.332424i
\(246\) 0 0
\(247\) 4.78134e6i 0.317291i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.64563e7i 1.67305i −0.547932 0.836523i \(-0.684585\pi\)
0.547932 0.836523i \(-0.315415\pi\)
\(252\) 0 0
\(253\) 1.05920e7i 0.654056i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.28701e6 0.252554 0.126277 0.991995i \(-0.459697\pi\)
0.126277 + 0.991995i \(0.459697\pi\)
\(258\) 0 0
\(259\) 2.05323e7 1.18179
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.94305e7 1.61782 0.808910 0.587933i \(-0.200058\pi\)
0.808910 + 0.587933i \(0.200058\pi\)
\(264\) 0 0
\(265\) −1.91936e6 3.48308e6i −0.103138 0.187165i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.40558e7i 0.722100i −0.932547 0.361050i \(-0.882418\pi\)
0.932547 0.361050i \(-0.117582\pi\)
\(270\) 0 0
\(271\) 2.69073e6 0.135196 0.0675978 0.997713i \(-0.478467\pi\)
0.0675978 + 0.997713i \(0.478467\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.56808e7 + 9.90756e6i 0.753996 + 0.476396i
\(276\) 0 0
\(277\) 4.16627e7i 1.96024i 0.198414 + 0.980118i \(0.436421\pi\)
−0.198414 + 0.980118i \(0.563579\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.07292e7i 0.483556i −0.970332 0.241778i \(-0.922269\pi\)
0.970332 0.241778i \(-0.0777305\pi\)
\(282\) 0 0
\(283\) 5.50312e6i 0.242800i 0.992604 + 0.121400i \(0.0387385\pi\)
−0.992604 + 0.121400i \(0.961262\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.53304e7 0.648496
\(288\) 0 0
\(289\) 1.92786e7 0.798696
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.23547e7 −0.491169 −0.245584 0.969375i \(-0.578980\pi\)
−0.245584 + 0.969375i \(0.578980\pi\)
\(294\) 0 0
\(295\) 3.49938e7 1.92834e7i 1.36309 0.751135i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.69419e6i 0.175609i
\(300\) 0 0
\(301\) 3.42140e7 1.25460
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.16898e7 3.93606e7i −0.764461 1.38728i
\(306\) 0 0
\(307\) 4.10198e7i 1.41768i 0.705370 + 0.708840i \(0.250781\pi\)
−0.705370 + 0.708840i \(0.749219\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.55195e7i 1.51327i −0.653837 0.756635i \(-0.726842\pi\)
0.653837 0.756635i \(-0.273158\pi\)
\(312\) 0 0
\(313\) 1.47679e7i 0.481598i 0.970575 + 0.240799i \(0.0774095\pi\)
−0.970575 + 0.240799i \(0.922591\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.38900e6 0.231957 0.115979 0.993252i \(-0.463000\pi\)
0.115979 + 0.993252i \(0.463000\pi\)
\(318\) 0 0
\(319\) 9.17865e6 0.282753
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.98829e7 −1.77703
\(324\) 0 0
\(325\) 6.94946e6 + 4.39087e6i 0.202442 + 0.127909i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.91891e7i 1.38128i
\(330\) 0 0
\(331\) 4.89533e7 1.34989 0.674944 0.737869i \(-0.264168\pi\)
0.674944 + 0.737869i \(0.264168\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.33579e7 + 2.94030e7i −1.41927 + 0.782090i
\(336\) 0 0
\(337\) 2.52313e7i 0.659250i −0.944112 0.329625i \(-0.893078\pi\)
0.944112 0.329625i \(-0.106922\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.69698e6i 0.0932360i
\(342\) 0 0
\(343\) 4.38503e7i 1.08665i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.18476e7 1.00157 0.500787 0.865571i \(-0.333044\pi\)
0.500787 + 0.865571i \(0.333044\pi\)
\(348\) 0 0
\(349\) 1.11598e7 0.262532 0.131266 0.991347i \(-0.458096\pi\)
0.131266 + 0.991347i \(0.458096\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.13705e7 −0.485837 −0.242918 0.970047i \(-0.578105\pi\)
−0.242918 + 0.970047i \(0.578105\pi\)
\(354\) 0 0
\(355\) 4.05821e7 2.23629e7i 0.907088 0.499853i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.27851e7i 0.492455i −0.969212 0.246228i \(-0.920809\pi\)
0.969212 0.246228i \(-0.0791911\pi\)
\(360\) 0 0
\(361\) 3.55491e7 0.755627
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.53706e7 1.94910e7i 0.727383 0.400826i
\(366\) 0 0
\(367\) 3.26916e7i 0.661360i 0.943743 + 0.330680i \(0.107278\pi\)
−0.943743 + 0.330680i \(0.892722\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.59569e6i 0.168329i
\(372\) 0 0
\(373\) 2.20835e7i 0.425542i 0.977102 + 0.212771i \(0.0682488\pi\)
−0.977102 + 0.212771i \(0.931751\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.06783e6 0.0759169
\(378\) 0 0
\(379\) −2.12751e7 −0.390800 −0.195400 0.980724i \(-0.562601\pi\)
−0.195400 + 0.980724i \(0.562601\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.76311e7 1.38178 0.690891 0.722959i \(-0.257219\pi\)
0.690891 + 0.722959i \(0.257219\pi\)
\(384\) 0 0
\(385\) 1.93488e7 + 3.51125e7i 0.339057 + 0.615290i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.43035e7i 1.26229i −0.775663 0.631147i \(-0.782585\pi\)
0.775663 0.631147i \(-0.217415\pi\)
\(390\) 0 0
\(391\) −5.87914e7 −0.983521
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.98172e6 + 7.22567e6i 0.0646070 + 0.117243i
\(396\) 0 0
\(397\) 2.25395e7i 0.360224i 0.983646 + 0.180112i \(0.0576459\pi\)
−0.983646 + 0.180112i \(0.942354\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.85810e7i 0.753414i 0.926332 + 0.376707i \(0.122944\pi\)
−0.926332 + 0.376707i \(0.877056\pi\)
\(402\) 0 0
\(403\) 1.63844e6i 0.0250332i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.02153e7 −1.33813
\(408\) 0 0
\(409\) 6.71469e7 0.981423 0.490711 0.871322i \(-0.336737\pi\)
0.490711 + 0.871322i \(0.336737\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.63593e7 1.22591
\(414\) 0 0
\(415\) 446627. + 810499.i 0.00624886 + 0.0113399i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.06857e7i 0.553095i −0.961000 0.276548i \(-0.910810\pi\)
0.961000 0.276548i \(-0.0891904\pi\)
\(420\) 0 0
\(421\) 9.91589e7 1.32888 0.664440 0.747342i \(-0.268670\pi\)
0.664440 + 0.747342i \(0.268670\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.49926e7 8.70371e7i 0.716370 1.13380i
\(426\) 0 0
\(427\) 9.71360e7i 1.24766i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.37118e7i 0.296164i 0.988975 + 0.148082i \(0.0473099\pi\)
−0.988975 + 0.148082i \(0.952690\pi\)
\(432\) 0 0
\(433\) 6.09661e7i 0.750974i −0.926828 0.375487i \(-0.877476\pi\)
0.926828 0.375487i \(-0.122524\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.10896e7 0.971675
\(438\) 0 0
\(439\) −1.53212e7 −0.181092 −0.0905458 0.995892i \(-0.528861\pi\)
−0.0905458 + 0.995892i \(0.528861\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.12121e8 1.28966 0.644828 0.764327i \(-0.276929\pi\)
0.644828 + 0.764327i \(0.276929\pi\)
\(444\) 0 0
\(445\) −1.08541e8 + 5.98119e7i −1.23173 + 0.678746i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.27219e8i 1.40544i −0.711468 0.702719i \(-0.751969\pi\)
0.711468 0.702719i \(-0.248031\pi\)
\(450\) 0 0
\(451\) −6.73589e7 −0.734287
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.57510e6 + 1.55613e7i 0.0910343 + 0.165201i
\(456\) 0 0
\(457\) 7.74410e7i 0.811377i 0.914011 + 0.405688i \(0.132968\pi\)
−0.914011 + 0.405688i \(0.867032\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.35645e7i 0.240523i 0.992742 + 0.120261i \(0.0383733\pi\)
−0.992742 + 0.120261i \(0.961627\pi\)
\(462\) 0 0
\(463\) 4.67479e7i 0.470998i 0.971875 + 0.235499i \(0.0756725\pi\)
−0.971875 + 0.235499i \(0.924328\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.04192e8 1.02302 0.511511 0.859277i \(-0.329086\pi\)
0.511511 + 0.859277i \(0.329086\pi\)
\(468\) 0 0
\(469\) −1.31679e8 −1.27643
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.50330e8 −1.42057
\(474\) 0 0
\(475\) −7.58499e7 + 1.20048e8i −0.707741 + 1.12015i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.95625e7i 0.905919i 0.891531 + 0.452959i \(0.149632\pi\)
−0.891531 + 0.452959i \(0.850368\pi\)
\(480\) 0 0
\(481\) −3.99820e7 −0.359277
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.67229e8 + 9.21521e7i −1.46584 + 0.807755i
\(486\) 0 0
\(487\) 1.90543e8i 1.64971i −0.565347 0.824853i \(-0.691258\pi\)
0.565347 0.824853i \(-0.308742\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.08462e8i 0.916287i −0.888878 0.458143i \(-0.848515\pi\)
0.888878 0.458143i \(-0.151485\pi\)
\(492\) 0 0
\(493\) 5.09467e7i 0.425182i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.00150e8 0.815799
\(498\) 0 0
\(499\) 1.85918e8 1.49631 0.748153 0.663527i \(-0.230941\pi\)
0.748153 + 0.663527i \(0.230941\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.39688e8 −1.09763 −0.548815 0.835944i \(-0.684921\pi\)
−0.548815 + 0.835944i \(0.684921\pi\)
\(504\) 0 0
\(505\) 4.95215e7 2.72889e7i 0.384521 0.211891i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.55184e7i 0.269340i −0.990891 0.134670i \(-0.957003\pi\)
0.990891 0.134670i \(-0.0429974\pi\)
\(510\) 0 0
\(511\) 8.72890e7 0.654180
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.14910e7 + 6.33212e6i −0.0841268 + 0.0463583i
\(516\) 0 0
\(517\) 2.16128e8i 1.56401i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.93385e8i 1.36745i 0.729742 + 0.683723i \(0.239640\pi\)
−0.729742 + 0.683723i \(0.760360\pi\)
\(522\) 0 0
\(523\) 9.39198e6i 0.0656527i −0.999461 0.0328263i \(-0.989549\pi\)
0.999461 0.0328263i \(-0.0104508\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.05203e7 0.140201
\(528\) 0 0
\(529\) −6.84242e7 −0.462214
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.98524e7 −0.197150
\(534\) 0 0
\(535\) −3.96416e7 7.19381e7i −0.258875 0.469783i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.30091e7i 0.338520i
\(540\) 0 0
\(541\) 2.07632e7 0.131130 0.0655651 0.997848i \(-0.479115\pi\)
0.0655651 + 0.997848i \(0.479115\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.99382e7 + 1.81359e8i 0.617365 + 1.12034i
\(546\) 0 0
\(547\) 3.73970e7i 0.228494i 0.993452 + 0.114247i \(0.0364456\pi\)
−0.993452 + 0.114247i \(0.963554\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.02696e7i 0.420061i
\(552\) 0 0
\(553\) 1.78318e7i 0.105444i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.13408e8 −1.23494 −0.617468 0.786596i \(-0.711841\pi\)
−0.617468 + 0.786596i \(0.711841\pi\)
\(558\) 0 0
\(559\) −6.66240e7 −0.381413
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.01902e8 −0.571029 −0.285515 0.958374i \(-0.592165\pi\)
−0.285515 + 0.958374i \(0.592165\pi\)
\(564\) 0 0
\(565\) 6.19095e7 + 1.12348e8i 0.343251 + 0.622902i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.12478e8i 0.610566i −0.952262 0.305283i \(-0.901249\pi\)
0.952262 0.305283i \(-0.0987510\pi\)
\(570\) 0 0
\(571\) −1.75933e8 −0.945016 −0.472508 0.881326i \(-0.656651\pi\)
−0.472508 + 0.881326i \(0.656651\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.44675e7 + 1.17860e8i −0.391709 + 0.619960i
\(576\) 0 0
\(577\) 1.61356e8i 0.839957i −0.907534 0.419978i \(-0.862038\pi\)
0.907534 0.419978i \(-0.137962\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.00019e6i 0.0101986i
\(582\) 0 0
\(583\) 3.77679e7i 0.190598i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.39079e7 −0.217084 −0.108542 0.994092i \(-0.534618\pi\)
−0.108542 + 0.994092i \(0.534618\pi\)
\(588\) 0 0
\(589\) −2.83032e7 −0.138513
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.94038e7 0.188962 0.0944808 0.995527i \(-0.469881\pi\)
0.0944808 + 0.995527i \(0.469881\pi\)
\(594\) 0 0
\(595\) 1.94895e8 1.07397e8i 0.925228 0.509849i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.11994e8i 0.521092i 0.965461 + 0.260546i \(0.0839026\pi\)
−0.965461 + 0.260546i \(0.916097\pi\)
\(600\) 0 0
\(601\) −3.96028e8 −1.82432 −0.912162 0.409830i \(-0.865588\pi\)
−0.912162 + 0.409830i \(0.865588\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.18599e7 + 3.96693e7i 0.0987146 + 0.179138i
\(606\) 0 0
\(607\) 3.06455e8i 1.37025i 0.728425 + 0.685125i \(0.240253\pi\)
−0.728425 + 0.685125i \(0.759747\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.57844e7i 0.419924i
\(612\) 0 0
\(613\) 1.80074e7i 0.0781751i −0.999236 0.0390875i \(-0.987555\pi\)
0.999236 0.0390875i \(-0.0124451\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.66217e8 −0.707651 −0.353825 0.935311i \(-0.615119\pi\)
−0.353825 + 0.935311i \(0.615119\pi\)
\(618\) 0 0
\(619\) −1.89841e8 −0.800422 −0.400211 0.916423i \(-0.631063\pi\)
−0.400211 + 0.916423i \(0.631063\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.67863e8 −1.10777
\(624\) 0 0
\(625\) −1.04829e8 2.20489e8i −0.429380 0.903124i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.00746e8i 2.01217i
\(630\) 0 0
\(631\) −2.56171e8 −1.01963 −0.509814 0.860285i \(-0.670286\pi\)
−0.509814 + 0.860285i \(0.670286\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.11557e7 + 2.26789e7i −0.160734 + 0.0885730i
\(636\) 0 0
\(637\) 2.34928e7i 0.0908900i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.41284e7i 0.167550i 0.996485 + 0.0837749i \(0.0266977\pi\)
−0.996485 + 0.0837749i \(0.973302\pi\)
\(642\) 0 0
\(643\) 1.96340e8i 0.738545i −0.929321 0.369272i \(-0.879607\pi\)
0.929321 0.369272i \(-0.120393\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.99293e7 −0.368961 −0.184480 0.982836i \(-0.559060\pi\)
−0.184480 + 0.982836i \(0.559060\pi\)
\(648\) 0 0
\(649\) −3.79447e8 −1.38809
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.49531e7 0.0896160 0.0448080 0.998996i \(-0.485732\pi\)
0.0448080 + 0.998996i \(0.485732\pi\)
\(654\) 0 0
\(655\) −1.56268e8 + 8.61120e7i −0.556092 + 0.306436i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.49890e8i 0.523739i −0.965103 0.261870i \(-0.915661\pi\)
0.965103 0.261870i \(-0.0843390\pi\)
\(660\) 0 0
\(661\) −4.68646e6 −0.0162271 −0.00811355 0.999967i \(-0.502583\pi\)
−0.00811355 + 0.999967i \(0.502583\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.68813e8 + 1.48130e8i −0.914084 + 0.503708i
\(666\) 0 0
\(667\) 6.89888e7i 0.232488i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.26798e8i 1.41272i
\(672\) 0 0
\(673\) 3.58399e8i 1.17577i 0.808945 + 0.587884i \(0.200039\pi\)
−0.808945 + 0.587884i \(0.799961\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.26026e7 −0.0728437 −0.0364218 0.999337i \(-0.511596\pi\)
−0.0364218 + 0.999337i \(0.511596\pi\)
\(678\) 0 0
\(679\) −4.12696e8 −1.31832
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.32455e8 1.67117 0.835585 0.549361i \(-0.185129\pi\)
0.835585 + 0.549361i \(0.185129\pi\)
\(684\) 0 0
\(685\) −1.66675e8 3.02466e8i −0.518559 0.941033i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.67381e7i 0.0511740i
\(690\) 0 0
\(691\) 5.20725e8 1.57825 0.789123 0.614236i \(-0.210536\pi\)
0.789123 + 0.614236i \(0.210536\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.40891e8 + 2.55676e8i 0.419690 + 0.761615i
\(696\) 0 0
\(697\) 3.73880e8i 1.10417i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.97763e8i 0.864404i −0.901777 0.432202i \(-0.857737\pi\)
0.901777 0.432202i \(-0.142263\pi\)
\(702\) 0 0
\(703\) 6.90667e8i 1.98794i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.22211e8 0.345823
\(708\) 0 0
\(709\) 1.89039e8 0.530411 0.265205 0.964192i \(-0.414560\pi\)
0.265205 + 0.964192i \(0.414560\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.77873e7 −0.0766617
\(714\) 0 0
\(715\) −3.76774e7 6.83736e7i −0.103077 0.187055i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.30902e8i 0.352176i −0.984374 0.176088i \(-0.943656\pi\)
0.984374 0.176088i \(-0.0563443\pi\)
\(720\) 0 0
\(721\) −2.83579e7 −0.0756603
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.02134e8 6.45311e7i −0.268013 0.169338i
\(726\) 0 0
\(727\) 4.44143e8i 1.15590i −0.816073 0.577949i \(-0.803853\pi\)
0.816073 0.577949i \(-0.196147\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.34419e8i 2.13615i
\(732\) 0 0
\(733\) 4.71631e8i 1.19754i −0.800921 0.598770i \(-0.795656\pi\)
0.800921 0.598770i \(-0.204344\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.78573e8 1.44529
\(738\) 0 0
\(739\) −6.40610e8 −1.58731 −0.793653 0.608371i \(-0.791823\pi\)
−0.793653 + 0.608371i \(0.791823\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.44941e8 −1.32857 −0.664283 0.747481i \(-0.731263\pi\)
−0.664283 + 0.747481i \(0.731263\pi\)
\(744\) 0 0
\(745\) 6.10774e8 3.36569e8i 1.47711 0.813963i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.77532e8i 0.422504i
\(750\) 0 0
\(751\) −5.56224e8 −1.31320 −0.656598 0.754241i \(-0.728005\pi\)
−0.656598 + 0.754241i \(0.728005\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.13101e7 + 2.05245e7i 0.0262799 + 0.0476905i
\(756\) 0 0
\(757\) 4.02524e8i 0.927906i 0.885860 + 0.463953i \(0.153569\pi\)
−0.885860 + 0.463953i \(0.846431\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.44544e8i 0.327979i 0.986462 + 0.163989i \(0.0524363\pi\)
−0.986462 + 0.163989i \(0.947564\pi\)
\(762\) 0 0
\(763\) 4.47565e8i 1.00759i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.68165e8 −0.372691
\(768\) 0 0
\(769\) −2.64281e8 −0.581148 −0.290574 0.956853i \(-0.593846\pi\)
−0.290574 + 0.956853i \(0.593846\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.66034e8 0.359466 0.179733 0.983715i \(-0.442477\pi\)
0.179733 + 0.983715i \(0.442477\pi\)
\(774\) 0 0
\(775\) 2.59918e7 4.11374e7i 0.0558382 0.0883756i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.15684e8i 1.09087i
\(780\) 0 0
\(781\) −4.40043e8 −0.923723
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.31044e8 1.27317e8i 0.477623 0.263195i
\(786\) 0 0
\(787\) 2.25184e8i 0.461970i −0.972957 0.230985i \(-0.925805\pi\)
0.972957 0.230985i \(-0.0741948\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.77257e8i 0.560213i
\(792\) 0 0
\(793\) 1.89150e8i 0.379303i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.51423e8 −1.08921 −0.544603 0.838694i \(-0.683320\pi\)
−0.544603 + 0.838694i \(0.683320\pi\)
\(798\) 0 0
\(799\) −1.19963e9 −2.35184
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.83532e8 −0.740722
\(804\) 0 0
\(805\) −2.63914e8 + 1.45430e8i −0.505912 + 0.278784i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.95120e7i 0.0746249i −0.999304 0.0373125i \(-0.988120\pi\)
0.999304 0.0373125i \(-0.0118797\pi\)
\(810\) 0 0
\(811\) 8.11405e8 1.52116 0.760580 0.649244i \(-0.224915\pi\)
0.760580 + 0.649244i \(0.224915\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.83293e8 2.66320e8i 0.892766 0.491961i
\(816\) 0 0
\(817\) 1.15089e9i 2.11042i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.22832e8i 0.221963i −0.993822 0.110982i \(-0.964601\pi\)
0.993822 0.110982i \(-0.0353994\pi\)
\(822\) 0 0
\(823\) 8.46296e8i 1.51818i −0.650987 0.759089i \(-0.725645\pi\)
0.650987 0.759089i \(-0.274355\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.80388e8 −1.02613 −0.513065 0.858350i \(-0.671490\pi\)
−0.513065 + 0.858350i \(0.671490\pi\)
\(828\) 0 0
\(829\) −6.30126e8 −1.10602 −0.553011 0.833174i \(-0.686521\pi\)
−0.553011 + 0.833174i \(0.686521\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.94231e8 −0.509041
\(834\) 0 0
\(835\) 1.68342e7 + 3.05491e7i 0.0289156 + 0.0524735i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.51051e7i 0.0425085i 0.999774 + 0.0212542i \(0.00676595\pi\)
−0.999774 + 0.0212542i \(0.993234\pi\)
\(840\) 0 0
\(841\) 5.35040e8 0.899494
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.74495e8 + 4.98129e8i 0.454951 + 0.825603i
\(846\) 0 0
\(847\) 9.78978e7i 0.161110i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.78079e8i 1.10025i
\(852\) 0 0
\(853\) 3.53908e8i 0.570221i −0.958495 0.285111i \(-0.907970\pi\)
0.958495 0.285111i \(-0.0920303\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.06395e8 −1.28117 −0.640583 0.767889i \(-0.721307\pi\)
−0.640583 + 0.767889i \(0.721307\pi\)
\(858\) 0 0
\(859\) 9.26709e8 1.46206 0.731028 0.682348i \(-0.239041\pi\)
0.731028 + 0.682348i \(0.239041\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.89660e8 1.07301 0.536504 0.843898i \(-0.319745\pi\)
0.536504 + 0.843898i \(0.319745\pi\)
\(864\) 0 0
\(865\) 3.00239e8 + 5.44847e8i 0.463894 + 0.841833i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.83499e7i 0.119393i
\(870\) 0 0
\(871\) 2.56414e8 0.388050
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.15601e7 5.26742e8i 0.0471101 0.786274i
\(876\) 0 0
\(877\) 2.94275e8i 0.436269i −0.975919 0.218134i \(-0.930003\pi\)
0.975919 0.218134i \(-0.0699971\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.79591e7i 0.0993847i −0.998765 0.0496924i \(-0.984176\pi\)
0.998765 0.0496924i \(-0.0158241\pi\)
\(882\) 0 0
\(883\) 9.49523e8i 1.37919i 0.724196 + 0.689594i \(0.242211\pi\)
−0.724196 + 0.689594i \(0.757789\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.87598e8 0.268817 0.134409 0.990926i \(-0.457086\pi\)
0.134409 + 0.990926i \(0.457086\pi\)
\(888\) 0 0
\(889\) −1.01566e8 −0.144558
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.65462e9 2.32351
\(894\) 0 0
\(895\) −3.56711e8 + 1.96566e8i −0.497562 + 0.274183i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.40796e7i 0.0331413i
\(900\) 0 0
\(901\) 2.09633e8 0.286607
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.94096e8 + 1.25958e9i 0.936427 + 1.69934i
\(906\) 0 0
\(907\) 1.30184e9i 1.74476i 0.488832 + 0.872378i \(0.337423\pi\)
−0.488832 + 0.872378i \(0.662577\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.25808e9i 1.66400i 0.554775 + 0.832000i \(0.312804\pi\)
−0.554775 + 0.832000i \(0.687196\pi\)
\(912\) 0 0
\(913\) 8.78846e6i 0.0115478i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.85646e8 −0.500127
\(918\) 0 0
\(919\) 2.32755e8 0.299883 0.149942 0.988695i \(-0.452091\pi\)
0.149942 + 0.988695i \(0.452091\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.95020e8 −0.248013
\(924\) 0 0
\(925\) 1.00385e9 + 6.34264e8i 1.26837 + 0.801392i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.02421e9i 1.27745i −0.769436 0.638724i \(-0.779462\pi\)
0.769436 0.638724i \(-0.220538\pi\)
\(930\) 0 0
\(931\) 4.05825e8 0.502910
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.56331e8 + 4.71883e8i −1.04763 + 0.577298i
\(936\) 0 0
\(937\) 5.87353e8i 0.713971i 0.934110 + 0.356985i \(0.116195\pi\)
−0.934110 + 0.356985i \(0.883805\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.44532e8i 0.173458i 0.996232 + 0.0867292i \(0.0276415\pi\)
−0.996232 + 0.0867292i \(0.972359\pi\)
\(942\) 0 0
\(943\) 5.06285e8i 0.603755i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.40595e8 −0.283294 −0.141647 0.989917i \(-0.545240\pi\)
−0.141647 + 0.989917i \(0.545240\pi\)
\(948\) 0 0
\(949\) −1.69975e8 −0.198878
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.59931e9 −1.84779 −0.923896 0.382644i \(-0.875014\pi\)
−0.923896 + 0.382644i \(0.875014\pi\)
\(954\) 0 0
\(955\) 6.65522e8 3.66737e8i 0.764103 0.421061i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.46440e8i 0.846328i
\(960\) 0 0
\(961\) −8.77805e8 −0.989072
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.23635e9 + 6.81294e8i −1.37581 + 0.758145i
\(966\) 0 0
\(967\) 3.53519e8i 0.390960i −0.980708 0.195480i \(-0.937373\pi\)
0.980708 0.195480i \(-0.0626265\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.33953e8i 0.146317i 0.997320 + 0.0731583i \(0.0233078\pi\)
−0.997320 + 0.0731583i \(0.976692\pi\)
\(972\) 0 0
\(973\) 6.30969e8i 0.684967i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.99781e8 −0.321455 −0.160728 0.986999i \(-0.551384\pi\)
−0.160728 + 0.986999i \(0.551384\pi\)
\(978\) 0 0
\(979\) 1.17694e9 1.25431
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.04294e9 1.09799 0.548996 0.835825i \(-0.315010\pi\)
0.548996 + 0.835825i \(0.315010\pi\)
\(984\) 0 0
\(985\) −2.09265e8 3.79755e8i −0.218971 0.397369i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.12992e9i 1.16804i
\(990\) 0 0
\(991\) −3.39676e8 −0.349014 −0.174507 0.984656i \(-0.555833\pi\)
−0.174507 + 0.984656i \(0.555833\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.50087e8 + 6.35306e8i 0.355391 + 0.644931i
\(996\) 0 0
\(997\) 1.79345e9i 1.80969i 0.425739 + 0.904846i \(0.360014\pi\)
−0.425739 + 0.904846i \(0.639986\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.7.c.a.449.10 12
3.2 odd 2 inner 720.7.c.a.449.3 12
4.3 odd 2 45.7.d.a.44.4 yes 12
5.4 even 2 inner 720.7.c.a.449.4 12
12.11 even 2 45.7.d.a.44.9 yes 12
15.14 odd 2 inner 720.7.c.a.449.9 12
20.3 even 4 225.7.c.e.26.9 12
20.7 even 4 225.7.c.e.26.4 12
20.19 odd 2 45.7.d.a.44.10 yes 12
60.23 odd 4 225.7.c.e.26.3 12
60.47 odd 4 225.7.c.e.26.10 12
60.59 even 2 45.7.d.a.44.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.7.d.a.44.3 12 60.59 even 2
45.7.d.a.44.4 yes 12 4.3 odd 2
45.7.d.a.44.9 yes 12 12.11 even 2
45.7.d.a.44.10 yes 12 20.19 odd 2
225.7.c.e.26.3 12 60.23 odd 4
225.7.c.e.26.4 12 20.7 even 4
225.7.c.e.26.9 12 20.3 even 4
225.7.c.e.26.10 12 60.47 odd 4
720.7.c.a.449.3 12 3.2 odd 2 inner
720.7.c.a.449.4 12 5.4 even 2 inner
720.7.c.a.449.9 12 15.14 odd 2 inner
720.7.c.a.449.10 12 1.1 even 1 trivial