Properties

Label 225.7.c.e.26.4
Level $225$
Weight $7$
Character 225.26
Analytic conductor $51.762$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,7,Mod(26,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.26"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 225.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-516,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.7621688145\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 654x^{10} + 151557x^{8} + 15450132x^{6} + 718595460x^{4} + 14140615200x^{2} + 82024960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{20}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.4
Root \(-6.96373i\) of defining polynomial
Character \(\chi\) \(=\) 225.26
Dual form 225.7.c.e.26.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.37795i q^{2} -6.18997 q^{4} +270.176 q^{7} -484.329i q^{8} +1187.10i q^{11} -526.105 q^{13} -2263.52i q^{14} -4453.84 q^{16} -6589.09i q^{17} +9088.18 q^{19} +9945.48 q^{22} +8922.54i q^{23} +4407.68i q^{26} -1672.38 q^{28} -7731.97i q^{29} +3114.29 q^{31} +6316.98i q^{32} -55203.1 q^{34} +75996.2 q^{37} -76140.3i q^{38} -56742.3i q^{41} +126636. q^{43} -7348.13i q^{44} +74752.5 q^{46} -182063. i q^{47} -44654.2 q^{49} +3256.57 q^{52} +31815.2i q^{53} -130854. i q^{56} -64778.1 q^{58} -319642. i q^{59} -359529. q^{61} -26091.3i q^{62} -232123. q^{64} +487383. q^{67} +40786.3i q^{68} +370686. i q^{71} -323083. q^{73} -636692. i q^{74} -56255.6 q^{76} +320726. i q^{77} +66000.9 q^{79} -475384. q^{82} +7403.28i q^{83} -1.06095e6i q^{86} +574948. q^{88} -991440. i q^{89} -142141. q^{91} -55230.3i q^{92} -1.52532e6 q^{94} -1.52751e6 q^{97} +374110. i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 516 q^{4} + 36372 q^{16} - 4320 q^{19} + 60192 q^{31} - 106296 q^{34} - 1078968 q^{46} - 711516 q^{49} - 449784 q^{61} - 3964572 q^{64} - 584400 q^{76} - 4324608 q^{79} + 631152 q^{91} - 5793408 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 8.37795i − 1.04724i −0.851951 0.523622i \(-0.824581\pi\)
0.851951 0.523622i \(-0.175419\pi\)
\(3\) 0 0
\(4\) −6.18997 −0.0967183
\(5\) 0 0
\(6\) 0 0
\(7\) 270.176 0.787684 0.393842 0.919178i \(-0.371146\pi\)
0.393842 + 0.919178i \(0.371146\pi\)
\(8\) − 484.329i − 0.945956i
\(9\) 0 0
\(10\) 0 0
\(11\) 1187.10i 0.891888i 0.895061 + 0.445944i \(0.147132\pi\)
−0.895061 + 0.445944i \(0.852868\pi\)
\(12\) 0 0
\(13\) −526.105 −0.239465 −0.119733 0.992806i \(-0.538204\pi\)
−0.119733 + 0.992806i \(0.538204\pi\)
\(14\) − 2263.52i − 0.824896i
\(15\) 0 0
\(16\) −4453.84 −1.08736
\(17\) − 6589.09i − 1.34115i −0.741840 0.670577i \(-0.766046\pi\)
0.741840 0.670577i \(-0.233954\pi\)
\(18\) 0 0
\(19\) 9088.18 1.32500 0.662500 0.749062i \(-0.269495\pi\)
0.662500 + 0.749062i \(0.269495\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 9945.48 0.934023
\(23\) 8922.54i 0.733339i 0.930351 + 0.366670i \(0.119502\pi\)
−0.930351 + 0.366670i \(0.880498\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4407.68i 0.250778i
\(27\) 0 0
\(28\) −1672.38 −0.0761834
\(29\) − 7731.97i − 0.317027i −0.987357 0.158514i \(-0.949330\pi\)
0.987357 0.158514i \(-0.0506702\pi\)
\(30\) 0 0
\(31\) 3114.29 0.104538 0.0522689 0.998633i \(-0.483355\pi\)
0.0522689 + 0.998633i \(0.483355\pi\)
\(32\) 6316.98i 0.192779i
\(33\) 0 0
\(34\) −55203.1 −1.40451
\(35\) 0 0
\(36\) 0 0
\(37\) 75996.2 1.50033 0.750165 0.661251i \(-0.229974\pi\)
0.750165 + 0.661251i \(0.229974\pi\)
\(38\) − 76140.3i − 1.38760i
\(39\) 0 0
\(40\) 0 0
\(41\) − 56742.3i − 0.823295i −0.911343 0.411648i \(-0.864953\pi\)
0.911343 0.411648i \(-0.135047\pi\)
\(42\) 0 0
\(43\) 126636. 1.59277 0.796385 0.604790i \(-0.206743\pi\)
0.796385 + 0.604790i \(0.206743\pi\)
\(44\) − 7348.13i − 0.0862619i
\(45\) 0 0
\(46\) 74752.5 0.767984
\(47\) − 182063.i − 1.75359i −0.480861 0.876797i \(-0.659676\pi\)
0.480861 0.876797i \(-0.340324\pi\)
\(48\) 0 0
\(49\) −44654.2 −0.379554
\(50\) 0 0
\(51\) 0 0
\(52\) 3256.57 0.0231607
\(53\) 31815.2i 0.213701i 0.994275 + 0.106851i \(0.0340767\pi\)
−0.994275 + 0.106851i \(0.965923\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 130854.i − 0.745114i
\(57\) 0 0
\(58\) −64778.1 −0.332005
\(59\) − 319642.i − 1.55635i −0.628048 0.778175i \(-0.716146\pi\)
0.628048 0.778175i \(-0.283854\pi\)
\(60\) 0 0
\(61\) −359529. −1.58396 −0.791981 0.610546i \(-0.790950\pi\)
−0.791981 + 0.610546i \(0.790950\pi\)
\(62\) − 26091.3i − 0.109476i
\(63\) 0 0
\(64\) −232123. −0.885478
\(65\) 0 0
\(66\) 0 0
\(67\) 487383. 1.62049 0.810244 0.586093i \(-0.199335\pi\)
0.810244 + 0.586093i \(0.199335\pi\)
\(68\) 40786.3i 0.129714i
\(69\) 0 0
\(70\) 0 0
\(71\) 370686.i 1.03569i 0.855473 + 0.517847i \(0.173266\pi\)
−0.855473 + 0.517847i \(0.826734\pi\)
\(72\) 0 0
\(73\) −323083. −0.830511 −0.415255 0.909705i \(-0.636308\pi\)
−0.415255 + 0.909705i \(0.636308\pi\)
\(74\) − 636692.i − 1.57121i
\(75\) 0 0
\(76\) −56255.6 −0.128152
\(77\) 320726.i 0.702525i
\(78\) 0 0
\(79\) 66000.9 0.133866 0.0669328 0.997757i \(-0.478679\pi\)
0.0669328 + 0.997757i \(0.478679\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −475384. −0.862190
\(83\) 7403.28i 0.0129476i 0.999979 + 0.00647381i \(0.00206069\pi\)
−0.999979 + 0.00647381i \(0.997939\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 1.06095e6i − 1.66802i
\(87\) 0 0
\(88\) 574948. 0.843686
\(89\) − 991440.i − 1.40636i −0.711012 0.703180i \(-0.751763\pi\)
0.711012 0.703180i \(-0.248237\pi\)
\(90\) 0 0
\(91\) −142141. −0.188623
\(92\) − 55230.3i − 0.0709273i
\(93\) 0 0
\(94\) −1.52532e6 −1.83644
\(95\) 0 0
\(96\) 0 0
\(97\) −1.52751e6 −1.67367 −0.836833 0.547458i \(-0.815596\pi\)
−0.836833 + 0.547458i \(0.815596\pi\)
\(98\) 374110.i 0.397486i
\(99\) 0 0
\(100\) 0 0
\(101\) − 452341.i − 0.439037i −0.975608 0.219519i \(-0.929551\pi\)
0.975608 0.219519i \(-0.0704487\pi\)
\(102\) 0 0
\(103\) −104961. −0.0960542 −0.0480271 0.998846i \(-0.515293\pi\)
−0.0480271 + 0.998846i \(0.515293\pi\)
\(104\) 254808.i 0.226523i
\(105\) 0 0
\(106\) 266546. 0.223797
\(107\) 657099.i 0.536388i 0.963365 + 0.268194i \(0.0864269\pi\)
−0.963365 + 0.268194i \(0.913573\pi\)
\(108\) 0 0
\(109\) −1.65657e6 −1.27918 −0.639589 0.768717i \(-0.720895\pi\)
−0.639589 + 0.768717i \(0.720895\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.20332e6 −0.856499
\(113\) − 1.02621e6i − 0.711216i −0.934635 0.355608i \(-0.884274\pi\)
0.934635 0.355608i \(-0.115726\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 47860.7i 0.0306623i
\(117\) 0 0
\(118\) −2.67794e6 −1.62988
\(119\) − 1.78021e6i − 1.05641i
\(120\) 0 0
\(121\) 362349. 0.204536
\(122\) 3.01212e6i 1.65879i
\(123\) 0 0
\(124\) −19277.3 −0.0101107
\(125\) 0 0
\(126\) 0 0
\(127\) 375925. 0.183523 0.0917615 0.995781i \(-0.470750\pi\)
0.0917615 + 0.995781i \(0.470750\pi\)
\(128\) 2.34900e6i 1.12009i
\(129\) 0 0
\(130\) 0 0
\(131\) − 1.42739e6i − 0.634934i −0.948269 0.317467i \(-0.897168\pi\)
0.948269 0.317467i \(-0.102832\pi\)
\(132\) 0 0
\(133\) 2.45540e6 1.04368
\(134\) − 4.08327e6i − 1.69705i
\(135\) 0 0
\(136\) −3.19129e6 −1.26867
\(137\) − 2.76280e6i − 1.07445i −0.843438 0.537226i \(-0.819472\pi\)
0.843438 0.537226i \(-0.180528\pi\)
\(138\) 0 0
\(139\) 2.33540e6 0.869596 0.434798 0.900528i \(-0.356820\pi\)
0.434798 + 0.900528i \(0.356820\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.10559e6 1.08462
\(143\) − 624540.i − 0.213576i
\(144\) 0 0
\(145\) 0 0
\(146\) 2.70677e6i 0.869747i
\(147\) 0 0
\(148\) −470414. −0.145109
\(149\) 5.57895e6i 1.68653i 0.537499 + 0.843265i \(0.319369\pi\)
−0.537499 + 0.843265i \(0.680631\pi\)
\(150\) 0 0
\(151\) −187475. −0.0544520 −0.0272260 0.999629i \(-0.508667\pi\)
−0.0272260 + 0.999629i \(0.508667\pi\)
\(152\) − 4.40167e6i − 1.25339i
\(153\) 0 0
\(154\) 2.68703e6 0.735715
\(155\) 0 0
\(156\) 0 0
\(157\) 2.11041e6 0.545340 0.272670 0.962108i \(-0.412093\pi\)
0.272670 + 0.962108i \(0.412093\pi\)
\(158\) − 552952.i − 0.140190i
\(159\) 0 0
\(160\) 0 0
\(161\) 2.41065e6i 0.577639i
\(162\) 0 0
\(163\) 4.41451e6 1.01934 0.509671 0.860370i \(-0.329767\pi\)
0.509671 + 0.860370i \(0.329767\pi\)
\(164\) 351233.i 0.0796277i
\(165\) 0 0
\(166\) 62024.3 0.0135593
\(167\) − 279043.i − 0.0599131i −0.999551 0.0299565i \(-0.990463\pi\)
0.999551 0.0299565i \(-0.00953689\pi\)
\(168\) 0 0
\(169\) −4.55002e6 −0.942656
\(170\) 0 0
\(171\) 0 0
\(172\) −783876. −0.154050
\(173\) − 4.97675e6i − 0.961187i −0.876943 0.480594i \(-0.840421\pi\)
0.876943 0.480594i \(-0.159579\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 5.28717e6i − 0.969806i
\(177\) 0 0
\(178\) −8.30623e6 −1.47280
\(179\) 3.25828e6i 0.568106i 0.958809 + 0.284053i \(0.0916791\pi\)
−0.958809 + 0.284053i \(0.908321\pi\)
\(180\) 0 0
\(181\) 1.15053e7 1.94027 0.970137 0.242559i \(-0.0779869\pi\)
0.970137 + 0.242559i \(0.0779869\pi\)
\(182\) 1.19085e6i 0.197534i
\(183\) 0 0
\(184\) 4.32145e6 0.693706
\(185\) 0 0
\(186\) 0 0
\(187\) 7.82193e6 1.19616
\(188\) 1.12697e6i 0.169605i
\(189\) 0 0
\(190\) 0 0
\(191\) 6.07903e6i 0.872437i 0.899841 + 0.436218i \(0.143683\pi\)
−0.899841 + 0.436218i \(0.856317\pi\)
\(192\) 0 0
\(193\) 1.12931e7 1.57088 0.785438 0.618941i \(-0.212438\pi\)
0.785438 + 0.618941i \(0.212438\pi\)
\(194\) 1.27974e7i 1.75274i
\(195\) 0 0
\(196\) 276408. 0.0367099
\(197\) − 3.46877e6i − 0.453708i −0.973929 0.226854i \(-0.927156\pi\)
0.973929 0.226854i \(-0.0728440\pi\)
\(198\) 0 0
\(199\) 5.80303e6 0.736369 0.368185 0.929753i \(-0.379979\pi\)
0.368185 + 0.929753i \(0.379979\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −3.78969e6 −0.459779
\(203\) − 2.08899e6i − 0.249717i
\(204\) 0 0
\(205\) 0 0
\(206\) 879358.i 0.100592i
\(207\) 0 0
\(208\) 2.34319e6 0.260386
\(209\) 1.07886e7i 1.18175i
\(210\) 0 0
\(211\) −1.31986e6 −0.140502 −0.0702509 0.997529i \(-0.522380\pi\)
−0.0702509 + 0.997529i \(0.522380\pi\)
\(212\) − 196935.i − 0.0206688i
\(213\) 0 0
\(214\) 5.50514e6 0.561729
\(215\) 0 0
\(216\) 0 0
\(217\) 841404. 0.0823427
\(218\) 1.38787e7i 1.33961i
\(219\) 0 0
\(220\) 0 0
\(221\) 3.46655e6i 0.321160i
\(222\) 0 0
\(223\) −1.33313e6 −0.120215 −0.0601076 0.998192i \(-0.519144\pi\)
−0.0601076 + 0.998192i \(0.519144\pi\)
\(224\) 1.70669e6i 0.151849i
\(225\) 0 0
\(226\) −8.59754e6 −0.744816
\(227\) 7.97225e6i 0.681559i 0.940143 + 0.340779i \(0.110691\pi\)
−0.940143 + 0.340779i \(0.889309\pi\)
\(228\) 0 0
\(229\) 1.11916e7 0.931938 0.465969 0.884801i \(-0.345706\pi\)
0.465969 + 0.884801i \(0.345706\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.74482e6 −0.299894
\(233\) − 1.33843e7i − 1.05810i −0.848589 0.529052i \(-0.822548\pi\)
0.848589 0.529052i \(-0.177452\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.97857e6i 0.150528i
\(237\) 0 0
\(238\) −1.49145e7 −1.10631
\(239\) − 3.17061e6i − 0.232247i −0.993235 0.116123i \(-0.962953\pi\)
0.993235 0.116123i \(-0.0370468\pi\)
\(240\) 0 0
\(241\) 3.36319e6 0.240270 0.120135 0.992758i \(-0.461667\pi\)
0.120135 + 0.992758i \(0.461667\pi\)
\(242\) − 3.03574e6i − 0.214199i
\(243\) 0 0
\(244\) 2.22548e6 0.153198
\(245\) 0 0
\(246\) 0 0
\(247\) −4.78134e6 −0.317291
\(248\) − 1.50834e6i − 0.0988881i
\(249\) 0 0
\(250\) 0 0
\(251\) 2.64563e7i 1.67305i 0.547932 + 0.836523i \(0.315415\pi\)
−0.547932 + 0.836523i \(0.684585\pi\)
\(252\) 0 0
\(253\) −1.05920e7 −0.654056
\(254\) − 3.14948e6i − 0.192193i
\(255\) 0 0
\(256\) 4.82392e6 0.287528
\(257\) 4.28701e6i 0.252554i 0.991995 + 0.126277i \(0.0403029\pi\)
−0.991995 + 0.126277i \(0.959697\pi\)
\(258\) 0 0
\(259\) 2.05323e7 1.18179
\(260\) 0 0
\(261\) 0 0
\(262\) −1.19586e7 −0.664930
\(263\) 2.94305e7i 1.61782i 0.587933 + 0.808910i \(0.299942\pi\)
−0.587933 + 0.808910i \(0.700058\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 2.05712e7i − 1.09299i
\(267\) 0 0
\(268\) −3.01689e6 −0.156731
\(269\) 1.40558e7i 0.722100i 0.932547 + 0.361050i \(0.117582\pi\)
−0.932547 + 0.361050i \(0.882418\pi\)
\(270\) 0 0
\(271\) −2.69073e6 −0.135196 −0.0675978 0.997713i \(-0.521533\pi\)
−0.0675978 + 0.997713i \(0.521533\pi\)
\(272\) 2.93468e7i 1.45832i
\(273\) 0 0
\(274\) −2.31465e7 −1.12521
\(275\) 0 0
\(276\) 0 0
\(277\) −4.16627e7 −1.96024 −0.980118 0.198414i \(-0.936421\pi\)
−0.980118 + 0.198414i \(0.936421\pi\)
\(278\) − 1.95659e7i − 0.910679i
\(279\) 0 0
\(280\) 0 0
\(281\) − 1.07292e7i − 0.483556i −0.970332 0.241778i \(-0.922269\pi\)
0.970332 0.241778i \(-0.0777305\pi\)
\(282\) 0 0
\(283\) −5.50312e6 −0.242800 −0.121400 0.992604i \(-0.538738\pi\)
−0.121400 + 0.992604i \(0.538738\pi\)
\(284\) − 2.29454e6i − 0.100171i
\(285\) 0 0
\(286\) −5.23236e6 −0.223666
\(287\) − 1.53304e7i − 0.648496i
\(288\) 0 0
\(289\) −1.92786e7 −0.798696
\(290\) 0 0
\(291\) 0 0
\(292\) 1.99987e6 0.0803256
\(293\) 1.23547e7i 0.491169i 0.969375 + 0.245584i \(0.0789798\pi\)
−0.969375 + 0.245584i \(0.921020\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 3.68072e7i − 1.41925i
\(297\) 0 0
\(298\) 4.67402e7 1.76621
\(299\) − 4.69419e6i − 0.175609i
\(300\) 0 0
\(301\) 3.42140e7 1.25460
\(302\) 1.57066e6i 0.0570245i
\(303\) 0 0
\(304\) −4.04773e7 −1.44076
\(305\) 0 0
\(306\) 0 0
\(307\) 4.10198e7 1.41768 0.708840 0.705370i \(-0.249219\pi\)
0.708840 + 0.705370i \(0.249219\pi\)
\(308\) − 1.98529e6i − 0.0679471i
\(309\) 0 0
\(310\) 0 0
\(311\) 4.55195e7i 1.51327i 0.653837 + 0.756635i \(0.273158\pi\)
−0.653837 + 0.756635i \(0.726842\pi\)
\(312\) 0 0
\(313\) 1.47679e7 0.481598 0.240799 0.970575i \(-0.422591\pi\)
0.240799 + 0.970575i \(0.422591\pi\)
\(314\) − 1.76809e7i − 0.571103i
\(315\) 0 0
\(316\) −408544. −0.0129472
\(317\) 7.38900e6i 0.231957i 0.993252 + 0.115979i \(0.0370004\pi\)
−0.993252 + 0.115979i \(0.963000\pi\)
\(318\) 0 0
\(319\) 9.17865e6 0.282753
\(320\) 0 0
\(321\) 0 0
\(322\) 2.01963e7 0.604929
\(323\) − 5.98829e7i − 1.77703i
\(324\) 0 0
\(325\) 0 0
\(326\) − 3.69845e7i − 1.06750i
\(327\) 0 0
\(328\) −2.74820e7 −0.778801
\(329\) − 4.91891e7i − 1.38128i
\(330\) 0 0
\(331\) −4.89533e7 −1.34989 −0.674944 0.737869i \(-0.735832\pi\)
−0.674944 + 0.737869i \(0.735832\pi\)
\(332\) − 45826.1i − 0.00125227i
\(333\) 0 0
\(334\) −2.33781e6 −0.0627436
\(335\) 0 0
\(336\) 0 0
\(337\) 2.52313e7 0.659250 0.329625 0.944112i \(-0.393078\pi\)
0.329625 + 0.944112i \(0.393078\pi\)
\(338\) 3.81198e7i 0.987191i
\(339\) 0 0
\(340\) 0 0
\(341\) 3.69698e6i 0.0932360i
\(342\) 0 0
\(343\) −4.38503e7 −1.08665
\(344\) − 6.13337e7i − 1.50669i
\(345\) 0 0
\(346\) −4.16950e7 −1.00660
\(347\) − 4.18476e7i − 1.00157i −0.865571 0.500787i \(-0.833044\pi\)
0.865571 0.500787i \(-0.166956\pi\)
\(348\) 0 0
\(349\) −1.11598e7 −0.262532 −0.131266 0.991347i \(-0.541904\pi\)
−0.131266 + 0.991347i \(0.541904\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −7.49890e6 −0.171937
\(353\) 2.13705e7i 0.485837i 0.970047 + 0.242918i \(0.0781047\pi\)
−0.970047 + 0.242918i \(0.921895\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.13699e6i 0.136021i
\(357\) 0 0
\(358\) 2.72977e7 0.594945
\(359\) − 2.27851e7i − 0.492455i −0.969212 0.246228i \(-0.920809\pi\)
0.969212 0.246228i \(-0.0791911\pi\)
\(360\) 0 0
\(361\) 3.55491e7 0.755627
\(362\) − 9.63909e7i − 2.03194i
\(363\) 0 0
\(364\) 879847. 0.0182433
\(365\) 0 0
\(366\) 0 0
\(367\) 3.26916e7 0.661360 0.330680 0.943743i \(-0.392722\pi\)
0.330680 + 0.943743i \(0.392722\pi\)
\(368\) − 3.97396e7i − 0.797407i
\(369\) 0 0
\(370\) 0 0
\(371\) 8.59569e6i 0.168329i
\(372\) 0 0
\(373\) 2.20835e7 0.425542 0.212771 0.977102i \(-0.431751\pi\)
0.212771 + 0.977102i \(0.431751\pi\)
\(374\) − 6.55317e7i − 1.25267i
\(375\) 0 0
\(376\) −8.81786e7 −1.65882
\(377\) 4.06783e6i 0.0759169i
\(378\) 0 0
\(379\) −2.12751e7 −0.390800 −0.195400 0.980724i \(-0.562601\pi\)
−0.195400 + 0.980724i \(0.562601\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 5.09298e7 0.913654
\(383\) 7.76311e7i 1.38178i 0.722959 + 0.690891i \(0.242781\pi\)
−0.722959 + 0.690891i \(0.757219\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 9.46131e7i − 1.64509i
\(387\) 0 0
\(388\) 9.45525e6 0.161874
\(389\) 7.43035e7i 1.26229i 0.775663 + 0.631147i \(0.217415\pi\)
−0.775663 + 0.631147i \(0.782585\pi\)
\(390\) 0 0
\(391\) 5.87914e7 0.983521
\(392\) 2.16273e7i 0.359042i
\(393\) 0 0
\(394\) −2.90611e7 −0.475143
\(395\) 0 0
\(396\) 0 0
\(397\) −2.25395e7 −0.360224 −0.180112 0.983646i \(-0.557646\pi\)
−0.180112 + 0.983646i \(0.557646\pi\)
\(398\) − 4.86175e7i − 0.771157i
\(399\) 0 0
\(400\) 0 0
\(401\) 4.85810e7i 0.753414i 0.926332 + 0.376707i \(0.122944\pi\)
−0.926332 + 0.376707i \(0.877056\pi\)
\(402\) 0 0
\(403\) −1.63844e6 −0.0250332
\(404\) 2.79998e6i 0.0424630i
\(405\) 0 0
\(406\) −1.75014e7 −0.261515
\(407\) 9.02153e7i 1.33813i
\(408\) 0 0
\(409\) −6.71469e7 −0.981423 −0.490711 0.871322i \(-0.663263\pi\)
−0.490711 + 0.871322i \(0.663263\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 649706. 0.00929020
\(413\) − 8.63593e7i − 1.22591i
\(414\) 0 0
\(415\) 0 0
\(416\) − 3.32339e6i − 0.0461638i
\(417\) 0 0
\(418\) 9.03863e7 1.23758
\(419\) − 4.06857e7i − 0.553095i −0.961000 0.276548i \(-0.910810\pi\)
0.961000 0.276548i \(-0.0891904\pi\)
\(420\) 0 0
\(421\) 9.91589e7 1.32888 0.664440 0.747342i \(-0.268670\pi\)
0.664440 + 0.747342i \(0.268670\pi\)
\(422\) 1.10578e7i 0.147140i
\(423\) 0 0
\(424\) 1.54090e7 0.202152
\(425\) 0 0
\(426\) 0 0
\(427\) −9.71360e7 −1.24766
\(428\) − 4.06742e6i − 0.0518786i
\(429\) 0 0
\(430\) 0 0
\(431\) − 2.37118e7i − 0.296164i −0.988975 0.148082i \(-0.952690\pi\)
0.988975 0.148082i \(-0.0473099\pi\)
\(432\) 0 0
\(433\) −6.09661e7 −0.750974 −0.375487 0.926828i \(-0.622524\pi\)
−0.375487 + 0.926828i \(0.622524\pi\)
\(434\) − 7.04923e6i − 0.0862328i
\(435\) 0 0
\(436\) 1.02541e7 0.123720
\(437\) 8.10896e7i 0.971675i
\(438\) 0 0
\(439\) −1.53212e7 −0.181092 −0.0905458 0.995892i \(-0.528861\pi\)
−0.0905458 + 0.995892i \(0.528861\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.90426e7 0.336332
\(443\) 1.12121e8i 1.28966i 0.764327 + 0.644828i \(0.223071\pi\)
−0.764327 + 0.644828i \(0.776929\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.11689e7i 0.125895i
\(447\) 0 0
\(448\) −6.27138e7 −0.697476
\(449\) 1.27219e8i 1.40544i 0.711468 + 0.702719i \(0.248031\pi\)
−0.711468 + 0.702719i \(0.751969\pi\)
\(450\) 0 0
\(451\) 6.73589e7 0.734287
\(452\) 6.35222e6i 0.0687876i
\(453\) 0 0
\(454\) 6.67911e7 0.713758
\(455\) 0 0
\(456\) 0 0
\(457\) −7.74410e7 −0.811377 −0.405688 0.914011i \(-0.632968\pi\)
−0.405688 + 0.914011i \(0.632968\pi\)
\(458\) − 9.37629e7i − 0.975965i
\(459\) 0 0
\(460\) 0 0
\(461\) 2.35645e7i 0.240523i 0.992742 + 0.120261i \(0.0383733\pi\)
−0.992742 + 0.120261i \(0.961627\pi\)
\(462\) 0 0
\(463\) −4.67479e7 −0.470998 −0.235499 0.971875i \(-0.575672\pi\)
−0.235499 + 0.971875i \(0.575672\pi\)
\(464\) 3.44370e7i 0.344724i
\(465\) 0 0
\(466\) −1.12133e8 −1.10809
\(467\) − 1.04192e8i − 1.02302i −0.859277 0.511511i \(-0.829086\pi\)
0.859277 0.511511i \(-0.170914\pi\)
\(468\) 0 0
\(469\) 1.31679e8 1.27643
\(470\) 0 0
\(471\) 0 0
\(472\) −1.54812e8 −1.47224
\(473\) 1.50330e8i 1.42057i
\(474\) 0 0
\(475\) 0 0
\(476\) 1.10195e7i 0.102174i
\(477\) 0 0
\(478\) −2.65632e7 −0.243219
\(479\) 9.95625e7i 0.905919i 0.891531 + 0.452959i \(0.149632\pi\)
−0.891531 + 0.452959i \(0.850368\pi\)
\(480\) 0 0
\(481\) −3.99820e7 −0.359277
\(482\) − 2.81766e7i − 0.251622i
\(483\) 0 0
\(484\) −2.24293e6 −0.0197824
\(485\) 0 0
\(486\) 0 0
\(487\) −1.90543e8 −1.64971 −0.824853 0.565347i \(-0.808742\pi\)
−0.824853 + 0.565347i \(0.808742\pi\)
\(488\) 1.74130e8i 1.49836i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.08462e8i 0.916287i 0.888878 + 0.458143i \(0.151485\pi\)
−0.888878 + 0.458143i \(0.848515\pi\)
\(492\) 0 0
\(493\) −5.09467e7 −0.425182
\(494\) 4.00578e7i 0.332281i
\(495\) 0 0
\(496\) −1.38705e7 −0.113671
\(497\) 1.00150e8i 0.815799i
\(498\) 0 0
\(499\) 1.85918e8 1.49631 0.748153 0.663527i \(-0.230941\pi\)
0.748153 + 0.663527i \(0.230941\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2.21649e8 1.75209
\(503\) − 1.39688e8i − 1.09763i −0.835944 0.548815i \(-0.815079\pi\)
0.835944 0.548815i \(-0.184921\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 8.87389e7i 0.684956i
\(507\) 0 0
\(508\) −2.32697e6 −0.0177500
\(509\) 3.55184e7i 0.269340i 0.990891 + 0.134670i \(0.0429974\pi\)
−0.990891 + 0.134670i \(0.957003\pi\)
\(510\) 0 0
\(511\) −8.72890e7 −0.654180
\(512\) 1.09921e8i 0.818977i
\(513\) 0 0
\(514\) 3.59163e7 0.264486
\(515\) 0 0
\(516\) 0 0
\(517\) 2.16128e8 1.56401
\(518\) − 1.72019e8i − 1.23762i
\(519\) 0 0
\(520\) 0 0
\(521\) 1.93385e8i 1.36745i 0.729742 + 0.683723i \(0.239640\pi\)
−0.729742 + 0.683723i \(0.760360\pi\)
\(522\) 0 0
\(523\) 9.39198e6 0.0656527 0.0328263 0.999461i \(-0.489549\pi\)
0.0328263 + 0.999461i \(0.489549\pi\)
\(524\) 8.83550e6i 0.0614098i
\(525\) 0 0
\(526\) 2.46567e8 1.69425
\(527\) − 2.05203e7i − 0.140201i
\(528\) 0 0
\(529\) 6.84242e7 0.462214
\(530\) 0 0
\(531\) 0 0
\(532\) −1.51989e7 −0.100943
\(533\) 2.98524e7i 0.197150i
\(534\) 0 0
\(535\) 0 0
\(536\) − 2.36054e8i − 1.53291i
\(537\) 0 0
\(538\) 1.17758e8 0.756214
\(539\) − 5.30091e7i − 0.338520i
\(540\) 0 0
\(541\) 2.07632e7 0.131130 0.0655651 0.997848i \(-0.479115\pi\)
0.0655651 + 0.997848i \(0.479115\pi\)
\(542\) 2.25428e7i 0.141583i
\(543\) 0 0
\(544\) 4.16231e7 0.258546
\(545\) 0 0
\(546\) 0 0
\(547\) 3.73970e7 0.228494 0.114247 0.993452i \(-0.463554\pi\)
0.114247 + 0.993452i \(0.463554\pi\)
\(548\) 1.71016e7i 0.103919i
\(549\) 0 0
\(550\) 0 0
\(551\) − 7.02696e7i − 0.420061i
\(552\) 0 0
\(553\) 1.78318e7 0.105444
\(554\) 3.49048e8i 2.05284i
\(555\) 0 0
\(556\) −1.44561e7 −0.0841059
\(557\) − 2.13408e8i − 1.23494i −0.786596 0.617468i \(-0.788159\pi\)
0.786596 0.617468i \(-0.211841\pi\)
\(558\) 0 0
\(559\) −6.66240e7 −0.381413
\(560\) 0 0
\(561\) 0 0
\(562\) −8.98882e7 −0.506400
\(563\) − 1.01902e8i − 0.571029i −0.958374 0.285515i \(-0.907835\pi\)
0.958374 0.285515i \(-0.0921645\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.61048e7i 0.254271i
\(567\) 0 0
\(568\) 1.79534e8 0.979720
\(569\) 1.12478e8i 0.610566i 0.952262 + 0.305283i \(0.0987510\pi\)
−0.952262 + 0.305283i \(0.901249\pi\)
\(570\) 0 0
\(571\) 1.75933e8 0.945016 0.472508 0.881326i \(-0.343349\pi\)
0.472508 + 0.881326i \(0.343349\pi\)
\(572\) 3.86589e6i 0.0206567i
\(573\) 0 0
\(574\) −1.28437e8 −0.679133
\(575\) 0 0
\(576\) 0 0
\(577\) 1.61356e8 0.839957 0.419978 0.907534i \(-0.362038\pi\)
0.419978 + 0.907534i \(0.362038\pi\)
\(578\) 1.61515e8i 0.836428i
\(579\) 0 0
\(580\) 0 0
\(581\) 2.00019e6i 0.0101986i
\(582\) 0 0
\(583\) −3.77679e7 −0.190598
\(584\) 1.56478e8i 0.785626i
\(585\) 0 0
\(586\) 1.03507e8 0.514373
\(587\) 4.39079e7i 0.217084i 0.994092 + 0.108542i \(0.0346182\pi\)
−0.994092 + 0.108542i \(0.965382\pi\)
\(588\) 0 0
\(589\) 2.83032e7 0.138513
\(590\) 0 0
\(591\) 0 0
\(592\) −3.38475e8 −1.63140
\(593\) − 3.94038e7i − 0.188962i −0.995527 0.0944808i \(-0.969881\pi\)
0.995527 0.0944808i \(-0.0301191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 3.45336e7i − 0.163118i
\(597\) 0 0
\(598\) −3.93277e7 −0.183905
\(599\) 1.11994e8i 0.521092i 0.965461 + 0.260546i \(0.0839026\pi\)
−0.965461 + 0.260546i \(0.916097\pi\)
\(600\) 0 0
\(601\) −3.96028e8 −1.82432 −0.912162 0.409830i \(-0.865588\pi\)
−0.912162 + 0.409830i \(0.865588\pi\)
\(602\) − 2.86643e8i − 1.31387i
\(603\) 0 0
\(604\) 1.16047e6 0.00526650
\(605\) 0 0
\(606\) 0 0
\(607\) 3.06455e8 1.37025 0.685125 0.728425i \(-0.259747\pi\)
0.685125 + 0.728425i \(0.259747\pi\)
\(608\) 5.74098e7i 0.255432i
\(609\) 0 0
\(610\) 0 0
\(611\) 9.57844e7i 0.419924i
\(612\) 0 0
\(613\) −1.80074e7 −0.0781751 −0.0390875 0.999236i \(-0.512445\pi\)
−0.0390875 + 0.999236i \(0.512445\pi\)
\(614\) − 3.43661e8i − 1.48465i
\(615\) 0 0
\(616\) 1.55337e8 0.664558
\(617\) − 1.66217e8i − 0.707651i −0.935311 0.353825i \(-0.884881\pi\)
0.935311 0.353825i \(-0.115119\pi\)
\(618\) 0 0
\(619\) −1.89841e8 −0.800422 −0.400211 0.916423i \(-0.631063\pi\)
−0.400211 + 0.916423i \(0.631063\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3.81360e8 1.58476
\(623\) − 2.67863e8i − 1.10777i
\(624\) 0 0
\(625\) 0 0
\(626\) − 1.23724e8i − 0.504350i
\(627\) 0 0
\(628\) −1.30634e7 −0.0527443
\(629\) − 5.00746e8i − 2.01217i
\(630\) 0 0
\(631\) 2.56171e8 1.01963 0.509814 0.860285i \(-0.329714\pi\)
0.509814 + 0.860285i \(0.329714\pi\)
\(632\) − 3.19662e7i − 0.126631i
\(633\) 0 0
\(634\) 6.19046e7 0.242916
\(635\) 0 0
\(636\) 0 0
\(637\) 2.34928e7 0.0908900
\(638\) − 7.68982e7i − 0.296111i
\(639\) 0 0
\(640\) 0 0
\(641\) 4.41284e7i 0.167550i 0.996485 + 0.0837749i \(0.0266977\pi\)
−0.996485 + 0.0837749i \(0.973302\pi\)
\(642\) 0 0
\(643\) 1.96340e8 0.738545 0.369272 0.929321i \(-0.379607\pi\)
0.369272 + 0.929321i \(0.379607\pi\)
\(644\) − 1.49219e7i − 0.0558683i
\(645\) 0 0
\(646\) −5.01695e8 −1.86098
\(647\) 9.99293e7i 0.368961i 0.982836 + 0.184480i \(0.0590602\pi\)
−0.982836 + 0.184480i \(0.940940\pi\)
\(648\) 0 0
\(649\) 3.79447e8 1.38809
\(650\) 0 0
\(651\) 0 0
\(652\) −2.73257e7 −0.0985890
\(653\) − 2.49531e7i − 0.0896160i −0.998996 0.0448080i \(-0.985732\pi\)
0.998996 0.0448080i \(-0.0142676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2.52721e8i 0.895221i
\(657\) 0 0
\(658\) −4.12103e8 −1.44653
\(659\) − 1.49890e8i − 0.523739i −0.965103 0.261870i \(-0.915661\pi\)
0.965103 0.261870i \(-0.0843390\pi\)
\(660\) 0 0
\(661\) −4.68646e6 −0.0162271 −0.00811355 0.999967i \(-0.502583\pi\)
−0.00811355 + 0.999967i \(0.502583\pi\)
\(662\) 4.10128e8i 1.41366i
\(663\) 0 0
\(664\) 3.58563e6 0.0122479
\(665\) 0 0
\(666\) 0 0
\(667\) 6.89888e7 0.232488
\(668\) 1.72727e6i 0.00579469i
\(669\) 0 0
\(670\) 0 0
\(671\) − 4.26798e8i − 1.41272i
\(672\) 0 0
\(673\) 3.58399e8 1.17577 0.587884 0.808945i \(-0.299961\pi\)
0.587884 + 0.808945i \(0.299961\pi\)
\(674\) − 2.11387e8i − 0.690395i
\(675\) 0 0
\(676\) 2.81645e7 0.0911721
\(677\) − 2.26026e7i − 0.0728437i −0.999337 0.0364218i \(-0.988404\pi\)
0.999337 0.0364218i \(-0.0115960\pi\)
\(678\) 0 0
\(679\) −4.12696e8 −1.31832
\(680\) 0 0
\(681\) 0 0
\(682\) 3.09731e7 0.0976407
\(683\) 5.32455e8i 1.67117i 0.549361 + 0.835585i \(0.314871\pi\)
−0.549361 + 0.835585i \(0.685129\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3.67376e8i 1.13799i
\(687\) 0 0
\(688\) −5.64018e8 −1.73192
\(689\) − 1.67381e7i − 0.0511740i
\(690\) 0 0
\(691\) −5.20725e8 −1.57825 −0.789123 0.614236i \(-0.789464\pi\)
−0.789123 + 0.614236i \(0.789464\pi\)
\(692\) 3.08060e7i 0.0929644i
\(693\) 0 0
\(694\) −3.50597e8 −1.04889
\(695\) 0 0
\(696\) 0 0
\(697\) −3.73880e8 −1.10417
\(698\) 9.34965e7i 0.274934i
\(699\) 0 0
\(700\) 0 0
\(701\) − 2.97763e8i − 0.864404i −0.901777 0.432202i \(-0.857737\pi\)
0.901777 0.432202i \(-0.142263\pi\)
\(702\) 0 0
\(703\) 6.90667e8 1.98794
\(704\) − 2.75553e8i − 0.789746i
\(705\) 0 0
\(706\) 1.79041e8 0.508789
\(707\) − 1.22211e8i − 0.345823i
\(708\) 0 0
\(709\) −1.89039e8 −0.530411 −0.265205 0.964192i \(-0.585440\pi\)
−0.265205 + 0.964192i \(0.585440\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −4.80183e8 −1.33035
\(713\) 2.77873e7i 0.0766617i
\(714\) 0 0
\(715\) 0 0
\(716\) − 2.01687e7i − 0.0549462i
\(717\) 0 0
\(718\) −1.90892e8 −0.515721
\(719\) − 1.30902e8i − 0.352176i −0.984374 0.176088i \(-0.943656\pi\)
0.984374 0.176088i \(-0.0563443\pi\)
\(720\) 0 0
\(721\) −2.83579e7 −0.0756603
\(722\) − 2.97829e8i − 0.791325i
\(723\) 0 0
\(724\) −7.12176e7 −0.187660
\(725\) 0 0
\(726\) 0 0
\(727\) −4.44143e8 −1.15590 −0.577949 0.816073i \(-0.696147\pi\)
−0.577949 + 0.816073i \(0.696147\pi\)
\(728\) 6.88429e7i 0.178429i
\(729\) 0 0
\(730\) 0 0
\(731\) − 8.34419e8i − 2.13615i
\(732\) 0 0
\(733\) −4.71631e8 −1.19754 −0.598770 0.800921i \(-0.704344\pi\)
−0.598770 + 0.800921i \(0.704344\pi\)
\(734\) − 2.73888e8i − 0.692605i
\(735\) 0 0
\(736\) −5.63635e7 −0.141372
\(737\) 5.78573e8i 1.44529i
\(738\) 0 0
\(739\) −6.40610e8 −1.58731 −0.793653 0.608371i \(-0.791823\pi\)
−0.793653 + 0.608371i \(0.791823\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 7.20142e7 0.176281
\(743\) − 5.44941e8i − 1.32857i −0.747481 0.664283i \(-0.768737\pi\)
0.747481 0.664283i \(-0.231263\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 1.85015e8i − 0.445646i
\(747\) 0 0
\(748\) −4.84175e7 −0.115691
\(749\) 1.77532e8i 0.422504i
\(750\) 0 0
\(751\) 5.56224e8 1.31320 0.656598 0.754241i \(-0.271995\pi\)
0.656598 + 0.754241i \(0.271995\pi\)
\(752\) 8.10881e8i 1.90679i
\(753\) 0 0
\(754\) 3.40801e7 0.0795035
\(755\) 0 0
\(756\) 0 0
\(757\) −4.02524e8 −0.927906 −0.463953 0.885860i \(-0.653569\pi\)
−0.463953 + 0.885860i \(0.653569\pi\)
\(758\) 1.78242e8i 0.409263i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.44544e8i 0.327979i 0.986462 + 0.163989i \(0.0524363\pi\)
−0.986462 + 0.163989i \(0.947564\pi\)
\(762\) 0 0
\(763\) −4.47565e8 −1.00759
\(764\) − 3.76290e7i − 0.0843806i
\(765\) 0 0
\(766\) 6.50389e8 1.44706
\(767\) 1.68165e8i 0.372691i
\(768\) 0 0
\(769\) 2.64281e8 0.581148 0.290574 0.956853i \(-0.406154\pi\)
0.290574 + 0.956853i \(0.406154\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6.99040e7 −0.151932
\(773\) − 1.66034e8i − 0.359466i −0.983715 0.179733i \(-0.942477\pi\)
0.983715 0.179733i \(-0.0575234\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 7.39818e8i 1.58321i
\(777\) 0 0
\(778\) 6.22511e8 1.32193
\(779\) − 5.15684e8i − 1.09087i
\(780\) 0 0
\(781\) −4.40043e8 −0.923723
\(782\) − 4.92551e8i − 1.02999i
\(783\) 0 0
\(784\) 1.98883e8 0.412714
\(785\) 0 0
\(786\) 0 0
\(787\) −2.25184e8 −0.461970 −0.230985 0.972957i \(-0.574195\pi\)
−0.230985 + 0.972957i \(0.574195\pi\)
\(788\) 2.14716e7i 0.0438819i
\(789\) 0 0
\(790\) 0 0
\(791\) − 2.77257e8i − 0.560213i
\(792\) 0 0
\(793\) 1.89150e8 0.379303
\(794\) 1.88834e8i 0.377242i
\(795\) 0 0
\(796\) −3.59206e7 −0.0712204
\(797\) − 5.51423e8i − 1.08921i −0.838694 0.544603i \(-0.816680\pi\)
0.838694 0.544603i \(-0.183320\pi\)
\(798\) 0 0
\(799\) −1.19963e9 −2.35184
\(800\) 0 0
\(801\) 0 0
\(802\) 4.07009e8 0.789008
\(803\) − 3.83532e8i − 0.740722i
\(804\) 0 0
\(805\) 0 0
\(806\) 1.37268e7i 0.0262158i
\(807\) 0 0
\(808\) −2.19082e8 −0.415310
\(809\) 3.95120e7i 0.0746249i 0.999304 + 0.0373125i \(0.0118797\pi\)
−0.999304 + 0.0373125i \(0.988120\pi\)
\(810\) 0 0
\(811\) −8.11405e8 −1.52116 −0.760580 0.649244i \(-0.775085\pi\)
−0.760580 + 0.649244i \(0.775085\pi\)
\(812\) 1.29308e7i 0.0241522i
\(813\) 0 0
\(814\) 7.55819e8 1.40134
\(815\) 0 0
\(816\) 0 0
\(817\) 1.15089e9 2.11042
\(818\) 5.62553e8i 1.02779i
\(819\) 0 0
\(820\) 0 0
\(821\) − 1.22832e8i − 0.221963i −0.993822 0.110982i \(-0.964601\pi\)
0.993822 0.110982i \(-0.0353994\pi\)
\(822\) 0 0
\(823\) 8.46296e8 1.51818 0.759089 0.650987i \(-0.225645\pi\)
0.759089 + 0.650987i \(0.225645\pi\)
\(824\) 5.08357e7i 0.0908630i
\(825\) 0 0
\(826\) −7.23514e8 −1.28383
\(827\) 5.80388e8i 1.02613i 0.858350 + 0.513065i \(0.171490\pi\)
−0.858350 + 0.513065i \(0.828510\pi\)
\(828\) 0 0
\(829\) 6.30126e8 1.10602 0.553011 0.833174i \(-0.313479\pi\)
0.553011 + 0.833174i \(0.313479\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.22121e8 0.212041
\(833\) 2.94231e8i 0.509041i
\(834\) 0 0
\(835\) 0 0
\(836\) − 6.67811e7i − 0.114297i
\(837\) 0 0
\(838\) −3.40863e8 −0.579225
\(839\) 2.51051e7i 0.0425085i 0.999774 + 0.0212542i \(0.00676595\pi\)
−0.999774 + 0.0212542i \(0.993234\pi\)
\(840\) 0 0
\(841\) 5.35040e8 0.899494
\(842\) − 8.30748e8i − 1.39166i
\(843\) 0 0
\(844\) 8.16992e6 0.0135891
\(845\) 0 0
\(846\) 0 0
\(847\) 9.78978e7 0.161110
\(848\) − 1.41700e8i − 0.232371i
\(849\) 0 0
\(850\) 0 0
\(851\) 6.78079e8i 1.10025i
\(852\) 0 0
\(853\) −3.53908e8 −0.570221 −0.285111 0.958495i \(-0.592030\pi\)
−0.285111 + 0.958495i \(0.592030\pi\)
\(854\) 8.13800e8i 1.30660i
\(855\) 0 0
\(856\) 3.18252e8 0.507400
\(857\) − 8.06395e8i − 1.28117i −0.767889 0.640583i \(-0.778693\pi\)
0.767889 0.640583i \(-0.221307\pi\)
\(858\) 0 0
\(859\) 9.26709e8 1.46206 0.731028 0.682348i \(-0.239041\pi\)
0.731028 + 0.682348i \(0.239041\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.98656e8 −0.310155
\(863\) 6.89660e8i 1.07301i 0.843898 + 0.536504i \(0.180255\pi\)
−0.843898 + 0.536504i \(0.819745\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 5.10771e8i 0.786452i
\(867\) 0 0
\(868\) −5.20827e6 −0.00796405
\(869\) 7.83499e7i 0.119393i
\(870\) 0 0
\(871\) −2.56414e8 −0.388050
\(872\) 8.02327e8i 1.21005i
\(873\) 0 0
\(874\) 6.79365e8 1.01758
\(875\) 0 0
\(876\) 0 0
\(877\) 2.94275e8 0.436269 0.218134 0.975919i \(-0.430003\pi\)
0.218134 + 0.975919i \(0.430003\pi\)
\(878\) 1.28360e8i 0.189647i
\(879\) 0 0
\(880\) 0 0
\(881\) − 6.79591e7i − 0.0993847i −0.998765 0.0496924i \(-0.984176\pi\)
0.998765 0.0496924i \(-0.0158241\pi\)
\(882\) 0 0
\(883\) −9.49523e8 −1.37919 −0.689594 0.724196i \(-0.742211\pi\)
−0.689594 + 0.724196i \(0.742211\pi\)
\(884\) − 2.14579e7i − 0.0310620i
\(885\) 0 0
\(886\) 9.39340e8 1.35058
\(887\) − 1.87598e8i − 0.268817i −0.990926 0.134409i \(-0.957086\pi\)
0.990926 0.134409i \(-0.0429135\pi\)
\(888\) 0 0
\(889\) 1.01566e8 0.144558
\(890\) 0 0
\(891\) 0 0
\(892\) 8.25207e6 0.0116270
\(893\) − 1.65462e9i − 2.32351i
\(894\) 0 0
\(895\) 0 0
\(896\) 6.34642e8i 0.882276i
\(897\) 0 0
\(898\) 1.06583e9 1.47183
\(899\) − 2.40796e7i − 0.0331413i
\(900\) 0 0
\(901\) 2.09633e8 0.286607
\(902\) − 5.64330e8i − 0.768977i
\(903\) 0 0
\(904\) −4.97024e8 −0.672778
\(905\) 0 0
\(906\) 0 0
\(907\) 1.30184e9 1.74476 0.872378 0.488832i \(-0.162577\pi\)
0.872378 + 0.488832i \(0.162577\pi\)
\(908\) − 4.93480e7i − 0.0659192i
\(909\) 0 0
\(910\) 0 0
\(911\) − 1.25808e9i − 1.66400i −0.554775 0.832000i \(-0.687196\pi\)
0.554775 0.832000i \(-0.312804\pi\)
\(912\) 0 0
\(913\) −8.78846e6 −0.0115478
\(914\) 6.48797e8i 0.849709i
\(915\) 0 0
\(916\) −6.92759e7 −0.0901354
\(917\) − 3.85646e8i − 0.500127i
\(918\) 0 0
\(919\) 2.32755e8 0.299883 0.149942 0.988695i \(-0.452091\pi\)
0.149942 + 0.988695i \(0.452091\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.97422e8 0.251886
\(923\) − 1.95020e8i − 0.248013i
\(924\) 0 0
\(925\) 0 0
\(926\) 3.91651e8i 0.493250i
\(927\) 0 0
\(928\) 4.88427e7 0.0611161
\(929\) 1.02421e9i 1.27745i 0.769436 + 0.638724i \(0.220538\pi\)
−0.769436 + 0.638724i \(0.779462\pi\)
\(930\) 0 0
\(931\) −4.05825e8 −0.502910
\(932\) 8.28485e7i 0.102338i
\(933\) 0 0
\(934\) −8.72917e8 −1.07135
\(935\) 0 0
\(936\) 0 0
\(937\) −5.87353e8 −0.713971 −0.356985 0.934110i \(-0.616195\pi\)
−0.356985 + 0.934110i \(0.616195\pi\)
\(938\) − 1.10320e9i − 1.33673i
\(939\) 0 0
\(940\) 0 0
\(941\) 1.44532e8i 0.173458i 0.996232 + 0.0867292i \(0.0276415\pi\)
−0.996232 + 0.0867292i \(0.972359\pi\)
\(942\) 0 0
\(943\) 5.06285e8 0.603755
\(944\) 1.42363e9i 1.69232i
\(945\) 0 0
\(946\) 1.25946e9 1.48768
\(947\) 2.40595e8i 0.283294i 0.989917 + 0.141647i \(0.0452398\pi\)
−0.989917 + 0.141647i \(0.954760\pi\)
\(948\) 0 0
\(949\) 1.69975e8 0.198878
\(950\) 0 0
\(951\) 0 0
\(952\) −8.62208e8 −0.999313
\(953\) 1.59931e9i 1.84779i 0.382644 + 0.923896i \(0.375014\pi\)
−0.382644 + 0.923896i \(0.624986\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.96260e7i 0.0224625i
\(957\) 0 0
\(958\) 8.34129e8 0.948717
\(959\) − 7.46440e8i − 0.846328i
\(960\) 0 0
\(961\) −8.77805e8 −0.989072
\(962\) 3.34967e8i 0.376250i
\(963\) 0 0
\(964\) −2.08181e7 −0.0232386
\(965\) 0 0
\(966\) 0 0
\(967\) −3.53519e8 −0.390960 −0.195480 0.980708i \(-0.562627\pi\)
−0.195480 + 0.980708i \(0.562627\pi\)
\(968\) − 1.75496e8i − 0.193482i
\(969\) 0 0
\(970\) 0 0
\(971\) − 1.33953e8i − 0.146317i −0.997320 0.0731583i \(-0.976692\pi\)
0.997320 0.0731583i \(-0.0233078\pi\)
\(972\) 0 0
\(973\) 6.30969e8 0.684967
\(974\) 1.59636e9i 1.72764i
\(975\) 0 0
\(976\) 1.60129e9 1.72234
\(977\) − 2.99781e8i − 0.321455i −0.986999 0.160728i \(-0.948616\pi\)
0.986999 0.160728i \(-0.0513840\pi\)
\(978\) 0 0
\(979\) 1.17694e9 1.25431
\(980\) 0 0
\(981\) 0 0
\(982\) 9.08685e8 0.959575
\(983\) 1.04294e9i 1.09799i 0.835825 + 0.548996i \(0.184990\pi\)
−0.835825 + 0.548996i \(0.815010\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4.26829e8i 0.445269i
\(987\) 0 0
\(988\) 2.95963e7 0.0306879
\(989\) 1.12992e9i 1.16804i
\(990\) 0 0
\(991\) 3.39676e8 0.349014 0.174507 0.984656i \(-0.444167\pi\)
0.174507 + 0.984656i \(0.444167\pi\)
\(992\) 1.96729e7i 0.0201527i
\(993\) 0 0
\(994\) 8.39054e8 0.854340
\(995\) 0 0
\(996\) 0 0
\(997\) −1.79345e9 −1.80969 −0.904846 0.425739i \(-0.860014\pi\)
−0.904846 + 0.425739i \(0.860014\pi\)
\(998\) − 1.55761e9i − 1.56700i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.7.c.e.26.4 12
3.2 odd 2 inner 225.7.c.e.26.10 12
5.2 odd 4 45.7.d.a.44.10 yes 12
5.3 odd 4 45.7.d.a.44.4 yes 12
5.4 even 2 inner 225.7.c.e.26.9 12
15.2 even 4 45.7.d.a.44.3 12
15.8 even 4 45.7.d.a.44.9 yes 12
15.14 odd 2 inner 225.7.c.e.26.3 12
20.3 even 4 720.7.c.a.449.10 12
20.7 even 4 720.7.c.a.449.4 12
60.23 odd 4 720.7.c.a.449.3 12
60.47 odd 4 720.7.c.a.449.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.7.d.a.44.3 12 15.2 even 4
45.7.d.a.44.4 yes 12 5.3 odd 4
45.7.d.a.44.9 yes 12 15.8 even 4
45.7.d.a.44.10 yes 12 5.2 odd 4
225.7.c.e.26.3 12 15.14 odd 2 inner
225.7.c.e.26.4 12 1.1 even 1 trivial
225.7.c.e.26.9 12 5.4 even 2 inner
225.7.c.e.26.10 12 3.2 odd 2 inner
720.7.c.a.449.3 12 60.23 odd 4
720.7.c.a.449.4 12 20.7 even 4
720.7.c.a.449.9 12 60.47 odd 4
720.7.c.a.449.10 12 20.3 even 4