Properties

Label 441.2.w
Level $441$
Weight $2$
Character orbit 441.w
Rep. character $\chi_{441}(62,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $120$
Newform subspaces $1$
Sturm bound $112$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.w (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 147 \)
Character field: \(\Q(\zeta_{14})\)
Newform subspaces: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(441, [\chi])\).

Total New Old
Modular forms 360 120 240
Cusp forms 312 120 192
Eisenstein series 48 0 48

Trace form

\( 120 q + 24 q^{4} + O(q^{10}) \) \( 120 q + 24 q^{4} - 32 q^{16} - 44 q^{22} - 4 q^{25} - 56 q^{28} + 112 q^{34} - 76 q^{37} + 28 q^{40} + 8 q^{43} - 40 q^{46} - 84 q^{49} - 140 q^{52} + 12 q^{58} - 84 q^{61} + 24 q^{64} + 16 q^{67} + 112 q^{70} - 84 q^{76} - 24 q^{79} + 140 q^{82} - 96 q^{85} - 24 q^{88} - 112 q^{91} - 112 q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(441, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
441.2.w.a \(120\) \(3.521\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(441, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(441, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)