Properties

Label 441.2.w.a.62.4
Level $441$
Weight $2$
Character 441.62
Analytic conductor $3.521$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(62,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.62"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.w (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 62.4
Character \(\chi\) \(=\) 441.62
Dual form 441.2.w.a.377.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.08702 + 0.476349i) q^{2} +(2.32682 - 1.12054i) q^{4} +(2.25096 + 2.82261i) q^{5} +(0.212729 - 2.63719i) q^{7} +(-0.975036 + 0.777565i) q^{8} +(-6.04235 - 4.81862i) q^{10} +(2.41874 - 0.552061i) q^{11} +(5.51523 - 1.25882i) q^{13} +(0.812251 + 5.60520i) q^{14} +(-1.55589 + 1.95102i) q^{16} +(-4.22253 - 2.03346i) q^{17} -5.49607i q^{19} +(8.40042 + 4.04543i) q^{20} +(-4.78499 + 2.30433i) q^{22} +(-2.01859 - 4.19164i) q^{23} +(-1.78772 + 7.83253i) q^{25} +(-10.9108 + 5.25436i) q^{26} +(-2.46008 - 6.37463i) q^{28} +(0.799704 - 1.66060i) q^{29} +5.46570i q^{31} +(3.40002 - 7.06021i) q^{32} +(9.78115 + 2.23248i) q^{34} +(7.92260 - 5.33574i) q^{35} +(8.48160 + 4.08452i) q^{37} +(2.61805 + 11.4704i) q^{38} +(-4.38953 - 1.00188i) q^{40} +(1.93756 + 2.42962i) q^{41} +(6.03318 - 7.56536i) q^{43} +(5.00936 - 3.99483i) q^{44} +(6.20952 + 7.78649i) q^{46} +(1.86318 + 8.16313i) q^{47} +(-6.90949 - 1.12201i) q^{49} -17.1983i q^{50} +(11.4224 - 9.10906i) q^{52} +(0.594462 + 1.23441i) q^{53} +(7.00273 + 5.58449i) q^{55} +(1.84316 + 2.73676i) q^{56} +(-0.877974 + 3.84666i) q^{58} +(0.856868 - 1.07448i) q^{59} +(-5.13768 + 10.6685i) q^{61} +(-2.60358 - 11.4070i) q^{62} +(-2.62221 + 11.4886i) q^{64} +(15.9677 + 12.7338i) q^{65} +6.21276 q^{67} -12.1036 q^{68} +(-13.9930 + 14.9097i) q^{70} +(-0.0504417 - 0.104743i) q^{71} +(-2.10438 - 0.480310i) q^{73} +(-19.6470 - 4.48429i) q^{74} +(-6.15856 - 12.7884i) q^{76} +(-0.941351 - 6.49610i) q^{77} -11.3011 q^{79} -9.00923 q^{80} +(-5.20107 - 4.14772i) q^{82} +(-0.130612 + 0.572249i) q^{83} +(-3.76506 - 16.4958i) q^{85} +(-8.98762 + 18.6630i) q^{86} +(-1.92909 + 2.41900i) q^{88} +(1.33313 - 5.84082i) q^{89} +(-2.14648 - 14.8125i) q^{91} +(-9.39377 - 7.49128i) q^{92} +(-7.77701 - 16.1491i) q^{94} +(15.5133 - 12.3714i) q^{95} +6.74458i q^{97} +(14.9547 - 0.949665i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 24 q^{4} - 32 q^{16} - 44 q^{22} - 4 q^{25} - 56 q^{28} + 112 q^{34} - 76 q^{37} + 28 q^{40} + 8 q^{43} - 40 q^{46} - 84 q^{49} - 140 q^{52} + 12 q^{58} - 84 q^{61} + 24 q^{64} + 16 q^{67} + 112 q^{70}+ \cdots - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{11}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08702 + 0.476349i −1.47575 + 0.336830i −0.883311 0.468787i \(-0.844691\pi\)
−0.592437 + 0.805617i \(0.701834\pi\)
\(3\) 0 0
\(4\) 2.32682 1.12054i 1.16341 0.560269i
\(5\) 2.25096 + 2.82261i 1.00666 + 1.26231i 0.964744 + 0.263190i \(0.0847746\pi\)
0.0419154 + 0.999121i \(0.486654\pi\)
\(6\) 0 0
\(7\) 0.212729 2.63719i 0.0804041 0.996762i
\(8\) −0.975036 + 0.777565i −0.344727 + 0.274911i
\(9\) 0 0
\(10\) −6.04235 4.81862i −1.91076 1.52378i
\(11\) 2.41874 0.552061i 0.729277 0.166453i 0.158267 0.987396i \(-0.449409\pi\)
0.571009 + 0.820944i \(0.306552\pi\)
\(12\) 0 0
\(13\) 5.51523 1.25882i 1.52965 0.349133i 0.626832 0.779155i \(-0.284351\pi\)
0.902818 + 0.430022i \(0.141494\pi\)
\(14\) 0.812251 + 5.60520i 0.217083 + 1.49805i
\(15\) 0 0
\(16\) −1.55589 + 1.95102i −0.388972 + 0.487756i
\(17\) −4.22253 2.03346i −1.02411 0.493187i −0.155060 0.987905i \(-0.549557\pi\)
−0.869053 + 0.494718i \(0.835271\pi\)
\(18\) 0 0
\(19\) 5.49607i 1.26089i −0.776236 0.630443i \(-0.782873\pi\)
0.776236 0.630443i \(-0.217127\pi\)
\(20\) 8.40042 + 4.04543i 1.87839 + 0.904586i
\(21\) 0 0
\(22\) −4.78499 + 2.30433i −1.02016 + 0.491284i
\(23\) −2.01859 4.19164i −0.420904 0.874016i −0.998341 0.0575810i \(-0.981661\pi\)
0.577437 0.816435i \(-0.304053\pi\)
\(24\) 0 0
\(25\) −1.78772 + 7.83253i −0.357545 + 1.56651i
\(26\) −10.9108 + 5.25436i −2.13978 + 1.03046i
\(27\) 0 0
\(28\) −2.46008 6.37463i −0.464912 1.20469i
\(29\) 0.799704 1.66060i 0.148501 0.308366i −0.813427 0.581666i \(-0.802401\pi\)
0.961929 + 0.273300i \(0.0881152\pi\)
\(30\) 0 0
\(31\) 5.46570i 0.981668i 0.871253 + 0.490834i \(0.163308\pi\)
−0.871253 + 0.490834i \(0.836692\pi\)
\(32\) 3.40002 7.06021i 0.601044 1.24808i
\(33\) 0 0
\(34\) 9.78115 + 2.23248i 1.67745 + 0.382868i
\(35\) 7.92260 5.33574i 1.33916 0.901905i
\(36\) 0 0
\(37\) 8.48160 + 4.08452i 1.39437 + 0.671491i 0.972010 0.234939i \(-0.0754890\pi\)
0.422356 + 0.906430i \(0.361203\pi\)
\(38\) 2.61805 + 11.4704i 0.424704 + 1.86075i
\(39\) 0 0
\(40\) −4.38953 1.00188i −0.694046 0.158411i
\(41\) 1.93756 + 2.42962i 0.302595 + 0.379443i 0.909761 0.415133i \(-0.136265\pi\)
−0.607165 + 0.794575i \(0.707693\pi\)
\(42\) 0 0
\(43\) 6.03318 7.56536i 0.920051 1.15371i −0.0677061 0.997705i \(-0.521568\pi\)
0.987757 0.156002i \(-0.0498606\pi\)
\(44\) 5.00936 3.99483i 0.755190 0.602244i
\(45\) 0 0
\(46\) 6.20952 + 7.78649i 0.915544 + 1.14806i
\(47\) 1.86318 + 8.16313i 0.271773 + 1.19072i 0.907919 + 0.419146i \(0.137671\pi\)
−0.636146 + 0.771569i \(0.719472\pi\)
\(48\) 0 0
\(49\) −6.90949 1.12201i −0.987070 0.160288i
\(50\) 17.1983i 2.43220i
\(51\) 0 0
\(52\) 11.4224 9.10906i 1.58400 1.26320i
\(53\) 0.594462 + 1.23441i 0.0816556 + 0.169560i 0.937799 0.347179i \(-0.112860\pi\)
−0.856143 + 0.516738i \(0.827146\pi\)
\(54\) 0 0
\(55\) 7.00273 + 5.58449i 0.944248 + 0.753013i
\(56\) 1.84316 + 2.73676i 0.246303 + 0.365715i
\(57\) 0 0
\(58\) −0.877974 + 3.84666i −0.115284 + 0.505091i
\(59\) 0.856868 1.07448i 0.111555 0.139885i −0.722919 0.690932i \(-0.757200\pi\)
0.834474 + 0.551047i \(0.185772\pi\)
\(60\) 0 0
\(61\) −5.13768 + 10.6685i −0.657813 + 1.36596i 0.258701 + 0.965958i \(0.416706\pi\)
−0.916513 + 0.400004i \(0.869009\pi\)
\(62\) −2.60358 11.4070i −0.330655 1.44869i
\(63\) 0 0
\(64\) −2.62221 + 11.4886i −0.327776 + 1.43608i
\(65\) 15.9677 + 12.7338i 1.98055 + 1.57944i
\(66\) 0 0
\(67\) 6.21276 0.759010 0.379505 0.925190i \(-0.376094\pi\)
0.379505 + 0.925190i \(0.376094\pi\)
\(68\) −12.1036 −1.46778
\(69\) 0 0
\(70\) −13.9930 + 14.9097i −1.67248 + 1.78206i
\(71\) −0.0504417 0.104743i −0.00598632 0.0124307i 0.897954 0.440089i \(-0.145053\pi\)
−0.903941 + 0.427658i \(0.859339\pi\)
\(72\) 0 0
\(73\) −2.10438 0.480310i −0.246298 0.0562160i 0.0975893 0.995227i \(-0.468887\pi\)
−0.343888 + 0.939011i \(0.611744\pi\)
\(74\) −19.6470 4.48429i −2.28391 0.521288i
\(75\) 0 0
\(76\) −6.15856 12.7884i −0.706435 1.46693i
\(77\) −0.941351 6.49610i −0.107277 0.740299i
\(78\) 0 0
\(79\) −11.3011 −1.27147 −0.635734 0.771908i \(-0.719303\pi\)
−0.635734 + 0.771908i \(0.719303\pi\)
\(80\) −9.00923 −1.00726
\(81\) 0 0
\(82\) −5.20107 4.14772i −0.574362 0.458039i
\(83\) −0.130612 + 0.572249i −0.0143365 + 0.0628125i −0.981590 0.190999i \(-0.938827\pi\)
0.967254 + 0.253812i \(0.0816844\pi\)
\(84\) 0 0
\(85\) −3.76506 16.4958i −0.408378 1.78922i
\(86\) −8.98762 + 18.6630i −0.969160 + 2.01248i
\(87\) 0 0
\(88\) −1.92909 + 2.41900i −0.205642 + 0.257867i
\(89\) 1.33313 5.84082i 0.141311 0.619126i −0.853820 0.520568i \(-0.825720\pi\)
0.995131 0.0985573i \(-0.0314228\pi\)
\(90\) 0 0
\(91\) −2.14648 14.8125i −0.225012 1.55277i
\(92\) −9.39377 7.49128i −0.979368 0.781020i
\(93\) 0 0
\(94\) −7.77701 16.1491i −0.802137 1.66566i
\(95\) 15.5133 12.3714i 1.59163 1.26928i
\(96\) 0 0
\(97\) 6.74458i 0.684808i 0.939553 + 0.342404i \(0.111241\pi\)
−0.939553 + 0.342404i \(0.888759\pi\)
\(98\) 14.9547 0.949665i 1.51066 0.0959307i
\(99\) 0 0
\(100\) 4.61693 + 20.2281i 0.461693 + 2.02281i
\(101\) 4.27822 + 5.36472i 0.425699 + 0.533810i 0.947712 0.319128i \(-0.103390\pi\)
−0.522013 + 0.852938i \(0.674819\pi\)
\(102\) 0 0
\(103\) −2.19199 + 1.74805i −0.215983 + 0.172241i −0.725505 0.688217i \(-0.758394\pi\)
0.509522 + 0.860458i \(0.329822\pi\)
\(104\) −4.39874 + 5.51584i −0.431332 + 0.540873i
\(105\) 0 0
\(106\) −1.82867 2.29308i −0.177616 0.222723i
\(107\) −9.13658 2.08536i −0.883267 0.201600i −0.243252 0.969963i \(-0.578214\pi\)
−0.640014 + 0.768363i \(0.721072\pi\)
\(108\) 0 0
\(109\) 1.20481 + 5.27862i 0.115400 + 0.505601i 0.999282 + 0.0378903i \(0.0120638\pi\)
−0.883882 + 0.467710i \(0.845079\pi\)
\(110\) −17.2750 8.31922i −1.64711 0.793206i
\(111\) 0 0
\(112\) 4.81423 + 4.51821i 0.454902 + 0.426931i
\(113\) −13.7114 3.12954i −1.28986 0.294403i −0.478056 0.878329i \(-0.658659\pi\)
−0.811807 + 0.583926i \(0.801516\pi\)
\(114\) 0 0
\(115\) 7.28761 15.1329i 0.679573 1.41115i
\(116\) 4.76002i 0.441957i
\(117\) 0 0
\(118\) −1.27648 + 2.65063i −0.117509 + 0.244010i
\(119\) −6.26087 + 10.7030i −0.573933 + 0.981143i
\(120\) 0 0
\(121\) −4.36514 + 2.10214i −0.396831 + 0.191104i
\(122\) 5.64052 24.7127i 0.510669 2.23739i
\(123\) 0 0
\(124\) 6.12452 + 12.7177i 0.549998 + 1.14208i
\(125\) −9.86866 + 4.75249i −0.882680 + 0.425076i
\(126\) 0 0
\(127\) 0.189842 + 0.0914232i 0.0168458 + 0.00811250i 0.442288 0.896873i \(-0.354167\pi\)
−0.425442 + 0.904986i \(0.639881\pi\)
\(128\) 9.55367i 0.844433i
\(129\) 0 0
\(130\) −39.3907 18.9696i −3.45480 1.66374i
\(131\) −3.46562 + 4.34575i −0.302793 + 0.379690i −0.909829 0.414984i \(-0.863787\pi\)
0.607036 + 0.794675i \(0.292358\pi\)
\(132\) 0 0
\(133\) −14.4942 1.16918i −1.25680 0.101380i
\(134\) −12.9662 + 2.95945i −1.12011 + 0.255657i
\(135\) 0 0
\(136\) 5.69826 1.30059i 0.488622 0.111525i
\(137\) 10.0990 + 8.05366i 0.862814 + 0.688071i 0.951387 0.307999i \(-0.0996592\pi\)
−0.0885731 + 0.996070i \(0.528231\pi\)
\(138\) 0 0
\(139\) 9.72014 7.75155i 0.824451 0.657478i −0.117557 0.993066i \(-0.537506\pi\)
0.942009 + 0.335588i \(0.108935\pi\)
\(140\) 12.4556 21.2929i 1.05269 1.79958i
\(141\) 0 0
\(142\) 0.155167 + 0.194574i 0.0130214 + 0.0163283i
\(143\) 12.6449 6.08949i 1.05742 0.509228i
\(144\) 0 0
\(145\) 6.48734 1.48069i 0.538744 0.122965i
\(146\) 4.62068 0.382410
\(147\) 0 0
\(148\) 24.3120 1.99844
\(149\) −20.2950 + 4.63220i −1.66263 + 0.379485i −0.947563 0.319569i \(-0.896462\pi\)
−0.715069 + 0.699054i \(0.753605\pi\)
\(150\) 0 0
\(151\) −15.5553 + 7.49106i −1.26588 + 0.609614i −0.941722 0.336391i \(-0.890794\pi\)
−0.324153 + 0.946005i \(0.605079\pi\)
\(152\) 4.27355 + 5.35887i 0.346631 + 0.434662i
\(153\) 0 0
\(154\) 5.05903 + 13.1091i 0.407668 + 1.05636i
\(155\) −15.4275 + 12.3031i −1.23917 + 0.988205i
\(156\) 0 0
\(157\) −0.179410 0.143074i −0.0143184 0.0114186i 0.616304 0.787508i \(-0.288629\pi\)
−0.630623 + 0.776089i \(0.717201\pi\)
\(158\) 23.5856 5.38325i 1.87637 0.428269i
\(159\) 0 0
\(160\) 27.5815 6.29531i 2.18051 0.497688i
\(161\) −11.4835 + 4.43170i −0.905029 + 0.349267i
\(162\) 0 0
\(163\) 6.69637 8.39698i 0.524500 0.657702i −0.447058 0.894505i \(-0.647528\pi\)
0.971558 + 0.236803i \(0.0760996\pi\)
\(164\) 7.23082 + 3.48218i 0.564632 + 0.271913i
\(165\) 0 0
\(166\) 1.25651i 0.0975245i
\(167\) −2.82756 1.36168i −0.218803 0.105370i 0.321271 0.946987i \(-0.395890\pi\)
−0.540075 + 0.841617i \(0.681604\pi\)
\(168\) 0 0
\(169\) 17.1206 8.24483i 1.31697 0.634218i
\(170\) 15.7155 + 32.6336i 1.20533 + 2.50289i
\(171\) 0 0
\(172\) 5.56084 24.3636i 0.424010 1.85771i
\(173\) 13.4507 6.47751i 1.02264 0.492476i 0.154076 0.988059i \(-0.450760\pi\)
0.868560 + 0.495583i \(0.165046\pi\)
\(174\) 0 0
\(175\) 20.2755 + 6.38077i 1.53269 + 0.482341i
\(176\) −2.68620 + 5.57796i −0.202480 + 0.420455i
\(177\) 0 0
\(178\) 12.8250i 0.961272i
\(179\) 2.70448 5.61591i 0.202142 0.419753i −0.775112 0.631824i \(-0.782307\pi\)
0.977254 + 0.212071i \(0.0680209\pi\)
\(180\) 0 0
\(181\) −13.7794 3.14506i −1.02421 0.233770i −0.322758 0.946482i \(-0.604610\pi\)
−0.701457 + 0.712711i \(0.747467\pi\)
\(182\) 11.5357 + 29.8915i 0.855080 + 2.21571i
\(183\) 0 0
\(184\) 5.22746 + 2.51741i 0.385374 + 0.185586i
\(185\) 7.56270 + 33.1344i 0.556021 + 2.43609i
\(186\) 0 0
\(187\) −11.3358 2.58732i −0.828954 0.189203i
\(188\) 13.4824 + 16.9064i 0.983304 + 1.23302i
\(189\) 0 0
\(190\) −26.4835 + 33.2092i −1.92131 + 2.40925i
\(191\) −0.690150 + 0.550376i −0.0499375 + 0.0398238i −0.648141 0.761521i \(-0.724453\pi\)
0.598203 + 0.801345i \(0.295882\pi\)
\(192\) 0 0
\(193\) −1.56777 1.96592i −0.112850 0.141510i 0.722198 0.691686i \(-0.243132\pi\)
−0.835048 + 0.550176i \(0.814560\pi\)
\(194\) −3.21278 14.0761i −0.230664 1.01060i
\(195\) 0 0
\(196\) −17.3344 + 5.13162i −1.23817 + 0.366545i
\(197\) 16.1008i 1.14714i −0.819158 0.573568i \(-0.805559\pi\)
0.819158 0.573568i \(-0.194441\pi\)
\(198\) 0 0
\(199\) −1.92580 + 1.53577i −0.136516 + 0.108868i −0.689367 0.724412i \(-0.742111\pi\)
0.552851 + 0.833280i \(0.313540\pi\)
\(200\) −4.34721 9.02707i −0.307394 0.638310i
\(201\) 0 0
\(202\) −11.4842 9.15837i −0.808027 0.644380i
\(203\) −4.20920 2.46223i −0.295428 0.172814i
\(204\) 0 0
\(205\) −2.49651 + 10.9379i −0.174364 + 0.763939i
\(206\) 3.74204 4.69237i 0.260721 0.326933i
\(207\) 0 0
\(208\) −6.12511 + 12.7189i −0.424700 + 0.881899i
\(209\) −3.03417 13.2936i −0.209878 0.919534i
\(210\) 0 0
\(211\) −5.13084 + 22.4797i −0.353221 + 1.54756i 0.416471 + 0.909149i \(0.363267\pi\)
−0.769692 + 0.638415i \(0.779590\pi\)
\(212\) 2.76641 + 2.20614i 0.189998 + 0.151518i
\(213\) 0 0
\(214\) 20.0616 1.37138
\(215\) 34.9345 2.38251
\(216\) 0 0
\(217\) 14.4141 + 1.16271i 0.978490 + 0.0789301i
\(218\) −5.02894 10.4427i −0.340603 0.707269i
\(219\) 0 0
\(220\) 22.5517 + 5.14729i 1.52044 + 0.347030i
\(221\) −25.8480 5.89963i −1.73872 0.396852i
\(222\) 0 0
\(223\) −6.87647 14.2791i −0.460482 0.956202i −0.993893 0.110345i \(-0.964804\pi\)
0.533411 0.845856i \(-0.320910\pi\)
\(224\) −17.8958 10.4684i −1.19571 0.699449i
\(225\) 0 0
\(226\) 30.1068 2.00268
\(227\) 20.3914 1.35342 0.676711 0.736249i \(-0.263405\pi\)
0.676711 + 0.736249i \(0.263405\pi\)
\(228\) 0 0
\(229\) 18.2428 + 14.5482i 1.20552 + 0.961371i 0.999851 0.0172501i \(-0.00549116\pi\)
0.205670 + 0.978621i \(0.434063\pi\)
\(230\) −8.00088 + 35.0541i −0.527562 + 2.31140i
\(231\) 0 0
\(232\) 0.511487 + 2.24097i 0.0335807 + 0.147127i
\(233\) 9.92363 20.6066i 0.650119 1.34999i −0.271707 0.962380i \(-0.587588\pi\)
0.921825 0.387605i \(-0.126698\pi\)
\(234\) 0 0
\(235\) −18.8474 + 23.6339i −1.22947 + 1.54171i
\(236\) 0.789784 3.46027i 0.0514106 0.225245i
\(237\) 0 0
\(238\) 7.96821 25.3198i 0.516502 1.64124i
\(239\) 19.7044 + 15.7137i 1.27457 + 1.01644i 0.998469 + 0.0553060i \(0.0176134\pi\)
0.276100 + 0.961129i \(0.410958\pi\)
\(240\) 0 0
\(241\) −8.94537 18.5752i −0.576222 1.19654i −0.961772 0.273850i \(-0.911703\pi\)
0.385551 0.922687i \(-0.374012\pi\)
\(242\) 8.10880 6.46655i 0.521253 0.415686i
\(243\) 0 0
\(244\) 30.5807i 1.95773i
\(245\) −12.3860 22.0284i −0.791311 1.40734i
\(246\) 0 0
\(247\) −6.91854 30.3121i −0.440216 1.92871i
\(248\) −4.24993 5.32925i −0.269871 0.338408i
\(249\) 0 0
\(250\) 18.3323 14.6195i 1.15943 0.924618i
\(251\) 0.597185 0.748847i 0.0376940 0.0472668i −0.762627 0.646838i \(-0.776091\pi\)
0.800321 + 0.599571i \(0.204662\pi\)
\(252\) 0 0
\(253\) −7.19646 9.02408i −0.452438 0.567339i
\(254\) −0.439755 0.100371i −0.0275927 0.00629785i
\(255\) 0 0
\(256\) −0.693528 3.03854i −0.0433455 0.189909i
\(257\) −23.9108 11.5148i −1.49151 0.718275i −0.502291 0.864699i \(-0.667509\pi\)
−0.989222 + 0.146424i \(0.953224\pi\)
\(258\) 0 0
\(259\) 12.5759 21.4986i 0.781430 1.33586i
\(260\) 51.4227 + 11.7369i 3.18910 + 0.727892i
\(261\) 0 0
\(262\) 5.16274 10.7205i 0.318955 0.662317i
\(263\) 13.2563i 0.817419i 0.912665 + 0.408709i \(0.134021\pi\)
−0.912665 + 0.408709i \(0.865979\pi\)
\(264\) 0 0
\(265\) −2.14616 + 4.45655i −0.131838 + 0.273764i
\(266\) 30.8066 4.46419i 1.88887 0.273717i
\(267\) 0 0
\(268\) 14.4560 6.96164i 0.883040 0.425250i
\(269\) −1.28551 + 5.63220i −0.0783791 + 0.343401i −0.998879 0.0473422i \(-0.984925\pi\)
0.920500 + 0.390743i \(0.127782\pi\)
\(270\) 0 0
\(271\) 1.41890 + 2.94639i 0.0861923 + 0.178980i 0.939610 0.342248i \(-0.111188\pi\)
−0.853417 + 0.521228i \(0.825474\pi\)
\(272\) 10.5371 5.07441i 0.638907 0.307681i
\(273\) 0 0
\(274\) −24.9132 11.9975i −1.50506 0.724798i
\(275\) 19.9318i 1.20193i
\(276\) 0 0
\(277\) 7.22028 + 3.47711i 0.433825 + 0.208919i 0.638034 0.770008i \(-0.279748\pi\)
−0.204209 + 0.978927i \(0.565462\pi\)
\(278\) −16.5937 + 20.8079i −0.995225 + 1.24797i
\(279\) 0 0
\(280\) −3.57593 + 11.3629i −0.213703 + 0.679062i
\(281\) −17.5801 + 4.01254i −1.04874 + 0.239368i −0.711964 0.702216i \(-0.752194\pi\)
−0.336777 + 0.941584i \(0.609337\pi\)
\(282\) 0 0
\(283\) −16.0873 + 3.67181i −0.956288 + 0.218266i −0.672065 0.740492i \(-0.734593\pi\)
−0.284223 + 0.958758i \(0.591735\pi\)
\(284\) −0.234737 0.187197i −0.0139291 0.0111081i
\(285\) 0 0
\(286\) −23.4896 + 18.7323i −1.38897 + 1.10767i
\(287\) 6.81953 4.59284i 0.402544 0.271107i
\(288\) 0 0
\(289\) 3.09543 + 3.88155i 0.182084 + 0.228327i
\(290\) −12.8339 + 6.18048i −0.753633 + 0.362930i
\(291\) 0 0
\(292\) −5.43471 + 1.24044i −0.318042 + 0.0725911i
\(293\) 0.0380752 0.00222437 0.00111219 0.999999i \(-0.499646\pi\)
0.00111219 + 0.999999i \(0.499646\pi\)
\(294\) 0 0
\(295\) 4.96161 0.288876
\(296\) −11.4458 + 2.61244i −0.665276 + 0.151845i
\(297\) 0 0
\(298\) 40.1496 19.3350i 2.32580 1.12005i
\(299\) −16.4095 20.5768i −0.948984 1.18999i
\(300\) 0 0
\(301\) −18.6678 17.5200i −1.07600 1.00983i
\(302\) 28.8960 23.0438i 1.66278 1.32602i
\(303\) 0 0
\(304\) 10.7230 + 8.55129i 0.615005 + 0.490450i
\(305\) −41.6778 + 9.51268i −2.38646 + 0.544694i
\(306\) 0 0
\(307\) 4.80078 1.09575i 0.273995 0.0625375i −0.0833157 0.996523i \(-0.526551\pi\)
0.357310 + 0.933986i \(0.383694\pi\)
\(308\) −9.46947 14.0604i −0.539573 0.801167i
\(309\) 0 0
\(310\) 26.3371 33.0257i 1.49585 1.87573i
\(311\) 28.4804 + 13.7154i 1.61498 + 0.777731i 0.999942 0.0107695i \(-0.00342812\pi\)
0.615034 + 0.788501i \(0.289142\pi\)
\(312\) 0 0
\(313\) 1.29521i 0.0732094i 0.999330 + 0.0366047i \(0.0116542\pi\)
−0.999330 + 0.0366047i \(0.988346\pi\)
\(314\) 0.442585 + 0.213138i 0.0249765 + 0.0120281i
\(315\) 0 0
\(316\) −26.2955 + 12.6633i −1.47924 + 0.712364i
\(317\) −14.1606 29.4047i −0.795337 1.65153i −0.758020 0.652231i \(-0.773833\pi\)
−0.0373165 0.999303i \(-0.511881\pi\)
\(318\) 0 0
\(319\) 1.01752 4.45805i 0.0569702 0.249603i
\(320\) −38.3305 + 18.4590i −2.14274 + 1.03189i
\(321\) 0 0
\(322\) 21.8554 14.7192i 1.21795 0.820271i
\(323\) −11.1761 + 23.2073i −0.621852 + 1.29129i
\(324\) 0 0
\(325\) 45.4487i 2.52104i
\(326\) −9.97558 + 20.7145i −0.552496 + 1.14727i
\(327\) 0 0
\(328\) −3.77837 0.862389i −0.208626 0.0476174i
\(329\) 21.9240 3.17702i 1.20871 0.175155i
\(330\) 0 0
\(331\) −28.6576 13.8008i −1.57517 0.758560i −0.576865 0.816839i \(-0.695724\pi\)
−0.998300 + 0.0582797i \(0.981438\pi\)
\(332\) 0.337316 + 1.47788i 0.0185126 + 0.0811090i
\(333\) 0 0
\(334\) 6.54983 + 1.49496i 0.358391 + 0.0818003i
\(335\) 13.9847 + 17.5362i 0.764065 + 0.958107i
\(336\) 0 0
\(337\) −8.66974 + 10.8715i −0.472271 + 0.592209i −0.959725 0.280940i \(-0.909354\pi\)
0.487455 + 0.873148i \(0.337925\pi\)
\(338\) −31.8036 + 25.3625i −1.72989 + 1.37954i
\(339\) 0 0
\(340\) −27.2448 34.1639i −1.47756 1.85280i
\(341\) 3.01740 + 13.2201i 0.163401 + 0.715907i
\(342\) 0 0
\(343\) −4.42881 + 17.9829i −0.239133 + 0.970987i
\(344\) 12.0677i 0.650646i
\(345\) 0 0
\(346\) −24.9863 + 19.9259i −1.34327 + 1.07122i
\(347\) 6.34306 + 13.1715i 0.340513 + 0.707083i 0.998962 0.0455420i \(-0.0145015\pi\)
−0.658449 + 0.752625i \(0.728787\pi\)
\(348\) 0 0
\(349\) 19.8349 + 15.8178i 1.06174 + 0.846709i 0.988593 0.150612i \(-0.0481245\pi\)
0.0731466 + 0.997321i \(0.476696\pi\)
\(350\) −45.3550 3.65857i −2.42433 0.195559i
\(351\) 0 0
\(352\) 4.32608 18.9538i 0.230581 1.01024i
\(353\) −14.7630 + 18.5122i −0.785755 + 0.985306i 0.214209 + 0.976788i \(0.431283\pi\)
−0.999964 + 0.00851784i \(0.997289\pi\)
\(354\) 0 0
\(355\) 0.182107 0.378150i 0.00966526 0.0200701i
\(356\) −3.44291 15.0844i −0.182474 0.799470i
\(357\) 0 0
\(358\) −2.96918 + 13.0088i −0.156926 + 0.687537i
\(359\) −20.1008 16.0298i −1.06088 0.846023i −0.0723992 0.997376i \(-0.523066\pi\)
−0.988480 + 0.151353i \(0.951637\pi\)
\(360\) 0 0
\(361\) −11.2068 −0.589833
\(362\) 30.2561 1.59022
\(363\) 0 0
\(364\) −21.5924 32.0608i −1.13175 1.68044i
\(365\) −3.38113 7.02099i −0.176977 0.367496i
\(366\) 0 0
\(367\) 9.93071 + 2.26662i 0.518379 + 0.118317i 0.473702 0.880685i \(-0.342917\pi\)
0.0446763 + 0.999002i \(0.485774\pi\)
\(368\) 11.3187 + 2.58341i 0.590027 + 0.134670i
\(369\) 0 0
\(370\) −31.5671 65.5497i −1.64109 3.40777i
\(371\) 3.38183 1.30511i 0.175576 0.0677580i
\(372\) 0 0
\(373\) −24.3982 −1.26329 −0.631645 0.775257i \(-0.717620\pi\)
−0.631645 + 0.775257i \(0.717620\pi\)
\(374\) 24.8905 1.28706
\(375\) 0 0
\(376\) −8.16403 6.51060i −0.421028 0.335759i
\(377\) 2.32016 10.1653i 0.119494 0.523539i
\(378\) 0 0
\(379\) −2.74465 12.0251i −0.140983 0.617687i −0.995208 0.0977830i \(-0.968825\pi\)
0.854225 0.519904i \(-0.174032\pi\)
\(380\) 22.2340 46.1693i 1.14058 2.36844i
\(381\) 0 0
\(382\) 1.17819 1.47740i 0.0602813 0.0755904i
\(383\) −0.625679 + 2.74128i −0.0319707 + 0.140073i −0.988394 0.151910i \(-0.951458\pi\)
0.956424 + 0.291982i \(0.0943149\pi\)
\(384\) 0 0
\(385\) 16.2170 17.2795i 0.826496 0.880646i
\(386\) 4.20843 + 3.35611i 0.214203 + 0.170821i
\(387\) 0 0
\(388\) 7.55756 + 15.6934i 0.383677 + 0.796713i
\(389\) 3.60389 2.87401i 0.182724 0.145718i −0.527856 0.849334i \(-0.677004\pi\)
0.710580 + 0.703616i \(0.248432\pi\)
\(390\) 0 0
\(391\) 21.8040i 1.10268i
\(392\) 7.60944 4.27858i 0.384335 0.216101i
\(393\) 0 0
\(394\) 7.66962 + 33.6028i 0.386390 + 1.69288i
\(395\) −25.4382 31.8985i −1.27994 1.60499i
\(396\) 0 0
\(397\) 3.62178 2.88827i 0.181772 0.144958i −0.528377 0.849010i \(-0.677199\pi\)
0.710149 + 0.704052i \(0.248628\pi\)
\(398\) 3.28762 4.12255i 0.164794 0.206645i
\(399\) 0 0
\(400\) −12.5000 15.6745i −0.624998 0.783723i
\(401\) −11.6033 2.64838i −0.579442 0.132254i −0.0772524 0.997012i \(-0.524615\pi\)
−0.502189 + 0.864758i \(0.667472\pi\)
\(402\) 0 0
\(403\) 6.88030 + 30.1446i 0.342732 + 1.50161i
\(404\) 15.9660 + 7.68883i 0.794339 + 0.382534i
\(405\) 0 0
\(406\) 9.95757 + 3.13368i 0.494186 + 0.155522i
\(407\) 22.7697 + 5.19703i 1.12865 + 0.257607i
\(408\) 0 0
\(409\) −0.0113431 + 0.0235542i −0.000560882 + 0.00116468i −0.901249 0.433301i \(-0.857349\pi\)
0.900688 + 0.434466i \(0.143063\pi\)
\(410\) 24.0170i 1.18611i
\(411\) 0 0
\(412\) −3.14160 + 6.52360i −0.154776 + 0.321395i
\(413\) −2.65132 2.48829i −0.130463 0.122441i
\(414\) 0 0
\(415\) −1.90924 + 0.919442i −0.0937210 + 0.0451336i
\(416\) 9.86438 43.2187i 0.483641 2.11897i
\(417\) 0 0
\(418\) 12.6648 + 26.2986i 0.619454 + 1.28631i
\(419\) −19.8521 + 9.56027i −0.969838 + 0.467050i −0.850598 0.525816i \(-0.823760\pi\)
−0.119240 + 0.992865i \(0.538046\pi\)
\(420\) 0 0
\(421\) 17.1780 + 8.27249i 0.837205 + 0.403177i 0.802812 0.596232i \(-0.203336\pi\)
0.0343926 + 0.999408i \(0.489050\pi\)
\(422\) 49.3597i 2.40279i
\(423\) 0 0
\(424\) −1.53946 0.741364i −0.0747627 0.0360038i
\(425\) 23.4759 29.4378i 1.13875 1.42794i
\(426\) 0 0
\(427\) 27.0419 + 15.8185i 1.30865 + 0.765512i
\(428\) −23.5959 + 5.38561i −1.14055 + 0.260323i
\(429\) 0 0
\(430\) −72.9092 + 16.6410i −3.51599 + 0.802502i
\(431\) −12.7747 10.1875i −0.615337 0.490715i 0.265515 0.964107i \(-0.414458\pi\)
−0.880852 + 0.473392i \(0.843030\pi\)
\(432\) 0 0
\(433\) −4.91646 + 3.92075i −0.236270 + 0.188419i −0.734466 0.678645i \(-0.762567\pi\)
0.498196 + 0.867064i \(0.333996\pi\)
\(434\) −30.6363 + 4.43952i −1.47059 + 0.213104i
\(435\) 0 0
\(436\) 8.71828 + 10.9324i 0.417530 + 0.523566i
\(437\) −23.0375 + 11.0943i −1.10203 + 0.530712i
\(438\) 0 0
\(439\) −5.76219 + 1.31518i −0.275014 + 0.0627703i −0.357804 0.933797i \(-0.616474\pi\)
0.0827892 + 0.996567i \(0.473617\pi\)
\(440\) −11.1702 −0.532519
\(441\) 0 0
\(442\) 56.7556 2.69959
\(443\) 3.00551 0.685988i 0.142796 0.0325923i −0.150525 0.988606i \(-0.548097\pi\)
0.293321 + 0.956014i \(0.405239\pi\)
\(444\) 0 0
\(445\) 19.4872 9.38454i 0.923782 0.444870i
\(446\) 21.1532 + 26.5253i 1.00163 + 1.25601i
\(447\) 0 0
\(448\) 29.7399 + 9.35922i 1.40508 + 0.442182i
\(449\) −28.2620 + 22.5382i −1.33377 + 1.06364i −0.341452 + 0.939899i \(0.610919\pi\)
−0.992314 + 0.123744i \(0.960510\pi\)
\(450\) 0 0
\(451\) 6.02773 + 4.80696i 0.283835 + 0.226351i
\(452\) −35.4108 + 8.08229i −1.66558 + 0.380159i
\(453\) 0 0
\(454\) −42.5572 + 9.71341i −1.99731 + 0.455873i
\(455\) 36.9783 39.4010i 1.73357 1.84715i
\(456\) 0 0
\(457\) −11.3269 + 14.2035i −0.529849 + 0.664410i −0.972668 0.232201i \(-0.925407\pi\)
0.442819 + 0.896611i \(0.353979\pi\)
\(458\) −45.0033 21.6724i −2.10286 1.01269i
\(459\) 0 0
\(460\) 43.3776i 2.02249i
\(461\) 20.5242 + 9.88391i 0.955905 + 0.460340i 0.845753 0.533575i \(-0.179152\pi\)
0.110153 + 0.993915i \(0.464866\pi\)
\(462\) 0 0
\(463\) −35.5308 + 17.1107i −1.65126 + 0.795204i −0.651940 + 0.758270i \(0.726045\pi\)
−0.999318 + 0.0369334i \(0.988241\pi\)
\(464\) 1.99562 + 4.14396i 0.0926446 + 0.192378i
\(465\) 0 0
\(466\) −10.8949 + 47.7336i −0.504696 + 2.21122i
\(467\) 13.4779 6.49063i 0.623685 0.300351i −0.0952234 0.995456i \(-0.530357\pi\)
0.718908 + 0.695105i \(0.244642\pi\)
\(468\) 0 0
\(469\) 1.32164 16.3842i 0.0610275 0.756553i
\(470\) 28.0770 58.3025i 1.29510 2.68929i
\(471\) 0 0
\(472\) 1.71393i 0.0788898i
\(473\) 10.4161 21.6293i 0.478934 0.994516i
\(474\) 0 0
\(475\) 43.0482 + 9.82547i 1.97519 + 0.450823i
\(476\) −2.57480 + 31.9195i −0.118016 + 1.46303i
\(477\) 0 0
\(478\) −48.6087 23.4087i −2.22331 1.07069i
\(479\) −5.93866 26.0189i −0.271344 1.18884i −0.908428 0.418042i \(-0.862717\pi\)
0.637084 0.770795i \(-0.280141\pi\)
\(480\) 0 0
\(481\) 51.9196 + 11.8503i 2.36733 + 0.540328i
\(482\) 27.5175 + 34.5059i 1.25339 + 1.57170i
\(483\) 0 0
\(484\) −7.80137 + 9.78261i −0.354608 + 0.444664i
\(485\) −19.0373 + 15.1818i −0.864441 + 0.689369i
\(486\) 0 0
\(487\) −11.1767 14.0151i −0.506463 0.635084i 0.461211 0.887291i \(-0.347415\pi\)
−0.967673 + 0.252206i \(0.918844\pi\)
\(488\) −3.28603 14.3971i −0.148752 0.651724i
\(489\) 0 0
\(490\) 36.3431 + 40.0738i 1.64181 + 1.81035i
\(491\) 26.9866i 1.21789i −0.793213 0.608944i \(-0.791593\pi\)
0.793213 0.608944i \(-0.208407\pi\)
\(492\) 0 0
\(493\) −6.75354 + 5.38577i −0.304164 + 0.242563i
\(494\) 28.8783 + 59.9665i 1.29930 + 2.69802i
\(495\) 0 0
\(496\) −10.6637 8.50402i −0.478814 0.381842i
\(497\) −0.286958 + 0.110742i −0.0128718 + 0.00496746i
\(498\) 0 0
\(499\) 0.493922 2.16401i 0.0221110 0.0968746i −0.962668 0.270683i \(-0.912750\pi\)
0.984779 + 0.173809i \(0.0556075\pi\)
\(500\) −17.6372 + 22.1164i −0.788761 + 0.989076i
\(501\) 0 0
\(502\) −0.889627 + 1.84733i −0.0397060 + 0.0824504i
\(503\) −7.52668 32.9765i −0.335598 1.47035i −0.808113 0.589028i \(-0.799511\pi\)
0.472515 0.881323i \(-0.343346\pi\)
\(504\) 0 0
\(505\) −5.51243 + 24.1515i −0.245300 + 1.07473i
\(506\) 19.3178 + 15.4054i 0.858781 + 0.684855i
\(507\) 0 0
\(508\) 0.544172 0.0241437
\(509\) 33.9677 1.50559 0.752795 0.658255i \(-0.228705\pi\)
0.752795 + 0.658255i \(0.228705\pi\)
\(510\) 0 0
\(511\) −1.71433 + 5.44745i −0.0758374 + 0.240981i
\(512\) 11.1852 + 23.2263i 0.494320 + 1.02647i
\(513\) 0 0
\(514\) 55.3874 + 12.6418i 2.44303 + 0.557607i
\(515\) −9.86814 2.25234i −0.434842 0.0992499i
\(516\) 0 0
\(517\) 9.01309 + 18.7159i 0.396395 + 0.823123i
\(518\) −16.0054 + 50.8587i −0.703236 + 2.23460i
\(519\) 0 0
\(520\) −25.4705 −1.11695
\(521\) 41.3605 1.81204 0.906019 0.423236i \(-0.139106\pi\)
0.906019 + 0.423236i \(0.139106\pi\)
\(522\) 0 0
\(523\) 17.2140 + 13.7277i 0.752716 + 0.600271i 0.922854 0.385150i \(-0.125850\pi\)
−0.170139 + 0.985420i \(0.554422\pi\)
\(524\) −3.19430 + 13.9951i −0.139544 + 0.611381i
\(525\) 0 0
\(526\) −6.31463 27.6662i −0.275331 1.20630i
\(527\) 11.1143 23.0790i 0.484146 1.00534i
\(528\) 0 0
\(529\) 0.845143 1.05978i 0.0367454 0.0460772i
\(530\) 2.35621 10.3232i 0.102347 0.448413i
\(531\) 0 0
\(532\) −35.0354 + 13.5208i −1.51898 + 0.586201i
\(533\) 13.7445 + 10.9609i 0.595341 + 0.474768i
\(534\) 0 0
\(535\) −14.6799 30.4831i −0.634667 1.31790i
\(536\) −6.05767 + 4.83083i −0.261651 + 0.208660i
\(537\) 0 0
\(538\) 12.3669i 0.533174i
\(539\) −17.3317 + 1.10061i −0.746528 + 0.0474064i
\(540\) 0 0
\(541\) 2.31388 + 10.1378i 0.0994816 + 0.435857i 0.999999 + 0.00103828i \(0.000330494\pi\)
−0.900518 + 0.434819i \(0.856812\pi\)
\(542\) −4.36480 5.47328i −0.187484 0.235098i
\(543\) 0 0
\(544\) −28.7133 + 22.8981i −1.23107 + 0.981748i
\(545\) −12.1875 + 15.2827i −0.522057 + 0.654638i
\(546\) 0 0
\(547\) −24.6968 30.9688i −1.05596 1.32413i −0.943828 0.330438i \(-0.892804\pi\)
−0.112132 0.993693i \(-0.535768\pi\)
\(548\) 32.5229 + 7.42315i 1.38931 + 0.317101i
\(549\) 0 0
\(550\) −9.49449 41.5981i −0.404846 1.77375i
\(551\) −9.12680 4.39523i −0.388815 0.187243i
\(552\) 0 0
\(553\) −2.40407 + 29.8030i −0.102231 + 1.26735i
\(554\) −16.7252 3.81742i −0.710587 0.162187i
\(555\) 0 0
\(556\) 13.9311 28.9282i 0.590811 1.22683i
\(557\) 14.9986i 0.635511i 0.948173 + 0.317755i \(0.102929\pi\)
−0.948173 + 0.317755i \(0.897071\pi\)
\(558\) 0 0
\(559\) 23.7510 49.3194i 1.00456 2.08599i
\(560\) −1.91653 + 23.7590i −0.0809881 + 1.00400i
\(561\) 0 0
\(562\) 34.7787 16.7485i 1.46705 0.706495i
\(563\) −4.42643 + 19.3935i −0.186552 + 0.817337i 0.791865 + 0.610696i \(0.209110\pi\)
−0.978417 + 0.206641i \(0.933747\pi\)
\(564\) 0 0
\(565\) −22.0304 45.7465i −0.926825 1.92457i
\(566\) 31.8254 15.3263i 1.33772 0.644213i
\(567\) 0 0
\(568\) 0.130627 + 0.0629067i 0.00548099 + 0.00263951i
\(569\) 6.21580i 0.260580i 0.991476 + 0.130290i \(0.0415908\pi\)
−0.991476 + 0.130290i \(0.958409\pi\)
\(570\) 0 0
\(571\) 11.8217 + 5.69303i 0.494723 + 0.238246i 0.664572 0.747224i \(-0.268614\pi\)
−0.169849 + 0.985470i \(0.554328\pi\)
\(572\) 22.5990 28.3383i 0.944913 1.18488i
\(573\) 0 0
\(574\) −12.0447 + 12.8338i −0.502737 + 0.535674i
\(575\) 36.4398 8.31715i 1.51964 0.346849i
\(576\) 0 0
\(577\) 14.5003 3.30960i 0.603656 0.137781i 0.0902394 0.995920i \(-0.471237\pi\)
0.513416 + 0.858140i \(0.328380\pi\)
\(578\) −8.30922 6.62638i −0.345618 0.275621i
\(579\) 0 0
\(580\) 13.4357 10.7146i 0.557887 0.444900i
\(581\) 1.48134 + 0.466183i 0.0614564 + 0.0193405i
\(582\) 0 0
\(583\) 2.11932 + 2.65754i 0.0877732 + 0.110064i
\(584\) 2.42531 1.16797i 0.100360 0.0483309i
\(585\) 0 0
\(586\) −0.0794638 + 0.0181371i −0.00328262 + 0.000749236i
\(587\) −31.7302 −1.30965 −0.654823 0.755782i \(-0.727257\pi\)
−0.654823 + 0.755782i \(0.727257\pi\)
\(588\) 0 0
\(589\) 30.0399 1.23777
\(590\) −10.3550 + 2.36346i −0.426309 + 0.0973022i
\(591\) 0 0
\(592\) −21.1654 + 10.1927i −0.869894 + 0.418919i
\(593\) 0.0568661 + 0.0713078i 0.00233521 + 0.00292826i 0.782998 0.622025i \(-0.213690\pi\)
−0.780663 + 0.624953i \(0.785118\pi\)
\(594\) 0 0
\(595\) −44.3034 + 6.42002i −1.81626 + 0.263195i
\(596\) −42.0323 + 33.5196i −1.72171 + 1.37302i
\(597\) 0 0
\(598\) 44.0487 + 35.1277i 1.80128 + 1.43648i
\(599\) 12.4813 2.84878i 0.509973 0.116398i 0.0402109 0.999191i \(-0.487197\pi\)
0.469762 + 0.882793i \(0.344340\pi\)
\(600\) 0 0
\(601\) −11.5018 + 2.62520i −0.469167 + 0.107084i −0.450567 0.892743i \(-0.648778\pi\)
−0.0186002 + 0.999827i \(0.505921\pi\)
\(602\) 47.3058 + 27.6722i 1.92804 + 1.12783i
\(603\) 0 0
\(604\) −27.8005 + 34.8607i −1.13119 + 1.41846i
\(605\) −15.7593 7.58927i −0.640706 0.308548i
\(606\) 0 0
\(607\) 10.4717i 0.425032i −0.977158 0.212516i \(-0.931834\pi\)
0.977158 0.212516i \(-0.0681657\pi\)
\(608\) −38.8034 18.6867i −1.57369 0.757848i
\(609\) 0 0
\(610\) 82.4511 39.7064i 3.33835 1.60766i
\(611\) 20.5518 + 42.6762i 0.831435 + 1.72649i
\(612\) 0 0
\(613\) 6.03873 26.4574i 0.243902 1.06860i −0.693528 0.720430i \(-0.743945\pi\)
0.937430 0.348174i \(-0.113198\pi\)
\(614\) −9.49737 + 4.57369i −0.383283 + 0.184579i
\(615\) 0 0
\(616\) 5.96899 + 5.60196i 0.240497 + 0.225710i
\(617\) −6.61067 + 13.7272i −0.266136 + 0.552636i −0.990618 0.136657i \(-0.956364\pi\)
0.724483 + 0.689293i \(0.242079\pi\)
\(618\) 0 0
\(619\) 29.2828i 1.17697i 0.808507 + 0.588487i \(0.200276\pi\)
−0.808507 + 0.588487i \(0.799724\pi\)
\(620\) −22.1111 + 45.9141i −0.888003 + 1.84396i
\(621\) 0 0
\(622\) −65.9726 15.0578i −2.64526 0.603764i
\(623\) −15.1197 4.75822i −0.605759 0.190634i
\(624\) 0 0
\(625\) 0.563350 + 0.271295i 0.0225340 + 0.0108518i
\(626\) −0.616971 2.70313i −0.0246591 0.108039i
\(627\) 0 0
\(628\) −0.577774 0.131873i −0.0230557 0.00526231i
\(629\) −27.5080 34.4940i −1.09682 1.37537i
\(630\) 0 0
\(631\) 23.9307 30.0082i 0.952668 1.19461i −0.0281348 0.999604i \(-0.508957\pi\)
0.980803 0.195003i \(-0.0624718\pi\)
\(632\) 11.0189 8.78731i 0.438310 0.349540i
\(633\) 0 0
\(634\) 43.5604 + 54.6230i 1.73000 + 2.16936i
\(635\) 0.169275 + 0.741641i 0.00671747 + 0.0294311i
\(636\) 0 0
\(637\) −39.5199 + 2.50961i −1.56583 + 0.0994345i
\(638\) 9.78874i 0.387540i
\(639\) 0 0
\(640\) 26.9663 21.5049i 1.06594 0.850057i
\(641\) −1.21207 2.51690i −0.0478740 0.0994115i 0.875660 0.482929i \(-0.160427\pi\)
−0.923534 + 0.383517i \(0.874713\pi\)
\(642\) 0 0
\(643\) 13.9597 + 11.1325i 0.550518 + 0.439023i 0.858829 0.512262i \(-0.171192\pi\)
−0.308311 + 0.951285i \(0.599764\pi\)
\(644\) −21.7542 + 23.1795i −0.857237 + 0.913400i
\(645\) 0 0
\(646\) 12.2699 53.7579i 0.482753 2.11508i
\(647\) −9.51744 + 11.9345i −0.374169 + 0.469193i −0.932889 0.360163i \(-0.882721\pi\)
0.558720 + 0.829356i \(0.311293\pi\)
\(648\) 0 0
\(649\) 1.47936 3.07192i 0.0580700 0.120584i
\(650\) −21.6494 94.8524i −0.849161 3.72042i
\(651\) 0 0
\(652\) 6.17211 27.0418i 0.241719 1.05904i
\(653\) 11.1937 + 8.92667i 0.438043 + 0.349328i 0.817546 0.575863i \(-0.195334\pi\)
−0.379503 + 0.925190i \(0.623905\pi\)
\(654\) 0 0
\(655\) −20.0674 −0.784096
\(656\) −7.75487 −0.302777
\(657\) 0 0
\(658\) −44.2426 + 17.0740i −1.72476 + 0.665615i
\(659\) 11.8488 + 24.6043i 0.461565 + 0.958449i 0.993730 + 0.111808i \(0.0356643\pi\)
−0.532165 + 0.846641i \(0.678621\pi\)
\(660\) 0 0
\(661\) −25.1228 5.73412i −0.977165 0.223032i −0.296021 0.955181i \(-0.595660\pi\)
−0.681144 + 0.732150i \(0.738517\pi\)
\(662\) 66.3831 + 15.1515i 2.58005 + 0.588880i
\(663\) 0 0
\(664\) −0.317609 0.659523i −0.0123256 0.0255945i
\(665\) −29.3256 43.5432i −1.13720 1.68853i
\(666\) 0 0
\(667\) −8.57491 −0.332022
\(668\) −8.10505 −0.313594
\(669\) 0 0
\(670\) −37.5397 29.9369i −1.45029 1.15656i
\(671\) −6.53703 + 28.6406i −0.252359 + 1.10566i
\(672\) 0 0
\(673\) −0.469412 2.05663i −0.0180945 0.0792772i 0.965075 0.261976i \(-0.0843740\pi\)
−0.983169 + 0.182698i \(0.941517\pi\)
\(674\) 12.9153 26.8189i 0.497479 1.03303i
\(675\) 0 0
\(676\) 30.5978 38.3685i 1.17684 1.47571i
\(677\) −8.99912 + 39.4277i −0.345864 + 1.51533i 0.440605 + 0.897701i \(0.354764\pi\)
−0.786469 + 0.617630i \(0.788093\pi\)
\(678\) 0 0
\(679\) 17.7867 + 1.43477i 0.682591 + 0.0550614i
\(680\) 16.4976 + 13.1564i 0.632655 + 0.504525i
\(681\) 0 0
\(682\) −12.5948 26.1533i −0.482278 1.00146i
\(683\) −15.0885 + 12.0327i −0.577344 + 0.460417i −0.868106 0.496379i \(-0.834663\pi\)
0.290762 + 0.956795i \(0.406091\pi\)
\(684\) 0 0
\(685\) 46.6340i 1.78179i
\(686\) 0.676870 39.6405i 0.0258430 1.51348i
\(687\) 0 0
\(688\) 5.37325 + 23.5417i 0.204853 + 0.897521i
\(689\) 4.83249 + 6.05976i 0.184103 + 0.230858i
\(690\) 0 0
\(691\) 9.95908 7.94210i 0.378861 0.302132i −0.415481 0.909602i \(-0.636387\pi\)
0.794343 + 0.607470i \(0.207815\pi\)
\(692\) 24.0390 30.1440i 0.913827 1.14590i
\(693\) 0 0
\(694\) −19.5124 24.4677i −0.740679 0.928782i
\(695\) 43.7593 + 9.98777i 1.65988 + 0.378858i
\(696\) 0 0
\(697\) −3.24085 14.1991i −0.122756 0.537828i
\(698\) −48.9308 23.5638i −1.85206 0.891904i
\(699\) 0 0
\(700\) 54.3274 7.87260i 2.05338 0.297556i
\(701\) −1.92525 0.439425i −0.0727156 0.0165969i 0.186008 0.982548i \(-0.440445\pi\)
−0.258724 + 0.965951i \(0.583302\pi\)
\(702\) 0 0
\(703\) 22.4488 46.6155i 0.846674 1.75814i
\(704\) 29.2356i 1.10186i
\(705\) 0 0
\(706\) 21.9924 45.6678i 0.827696 1.71873i
\(707\) 15.0579 10.1412i 0.566309 0.381400i
\(708\) 0 0
\(709\) 0.809818 0.389988i 0.0304133 0.0146463i −0.418615 0.908164i \(-0.637484\pi\)
0.449029 + 0.893517i \(0.351770\pi\)
\(710\) −0.199931 + 0.875955i −0.00750327 + 0.0328740i
\(711\) 0 0
\(712\) 3.24177 + 6.73160i 0.121490 + 0.252277i
\(713\) 22.9102 11.0330i 0.857994 0.413188i
\(714\) 0 0
\(715\) 45.6515 + 21.9846i 1.70727 + 0.822178i
\(716\) 16.0977i 0.601598i
\(717\) 0 0
\(718\) 49.5866 + 23.8797i 1.85056 + 0.891181i
\(719\) 3.94929 4.95225i 0.147284 0.184688i −0.702717 0.711469i \(-0.748030\pi\)
0.850001 + 0.526782i \(0.176601\pi\)
\(720\) 0 0
\(721\) 4.14363 + 6.15253i 0.154317 + 0.229132i
\(722\) 23.3889 5.33837i 0.870445 0.198673i
\(723\) 0 0
\(724\) −35.5864 + 8.12235i −1.32256 + 0.301865i
\(725\) 11.5771 + 9.23241i 0.429962 + 0.342883i
\(726\) 0 0
\(727\) −38.3357 + 30.5717i −1.42179 + 1.13384i −0.451395 + 0.892324i \(0.649073\pi\)
−0.970397 + 0.241516i \(0.922355\pi\)
\(728\) 13.6106 + 12.7737i 0.504441 + 0.473423i
\(729\) 0 0
\(730\) 10.4010 + 13.0424i 0.384956 + 0.482720i
\(731\) −40.8591 + 19.6767i −1.51123 + 0.727770i
\(732\) 0 0
\(733\) −14.0006 + 3.19555i −0.517125 + 0.118030i −0.473115 0.881001i \(-0.656870\pi\)
−0.0440098 + 0.999031i \(0.514013\pi\)
\(734\) −21.8053 −0.804849
\(735\) 0 0
\(736\) −36.4570 −1.34382
\(737\) 15.0270 3.42982i 0.553528 0.126339i
\(738\) 0 0
\(739\) −10.5426 + 5.07703i −0.387814 + 0.186762i −0.617623 0.786474i \(-0.711904\pi\)
0.229809 + 0.973236i \(0.426190\pi\)
\(740\) 54.7253 + 68.6234i 2.01174 + 2.52265i
\(741\) 0 0
\(742\) −6.43628 + 4.33473i −0.236283 + 0.159133i
\(743\) −8.35021 + 6.65907i −0.306340 + 0.244298i −0.764577 0.644532i \(-0.777052\pi\)
0.458238 + 0.888830i \(0.348481\pi\)
\(744\) 0 0
\(745\) −58.7581 46.8581i −2.15273 1.71675i
\(746\) 50.9196 11.6221i 1.86430 0.425514i
\(747\) 0 0
\(748\) −29.2755 + 6.68194i −1.07042 + 0.244316i
\(749\) −7.44311 + 23.6512i −0.271965 + 0.864197i
\(750\) 0 0
\(751\) 2.94786 3.69650i 0.107569 0.134887i −0.725133 0.688609i \(-0.758222\pi\)
0.832702 + 0.553722i \(0.186793\pi\)
\(752\) −18.8254 9.06582i −0.686491 0.330597i
\(753\) 0 0
\(754\) 22.3204i 0.812861i
\(755\) −56.1588 27.0446i −2.04383 0.984255i
\(756\) 0 0
\(757\) 44.5744 21.4659i 1.62008 0.780191i 0.620093 0.784528i \(-0.287095\pi\)
0.999991 + 0.00433706i \(0.00138053\pi\)
\(758\) 11.4563 + 23.7892i 0.416111 + 0.864063i
\(759\) 0 0
\(760\) −5.50642 + 24.1252i −0.199739 + 0.875112i
\(761\) −10.6689 + 5.13787i −0.386747 + 0.186248i −0.617146 0.786849i \(-0.711711\pi\)
0.230399 + 0.973096i \(0.425997\pi\)
\(762\) 0 0
\(763\) 14.1770 2.05439i 0.513242 0.0743740i
\(764\) −0.989138 + 2.05397i −0.0357857 + 0.0743099i
\(765\) 0 0
\(766\) 6.01916i 0.217481i
\(767\) 3.37326 7.00464i 0.121801 0.252923i
\(768\) 0 0
\(769\) −26.2882 6.00010i −0.947975 0.216369i −0.279535 0.960135i \(-0.590180\pi\)
−0.668440 + 0.743766i \(0.733038\pi\)
\(770\) −25.6142 + 43.7877i −0.923073 + 1.57800i
\(771\) 0 0
\(772\) −5.85079 2.81759i −0.210575 0.101407i
\(773\) 3.88268 + 17.0112i 0.139650 + 0.611849i 0.995511 + 0.0946425i \(0.0301708\pi\)
−0.855861 + 0.517206i \(0.826972\pi\)
\(774\) 0 0
\(775\) −42.8102 9.77116i −1.53779 0.350990i
\(776\) −5.24435 6.57620i −0.188261 0.236072i
\(777\) 0 0
\(778\) −6.15237 + 7.71483i −0.220573 + 0.276590i
\(779\) 13.3534 10.6489i 0.478434 0.381538i
\(780\) 0 0
\(781\) −0.179830 0.225499i −0.00643481 0.00806900i
\(782\) −10.3863 45.5055i −0.371414 1.62727i
\(783\) 0 0
\(784\) 12.9395 11.7349i 0.462124 0.419102i
\(785\) 0.828458i 0.0295689i
\(786\) 0 0
\(787\) 33.9371 27.0639i 1.20973 0.964725i 0.209812 0.977742i \(-0.432715\pi\)
0.999915 + 0.0130164i \(0.00414335\pi\)
\(788\) −18.0416 37.4637i −0.642705 1.33459i
\(789\) 0 0
\(790\) 68.2850 + 54.4555i 2.42947 + 1.93744i
\(791\) −11.1700 + 35.4938i −0.397160 + 1.26202i
\(792\) 0 0
\(793\) −14.9058 + 65.3067i −0.529321 + 2.31911i
\(794\) −6.18292 + 7.75313i −0.219423 + 0.275148i
\(795\) 0 0
\(796\) −2.76010 + 5.73140i −0.0978290 + 0.203144i
\(797\) 7.70022 + 33.7369i 0.272756 + 1.19502i 0.906745 + 0.421679i \(0.138559\pi\)
−0.633989 + 0.773342i \(0.718584\pi\)
\(798\) 0 0
\(799\) 8.73208 38.2578i 0.308919 1.35346i
\(800\) 49.2210 + 39.2525i 1.74023 + 1.38778i
\(801\) 0 0
\(802\) 25.4779 0.899657
\(803\) −5.35509 −0.188977
\(804\) 0 0
\(805\) −38.3579 22.4380i −1.35194 0.790835i
\(806\) −28.7187 59.6350i −1.01157 2.10055i
\(807\) 0 0
\(808\) −8.34283 1.90420i −0.293500 0.0669894i
\(809\) −10.1621 2.31944i −0.357281 0.0815471i 0.0401130 0.999195i \(-0.487228\pi\)
−0.397394 + 0.917648i \(0.630085\pi\)
\(810\) 0 0
\(811\) 1.64622 + 3.41841i 0.0578065 + 0.120036i 0.927871 0.372902i \(-0.121637\pi\)
−0.870064 + 0.492938i \(0.835923\pi\)
\(812\) −12.5531 1.01260i −0.440526 0.0355352i
\(813\) 0 0
\(814\) −49.9964 −1.75237
\(815\) 38.7747 1.35822
\(816\) 0 0
\(817\) −41.5798 33.1588i −1.45469 1.16008i
\(818\) 0.0124533 0.0545616i 0.000435420 0.00190770i
\(819\) 0 0
\(820\) 6.44744 + 28.2481i 0.225154 + 0.986465i
\(821\) −12.3918 + 25.7317i −0.432475 + 0.898044i 0.564867 + 0.825182i \(0.308928\pi\)
−0.997342 + 0.0728619i \(0.976787\pi\)
\(822\) 0 0
\(823\) −16.8334 + 21.1084i −0.586776 + 0.735794i −0.983252 0.182251i \(-0.941662\pi\)
0.396476 + 0.918045i \(0.370233\pi\)
\(824\) 0.778042 3.40882i 0.0271044 0.118752i
\(825\) 0 0
\(826\) 6.71866 + 3.93017i 0.233772 + 0.136748i
\(827\) 31.6716 + 25.2573i 1.10133 + 0.878281i 0.993265 0.115863i \(-0.0369634\pi\)
0.108064 + 0.994144i \(0.465535\pi\)
\(828\) 0 0
\(829\) 18.5911 + 38.6048i 0.645696 + 1.34080i 0.924768 + 0.380531i \(0.124259\pi\)
−0.279072 + 0.960270i \(0.590027\pi\)
\(830\) 3.54666 2.82836i 0.123106 0.0981739i
\(831\) 0 0
\(832\) 66.6634i 2.31114i
\(833\) 26.8939 + 18.7879i 0.931820 + 0.650963i
\(834\) 0 0
\(835\) −2.52122 11.0462i −0.0872506 0.382270i
\(836\) −21.9559 27.5318i −0.759360 0.952208i
\(837\) 0 0
\(838\) 36.8778 29.4090i 1.27392 1.01592i
\(839\) 10.3305 12.9541i 0.356649 0.447224i −0.570847 0.821056i \(-0.693385\pi\)
0.927496 + 0.373833i \(0.121957\pi\)
\(840\) 0 0
\(841\) 15.9631 + 20.0171i 0.550453 + 0.690246i
\(842\) −39.7915 9.08215i −1.37131 0.312992i
\(843\) 0 0
\(844\) 13.2508 + 58.0554i 0.456111 + 1.99835i
\(845\) 61.8097 + 29.7660i 2.12632 + 1.02398i
\(846\) 0 0
\(847\) 4.61514 + 11.9589i 0.158578 + 0.410912i
\(848\) −3.33329 0.760801i −0.114466 0.0261260i
\(849\) 0 0
\(850\) −34.9720 + 72.6201i −1.19953 + 2.49085i
\(851\) 43.7967i 1.50133i
\(852\) 0 0
\(853\) 7.53422 15.6450i 0.257967 0.535674i −0.731254 0.682105i \(-0.761065\pi\)
0.989221 + 0.146432i \(0.0467788\pi\)
\(854\) −63.9722 20.1322i −2.18908 0.688911i
\(855\) 0 0
\(856\) 10.5300 5.07098i 0.359908 0.173323i
\(857\) 2.92698 12.8239i 0.0999836 0.438057i −0.900014 0.435861i \(-0.856444\pi\)
0.999998 0.00219585i \(-0.000698960\pi\)
\(858\) 0 0
\(859\) −15.0195 31.1883i −0.512459 1.06413i −0.983313 0.181920i \(-0.941769\pi\)
0.470855 0.882211i \(-0.343946\pi\)
\(860\) 81.2864 39.1455i 2.77184 1.33485i
\(861\) 0 0
\(862\) 31.5140 + 15.1763i 1.07337 + 0.516908i
\(863\) 19.3005i 0.656997i −0.944505 0.328498i \(-0.893457\pi\)
0.944505 0.328498i \(-0.106543\pi\)
\(864\) 0 0
\(865\) 48.5604 + 23.3855i 1.65110 + 0.795130i
\(866\) 8.39312 10.5246i 0.285210 0.357642i
\(867\) 0 0
\(868\) 34.8418 13.4461i 1.18261 0.456389i
\(869\) −27.3343 + 6.23887i −0.927252 + 0.211639i
\(870\) 0 0
\(871\) 34.2648 7.82072i 1.16102 0.264995i
\(872\) −5.27921 4.21003i −0.178777 0.142570i
\(873\) 0 0
\(874\) 42.7951 34.1280i 1.44757 1.15440i
\(875\) 10.4339 + 27.0365i 0.352729 + 0.914000i
\(876\) 0 0
\(877\) −4.48317 5.62172i −0.151386 0.189832i 0.700356 0.713794i \(-0.253025\pi\)
−0.851742 + 0.523962i \(0.824453\pi\)
\(878\) 11.3993 5.48964i 0.384709 0.185266i
\(879\) 0 0
\(880\) −21.7910 + 4.97364i −0.734573 + 0.167661i
\(881\) 44.6956 1.50583 0.752916 0.658117i \(-0.228647\pi\)
0.752916 + 0.658117i \(0.228647\pi\)
\(882\) 0 0
\(883\) −8.25940 −0.277951 −0.138975 0.990296i \(-0.544381\pi\)
−0.138975 + 0.990296i \(0.544381\pi\)
\(884\) −66.7543 + 15.2362i −2.24519 + 0.512450i
\(885\) 0 0
\(886\) −5.94580 + 2.86335i −0.199753 + 0.0961960i
\(887\) 4.54928 + 5.70461i 0.152750 + 0.191542i 0.852318 0.523023i \(-0.175196\pi\)
−0.699569 + 0.714565i \(0.746624\pi\)
\(888\) 0 0
\(889\) 0.281485 0.481201i 0.00944070 0.0161390i
\(890\) −36.1999 + 28.8685i −1.21342 + 0.967673i
\(891\) 0 0
\(892\) −32.0006 25.5196i −1.07146 0.854461i
\(893\) 44.8652 10.2402i 1.50136 0.342675i
\(894\) 0 0
\(895\) 21.9392 5.00748i 0.733347 0.167382i
\(896\) −25.1948 2.03235i −0.841699 0.0678959i
\(897\) 0 0
\(898\) 48.2474 60.5003i 1.61004 2.01892i
\(899\) 9.07635 + 4.37094i 0.302713 + 0.145779i
\(900\) 0 0
\(901\) 6.42116i 0.213920i
\(902\) −14.8698 7.16092i −0.495111 0.238433i
\(903\) 0 0
\(904\) 15.8026 7.61011i 0.525585 0.253109i
\(905\) −22.1396 45.9733i −0.735945 1.52821i
\(906\) 0 0
\(907\) 8.61261 37.7343i 0.285977 1.25295i −0.604015 0.796973i \(-0.706433\pi\)
0.889993 0.455975i \(-0.150709\pi\)
\(908\) 47.4470 22.8493i 1.57459 0.758280i
\(909\) 0 0
\(910\) −58.4059 + 99.8453i −1.93614 + 3.30984i
\(911\) −16.1611 + 33.5589i −0.535442 + 1.11186i 0.441284 + 0.897367i \(0.354523\pi\)
−0.976726 + 0.214490i \(0.931191\pi\)
\(912\) 0 0
\(913\) 1.45623i 0.0481941i
\(914\) 16.8737 35.0385i 0.558131 1.15897i
\(915\) 0 0
\(916\) 58.7496 + 13.4092i 1.94114 + 0.443053i
\(917\) 10.7233 + 10.0640i 0.354115 + 0.332341i
\(918\) 0 0
\(919\) 2.90009 + 1.39661i 0.0956651 + 0.0460699i 0.481104 0.876663i \(-0.340236\pi\)
−0.385439 + 0.922733i \(0.625950\pi\)
\(920\) 4.66112 + 20.4217i 0.153673 + 0.673283i
\(921\) 0 0
\(922\) −47.5426 10.8513i −1.56573 0.357368i
\(923\) −0.410050 0.514186i −0.0134970 0.0169246i
\(924\) 0 0
\(925\) −47.1549 + 59.1304i −1.55044 + 1.94420i
\(926\) 66.0030 52.6356i 2.16899 1.72971i
\(927\) 0 0
\(928\) −9.00520 11.2922i −0.295610 0.370683i
\(929\) −3.46567 15.1841i −0.113705 0.498173i −0.999424 0.0339509i \(-0.989191\pi\)
0.885719 0.464222i \(-0.153666\pi\)
\(930\) 0 0
\(931\) −6.16667 + 37.9751i −0.202104 + 1.24458i
\(932\) 59.0677i 1.93483i
\(933\) 0 0
\(934\) −25.0370 + 19.9663i −0.819234 + 0.653318i
\(935\) −18.2134 37.8204i −0.595641 1.23686i
\(936\) 0 0
\(937\) 3.38495 + 2.69941i 0.110582 + 0.0881859i 0.677220 0.735781i \(-0.263185\pi\)
−0.566638 + 0.823967i \(0.691756\pi\)
\(938\) 5.04632 + 34.8238i 0.164768 + 1.13704i
\(939\) 0 0
\(940\) −17.3719 + 76.1111i −0.566608 + 2.48247i
\(941\) 19.0408 23.8764i 0.620712 0.778348i −0.367732 0.929932i \(-0.619866\pi\)
0.988444 + 0.151583i \(0.0484372\pi\)
\(942\) 0 0
\(943\) 6.27295 13.0259i 0.204275 0.424182i
\(944\) 0.763141 + 3.34354i 0.0248381 + 0.108823i
\(945\) 0 0
\(946\) −11.4356 + 50.1026i −0.371803 + 1.62898i
\(947\) −19.2341 15.3387i −0.625025 0.498441i 0.259002 0.965877i \(-0.416606\pi\)
−0.884027 + 0.467436i \(0.845178\pi\)
\(948\) 0 0
\(949\) −12.2107 −0.396377
\(950\) −94.5229 −3.06673
\(951\) 0 0
\(952\) −2.21771 15.3040i −0.0718765 0.496007i
\(953\) −13.7853 28.6255i −0.446550 0.927271i −0.995795 0.0916093i \(-0.970799\pi\)
0.549245 0.835661i \(-0.314915\pi\)
\(954\) 0 0
\(955\) −3.10700 0.709152i −0.100540 0.0229476i
\(956\) 63.4563 + 14.4835i 2.05232 + 0.468429i
\(957\) 0 0
\(958\) 24.7882 + 51.4733i 0.800871 + 1.66303i
\(959\) 23.3874 24.9196i 0.755217 0.804696i
\(960\) 0 0
\(961\) 1.12617 0.0363282
\(962\) −114.002 −3.67558
\(963\) 0 0
\(964\) −41.6285 33.1976i −1.34076 1.06922i
\(965\) 2.02004 8.85039i 0.0650275 0.284904i
\(966\) 0 0
\(967\) −4.02816 17.6485i −0.129537 0.567538i −0.997485 0.0708827i \(-0.977418\pi\)
0.867948 0.496655i \(-0.165439\pi\)
\(968\) 2.62162 5.44384i 0.0842620 0.174972i
\(969\) 0 0
\(970\) 32.4995 40.7531i 1.04350 1.30850i
\(971\) −7.29986 + 31.9828i −0.234264 + 1.02638i 0.711797 + 0.702386i \(0.247882\pi\)
−0.946060 + 0.323991i \(0.894975\pi\)
\(972\) 0 0
\(973\) −18.3745 27.2828i −0.589060 0.874646i
\(974\) 30.0020 + 23.9258i 0.961327 + 0.766633i
\(975\) 0 0
\(976\) −12.8208 26.6228i −0.410385 0.852174i
\(977\) −41.0200 + 32.7124i −1.31235 + 1.04656i −0.317180 + 0.948365i \(0.602736\pi\)
−0.995167 + 0.0981960i \(0.968693\pi\)
\(978\) 0 0
\(979\) 14.8634i 0.475036i
\(980\) −53.5036 37.3773i −1.70911 1.19397i
\(981\) 0 0
\(982\) 12.8551 + 56.3217i 0.410221 + 1.79730i
\(983\) −1.40419 1.76080i −0.0447868 0.0561609i 0.758934 0.651168i \(-0.225721\pi\)
−0.803720 + 0.595007i \(0.797149\pi\)
\(984\) 0 0
\(985\) 45.4464 36.2423i 1.44804 1.15478i
\(986\) 11.5293 14.4573i 0.367168 0.460414i
\(987\) 0 0
\(988\) −50.0641 62.7784i −1.59275 1.99725i
\(989\) −43.8897 10.0175i −1.39561 0.318539i
\(990\) 0 0
\(991\) −0.272429 1.19359i −0.00865398 0.0379156i 0.970417 0.241437i \(-0.0776186\pi\)
−0.979071 + 0.203521i \(0.934761\pi\)
\(992\) 38.5889 + 18.5835i 1.22520 + 0.590025i
\(993\) 0 0
\(994\) 0.546135 0.367813i 0.0173224 0.0116663i
\(995\) −8.66979 1.97882i −0.274851 0.0627329i
\(996\) 0 0
\(997\) −0.829695 + 1.72288i −0.0262767 + 0.0545642i −0.913694 0.406403i \(-0.866783\pi\)
0.887417 + 0.460967i \(0.152497\pi\)
\(998\) 4.75163i 0.150410i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.w.a.62.4 120
3.2 odd 2 inner 441.2.w.a.62.17 yes 120
49.34 odd 14 inner 441.2.w.a.377.17 yes 120
147.83 even 14 inner 441.2.w.a.377.4 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.w.a.62.4 120 1.1 even 1 trivial
441.2.w.a.62.17 yes 120 3.2 odd 2 inner
441.2.w.a.377.4 yes 120 147.83 even 14 inner
441.2.w.a.377.17 yes 120 49.34 odd 14 inner