Properties

Label 441.2.w.a.377.4
Level $441$
Weight $2$
Character 441.377
Analytic conductor $3.521$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(62,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.62"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.w (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 377.4
Character \(\chi\) \(=\) 441.377
Dual form 441.2.w.a.62.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.08702 - 0.476349i) q^{2} +(2.32682 + 1.12054i) q^{4} +(2.25096 - 2.82261i) q^{5} +(0.212729 + 2.63719i) q^{7} +(-0.975036 - 0.777565i) q^{8} +(-6.04235 + 4.81862i) q^{10} +(2.41874 + 0.552061i) q^{11} +(5.51523 + 1.25882i) q^{13} +(0.812251 - 5.60520i) q^{14} +(-1.55589 - 1.95102i) q^{16} +(-4.22253 + 2.03346i) q^{17} +5.49607i q^{19} +(8.40042 - 4.04543i) q^{20} +(-4.78499 - 2.30433i) q^{22} +(-2.01859 + 4.19164i) q^{23} +(-1.78772 - 7.83253i) q^{25} +(-10.9108 - 5.25436i) q^{26} +(-2.46008 + 6.37463i) q^{28} +(0.799704 + 1.66060i) q^{29} -5.46570i q^{31} +(3.40002 + 7.06021i) q^{32} +(9.78115 - 2.23248i) q^{34} +(7.92260 + 5.33574i) q^{35} +(8.48160 - 4.08452i) q^{37} +(2.61805 - 11.4704i) q^{38} +(-4.38953 + 1.00188i) q^{40} +(1.93756 - 2.42962i) q^{41} +(6.03318 + 7.56536i) q^{43} +(5.00936 + 3.99483i) q^{44} +(6.20952 - 7.78649i) q^{46} +(1.86318 - 8.16313i) q^{47} +(-6.90949 + 1.12201i) q^{49} +17.1983i q^{50} +(11.4224 + 9.10906i) q^{52} +(0.594462 - 1.23441i) q^{53} +(7.00273 - 5.58449i) q^{55} +(1.84316 - 2.73676i) q^{56} +(-0.877974 - 3.84666i) q^{58} +(0.856868 + 1.07448i) q^{59} +(-5.13768 - 10.6685i) q^{61} +(-2.60358 + 11.4070i) q^{62} +(-2.62221 - 11.4886i) q^{64} +(15.9677 - 12.7338i) q^{65} +6.21276 q^{67} -12.1036 q^{68} +(-13.9930 - 14.9097i) q^{70} +(-0.0504417 + 0.104743i) q^{71} +(-2.10438 + 0.480310i) q^{73} +(-19.6470 + 4.48429i) q^{74} +(-6.15856 + 12.7884i) q^{76} +(-0.941351 + 6.49610i) q^{77} -11.3011 q^{79} -9.00923 q^{80} +(-5.20107 + 4.14772i) q^{82} +(-0.130612 - 0.572249i) q^{83} +(-3.76506 + 16.4958i) q^{85} +(-8.98762 - 18.6630i) q^{86} +(-1.92909 - 2.41900i) q^{88} +(1.33313 + 5.84082i) q^{89} +(-2.14648 + 14.8125i) q^{91} +(-9.39377 + 7.49128i) q^{92} +(-7.77701 + 16.1491i) q^{94} +(15.5133 + 12.3714i) q^{95} -6.74458i q^{97} +(14.9547 + 0.949665i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 24 q^{4} - 32 q^{16} - 44 q^{22} - 4 q^{25} - 56 q^{28} + 112 q^{34} - 76 q^{37} + 28 q^{40} + 8 q^{43} - 40 q^{46} - 84 q^{49} - 140 q^{52} + 12 q^{58} - 84 q^{61} + 24 q^{64} + 16 q^{67} + 112 q^{70}+ \cdots - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{3}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08702 0.476349i −1.47575 0.336830i −0.592437 0.805617i \(-0.701834\pi\)
−0.883311 + 0.468787i \(0.844691\pi\)
\(3\) 0 0
\(4\) 2.32682 + 1.12054i 1.16341 + 0.560269i
\(5\) 2.25096 2.82261i 1.00666 1.26231i 0.0419154 0.999121i \(-0.486654\pi\)
0.964744 0.263190i \(-0.0847746\pi\)
\(6\) 0 0
\(7\) 0.212729 + 2.63719i 0.0804041 + 0.996762i
\(8\) −0.975036 0.777565i −0.344727 0.274911i
\(9\) 0 0
\(10\) −6.04235 + 4.81862i −1.91076 + 1.52378i
\(11\) 2.41874 + 0.552061i 0.729277 + 0.166453i 0.571009 0.820944i \(-0.306552\pi\)
0.158267 + 0.987396i \(0.449409\pi\)
\(12\) 0 0
\(13\) 5.51523 + 1.25882i 1.52965 + 0.349133i 0.902818 0.430022i \(-0.141494\pi\)
0.626832 + 0.779155i \(0.284351\pi\)
\(14\) 0.812251 5.60520i 0.217083 1.49805i
\(15\) 0 0
\(16\) −1.55589 1.95102i −0.388972 0.487756i
\(17\) −4.22253 + 2.03346i −1.02411 + 0.493187i −0.869053 0.494718i \(-0.835271\pi\)
−0.155060 + 0.987905i \(0.549557\pi\)
\(18\) 0 0
\(19\) 5.49607i 1.26089i 0.776236 + 0.630443i \(0.217127\pi\)
−0.776236 + 0.630443i \(0.782873\pi\)
\(20\) 8.40042 4.04543i 1.87839 0.904586i
\(21\) 0 0
\(22\) −4.78499 2.30433i −1.02016 0.491284i
\(23\) −2.01859 + 4.19164i −0.420904 + 0.874016i 0.577437 + 0.816435i \(0.304053\pi\)
−0.998341 + 0.0575810i \(0.981661\pi\)
\(24\) 0 0
\(25\) −1.78772 7.83253i −0.357545 1.56651i
\(26\) −10.9108 5.25436i −2.13978 1.03046i
\(27\) 0 0
\(28\) −2.46008 + 6.37463i −0.464912 + 1.20469i
\(29\) 0.799704 + 1.66060i 0.148501 + 0.308366i 0.961929 0.273300i \(-0.0881152\pi\)
−0.813427 + 0.581666i \(0.802401\pi\)
\(30\) 0 0
\(31\) 5.46570i 0.981668i −0.871253 0.490834i \(-0.836692\pi\)
0.871253 0.490834i \(-0.163308\pi\)
\(32\) 3.40002 + 7.06021i 0.601044 + 1.24808i
\(33\) 0 0
\(34\) 9.78115 2.23248i 1.67745 0.382868i
\(35\) 7.92260 + 5.33574i 1.33916 + 0.901905i
\(36\) 0 0
\(37\) 8.48160 4.08452i 1.39437 0.671491i 0.422356 0.906430i \(-0.361203\pi\)
0.972010 + 0.234939i \(0.0754890\pi\)
\(38\) 2.61805 11.4704i 0.424704 1.86075i
\(39\) 0 0
\(40\) −4.38953 + 1.00188i −0.694046 + 0.158411i
\(41\) 1.93756 2.42962i 0.302595 0.379443i −0.607165 0.794575i \(-0.707693\pi\)
0.909761 + 0.415133i \(0.136265\pi\)
\(42\) 0 0
\(43\) 6.03318 + 7.56536i 0.920051 + 1.15371i 0.987757 + 0.156002i \(0.0498606\pi\)
−0.0677061 + 0.997705i \(0.521568\pi\)
\(44\) 5.00936 + 3.99483i 0.755190 + 0.602244i
\(45\) 0 0
\(46\) 6.20952 7.78649i 0.915544 1.14806i
\(47\) 1.86318 8.16313i 0.271773 1.19072i −0.636146 0.771569i \(-0.719472\pi\)
0.907919 0.419146i \(-0.137671\pi\)
\(48\) 0 0
\(49\) −6.90949 + 1.12201i −0.987070 + 0.160288i
\(50\) 17.1983i 2.43220i
\(51\) 0 0
\(52\) 11.4224 + 9.10906i 1.58400 + 1.26320i
\(53\) 0.594462 1.23441i 0.0816556 0.169560i −0.856143 0.516738i \(-0.827146\pi\)
0.937799 + 0.347179i \(0.112860\pi\)
\(54\) 0 0
\(55\) 7.00273 5.58449i 0.944248 0.753013i
\(56\) 1.84316 2.73676i 0.246303 0.365715i
\(57\) 0 0
\(58\) −0.877974 3.84666i −0.115284 0.505091i
\(59\) 0.856868 + 1.07448i 0.111555 + 0.139885i 0.834474 0.551047i \(-0.185772\pi\)
−0.722919 + 0.690932i \(0.757200\pi\)
\(60\) 0 0
\(61\) −5.13768 10.6685i −0.657813 1.36596i −0.916513 0.400004i \(-0.869009\pi\)
0.258701 0.965958i \(-0.416706\pi\)
\(62\) −2.60358 + 11.4070i −0.330655 + 1.44869i
\(63\) 0 0
\(64\) −2.62221 11.4886i −0.327776 1.43608i
\(65\) 15.9677 12.7338i 1.98055 1.57944i
\(66\) 0 0
\(67\) 6.21276 0.759010 0.379505 0.925190i \(-0.376094\pi\)
0.379505 + 0.925190i \(0.376094\pi\)
\(68\) −12.1036 −1.46778
\(69\) 0 0
\(70\) −13.9930 14.9097i −1.67248 1.78206i
\(71\) −0.0504417 + 0.104743i −0.00598632 + 0.0124307i −0.903941 0.427658i \(-0.859339\pi\)
0.897954 + 0.440089i \(0.145053\pi\)
\(72\) 0 0
\(73\) −2.10438 + 0.480310i −0.246298 + 0.0562160i −0.343888 0.939011i \(-0.611744\pi\)
0.0975893 + 0.995227i \(0.468887\pi\)
\(74\) −19.6470 + 4.48429i −2.28391 + 0.521288i
\(75\) 0 0
\(76\) −6.15856 + 12.7884i −0.706435 + 1.46693i
\(77\) −0.941351 + 6.49610i −0.107277 + 0.740299i
\(78\) 0 0
\(79\) −11.3011 −1.27147 −0.635734 0.771908i \(-0.719303\pi\)
−0.635734 + 0.771908i \(0.719303\pi\)
\(80\) −9.00923 −1.00726
\(81\) 0 0
\(82\) −5.20107 + 4.14772i −0.574362 + 0.458039i
\(83\) −0.130612 0.572249i −0.0143365 0.0628125i 0.967254 0.253812i \(-0.0816844\pi\)
−0.981590 + 0.190999i \(0.938827\pi\)
\(84\) 0 0
\(85\) −3.76506 + 16.4958i −0.408378 + 1.78922i
\(86\) −8.98762 18.6630i −0.969160 2.01248i
\(87\) 0 0
\(88\) −1.92909 2.41900i −0.205642 0.257867i
\(89\) 1.33313 + 5.84082i 0.141311 + 0.619126i 0.995131 + 0.0985573i \(0.0314228\pi\)
−0.853820 + 0.520568i \(0.825720\pi\)
\(90\) 0 0
\(91\) −2.14648 + 14.8125i −0.225012 + 1.55277i
\(92\) −9.39377 + 7.49128i −0.979368 + 0.781020i
\(93\) 0 0
\(94\) −7.77701 + 16.1491i −0.802137 + 1.66566i
\(95\) 15.5133 + 12.3714i 1.59163 + 1.26928i
\(96\) 0 0
\(97\) 6.74458i 0.684808i −0.939553 0.342404i \(-0.888759\pi\)
0.939553 0.342404i \(-0.111241\pi\)
\(98\) 14.9547 + 0.949665i 1.51066 + 0.0959307i
\(99\) 0 0
\(100\) 4.61693 20.2281i 0.461693 2.02281i
\(101\) 4.27822 5.36472i 0.425699 0.533810i −0.522013 0.852938i \(-0.674819\pi\)
0.947712 + 0.319128i \(0.103390\pi\)
\(102\) 0 0
\(103\) −2.19199 1.74805i −0.215983 0.172241i 0.509522 0.860458i \(-0.329822\pi\)
−0.725505 + 0.688217i \(0.758394\pi\)
\(104\) −4.39874 5.51584i −0.431332 0.540873i
\(105\) 0 0
\(106\) −1.82867 + 2.29308i −0.177616 + 0.222723i
\(107\) −9.13658 + 2.08536i −0.883267 + 0.201600i −0.640014 0.768363i \(-0.721072\pi\)
−0.243252 + 0.969963i \(0.578214\pi\)
\(108\) 0 0
\(109\) 1.20481 5.27862i 0.115400 0.505601i −0.883882 0.467710i \(-0.845079\pi\)
0.999282 0.0378903i \(-0.0120638\pi\)
\(110\) −17.2750 + 8.31922i −1.64711 + 0.793206i
\(111\) 0 0
\(112\) 4.81423 4.51821i 0.454902 0.426931i
\(113\) −13.7114 + 3.12954i −1.28986 + 0.294403i −0.811807 0.583926i \(-0.801516\pi\)
−0.478056 + 0.878329i \(0.658659\pi\)
\(114\) 0 0
\(115\) 7.28761 + 15.1329i 0.679573 + 1.41115i
\(116\) 4.76002i 0.441957i
\(117\) 0 0
\(118\) −1.27648 2.65063i −0.117509 0.244010i
\(119\) −6.26087 10.7030i −0.573933 0.981143i
\(120\) 0 0
\(121\) −4.36514 2.10214i −0.396831 0.191104i
\(122\) 5.64052 + 24.7127i 0.510669 + 2.23739i
\(123\) 0 0
\(124\) 6.12452 12.7177i 0.549998 1.14208i
\(125\) −9.86866 4.75249i −0.882680 0.425076i
\(126\) 0 0
\(127\) 0.189842 0.0914232i 0.0168458 0.00811250i −0.425442 0.904986i \(-0.639881\pi\)
0.442288 + 0.896873i \(0.354167\pi\)
\(128\) 9.55367i 0.844433i
\(129\) 0 0
\(130\) −39.3907 + 18.9696i −3.45480 + 1.66374i
\(131\) −3.46562 4.34575i −0.302793 0.379690i 0.607036 0.794675i \(-0.292358\pi\)
−0.909829 + 0.414984i \(0.863787\pi\)
\(132\) 0 0
\(133\) −14.4942 + 1.16918i −1.25680 + 0.101380i
\(134\) −12.9662 2.95945i −1.12011 0.255657i
\(135\) 0 0
\(136\) 5.69826 + 1.30059i 0.488622 + 0.111525i
\(137\) 10.0990 8.05366i 0.862814 0.688071i −0.0885731 0.996070i \(-0.528231\pi\)
0.951387 + 0.307999i \(0.0996592\pi\)
\(138\) 0 0
\(139\) 9.72014 + 7.75155i 0.824451 + 0.657478i 0.942009 0.335588i \(-0.108935\pi\)
−0.117557 + 0.993066i \(0.537506\pi\)
\(140\) 12.4556 + 21.2929i 1.05269 + 1.79958i
\(141\) 0 0
\(142\) 0.155167 0.194574i 0.0130214 0.0163283i
\(143\) 12.6449 + 6.08949i 1.05742 + 0.509228i
\(144\) 0 0
\(145\) 6.48734 + 1.48069i 0.538744 + 0.122965i
\(146\) 4.62068 0.382410
\(147\) 0 0
\(148\) 24.3120 1.99844
\(149\) −20.2950 4.63220i −1.66263 0.379485i −0.715069 0.699054i \(-0.753605\pi\)
−0.947563 + 0.319569i \(0.896462\pi\)
\(150\) 0 0
\(151\) −15.5553 7.49106i −1.26588 0.609614i −0.324153 0.946005i \(-0.605079\pi\)
−0.941722 + 0.336391i \(0.890794\pi\)
\(152\) 4.27355 5.35887i 0.346631 0.434662i
\(153\) 0 0
\(154\) 5.05903 13.1091i 0.407668 1.05636i
\(155\) −15.4275 12.3031i −1.23917 0.988205i
\(156\) 0 0
\(157\) −0.179410 + 0.143074i −0.0143184 + 0.0114186i −0.630623 0.776089i \(-0.717201\pi\)
0.616304 + 0.787508i \(0.288629\pi\)
\(158\) 23.5856 + 5.38325i 1.87637 + 0.428269i
\(159\) 0 0
\(160\) 27.5815 + 6.29531i 2.18051 + 0.497688i
\(161\) −11.4835 4.43170i −0.905029 0.349267i
\(162\) 0 0
\(163\) 6.69637 + 8.39698i 0.524500 + 0.657702i 0.971558 0.236803i \(-0.0760996\pi\)
−0.447058 + 0.894505i \(0.647528\pi\)
\(164\) 7.23082 3.48218i 0.564632 0.271913i
\(165\) 0 0
\(166\) 1.25651i 0.0975245i
\(167\) −2.82756 + 1.36168i −0.218803 + 0.105370i −0.540075 0.841617i \(-0.681604\pi\)
0.321271 + 0.946987i \(0.395890\pi\)
\(168\) 0 0
\(169\) 17.1206 + 8.24483i 1.31697 + 0.634218i
\(170\) 15.7155 32.6336i 1.20533 2.50289i
\(171\) 0 0
\(172\) 5.56084 + 24.3636i 0.424010 + 1.85771i
\(173\) 13.4507 + 6.47751i 1.02264 + 0.492476i 0.868560 0.495583i \(-0.165046\pi\)
0.154076 + 0.988059i \(0.450760\pi\)
\(174\) 0 0
\(175\) 20.2755 6.38077i 1.53269 0.482341i
\(176\) −2.68620 5.57796i −0.202480 0.420455i
\(177\) 0 0
\(178\) 12.8250i 0.961272i
\(179\) 2.70448 + 5.61591i 0.202142 + 0.419753i 0.977254 0.212071i \(-0.0680209\pi\)
−0.775112 + 0.631824i \(0.782307\pi\)
\(180\) 0 0
\(181\) −13.7794 + 3.14506i −1.02421 + 0.233770i −0.701457 0.712711i \(-0.747467\pi\)
−0.322758 + 0.946482i \(0.604610\pi\)
\(182\) 11.5357 29.8915i 0.855080 2.21571i
\(183\) 0 0
\(184\) 5.22746 2.51741i 0.385374 0.185586i
\(185\) 7.56270 33.1344i 0.556021 2.43609i
\(186\) 0 0
\(187\) −11.3358 + 2.58732i −0.828954 + 0.189203i
\(188\) 13.4824 16.9064i 0.983304 1.23302i
\(189\) 0 0
\(190\) −26.4835 33.2092i −1.92131 2.40925i
\(191\) −0.690150 0.550376i −0.0499375 0.0398238i 0.598203 0.801345i \(-0.295882\pi\)
−0.648141 + 0.761521i \(0.724453\pi\)
\(192\) 0 0
\(193\) −1.56777 + 1.96592i −0.112850 + 0.141510i −0.835048 0.550176i \(-0.814560\pi\)
0.722198 + 0.691686i \(0.243132\pi\)
\(194\) −3.21278 + 14.0761i −0.230664 + 1.01060i
\(195\) 0 0
\(196\) −17.3344 5.13162i −1.23817 0.366545i
\(197\) 16.1008i 1.14714i 0.819158 + 0.573568i \(0.194441\pi\)
−0.819158 + 0.573568i \(0.805559\pi\)
\(198\) 0 0
\(199\) −1.92580 1.53577i −0.136516 0.108868i 0.552851 0.833280i \(-0.313540\pi\)
−0.689367 + 0.724412i \(0.742111\pi\)
\(200\) −4.34721 + 9.02707i −0.307394 + 0.638310i
\(201\) 0 0
\(202\) −11.4842 + 9.15837i −0.808027 + 0.644380i
\(203\) −4.20920 + 2.46223i −0.295428 + 0.172814i
\(204\) 0 0
\(205\) −2.49651 10.9379i −0.174364 0.763939i
\(206\) 3.74204 + 4.69237i 0.260721 + 0.326933i
\(207\) 0 0
\(208\) −6.12511 12.7189i −0.424700 0.881899i
\(209\) −3.03417 + 13.2936i −0.209878 + 0.919534i
\(210\) 0 0
\(211\) −5.13084 22.4797i −0.353221 1.54756i −0.769692 0.638415i \(-0.779590\pi\)
0.416471 0.909149i \(-0.363267\pi\)
\(212\) 2.76641 2.20614i 0.189998 0.151518i
\(213\) 0 0
\(214\) 20.0616 1.37138
\(215\) 34.9345 2.38251
\(216\) 0 0
\(217\) 14.4141 1.16271i 0.978490 0.0789301i
\(218\) −5.02894 + 10.4427i −0.340603 + 0.707269i
\(219\) 0 0
\(220\) 22.5517 5.14729i 1.52044 0.347030i
\(221\) −25.8480 + 5.89963i −1.73872 + 0.396852i
\(222\) 0 0
\(223\) −6.87647 + 14.2791i −0.460482 + 0.956202i 0.533411 + 0.845856i \(0.320910\pi\)
−0.993893 + 0.110345i \(0.964804\pi\)
\(224\) −17.8958 + 10.4684i −1.19571 + 0.699449i
\(225\) 0 0
\(226\) 30.1068 2.00268
\(227\) 20.3914 1.35342 0.676711 0.736249i \(-0.263405\pi\)
0.676711 + 0.736249i \(0.263405\pi\)
\(228\) 0 0
\(229\) 18.2428 14.5482i 1.20552 0.961371i 0.205670 0.978621i \(-0.434063\pi\)
0.999851 + 0.0172501i \(0.00549116\pi\)
\(230\) −8.00088 35.0541i −0.527562 2.31140i
\(231\) 0 0
\(232\) 0.511487 2.24097i 0.0335807 0.147127i
\(233\) 9.92363 + 20.6066i 0.650119 + 1.34999i 0.921825 + 0.387605i \(0.126698\pi\)
−0.271707 + 0.962380i \(0.587588\pi\)
\(234\) 0 0
\(235\) −18.8474 23.6339i −1.22947 1.54171i
\(236\) 0.789784 + 3.46027i 0.0514106 + 0.225245i
\(237\) 0 0
\(238\) 7.96821 + 25.3198i 0.516502 + 1.64124i
\(239\) 19.7044 15.7137i 1.27457 1.01644i 0.276100 0.961129i \(-0.410958\pi\)
0.998469 0.0553060i \(-0.0176134\pi\)
\(240\) 0 0
\(241\) −8.94537 + 18.5752i −0.576222 + 1.19654i 0.385551 + 0.922687i \(0.374012\pi\)
−0.961772 + 0.273850i \(0.911703\pi\)
\(242\) 8.10880 + 6.46655i 0.521253 + 0.415686i
\(243\) 0 0
\(244\) 30.5807i 1.95773i
\(245\) −12.3860 + 22.0284i −0.791311 + 1.40734i
\(246\) 0 0
\(247\) −6.91854 + 30.3121i −0.440216 + 1.92871i
\(248\) −4.24993 + 5.32925i −0.269871 + 0.338408i
\(249\) 0 0
\(250\) 18.3323 + 14.6195i 1.15943 + 0.924618i
\(251\) 0.597185 + 0.748847i 0.0376940 + 0.0472668i 0.800321 0.599571i \(-0.204662\pi\)
−0.762627 + 0.646838i \(0.776091\pi\)
\(252\) 0 0
\(253\) −7.19646 + 9.02408i −0.452438 + 0.567339i
\(254\) −0.439755 + 0.100371i −0.0275927 + 0.00629785i
\(255\) 0 0
\(256\) −0.693528 + 3.03854i −0.0433455 + 0.189909i
\(257\) −23.9108 + 11.5148i −1.49151 + 0.718275i −0.989222 0.146424i \(-0.953224\pi\)
−0.502291 + 0.864699i \(0.667509\pi\)
\(258\) 0 0
\(259\) 12.5759 + 21.4986i 0.781430 + 1.33586i
\(260\) 51.4227 11.7369i 3.18910 0.727892i
\(261\) 0 0
\(262\) 5.16274 + 10.7205i 0.318955 + 0.662317i
\(263\) 13.2563i 0.817419i −0.912665 0.408709i \(-0.865979\pi\)
0.912665 0.408709i \(-0.134021\pi\)
\(264\) 0 0
\(265\) −2.14616 4.45655i −0.131838 0.273764i
\(266\) 30.8066 + 4.46419i 1.88887 + 0.273717i
\(267\) 0 0
\(268\) 14.4560 + 6.96164i 0.883040 + 0.425250i
\(269\) −1.28551 5.63220i −0.0783791 0.343401i 0.920500 0.390743i \(-0.127782\pi\)
−0.998879 + 0.0473422i \(0.984925\pi\)
\(270\) 0 0
\(271\) 1.41890 2.94639i 0.0861923 0.178980i −0.853417 0.521228i \(-0.825474\pi\)
0.939610 + 0.342248i \(0.111188\pi\)
\(272\) 10.5371 + 5.07441i 0.638907 + 0.307681i
\(273\) 0 0
\(274\) −24.9132 + 11.9975i −1.50506 + 0.724798i
\(275\) 19.9318i 1.20193i
\(276\) 0 0
\(277\) 7.22028 3.47711i 0.433825 0.208919i −0.204209 0.978927i \(-0.565462\pi\)
0.638034 + 0.770008i \(0.279748\pi\)
\(278\) −16.5937 20.8079i −0.995225 1.24797i
\(279\) 0 0
\(280\) −3.57593 11.3629i −0.213703 0.679062i
\(281\) −17.5801 4.01254i −1.04874 0.239368i −0.336777 0.941584i \(-0.609337\pi\)
−0.711964 + 0.702216i \(0.752194\pi\)
\(282\) 0 0
\(283\) −16.0873 3.67181i −0.956288 0.218266i −0.284223 0.958758i \(-0.591735\pi\)
−0.672065 + 0.740492i \(0.734593\pi\)
\(284\) −0.234737 + 0.187197i −0.0139291 + 0.0111081i
\(285\) 0 0
\(286\) −23.4896 18.7323i −1.38897 1.10767i
\(287\) 6.81953 + 4.59284i 0.402544 + 0.271107i
\(288\) 0 0
\(289\) 3.09543 3.88155i 0.182084 0.228327i
\(290\) −12.8339 6.18048i −0.753633 0.362930i
\(291\) 0 0
\(292\) −5.43471 1.24044i −0.318042 0.0725911i
\(293\) 0.0380752 0.00222437 0.00111219 0.999999i \(-0.499646\pi\)
0.00111219 + 0.999999i \(0.499646\pi\)
\(294\) 0 0
\(295\) 4.96161 0.288876
\(296\) −11.4458 2.61244i −0.665276 0.151845i
\(297\) 0 0
\(298\) 40.1496 + 19.3350i 2.32580 + 1.12005i
\(299\) −16.4095 + 20.5768i −0.948984 + 1.18999i
\(300\) 0 0
\(301\) −18.6678 + 17.5200i −1.07600 + 1.00983i
\(302\) 28.8960 + 23.0438i 1.66278 + 1.32602i
\(303\) 0 0
\(304\) 10.7230 8.55129i 0.615005 0.490450i
\(305\) −41.6778 9.51268i −2.38646 0.544694i
\(306\) 0 0
\(307\) 4.80078 + 1.09575i 0.273995 + 0.0625375i 0.357310 0.933986i \(-0.383694\pi\)
−0.0833157 + 0.996523i \(0.526551\pi\)
\(308\) −9.46947 + 14.0604i −0.539573 + 0.801167i
\(309\) 0 0
\(310\) 26.3371 + 33.0257i 1.49585 + 1.87573i
\(311\) 28.4804 13.7154i 1.61498 0.777731i 0.615034 0.788501i \(-0.289142\pi\)
0.999942 + 0.0107695i \(0.00342812\pi\)
\(312\) 0 0
\(313\) 1.29521i 0.0732094i −0.999330 0.0366047i \(-0.988346\pi\)
0.999330 0.0366047i \(-0.0116542\pi\)
\(314\) 0.442585 0.213138i 0.0249765 0.0120281i
\(315\) 0 0
\(316\) −26.2955 12.6633i −1.47924 0.712364i
\(317\) −14.1606 + 29.4047i −0.795337 + 1.65153i −0.0373165 + 0.999303i \(0.511881\pi\)
−0.758020 + 0.652231i \(0.773833\pi\)
\(318\) 0 0
\(319\) 1.01752 + 4.45805i 0.0569702 + 0.249603i
\(320\) −38.3305 18.4590i −2.14274 1.03189i
\(321\) 0 0
\(322\) 21.8554 + 14.7192i 1.21795 + 0.820271i
\(323\) −11.1761 23.2073i −0.621852 1.29129i
\(324\) 0 0
\(325\) 45.4487i 2.52104i
\(326\) −9.97558 20.7145i −0.552496 1.14727i
\(327\) 0 0
\(328\) −3.77837 + 0.862389i −0.208626 + 0.0476174i
\(329\) 21.9240 + 3.17702i 1.20871 + 0.175155i
\(330\) 0 0
\(331\) −28.6576 + 13.8008i −1.57517 + 0.758560i −0.998300 0.0582797i \(-0.981438\pi\)
−0.576865 + 0.816839i \(0.695724\pi\)
\(332\) 0.337316 1.47788i 0.0185126 0.0811090i
\(333\) 0 0
\(334\) 6.54983 1.49496i 0.358391 0.0818003i
\(335\) 13.9847 17.5362i 0.764065 0.958107i
\(336\) 0 0
\(337\) −8.66974 10.8715i −0.472271 0.592209i 0.487455 0.873148i \(-0.337925\pi\)
−0.959725 + 0.280940i \(0.909354\pi\)
\(338\) −31.8036 25.3625i −1.72989 1.37954i
\(339\) 0 0
\(340\) −27.2448 + 34.1639i −1.47756 + 1.85280i
\(341\) 3.01740 13.2201i 0.163401 0.715907i
\(342\) 0 0
\(343\) −4.42881 17.9829i −0.239133 0.970987i
\(344\) 12.0677i 0.650646i
\(345\) 0 0
\(346\) −24.9863 19.9259i −1.34327 1.07122i
\(347\) 6.34306 13.1715i 0.340513 0.707083i −0.658449 0.752625i \(-0.728787\pi\)
0.998962 + 0.0455420i \(0.0145015\pi\)
\(348\) 0 0
\(349\) 19.8349 15.8178i 1.06174 0.846709i 0.0731466 0.997321i \(-0.476696\pi\)
0.988593 + 0.150612i \(0.0481245\pi\)
\(350\) −45.3550 + 3.65857i −2.42433 + 0.195559i
\(351\) 0 0
\(352\) 4.32608 + 18.9538i 0.230581 + 1.01024i
\(353\) −14.7630 18.5122i −0.785755 0.985306i −0.999964 0.00851784i \(-0.997289\pi\)
0.214209 0.976788i \(-0.431283\pi\)
\(354\) 0 0
\(355\) 0.182107 + 0.378150i 0.00966526 + 0.0200701i
\(356\) −3.44291 + 15.0844i −0.182474 + 0.799470i
\(357\) 0 0
\(358\) −2.96918 13.0088i −0.156926 0.687537i
\(359\) −20.1008 + 16.0298i −1.06088 + 0.846023i −0.988480 0.151353i \(-0.951637\pi\)
−0.0723992 + 0.997376i \(0.523066\pi\)
\(360\) 0 0
\(361\) −11.2068 −0.589833
\(362\) 30.2561 1.59022
\(363\) 0 0
\(364\) −21.5924 + 32.0608i −1.13175 + 1.68044i
\(365\) −3.38113 + 7.02099i −0.176977 + 0.367496i
\(366\) 0 0
\(367\) 9.93071 2.26662i 0.518379 0.118317i 0.0446763 0.999002i \(-0.485774\pi\)
0.473702 + 0.880685i \(0.342917\pi\)
\(368\) 11.3187 2.58341i 0.590027 0.134670i
\(369\) 0 0
\(370\) −31.5671 + 65.5497i −1.64109 + 3.40777i
\(371\) 3.38183 + 1.30511i 0.175576 + 0.0677580i
\(372\) 0 0
\(373\) −24.3982 −1.26329 −0.631645 0.775257i \(-0.717620\pi\)
−0.631645 + 0.775257i \(0.717620\pi\)
\(374\) 24.8905 1.28706
\(375\) 0 0
\(376\) −8.16403 + 6.51060i −0.421028 + 0.335759i
\(377\) 2.32016 + 10.1653i 0.119494 + 0.523539i
\(378\) 0 0
\(379\) −2.74465 + 12.0251i −0.140983 + 0.617687i 0.854225 + 0.519904i \(0.174032\pi\)
−0.995208 + 0.0977830i \(0.968825\pi\)
\(380\) 22.2340 + 46.1693i 1.14058 + 2.36844i
\(381\) 0 0
\(382\) 1.17819 + 1.47740i 0.0602813 + 0.0755904i
\(383\) −0.625679 2.74128i −0.0319707 0.140073i 0.956424 0.291982i \(-0.0943149\pi\)
−0.988394 + 0.151910i \(0.951458\pi\)
\(384\) 0 0
\(385\) 16.2170 + 17.2795i 0.826496 + 0.880646i
\(386\) 4.20843 3.35611i 0.214203 0.170821i
\(387\) 0 0
\(388\) 7.55756 15.6934i 0.383677 0.796713i
\(389\) 3.60389 + 2.87401i 0.182724 + 0.145718i 0.710580 0.703616i \(-0.248432\pi\)
−0.527856 + 0.849334i \(0.677004\pi\)
\(390\) 0 0
\(391\) 21.8040i 1.10268i
\(392\) 7.60944 + 4.27858i 0.384335 + 0.216101i
\(393\) 0 0
\(394\) 7.66962 33.6028i 0.386390 1.69288i
\(395\) −25.4382 + 31.8985i −1.27994 + 1.60499i
\(396\) 0 0
\(397\) 3.62178 + 2.88827i 0.181772 + 0.144958i 0.710149 0.704052i \(-0.248628\pi\)
−0.528377 + 0.849010i \(0.677199\pi\)
\(398\) 3.28762 + 4.12255i 0.164794 + 0.206645i
\(399\) 0 0
\(400\) −12.5000 + 15.6745i −0.624998 + 0.783723i
\(401\) −11.6033 + 2.64838i −0.579442 + 0.132254i −0.502189 0.864758i \(-0.667472\pi\)
−0.0772524 + 0.997012i \(0.524615\pi\)
\(402\) 0 0
\(403\) 6.88030 30.1446i 0.342732 1.50161i
\(404\) 15.9660 7.68883i 0.794339 0.382534i
\(405\) 0 0
\(406\) 9.95757 3.13368i 0.494186 0.155522i
\(407\) 22.7697 5.19703i 1.12865 0.257607i
\(408\) 0 0
\(409\) −0.0113431 0.0235542i −0.000560882 0.00116468i 0.900688 0.434466i \(-0.143063\pi\)
−0.901249 + 0.433301i \(0.857349\pi\)
\(410\) 24.0170i 1.18611i
\(411\) 0 0
\(412\) −3.14160 6.52360i −0.154776 0.321395i
\(413\) −2.65132 + 2.48829i −0.130463 + 0.122441i
\(414\) 0 0
\(415\) −1.90924 0.919442i −0.0937210 0.0451336i
\(416\) 9.86438 + 43.2187i 0.483641 + 2.11897i
\(417\) 0 0
\(418\) 12.6648 26.2986i 0.619454 1.28631i
\(419\) −19.8521 9.56027i −0.969838 0.467050i −0.119240 0.992865i \(-0.538046\pi\)
−0.850598 + 0.525816i \(0.823760\pi\)
\(420\) 0 0
\(421\) 17.1780 8.27249i 0.837205 0.403177i 0.0343926 0.999408i \(-0.489050\pi\)
0.802812 + 0.596232i \(0.203336\pi\)
\(422\) 49.3597i 2.40279i
\(423\) 0 0
\(424\) −1.53946 + 0.741364i −0.0747627 + 0.0360038i
\(425\) 23.4759 + 29.4378i 1.13875 + 1.42794i
\(426\) 0 0
\(427\) 27.0419 15.8185i 1.30865 0.765512i
\(428\) −23.5959 5.38561i −1.14055 0.260323i
\(429\) 0 0
\(430\) −72.9092 16.6410i −3.51599 0.802502i
\(431\) −12.7747 + 10.1875i −0.615337 + 0.490715i −0.880852 0.473392i \(-0.843030\pi\)
0.265515 + 0.964107i \(0.414458\pi\)
\(432\) 0 0
\(433\) −4.91646 3.92075i −0.236270 0.188419i 0.498196 0.867064i \(-0.333996\pi\)
−0.734466 + 0.678645i \(0.762567\pi\)
\(434\) −30.6363 4.43952i −1.47059 0.213104i
\(435\) 0 0
\(436\) 8.71828 10.9324i 0.417530 0.523566i
\(437\) −23.0375 11.0943i −1.10203 0.530712i
\(438\) 0 0
\(439\) −5.76219 1.31518i −0.275014 0.0627703i 0.0827892 0.996567i \(-0.473617\pi\)
−0.357804 + 0.933797i \(0.616474\pi\)
\(440\) −11.1702 −0.532519
\(441\) 0 0
\(442\) 56.7556 2.69959
\(443\) 3.00551 + 0.685988i 0.142796 + 0.0325923i 0.293321 0.956014i \(-0.405239\pi\)
−0.150525 + 0.988606i \(0.548097\pi\)
\(444\) 0 0
\(445\) 19.4872 + 9.38454i 0.923782 + 0.444870i
\(446\) 21.1532 26.5253i 1.00163 1.25601i
\(447\) 0 0
\(448\) 29.7399 9.35922i 1.40508 0.442182i
\(449\) −28.2620 22.5382i −1.33377 1.06364i −0.992314 0.123744i \(-0.960510\pi\)
−0.341452 0.939899i \(-0.610919\pi\)
\(450\) 0 0
\(451\) 6.02773 4.80696i 0.283835 0.226351i
\(452\) −35.4108 8.08229i −1.66558 0.380159i
\(453\) 0 0
\(454\) −42.5572 9.71341i −1.99731 0.455873i
\(455\) 36.9783 + 39.4010i 1.73357 + 1.84715i
\(456\) 0 0
\(457\) −11.3269 14.2035i −0.529849 0.664410i 0.442819 0.896611i \(-0.353979\pi\)
−0.972668 + 0.232201i \(0.925407\pi\)
\(458\) −45.0033 + 21.6724i −2.10286 + 1.01269i
\(459\) 0 0
\(460\) 43.3776i 2.02249i
\(461\) 20.5242 9.88391i 0.955905 0.460340i 0.110153 0.993915i \(-0.464866\pi\)
0.845753 + 0.533575i \(0.179152\pi\)
\(462\) 0 0
\(463\) −35.5308 17.1107i −1.65126 0.795204i −0.999318 0.0369334i \(-0.988241\pi\)
−0.651940 0.758270i \(-0.726045\pi\)
\(464\) 1.99562 4.14396i 0.0926446 0.192378i
\(465\) 0 0
\(466\) −10.8949 47.7336i −0.504696 2.21122i
\(467\) 13.4779 + 6.49063i 0.623685 + 0.300351i 0.718908 0.695105i \(-0.244642\pi\)
−0.0952234 + 0.995456i \(0.530357\pi\)
\(468\) 0 0
\(469\) 1.32164 + 16.3842i 0.0610275 + 0.756553i
\(470\) 28.0770 + 58.3025i 1.29510 + 2.68929i
\(471\) 0 0
\(472\) 1.71393i 0.0788898i
\(473\) 10.4161 + 21.6293i 0.478934 + 0.994516i
\(474\) 0 0
\(475\) 43.0482 9.82547i 1.97519 0.450823i
\(476\) −2.57480 31.9195i −0.118016 1.46303i
\(477\) 0 0
\(478\) −48.6087 + 23.4087i −2.22331 + 1.07069i
\(479\) −5.93866 + 26.0189i −0.271344 + 1.18884i 0.637084 + 0.770795i \(0.280141\pi\)
−0.908428 + 0.418042i \(0.862717\pi\)
\(480\) 0 0
\(481\) 51.9196 11.8503i 2.36733 0.540328i
\(482\) 27.5175 34.5059i 1.25339 1.57170i
\(483\) 0 0
\(484\) −7.80137 9.78261i −0.354608 0.444664i
\(485\) −19.0373 15.1818i −0.864441 0.689369i
\(486\) 0 0
\(487\) −11.1767 + 14.0151i −0.506463 + 0.635084i −0.967673 0.252206i \(-0.918844\pi\)
0.461211 + 0.887291i \(0.347415\pi\)
\(488\) −3.28603 + 14.3971i −0.148752 + 0.651724i
\(489\) 0 0
\(490\) 36.3431 40.0738i 1.64181 1.81035i
\(491\) 26.9866i 1.21789i 0.793213 + 0.608944i \(0.208407\pi\)
−0.793213 + 0.608944i \(0.791593\pi\)
\(492\) 0 0
\(493\) −6.75354 5.38577i −0.304164 0.242563i
\(494\) 28.8783 59.9665i 1.29930 2.69802i
\(495\) 0 0
\(496\) −10.6637 + 8.50402i −0.478814 + 0.381842i
\(497\) −0.286958 0.110742i −0.0128718 0.00496746i
\(498\) 0 0
\(499\) 0.493922 + 2.16401i 0.0221110 + 0.0968746i 0.984779 0.173809i \(-0.0556075\pi\)
−0.962668 + 0.270683i \(0.912750\pi\)
\(500\) −17.6372 22.1164i −0.788761 0.989076i
\(501\) 0 0
\(502\) −0.889627 1.84733i −0.0397060 0.0824504i
\(503\) −7.52668 + 32.9765i −0.335598 + 1.47035i 0.472515 + 0.881323i \(0.343346\pi\)
−0.808113 + 0.589028i \(0.799511\pi\)
\(504\) 0 0
\(505\) −5.51243 24.1515i −0.245300 1.07473i
\(506\) 19.3178 15.4054i 0.858781 0.684855i
\(507\) 0 0
\(508\) 0.544172 0.0241437
\(509\) 33.9677 1.50559 0.752795 0.658255i \(-0.228705\pi\)
0.752795 + 0.658255i \(0.228705\pi\)
\(510\) 0 0
\(511\) −1.71433 5.44745i −0.0758374 0.240981i
\(512\) 11.1852 23.2263i 0.494320 1.02647i
\(513\) 0 0
\(514\) 55.3874 12.6418i 2.44303 0.557607i
\(515\) −9.86814 + 2.25234i −0.434842 + 0.0992499i
\(516\) 0 0
\(517\) 9.01309 18.7159i 0.396395 0.823123i
\(518\) −16.0054 50.8587i −0.703236 2.23460i
\(519\) 0 0
\(520\) −25.4705 −1.11695
\(521\) 41.3605 1.81204 0.906019 0.423236i \(-0.139106\pi\)
0.906019 + 0.423236i \(0.139106\pi\)
\(522\) 0 0
\(523\) 17.2140 13.7277i 0.752716 0.600271i −0.170139 0.985420i \(-0.554422\pi\)
0.922854 + 0.385150i \(0.125850\pi\)
\(524\) −3.19430 13.9951i −0.139544 0.611381i
\(525\) 0 0
\(526\) −6.31463 + 27.6662i −0.275331 + 1.20630i
\(527\) 11.1143 + 23.0790i 0.484146 + 1.00534i
\(528\) 0 0
\(529\) 0.845143 + 1.05978i 0.0367454 + 0.0460772i
\(530\) 2.35621 + 10.3232i 0.102347 + 0.448413i
\(531\) 0 0
\(532\) −35.0354 13.5208i −1.51898 0.586201i
\(533\) 13.7445 10.9609i 0.595341 0.474768i
\(534\) 0 0
\(535\) −14.6799 + 30.4831i −0.634667 + 1.31790i
\(536\) −6.05767 4.83083i −0.261651 0.208660i
\(537\) 0 0
\(538\) 12.3669i 0.533174i
\(539\) −17.3317 1.10061i −0.746528 0.0474064i
\(540\) 0 0
\(541\) 2.31388 10.1378i 0.0994816 0.435857i −0.900518 0.434819i \(-0.856812\pi\)
0.999999 0.00103828i \(-0.000330494\pi\)
\(542\) −4.36480 + 5.47328i −0.187484 + 0.235098i
\(543\) 0 0
\(544\) −28.7133 22.8981i −1.23107 0.981748i
\(545\) −12.1875 15.2827i −0.522057 0.654638i
\(546\) 0 0
\(547\) −24.6968 + 30.9688i −1.05596 + 1.32413i −0.112132 + 0.993693i \(0.535768\pi\)
−0.943828 + 0.330438i \(0.892804\pi\)
\(548\) 32.5229 7.42315i 1.38931 0.317101i
\(549\) 0 0
\(550\) −9.49449 + 41.5981i −0.404846 + 1.77375i
\(551\) −9.12680 + 4.39523i −0.388815 + 0.187243i
\(552\) 0 0
\(553\) −2.40407 29.8030i −0.102231 1.26735i
\(554\) −16.7252 + 3.81742i −0.710587 + 0.162187i
\(555\) 0 0
\(556\) 13.9311 + 28.9282i 0.590811 + 1.22683i
\(557\) 14.9986i 0.635511i −0.948173 0.317755i \(-0.897071\pi\)
0.948173 0.317755i \(-0.102929\pi\)
\(558\) 0 0
\(559\) 23.7510 + 49.3194i 1.00456 + 2.08599i
\(560\) −1.91653 23.7590i −0.0809881 1.00400i
\(561\) 0 0
\(562\) 34.7787 + 16.7485i 1.46705 + 0.706495i
\(563\) −4.42643 19.3935i −0.186552 0.817337i −0.978417 0.206641i \(-0.933747\pi\)
0.791865 0.610696i \(-0.209110\pi\)
\(564\) 0 0
\(565\) −22.0304 + 45.7465i −0.926825 + 1.92457i
\(566\) 31.8254 + 15.3263i 1.33772 + 0.644213i
\(567\) 0 0
\(568\) 0.130627 0.0629067i 0.00548099 0.00263951i
\(569\) 6.21580i 0.260580i −0.991476 0.130290i \(-0.958409\pi\)
0.991476 0.130290i \(-0.0415908\pi\)
\(570\) 0 0
\(571\) 11.8217 5.69303i 0.494723 0.238246i −0.169849 0.985470i \(-0.554328\pi\)
0.664572 + 0.747224i \(0.268614\pi\)
\(572\) 22.5990 + 28.3383i 0.944913 + 1.18488i
\(573\) 0 0
\(574\) −12.0447 12.8338i −0.502737 0.535674i
\(575\) 36.4398 + 8.31715i 1.51964 + 0.346849i
\(576\) 0 0
\(577\) 14.5003 + 3.30960i 0.603656 + 0.137781i 0.513416 0.858140i \(-0.328380\pi\)
0.0902394 + 0.995920i \(0.471237\pi\)
\(578\) −8.30922 + 6.62638i −0.345618 + 0.275621i
\(579\) 0 0
\(580\) 13.4357 + 10.7146i 0.557887 + 0.444900i
\(581\) 1.48134 0.466183i 0.0614564 0.0193405i
\(582\) 0 0
\(583\) 2.11932 2.65754i 0.0877732 0.110064i
\(584\) 2.42531 + 1.16797i 0.100360 + 0.0483309i
\(585\) 0 0
\(586\) −0.0794638 0.0181371i −0.00328262 0.000749236i
\(587\) −31.7302 −1.30965 −0.654823 0.755782i \(-0.727257\pi\)
−0.654823 + 0.755782i \(0.727257\pi\)
\(588\) 0 0
\(589\) 30.0399 1.23777
\(590\) −10.3550 2.36346i −0.426309 0.0973022i
\(591\) 0 0
\(592\) −21.1654 10.1927i −0.869894 0.418919i
\(593\) 0.0568661 0.0713078i 0.00233521 0.00292826i −0.780663 0.624953i \(-0.785118\pi\)
0.782998 + 0.622025i \(0.213690\pi\)
\(594\) 0 0
\(595\) −44.3034 6.42002i −1.81626 0.263195i
\(596\) −42.0323 33.5196i −1.72171 1.37302i
\(597\) 0 0
\(598\) 44.0487 35.1277i 1.80128 1.43648i
\(599\) 12.4813 + 2.84878i 0.509973 + 0.116398i 0.469762 0.882793i \(-0.344340\pi\)
0.0402109 + 0.999191i \(0.487197\pi\)
\(600\) 0 0
\(601\) −11.5018 2.62520i −0.469167 0.107084i −0.0186002 0.999827i \(-0.505921\pi\)
−0.450567 + 0.892743i \(0.648778\pi\)
\(602\) 47.3058 27.6722i 1.92804 1.12783i
\(603\) 0 0
\(604\) −27.8005 34.8607i −1.13119 1.41846i
\(605\) −15.7593 + 7.58927i −0.640706 + 0.308548i
\(606\) 0 0
\(607\) 10.4717i 0.425032i 0.977158 + 0.212516i \(0.0681657\pi\)
−0.977158 + 0.212516i \(0.931834\pi\)
\(608\) −38.8034 + 18.6867i −1.57369 + 0.757848i
\(609\) 0 0
\(610\) 82.4511 + 39.7064i 3.33835 + 1.60766i
\(611\) 20.5518 42.6762i 0.831435 1.72649i
\(612\) 0 0
\(613\) 6.03873 + 26.4574i 0.243902 + 1.06860i 0.937430 + 0.348174i \(0.113198\pi\)
−0.693528 + 0.720430i \(0.743945\pi\)
\(614\) −9.49737 4.57369i −0.383283 0.184579i
\(615\) 0 0
\(616\) 5.96899 5.60196i 0.240497 0.225710i
\(617\) −6.61067 13.7272i −0.266136 0.552636i 0.724483 0.689293i \(-0.242079\pi\)
−0.990618 + 0.136657i \(0.956364\pi\)
\(618\) 0 0
\(619\) 29.2828i 1.17697i −0.808507 0.588487i \(-0.799724\pi\)
0.808507 0.588487i \(-0.200276\pi\)
\(620\) −22.1111 45.9141i −0.888003 1.84396i
\(621\) 0 0
\(622\) −65.9726 + 15.0578i −2.64526 + 0.603764i
\(623\) −15.1197 + 4.75822i −0.605759 + 0.190634i
\(624\) 0 0
\(625\) 0.563350 0.271295i 0.0225340 0.0108518i
\(626\) −0.616971 + 2.70313i −0.0246591 + 0.108039i
\(627\) 0 0
\(628\) −0.577774 + 0.131873i −0.0230557 + 0.00526231i
\(629\) −27.5080 + 34.4940i −1.09682 + 1.37537i
\(630\) 0 0
\(631\) 23.9307 + 30.0082i 0.952668 + 1.19461i 0.980803 + 0.195003i \(0.0624718\pi\)
−0.0281348 + 0.999604i \(0.508957\pi\)
\(632\) 11.0189 + 8.78731i 0.438310 + 0.349540i
\(633\) 0 0
\(634\) 43.5604 54.6230i 1.73000 2.16936i
\(635\) 0.169275 0.741641i 0.00671747 0.0294311i
\(636\) 0 0
\(637\) −39.5199 2.50961i −1.56583 0.0994345i
\(638\) 9.78874i 0.387540i
\(639\) 0 0
\(640\) 26.9663 + 21.5049i 1.06594 + 0.850057i
\(641\) −1.21207 + 2.51690i −0.0478740 + 0.0994115i −0.923534 0.383517i \(-0.874713\pi\)
0.875660 + 0.482929i \(0.160427\pi\)
\(642\) 0 0
\(643\) 13.9597 11.1325i 0.550518 0.439023i −0.308311 0.951285i \(-0.599764\pi\)
0.858829 + 0.512262i \(0.171192\pi\)
\(644\) −21.7542 23.1795i −0.857237 0.913400i
\(645\) 0 0
\(646\) 12.2699 + 53.7579i 0.482753 + 2.11508i
\(647\) −9.51744 11.9345i −0.374169 0.469193i 0.558720 0.829356i \(-0.311293\pi\)
−0.932889 + 0.360163i \(0.882721\pi\)
\(648\) 0 0
\(649\) 1.47936 + 3.07192i 0.0580700 + 0.120584i
\(650\) −21.6494 + 94.8524i −0.849161 + 3.72042i
\(651\) 0 0
\(652\) 6.17211 + 27.0418i 0.241719 + 1.05904i
\(653\) 11.1937 8.92667i 0.438043 0.349328i −0.379503 0.925190i \(-0.623905\pi\)
0.817546 + 0.575863i \(0.195334\pi\)
\(654\) 0 0
\(655\) −20.0674 −0.784096
\(656\) −7.75487 −0.302777
\(657\) 0 0
\(658\) −44.2426 17.0740i −1.72476 0.665615i
\(659\) 11.8488 24.6043i 0.461565 0.958449i −0.532165 0.846641i \(-0.678621\pi\)
0.993730 0.111808i \(-0.0356643\pi\)
\(660\) 0 0
\(661\) −25.1228 + 5.73412i −0.977165 + 0.223032i −0.681144 0.732150i \(-0.738517\pi\)
−0.296021 + 0.955181i \(0.595660\pi\)
\(662\) 66.3831 15.1515i 2.58005 0.588880i
\(663\) 0 0
\(664\) −0.317609 + 0.659523i −0.0123256 + 0.0255945i
\(665\) −29.3256 + 43.5432i −1.13720 + 1.68853i
\(666\) 0 0
\(667\) −8.57491 −0.332022
\(668\) −8.10505 −0.313594
\(669\) 0 0
\(670\) −37.5397 + 29.9369i −1.45029 + 1.15656i
\(671\) −6.53703 28.6406i −0.252359 1.10566i
\(672\) 0 0
\(673\) −0.469412 + 2.05663i −0.0180945 + 0.0792772i −0.983169 0.182698i \(-0.941517\pi\)
0.965075 + 0.261976i \(0.0843740\pi\)
\(674\) 12.9153 + 26.8189i 0.497479 + 1.03303i
\(675\) 0 0
\(676\) 30.5978 + 38.3685i 1.17684 + 1.47571i
\(677\) −8.99912 39.4277i −0.345864 1.51533i −0.786469 0.617630i \(-0.788093\pi\)
0.440605 0.897701i \(-0.354764\pi\)
\(678\) 0 0
\(679\) 17.7867 1.43477i 0.682591 0.0550614i
\(680\) 16.4976 13.1564i 0.632655 0.504525i
\(681\) 0 0
\(682\) −12.5948 + 26.1533i −0.482278 + 1.00146i
\(683\) −15.0885 12.0327i −0.577344 0.460417i 0.290762 0.956795i \(-0.406091\pi\)
−0.868106 + 0.496379i \(0.834663\pi\)
\(684\) 0 0
\(685\) 46.6340i 1.78179i
\(686\) 0.676870 + 39.6405i 0.0258430 + 1.51348i
\(687\) 0 0
\(688\) 5.37325 23.5417i 0.204853 0.897521i
\(689\) 4.83249 6.05976i 0.184103 0.230858i
\(690\) 0 0
\(691\) 9.95908 + 7.94210i 0.378861 + 0.302132i 0.794343 0.607470i \(-0.207815\pi\)
−0.415481 + 0.909602i \(0.636387\pi\)
\(692\) 24.0390 + 30.1440i 0.913827 + 1.14590i
\(693\) 0 0
\(694\) −19.5124 + 24.4677i −0.740679 + 0.928782i
\(695\) 43.7593 9.98777i 1.65988 0.378858i
\(696\) 0 0
\(697\) −3.24085 + 14.1991i −0.122756 + 0.537828i
\(698\) −48.9308 + 23.5638i −1.85206 + 0.891904i
\(699\) 0 0
\(700\) 54.3274 + 7.87260i 2.05338 + 0.297556i
\(701\) −1.92525 + 0.439425i −0.0727156 + 0.0165969i −0.258724 0.965951i \(-0.583302\pi\)
0.186008 + 0.982548i \(0.440445\pi\)
\(702\) 0 0
\(703\) 22.4488 + 46.6155i 0.846674 + 1.75814i
\(704\) 29.2356i 1.10186i
\(705\) 0 0
\(706\) 21.9924 + 45.6678i 0.827696 + 1.71873i
\(707\) 15.0579 + 10.1412i 0.566309 + 0.381400i
\(708\) 0 0
\(709\) 0.809818 + 0.389988i 0.0304133 + 0.0146463i 0.449029 0.893517i \(-0.351770\pi\)
−0.418615 + 0.908164i \(0.637484\pi\)
\(710\) −0.199931 0.875955i −0.00750327 0.0328740i
\(711\) 0 0
\(712\) 3.24177 6.73160i 0.121490 0.252277i
\(713\) 22.9102 + 11.0330i 0.857994 + 0.413188i
\(714\) 0 0
\(715\) 45.6515 21.9846i 1.70727 0.822178i
\(716\) 16.0977i 0.601598i
\(717\) 0 0
\(718\) 49.5866 23.8797i 1.85056 0.891181i
\(719\) 3.94929 + 4.95225i 0.147284 + 0.184688i 0.850001 0.526782i \(-0.176601\pi\)
−0.702717 + 0.711469i \(0.748030\pi\)
\(720\) 0 0
\(721\) 4.14363 6.15253i 0.154317 0.229132i
\(722\) 23.3889 + 5.33837i 0.870445 + 0.198673i
\(723\) 0 0
\(724\) −35.5864 8.12235i −1.32256 0.301865i
\(725\) 11.5771 9.23241i 0.429962 0.342883i
\(726\) 0 0
\(727\) −38.3357 30.5717i −1.42179 1.13384i −0.970397 0.241516i \(-0.922355\pi\)
−0.451395 0.892324i \(-0.649073\pi\)
\(728\) 13.6106 12.7737i 0.504441 0.473423i
\(729\) 0 0
\(730\) 10.4010 13.0424i 0.384956 0.482720i
\(731\) −40.8591 19.6767i −1.51123 0.727770i
\(732\) 0 0
\(733\) −14.0006 3.19555i −0.517125 0.118030i −0.0440098 0.999031i \(-0.514013\pi\)
−0.473115 + 0.881001i \(0.656870\pi\)
\(734\) −21.8053 −0.804849
\(735\) 0 0
\(736\) −36.4570 −1.34382
\(737\) 15.0270 + 3.42982i 0.553528 + 0.126339i
\(738\) 0 0
\(739\) −10.5426 5.07703i −0.387814 0.186762i 0.229809 0.973236i \(-0.426190\pi\)
−0.617623 + 0.786474i \(0.711904\pi\)
\(740\) 54.7253 68.6234i 2.01174 2.52265i
\(741\) 0 0
\(742\) −6.43628 4.33473i −0.236283 0.159133i
\(743\) −8.35021 6.65907i −0.306340 0.244298i 0.458238 0.888830i \(-0.348481\pi\)
−0.764577 + 0.644532i \(0.777052\pi\)
\(744\) 0 0
\(745\) −58.7581 + 46.8581i −2.15273 + 1.71675i
\(746\) 50.9196 + 11.6221i 1.86430 + 0.425514i
\(747\) 0 0
\(748\) −29.2755 6.68194i −1.07042 0.244316i
\(749\) −7.44311 23.6512i −0.271965 0.864197i
\(750\) 0 0
\(751\) 2.94786 + 3.69650i 0.107569 + 0.134887i 0.832702 0.553722i \(-0.186793\pi\)
−0.725133 + 0.688609i \(0.758222\pi\)
\(752\) −18.8254 + 9.06582i −0.686491 + 0.330597i
\(753\) 0 0
\(754\) 22.3204i 0.812861i
\(755\) −56.1588 + 27.0446i −2.04383 + 0.984255i
\(756\) 0 0
\(757\) 44.5744 + 21.4659i 1.62008 + 0.780191i 0.999991 0.00433706i \(-0.00138053\pi\)
0.620093 + 0.784528i \(0.287095\pi\)
\(758\) 11.4563 23.7892i 0.416111 0.864063i
\(759\) 0 0
\(760\) −5.50642 24.1252i −0.199739 0.875112i
\(761\) −10.6689 5.13787i −0.386747 0.186248i 0.230399 0.973096i \(-0.425997\pi\)
−0.617146 + 0.786849i \(0.711711\pi\)
\(762\) 0 0
\(763\) 14.1770 + 2.05439i 0.513242 + 0.0743740i
\(764\) −0.989138 2.05397i −0.0357857 0.0743099i
\(765\) 0 0
\(766\) 6.01916i 0.217481i
\(767\) 3.37326 + 7.00464i 0.121801 + 0.252923i
\(768\) 0 0
\(769\) −26.2882 + 6.00010i −0.947975 + 0.216369i −0.668440 0.743766i \(-0.733038\pi\)
−0.279535 + 0.960135i \(0.590180\pi\)
\(770\) −25.6142 43.7877i −0.923073 1.57800i
\(771\) 0 0
\(772\) −5.85079 + 2.81759i −0.210575 + 0.101407i
\(773\) 3.88268 17.0112i 0.139650 0.611849i −0.855861 0.517206i \(-0.826972\pi\)
0.995511 0.0946425i \(-0.0301708\pi\)
\(774\) 0 0
\(775\) −42.8102 + 9.77116i −1.53779 + 0.350990i
\(776\) −5.24435 + 6.57620i −0.188261 + 0.236072i
\(777\) 0 0
\(778\) −6.15237 7.71483i −0.220573 0.276590i
\(779\) 13.3534 + 10.6489i 0.478434 + 0.381538i
\(780\) 0 0
\(781\) −0.179830 + 0.225499i −0.00643481 + 0.00806900i
\(782\) −10.3863 + 45.5055i −0.371414 + 1.62727i
\(783\) 0 0
\(784\) 12.9395 + 11.7349i 0.462124 + 0.419102i
\(785\) 0.828458i 0.0295689i
\(786\) 0 0
\(787\) 33.9371 + 27.0639i 1.20973 + 0.964725i 0.999915 0.0130164i \(-0.00414335\pi\)
0.209812 + 0.977742i \(0.432715\pi\)
\(788\) −18.0416 + 37.4637i −0.642705 + 1.33459i
\(789\) 0 0
\(790\) 68.2850 54.4555i 2.42947 1.93744i
\(791\) −11.1700 35.4938i −0.397160 1.26202i
\(792\) 0 0
\(793\) −14.9058 65.3067i −0.529321 2.31911i
\(794\) −6.18292 7.75313i −0.219423 0.275148i
\(795\) 0 0
\(796\) −2.76010 5.73140i −0.0978290 0.203144i
\(797\) 7.70022 33.7369i 0.272756 1.19502i −0.633989 0.773342i \(-0.718584\pi\)
0.906745 0.421679i \(-0.138559\pi\)
\(798\) 0 0
\(799\) 8.73208 + 38.2578i 0.308919 + 1.35346i
\(800\) 49.2210 39.2525i 1.74023 1.38778i
\(801\) 0 0
\(802\) 25.4779 0.899657
\(803\) −5.35509 −0.188977
\(804\) 0 0
\(805\) −38.3579 + 22.4380i −1.35194 + 0.790835i
\(806\) −28.7187 + 59.6350i −1.01157 + 2.10055i
\(807\) 0 0
\(808\) −8.34283 + 1.90420i −0.293500 + 0.0669894i
\(809\) −10.1621 + 2.31944i −0.357281 + 0.0815471i −0.397394 0.917648i \(-0.630085\pi\)
0.0401130 + 0.999195i \(0.487228\pi\)
\(810\) 0 0
\(811\) 1.64622 3.41841i 0.0578065 0.120036i −0.870064 0.492938i \(-0.835923\pi\)
0.927871 + 0.372902i \(0.121637\pi\)
\(812\) −12.5531 + 1.01260i −0.440526 + 0.0355352i
\(813\) 0 0
\(814\) −49.9964 −1.75237
\(815\) 38.7747 1.35822
\(816\) 0 0
\(817\) −41.5798 + 33.1588i −1.45469 + 1.16008i
\(818\) 0.0124533 + 0.0545616i 0.000435420 + 0.00190770i
\(819\) 0 0
\(820\) 6.44744 28.2481i 0.225154 0.986465i
\(821\) −12.3918 25.7317i −0.432475 0.898044i −0.997342 0.0728619i \(-0.976787\pi\)
0.564867 0.825182i \(-0.308928\pi\)
\(822\) 0 0
\(823\) −16.8334 21.1084i −0.586776 0.735794i 0.396476 0.918045i \(-0.370233\pi\)
−0.983252 + 0.182251i \(0.941662\pi\)
\(824\) 0.778042 + 3.40882i 0.0271044 + 0.118752i
\(825\) 0 0
\(826\) 6.71866 3.93017i 0.233772 0.136748i
\(827\) 31.6716 25.2573i 1.10133 0.878281i 0.108064 0.994144i \(-0.465535\pi\)
0.993265 + 0.115863i \(0.0369634\pi\)
\(828\) 0 0
\(829\) 18.5911 38.6048i 0.645696 1.34080i −0.279072 0.960270i \(-0.590027\pi\)
0.924768 0.380531i \(-0.124259\pi\)
\(830\) 3.54666 + 2.82836i 0.123106 + 0.0981739i
\(831\) 0 0
\(832\) 66.6634i 2.31114i
\(833\) 26.8939 18.7879i 0.931820 0.650963i
\(834\) 0 0
\(835\) −2.52122 + 11.0462i −0.0872506 + 0.382270i
\(836\) −21.9559 + 27.5318i −0.759360 + 0.952208i
\(837\) 0 0
\(838\) 36.8778 + 29.4090i 1.27392 + 1.01592i
\(839\) 10.3305 + 12.9541i 0.356649 + 0.447224i 0.927496 0.373833i \(-0.121957\pi\)
−0.570847 + 0.821056i \(0.693385\pi\)
\(840\) 0 0
\(841\) 15.9631 20.0171i 0.550453 0.690246i
\(842\) −39.7915 + 9.08215i −1.37131 + 0.312992i
\(843\) 0 0
\(844\) 13.2508 58.0554i 0.456111 1.99835i
\(845\) 61.8097 29.7660i 2.12632 1.02398i
\(846\) 0 0
\(847\) 4.61514 11.9589i 0.158578 0.410912i
\(848\) −3.33329 + 0.760801i −0.114466 + 0.0261260i
\(849\) 0 0
\(850\) −34.9720 72.6201i −1.19953 2.49085i
\(851\) 43.7967i 1.50133i
\(852\) 0 0
\(853\) 7.53422 + 15.6450i 0.257967 + 0.535674i 0.989221 0.146432i \(-0.0467788\pi\)
−0.731254 + 0.682105i \(0.761065\pi\)
\(854\) −63.9722 + 20.1322i −2.18908 + 0.688911i
\(855\) 0 0
\(856\) 10.5300 + 5.07098i 0.359908 + 0.173323i
\(857\) 2.92698 + 12.8239i 0.0999836 + 0.438057i 0.999998 + 0.00219585i \(0.000698960\pi\)
−0.900014 + 0.435861i \(0.856444\pi\)
\(858\) 0 0
\(859\) −15.0195 + 31.1883i −0.512459 + 1.06413i 0.470855 + 0.882211i \(0.343946\pi\)
−0.983313 + 0.181920i \(0.941769\pi\)
\(860\) 81.2864 + 39.1455i 2.77184 + 1.33485i
\(861\) 0 0
\(862\) 31.5140 15.1763i 1.07337 0.516908i
\(863\) 19.3005i 0.656997i 0.944505 + 0.328498i \(0.106543\pi\)
−0.944505 + 0.328498i \(0.893457\pi\)
\(864\) 0 0
\(865\) 48.5604 23.3855i 1.65110 0.795130i
\(866\) 8.39312 + 10.5246i 0.285210 + 0.357642i
\(867\) 0 0
\(868\) 34.8418 + 13.4461i 1.18261 + 0.456389i
\(869\) −27.3343 6.23887i −0.927252 0.211639i
\(870\) 0 0
\(871\) 34.2648 + 7.82072i 1.16102 + 0.264995i
\(872\) −5.27921 + 4.21003i −0.178777 + 0.142570i
\(873\) 0 0
\(874\) 42.7951 + 34.1280i 1.44757 + 1.15440i
\(875\) 10.4339 27.0365i 0.352729 0.914000i
\(876\) 0 0
\(877\) −4.48317 + 5.62172i −0.151386 + 0.189832i −0.851742 0.523962i \(-0.824453\pi\)
0.700356 + 0.713794i \(0.253025\pi\)
\(878\) 11.3993 + 5.48964i 0.384709 + 0.185266i
\(879\) 0 0
\(880\) −21.7910 4.97364i −0.734573 0.167661i
\(881\) 44.6956 1.50583 0.752916 0.658117i \(-0.228647\pi\)
0.752916 + 0.658117i \(0.228647\pi\)
\(882\) 0 0
\(883\) −8.25940 −0.277951 −0.138975 0.990296i \(-0.544381\pi\)
−0.138975 + 0.990296i \(0.544381\pi\)
\(884\) −66.7543 15.2362i −2.24519 0.512450i
\(885\) 0 0
\(886\) −5.94580 2.86335i −0.199753 0.0961960i
\(887\) 4.54928 5.70461i 0.152750 0.191542i −0.699569 0.714565i \(-0.746624\pi\)
0.852318 + 0.523023i \(0.175196\pi\)
\(888\) 0 0
\(889\) 0.281485 + 0.481201i 0.00944070 + 0.0161390i
\(890\) −36.1999 28.8685i −1.21342 0.967673i
\(891\) 0 0
\(892\) −32.0006 + 25.5196i −1.07146 + 0.854461i
\(893\) 44.8652 + 10.2402i 1.50136 + 0.342675i
\(894\) 0 0
\(895\) 21.9392 + 5.00748i 0.733347 + 0.167382i
\(896\) −25.1948 + 2.03235i −0.841699 + 0.0678959i
\(897\) 0 0
\(898\) 48.2474 + 60.5003i 1.61004 + 2.01892i
\(899\) 9.07635 4.37094i 0.302713 0.145779i
\(900\) 0 0
\(901\) 6.42116i 0.213920i
\(902\) −14.8698 + 7.16092i −0.495111 + 0.238433i
\(903\) 0 0
\(904\) 15.8026 + 7.61011i 0.525585 + 0.253109i
\(905\) −22.1396 + 45.9733i −0.735945 + 1.52821i
\(906\) 0 0
\(907\) 8.61261 + 37.7343i 0.285977 + 1.25295i 0.889993 + 0.455975i \(0.150709\pi\)
−0.604015 + 0.796973i \(0.706433\pi\)
\(908\) 47.4470 + 22.8493i 1.57459 + 0.758280i
\(909\) 0 0
\(910\) −58.4059 99.8453i −1.93614 3.30984i
\(911\) −16.1611 33.5589i −0.535442 1.11186i −0.976726 0.214490i \(-0.931191\pi\)
0.441284 0.897367i \(-0.354523\pi\)
\(912\) 0 0
\(913\) 1.45623i 0.0481941i
\(914\) 16.8737 + 35.0385i 0.558131 + 1.15897i
\(915\) 0 0
\(916\) 58.7496 13.4092i 1.94114 0.443053i
\(917\) 10.7233 10.0640i 0.354115 0.332341i
\(918\) 0 0
\(919\) 2.90009 1.39661i 0.0956651 0.0460699i −0.385439 0.922733i \(-0.625950\pi\)
0.481104 + 0.876663i \(0.340236\pi\)
\(920\) 4.66112 20.4217i 0.153673 0.673283i
\(921\) 0 0
\(922\) −47.5426 + 10.8513i −1.56573 + 0.357368i
\(923\) −0.410050 + 0.514186i −0.0134970 + 0.0169246i
\(924\) 0 0
\(925\) −47.1549 59.1304i −1.55044 1.94420i
\(926\) 66.0030 + 52.6356i 2.16899 + 1.72971i
\(927\) 0 0
\(928\) −9.00520 + 11.2922i −0.295610 + 0.370683i
\(929\) −3.46567 + 15.1841i −0.113705 + 0.498173i 0.885719 + 0.464222i \(0.153666\pi\)
−0.999424 + 0.0339509i \(0.989191\pi\)
\(930\) 0 0
\(931\) −6.16667 37.9751i −0.202104 1.24458i
\(932\) 59.0677i 1.93483i
\(933\) 0 0
\(934\) −25.0370 19.9663i −0.819234 0.653318i
\(935\) −18.2134 + 37.8204i −0.595641 + 1.23686i
\(936\) 0 0
\(937\) 3.38495 2.69941i 0.110582 0.0881859i −0.566638 0.823967i \(-0.691756\pi\)
0.677220 + 0.735781i \(0.263185\pi\)
\(938\) 5.04632 34.8238i 0.164768 1.13704i
\(939\) 0 0
\(940\) −17.3719 76.1111i −0.566608 2.48247i
\(941\) 19.0408 + 23.8764i 0.620712 + 0.778348i 0.988444 0.151583i \(-0.0484372\pi\)
−0.367732 + 0.929932i \(0.619866\pi\)
\(942\) 0 0
\(943\) 6.27295 + 13.0259i 0.204275 + 0.424182i
\(944\) 0.763141 3.34354i 0.0248381 0.108823i
\(945\) 0 0
\(946\) −11.4356 50.1026i −0.371803 1.62898i
\(947\) −19.2341 + 15.3387i −0.625025 + 0.498441i −0.884027 0.467436i \(-0.845178\pi\)
0.259002 + 0.965877i \(0.416606\pi\)
\(948\) 0 0
\(949\) −12.2107 −0.396377
\(950\) −94.5229 −3.06673
\(951\) 0 0
\(952\) −2.21771 + 15.3040i −0.0718765 + 0.496007i
\(953\) −13.7853 + 28.6255i −0.446550 + 0.927271i 0.549245 + 0.835661i \(0.314915\pi\)
−0.995795 + 0.0916093i \(0.970799\pi\)
\(954\) 0 0
\(955\) −3.10700 + 0.709152i −0.100540 + 0.0229476i
\(956\) 63.4563 14.4835i 2.05232 0.468429i
\(957\) 0 0
\(958\) 24.7882 51.4733i 0.800871 1.66303i
\(959\) 23.3874 + 24.9196i 0.755217 + 0.804696i
\(960\) 0 0
\(961\) 1.12617 0.0363282
\(962\) −114.002 −3.67558
\(963\) 0 0
\(964\) −41.6285 + 33.1976i −1.34076 + 1.06922i
\(965\) 2.02004 + 8.85039i 0.0650275 + 0.284904i
\(966\) 0 0
\(967\) −4.02816 + 17.6485i −0.129537 + 0.567538i 0.867948 + 0.496655i \(0.165439\pi\)
−0.997485 + 0.0708827i \(0.977418\pi\)
\(968\) 2.62162 + 5.44384i 0.0842620 + 0.174972i
\(969\) 0 0
\(970\) 32.4995 + 40.7531i 1.04350 + 1.30850i
\(971\) −7.29986 31.9828i −0.234264 1.02638i −0.946060 0.323991i \(-0.894975\pi\)
0.711797 0.702386i \(-0.247882\pi\)
\(972\) 0 0
\(973\) −18.3745 + 27.2828i −0.589060 + 0.874646i
\(974\) 30.0020 23.9258i 0.961327 0.766633i
\(975\) 0 0
\(976\) −12.8208 + 26.6228i −0.410385 + 0.852174i
\(977\) −41.0200 32.7124i −1.31235 1.04656i −0.995167 0.0981960i \(-0.968693\pi\)
−0.317180 0.948365i \(-0.602736\pi\)
\(978\) 0 0
\(979\) 14.8634i 0.475036i
\(980\) −53.5036 + 37.3773i −1.70911 + 1.19397i
\(981\) 0 0
\(982\) 12.8551 56.3217i 0.410221 1.79730i
\(983\) −1.40419 + 1.76080i −0.0447868 + 0.0561609i −0.803720 0.595007i \(-0.797149\pi\)
0.758934 + 0.651168i \(0.225721\pi\)
\(984\) 0 0
\(985\) 45.4464 + 36.2423i 1.44804 + 1.15478i
\(986\) 11.5293 + 14.4573i 0.367168 + 0.460414i
\(987\) 0 0
\(988\) −50.0641 + 62.7784i −1.59275 + 1.99725i
\(989\) −43.8897 + 10.0175i −1.39561 + 0.318539i
\(990\) 0 0
\(991\) −0.272429 + 1.19359i −0.00865398 + 0.0379156i −0.979071 0.203521i \(-0.934761\pi\)
0.970417 + 0.241437i \(0.0776186\pi\)
\(992\) 38.5889 18.5835i 1.22520 0.590025i
\(993\) 0 0
\(994\) 0.546135 + 0.367813i 0.0173224 + 0.0116663i
\(995\) −8.66979 + 1.97882i −0.274851 + 0.0627329i
\(996\) 0 0
\(997\) −0.829695 1.72288i −0.0262767 0.0545642i 0.887417 0.460967i \(-0.152497\pi\)
−0.913694 + 0.406403i \(0.866783\pi\)
\(998\) 4.75163i 0.150410i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.w.a.377.4 yes 120
3.2 odd 2 inner 441.2.w.a.377.17 yes 120
49.13 odd 14 inner 441.2.w.a.62.17 yes 120
147.62 even 14 inner 441.2.w.a.62.4 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.w.a.62.4 120 147.62 even 14 inner
441.2.w.a.62.17 yes 120 49.13 odd 14 inner
441.2.w.a.377.4 yes 120 1.1 even 1 trivial
441.2.w.a.377.17 yes 120 3.2 odd 2 inner