Properties

Label 441.2.bb.c.415.4
Level $441$
Weight $2$
Character 441.415
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(37,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 32])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.bb (of order \(21\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{21})\)
Twist minimal: no (minimal twist has level 147)
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 415.4
Character \(\chi\) \(=\) 441.415
Dual form 441.2.bb.c.424.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.206956 - 2.76163i) q^{2} +(-5.60611 - 0.844986i) q^{4} +(0.116448 + 0.108048i) q^{5} +(-1.85394 + 1.88756i) q^{7} +(-2.26127 + 9.90726i) q^{8} +(0.322487 - 0.299224i) q^{10} +(-1.22138 - 0.832720i) q^{11} +(-4.48658 + 2.16062i) q^{13} +(4.82907 + 5.51055i) q^{14} +(16.0571 + 4.95296i) q^{16} +(0.262423 - 0.668642i) q^{17} +(-2.79266 + 4.83703i) q^{19} +(-0.561520 - 0.704124i) q^{20} +(-2.55244 + 3.20065i) q^{22} +(-1.20493 - 3.07011i) q^{23} +(-0.371765 - 4.96086i) q^{25} +(5.03832 + 12.8374i) q^{26} +(11.9884 - 9.01534i) q^{28} +(-2.33749 - 2.93113i) q^{29} +(0.368945 + 0.639031i) q^{31} +(9.57613 - 24.3996i) q^{32} +(-1.79223 - 0.863094i) q^{34} +(-0.419834 + 0.0194881i) q^{35} +(-3.44919 + 0.519882i) q^{37} +(12.7801 + 8.71335i) q^{38} +(-1.33377 + 0.909352i) q^{40} +(-0.880638 + 3.85833i) q^{41} +(1.46276 + 6.40876i) q^{43} +(6.14353 + 5.70037i) q^{44} +(-8.72787 + 2.69219i) q^{46} +(0.771974 - 10.3013i) q^{47} +(-0.125788 - 6.99887i) q^{49} -13.7770 q^{50} +(26.9780 - 8.32160i) q^{52} +(-10.7834 - 1.62534i) q^{53} +(-0.0522529 - 0.228935i) q^{55} +(-14.5083 - 22.6358i) q^{56} +(-8.57844 + 5.84868i) q^{58} +(-9.45312 + 8.77121i) q^{59} +(3.56105 - 0.536742i) q^{61} +(1.84112 - 0.886639i) q^{62} +(-35.1217 - 16.9137i) q^{64} +(-0.755902 - 0.233165i) q^{65} +(3.13450 + 5.42912i) q^{67} +(-2.03616 + 3.52674i) q^{68} +(-0.0330681 + 1.16346i) q^{70} +(-0.474231 + 0.594667i) q^{71} +(0.0447067 + 0.596570i) q^{73} +(0.721892 + 9.63298i) q^{74} +(19.7432 - 24.7572i) q^{76} +(3.83617 - 0.761608i) q^{77} +(0.0318244 - 0.0551215i) q^{79} +(1.33466 + 2.31169i) q^{80} +(10.4730 + 3.23050i) q^{82} +(7.67321 + 3.69522i) q^{83} +(0.102804 - 0.0495076i) q^{85} +(18.0014 - 2.71327i) q^{86} +(11.0118 - 10.2175i) q^{88} +(-0.703926 + 0.479929i) q^{89} +(4.23955 - 12.4744i) q^{91} +(4.16077 + 18.2295i) q^{92} +(-28.2886 - 4.26382i) q^{94} +(-0.847828 + 0.261520i) q^{95} -10.8136 q^{97} +(-19.3543 - 1.10108i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + 3 q^{4} - 6 q^{8} + 30 q^{10} + 9 q^{11} + 42 q^{14} + 29 q^{16} + 5 q^{17} - 26 q^{19} + 5 q^{20} + q^{22} + 4 q^{23} - 56 q^{25} + 62 q^{26} + 7 q^{28} - 12 q^{29} - 36 q^{31} + 14 q^{32}+ \cdots - 119 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{19}{21}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.206956 2.76163i 0.146340 1.95277i −0.129536 0.991575i \(-0.541349\pi\)
0.275876 0.961193i \(-0.411032\pi\)
\(3\) 0 0
\(4\) −5.60611 0.844986i −2.80306 0.422493i
\(5\) 0.116448 + 0.108048i 0.0520769 + 0.0483203i 0.705782 0.708429i \(-0.250596\pi\)
−0.653705 + 0.756749i \(0.726786\pi\)
\(6\) 0 0
\(7\) −1.85394 + 1.88756i −0.700725 + 0.713432i
\(8\) −2.26127 + 9.90726i −0.799479 + 3.50275i
\(9\) 0 0
\(10\) 0.322487 0.299224i 0.101979 0.0946230i
\(11\) −1.22138 0.832720i −0.368259 0.251074i 0.365025 0.930998i \(-0.381061\pi\)
−0.733283 + 0.679923i \(0.762013\pi\)
\(12\) 0 0
\(13\) −4.48658 + 2.16062i −1.24435 + 0.599249i −0.935992 0.352020i \(-0.885495\pi\)
−0.308361 + 0.951269i \(0.599781\pi\)
\(14\) 4.82907 + 5.51055i 1.29062 + 1.47276i
\(15\) 0 0
\(16\) 16.0571 + 4.95296i 4.01428 + 1.23824i
\(17\) 0.262423 0.668642i 0.0636468 0.162169i −0.895512 0.445037i \(-0.853190\pi\)
0.959159 + 0.282868i \(0.0912857\pi\)
\(18\) 0 0
\(19\) −2.79266 + 4.83703i −0.640680 + 1.10969i 0.344601 + 0.938749i \(0.388014\pi\)
−0.985281 + 0.170941i \(0.945319\pi\)
\(20\) −0.561520 0.704124i −0.125560 0.157447i
\(21\) 0 0
\(22\) −2.55244 + 3.20065i −0.544181 + 0.682381i
\(23\) −1.20493 3.07011i −0.251245 0.640162i 0.748491 0.663145i \(-0.230779\pi\)
−0.999736 + 0.0229833i \(0.992684\pi\)
\(24\) 0 0
\(25\) −0.371765 4.96086i −0.0743529 0.992171i
\(26\) 5.03832 + 12.8374i 0.988096 + 2.51763i
\(27\) 0 0
\(28\) 11.9884 9.01534i 2.26559 1.70374i
\(29\) −2.33749 2.93113i −0.434062 0.544296i 0.515906 0.856645i \(-0.327456\pi\)
−0.949967 + 0.312349i \(0.898884\pi\)
\(30\) 0 0
\(31\) 0.368945 + 0.639031i 0.0662645 + 0.114773i 0.897254 0.441514i \(-0.145559\pi\)
−0.830990 + 0.556288i \(0.812225\pi\)
\(32\) 9.57613 24.3996i 1.69284 4.31328i
\(33\) 0 0
\(34\) −1.79223 0.863094i −0.307365 0.148019i
\(35\) −0.419834 + 0.0194881i −0.0709649 + 0.00329409i
\(36\) 0 0
\(37\) −3.44919 + 0.519882i −0.567043 + 0.0854680i −0.426306 0.904579i \(-0.640185\pi\)
−0.140737 + 0.990047i \(0.544947\pi\)
\(38\) 12.7801 + 8.71335i 2.07321 + 1.41349i
\(39\) 0 0
\(40\) −1.33377 + 0.909352i −0.210888 + 0.143781i
\(41\) −0.880638 + 3.85833i −0.137533 + 0.602570i 0.858440 + 0.512914i \(0.171434\pi\)
−0.995973 + 0.0896560i \(0.971423\pi\)
\(42\) 0 0
\(43\) 1.46276 + 6.40876i 0.223069 + 0.977327i 0.955153 + 0.296113i \(0.0956905\pi\)
−0.732084 + 0.681214i \(0.761452\pi\)
\(44\) 6.14353 + 5.70037i 0.926173 + 0.859363i
\(45\) 0 0
\(46\) −8.72787 + 2.69219i −1.28685 + 0.396942i
\(47\) 0.771974 10.3013i 0.112604 1.50260i −0.599416 0.800437i \(-0.704601\pi\)
0.712020 0.702159i \(-0.247780\pi\)
\(48\) 0 0
\(49\) −0.125788 6.99887i −0.0179697 0.999839i
\(50\) −13.7770 −1.94836
\(51\) 0 0
\(52\) 26.9780 8.32160i 3.74117 1.15400i
\(53\) −10.7834 1.62534i −1.48122 0.223258i −0.641853 0.766828i \(-0.721834\pi\)
−0.839364 + 0.543570i \(0.817072\pi\)
\(54\) 0 0
\(55\) −0.0522529 0.228935i −0.00704578 0.0308696i
\(56\) −14.5083 22.6358i −1.93876 3.02483i
\(57\) 0 0
\(58\) −8.57844 + 5.84868i −1.12640 + 0.767970i
\(59\) −9.45312 + 8.77121i −1.23069 + 1.14191i −0.245693 + 0.969348i \(0.579016\pi\)
−0.984998 + 0.172567i \(0.944794\pi\)
\(60\) 0 0
\(61\) 3.56105 0.536742i 0.455946 0.0687228i 0.0829458 0.996554i \(-0.473567\pi\)
0.373000 + 0.927831i \(0.378329\pi\)
\(62\) 1.84112 0.886639i 0.233823 0.112603i
\(63\) 0 0
\(64\) −35.1217 16.9137i −4.39021 2.11422i
\(65\) −0.755902 0.233165i −0.0937581 0.0289205i
\(66\) 0 0
\(67\) 3.13450 + 5.42912i 0.382940 + 0.663272i 0.991481 0.130250i \(-0.0415782\pi\)
−0.608541 + 0.793523i \(0.708245\pi\)
\(68\) −2.03616 + 3.52674i −0.246921 + 0.427680i
\(69\) 0 0
\(70\) −0.0330681 + 1.16346i −0.00395239 + 0.139060i
\(71\) −0.474231 + 0.594667i −0.0562809 + 0.0705740i −0.809175 0.587567i \(-0.800086\pi\)
0.752894 + 0.658141i \(0.228657\pi\)
\(72\) 0 0
\(73\) 0.0447067 + 0.596570i 0.00523253 + 0.0698232i 0.999209 0.0397727i \(-0.0126634\pi\)
−0.993976 + 0.109596i \(0.965044\pi\)
\(74\) 0.721892 + 9.63298i 0.0839183 + 1.11981i
\(75\) 0 0
\(76\) 19.7432 24.7572i 2.26470 2.83984i
\(77\) 3.83617 0.761608i 0.437172 0.0867933i
\(78\) 0 0
\(79\) 0.0318244 0.0551215i 0.00358053 0.00620166i −0.864230 0.503098i \(-0.832194\pi\)
0.867810 + 0.496896i \(0.165527\pi\)
\(80\) 1.33466 + 2.31169i 0.149219 + 0.258455i
\(81\) 0 0
\(82\) 10.4730 + 3.23050i 1.15655 + 0.356749i
\(83\) 7.67321 + 3.69522i 0.842244 + 0.405603i 0.804693 0.593691i \(-0.202330\pi\)
0.0375512 + 0.999295i \(0.488044\pi\)
\(84\) 0 0
\(85\) 0.102804 0.0495076i 0.0111506 0.00536986i
\(86\) 18.0014 2.71327i 1.94114 0.292579i
\(87\) 0 0
\(88\) 11.0118 10.2175i 1.17387 1.08919i
\(89\) −0.703926 + 0.479929i −0.0746160 + 0.0508724i −0.600054 0.799960i \(-0.704854\pi\)
0.525437 + 0.850832i \(0.323902\pi\)
\(90\) 0 0
\(91\) 4.23955 12.4744i 0.444426 1.30767i
\(92\) 4.16077 + 18.2295i 0.433790 + 1.90056i
\(93\) 0 0
\(94\) −28.2886 4.26382i −2.91774 0.439779i
\(95\) −0.847828 + 0.261520i −0.0869853 + 0.0268314i
\(96\) 0 0
\(97\) −10.8136 −1.09796 −0.548978 0.835837i \(-0.684983\pi\)
−0.548978 + 0.835837i \(0.684983\pi\)
\(98\) −19.3543 1.10108i −1.95508 0.111225i
\(99\) 0 0
\(100\) −2.10770 + 28.1253i −0.210770 + 2.81253i
\(101\) 11.6947 3.60735i 1.16367 0.358945i 0.348018 0.937488i \(-0.386855\pi\)
0.815652 + 0.578543i \(0.196378\pi\)
\(102\) 0 0
\(103\) 3.78643 + 3.51329i 0.373088 + 0.346175i 0.844325 0.535832i \(-0.180002\pi\)
−0.471237 + 0.882007i \(0.656192\pi\)
\(104\) −11.2605 49.3355i −1.10418 4.83774i
\(105\) 0 0
\(106\) −6.72028 + 29.4435i −0.652731 + 2.85980i
\(107\) −3.17320 + 2.16345i −0.306765 + 0.209149i −0.706911 0.707303i \(-0.749912\pi\)
0.400146 + 0.916451i \(0.368959\pi\)
\(108\) 0 0
\(109\) 2.08946 + 1.42457i 0.200134 + 0.136449i 0.659240 0.751932i \(-0.270878\pi\)
−0.459106 + 0.888381i \(0.651830\pi\)
\(110\) −0.643048 + 0.0969238i −0.0613122 + 0.00924133i
\(111\) 0 0
\(112\) −39.1180 + 21.1263i −3.69630 + 1.99625i
\(113\) −2.75985 1.32907i −0.259625 0.125029i 0.299544 0.954082i \(-0.403165\pi\)
−0.559169 + 0.829054i \(0.688880\pi\)
\(114\) 0 0
\(115\) 0.191407 0.487696i 0.0178488 0.0454779i
\(116\) 10.6275 + 18.4074i 0.986739 + 1.70908i
\(117\) 0 0
\(118\) 22.2665 + 27.9213i 2.04979 + 2.57036i
\(119\) 0.775587 + 1.73496i 0.0710980 + 0.159044i
\(120\) 0 0
\(121\) −3.22042 8.20548i −0.292765 0.745953i
\(122\) −0.745304 9.94539i −0.0674767 0.900414i
\(123\) 0 0
\(124\) −1.52838 3.89424i −0.137252 0.349713i
\(125\) 0.987934 1.23883i 0.0883635 0.110804i
\(126\) 0 0
\(127\) −5.24676 6.57923i −0.465575 0.583813i 0.492506 0.870309i \(-0.336081\pi\)
−0.958081 + 0.286496i \(0.907509\pi\)
\(128\) −27.7666 + 48.0932i −2.45425 + 4.25088i
\(129\) 0 0
\(130\) −0.800353 + 2.03927i −0.0701956 + 0.178856i
\(131\) 3.77801 + 1.16536i 0.330086 + 0.101818i 0.455369 0.890303i \(-0.349507\pi\)
−0.125282 + 0.992121i \(0.539984\pi\)
\(132\) 0 0
\(133\) −3.95276 14.2389i −0.342748 1.23467i
\(134\) 15.6419 7.53275i 1.35126 0.650731i
\(135\) 0 0
\(136\) 6.03100 + 4.11187i 0.517154 + 0.352590i
\(137\) −10.2139 + 9.47709i −0.872630 + 0.809683i −0.982885 0.184221i \(-0.941024\pi\)
0.110255 + 0.993903i \(0.464833\pi\)
\(138\) 0 0
\(139\) −4.36479 + 19.1234i −0.370217 + 1.62203i 0.355949 + 0.934505i \(0.384158\pi\)
−0.726165 + 0.687520i \(0.758699\pi\)
\(140\) 2.37010 + 0.245501i 0.200310 + 0.0207486i
\(141\) 0 0
\(142\) 1.54411 + 1.43272i 0.129578 + 0.120231i
\(143\) 7.27899 + 1.09713i 0.608700 + 0.0917468i
\(144\) 0 0
\(145\) 0.0445054 0.593883i 0.00369597 0.0493193i
\(146\) 1.65676 0.137114
\(147\) 0 0
\(148\) 19.7758 1.62556
\(149\) 0.213722 2.85193i 0.0175088 0.233639i −0.981583 0.191035i \(-0.938816\pi\)
0.999092 0.0426039i \(-0.0135653\pi\)
\(150\) 0 0
\(151\) −5.21225 0.785621i −0.424167 0.0639329i −0.0665097 0.997786i \(-0.521186\pi\)
−0.357657 + 0.933853i \(0.616424\pi\)
\(152\) −41.6068 38.6054i −3.37475 3.13131i
\(153\) 0 0
\(154\) −1.30936 10.7517i −0.105511 0.866398i
\(155\) −0.0260830 + 0.114277i −0.00209504 + 0.00917897i
\(156\) 0 0
\(157\) 11.5645 10.7303i 0.922951 0.856373i −0.0670048 0.997753i \(-0.521344\pi\)
0.989955 + 0.141380i \(0.0451538\pi\)
\(158\) −0.145639 0.0992950i −0.0115864 0.00789949i
\(159\) 0 0
\(160\) 3.75143 1.80660i 0.296577 0.142824i
\(161\) 8.02889 + 3.41743i 0.632765 + 0.269331i
\(162\) 0 0
\(163\) −14.9512 4.61184i −1.17107 0.361227i −0.352599 0.935775i \(-0.614702\pi\)
−0.818471 + 0.574547i \(0.805178\pi\)
\(164\) 8.19719 20.8861i 0.640093 1.63093i
\(165\) 0 0
\(166\) 11.7929 20.4258i 0.915303 1.58535i
\(167\) 6.32373 + 7.92971i 0.489345 + 0.613619i 0.963789 0.266667i \(-0.0859223\pi\)
−0.474444 + 0.880286i \(0.657351\pi\)
\(168\) 0 0
\(169\) 7.35574 9.22381i 0.565826 0.709524i
\(170\) −0.115446 0.294152i −0.00885430 0.0225604i
\(171\) 0 0
\(172\) −2.78508 37.1643i −0.212360 2.83375i
\(173\) −8.99650 22.9227i −0.683991 1.74278i −0.669417 0.742887i \(-0.733456\pi\)
−0.0145746 0.999894i \(-0.504639\pi\)
\(174\) 0 0
\(175\) 10.0532 + 8.49542i 0.759947 + 0.642193i
\(176\) −15.4873 19.4205i −1.16740 1.46387i
\(177\) 0 0
\(178\) 1.17970 + 2.04331i 0.0884226 + 0.153152i
\(179\) 6.51764 16.6067i 0.487151 1.24124i −0.450223 0.892916i \(-0.648655\pi\)
0.937374 0.348325i \(-0.113249\pi\)
\(180\) 0 0
\(181\) 0.380366 + 0.183174i 0.0282724 + 0.0136153i 0.447967 0.894050i \(-0.352148\pi\)
−0.419694 + 0.907666i \(0.637863\pi\)
\(182\) −33.5722 14.2897i −2.48854 1.05922i
\(183\) 0 0
\(184\) 33.1410 4.99521i 2.44319 0.368252i
\(185\) −0.457822 0.312138i −0.0336597 0.0229488i
\(186\) 0 0
\(187\) −0.877308 + 0.598138i −0.0641551 + 0.0437402i
\(188\) −13.0322 + 57.0978i −0.950472 + 4.16429i
\(189\) 0 0
\(190\) 0.546760 + 2.39551i 0.0396661 + 0.173789i
\(191\) −7.21918 6.69842i −0.522361 0.484681i 0.374355 0.927285i \(-0.377864\pi\)
−0.896717 + 0.442605i \(0.854054\pi\)
\(192\) 0 0
\(193\) −6.56280 + 2.02436i −0.472401 + 0.145716i −0.521809 0.853062i \(-0.674743\pi\)
0.0494082 + 0.998779i \(0.484266\pi\)
\(194\) −2.23794 + 29.8632i −0.160675 + 2.14405i
\(195\) 0 0
\(196\) −5.20876 + 39.3428i −0.372054 + 2.81020i
\(197\) 13.9994 0.997417 0.498709 0.866770i \(-0.333808\pi\)
0.498709 + 0.866770i \(0.333808\pi\)
\(198\) 0 0
\(199\) 16.7080 5.15374i 1.18440 0.365339i 0.360872 0.932615i \(-0.382479\pi\)
0.823528 + 0.567276i \(0.192003\pi\)
\(200\) 49.9892 + 7.53465i 3.53477 + 0.532780i
\(201\) 0 0
\(202\) −7.54188 33.0431i −0.530645 2.32491i
\(203\) 9.86627 + 1.02197i 0.692476 + 0.0717284i
\(204\) 0 0
\(205\) −0.519431 + 0.354142i −0.0362787 + 0.0247344i
\(206\) 10.4860 9.72962i 0.730597 0.677895i
\(207\) 0 0
\(208\) −82.7430 + 12.4715i −5.73719 + 0.864743i
\(209\) 7.43877 3.58232i 0.514551 0.247795i
\(210\) 0 0
\(211\) 20.3687 + 9.80905i 1.40224 + 0.675283i 0.973614 0.228199i \(-0.0732838\pi\)
0.428625 + 0.903482i \(0.358998\pi\)
\(212\) 59.0797 + 18.2237i 4.05761 + 1.25161i
\(213\) 0 0
\(214\) 5.31795 + 9.21095i 0.363527 + 0.629648i
\(215\) −0.522117 + 0.904332i −0.0356081 + 0.0616750i
\(216\) 0 0
\(217\) −1.89022 0.488321i −0.128316 0.0331494i
\(218\) 4.36656 5.47550i 0.295741 0.370847i
\(219\) 0 0
\(220\) 0.0994890 + 1.32759i 0.00670754 + 0.0895060i
\(221\) 0.267303 + 3.56691i 0.0179808 + 0.239936i
\(222\) 0 0
\(223\) −0.940902 + 1.17985i −0.0630075 + 0.0790089i −0.812337 0.583189i \(-0.801805\pi\)
0.749329 + 0.662198i \(0.230376\pi\)
\(224\) 28.3022 + 63.3110i 1.89102 + 4.23015i
\(225\) 0 0
\(226\) −4.24157 + 7.34662i −0.282145 + 0.488690i
\(227\) 0.927526 + 1.60652i 0.0615620 + 0.106629i 0.895164 0.445737i \(-0.147058\pi\)
−0.833602 + 0.552366i \(0.813725\pi\)
\(228\) 0 0
\(229\) 14.3472 + 4.42553i 0.948091 + 0.292447i 0.729974 0.683475i \(-0.239532\pi\)
0.218117 + 0.975923i \(0.430008\pi\)
\(230\) −1.30722 0.629526i −0.0861958 0.0415097i
\(231\) 0 0
\(232\) 34.3251 16.5301i 2.25356 1.08525i
\(233\) −14.6739 + 2.21173i −0.961318 + 0.144895i −0.610908 0.791701i \(-0.709196\pi\)
−0.350409 + 0.936597i \(0.613958\pi\)
\(234\) 0 0
\(235\) 1.20292 1.11615i 0.0784700 0.0728095i
\(236\) 60.4068 41.1847i 3.93215 2.68089i
\(237\) 0 0
\(238\) 4.95184 1.78283i 0.320980 0.115563i
\(239\) 1.62551 + 7.12184i 0.105146 + 0.460673i 0.999900 + 0.0141153i \(0.00449320\pi\)
−0.894755 + 0.446558i \(0.852650\pi\)
\(240\) 0 0
\(241\) −5.69057 0.857715i −0.366562 0.0552503i −0.0368211 0.999322i \(-0.511723\pi\)
−0.329741 + 0.944072i \(0.606961\pi\)
\(242\) −23.3270 + 7.19543i −1.49952 + 0.462540i
\(243\) 0 0
\(244\) −20.4172 −1.30708
\(245\) 0.741563 0.828593i 0.0473767 0.0529368i
\(246\) 0 0
\(247\) 2.07850 27.7356i 0.132252 1.76477i
\(248\) −7.16534 + 2.21021i −0.454999 + 0.140349i
\(249\) 0 0
\(250\) −3.21673 2.98469i −0.203444 0.188768i
\(251\) 0.655661 + 2.87264i 0.0413849 + 0.181319i 0.991396 0.130897i \(-0.0417857\pi\)
−0.950011 + 0.312216i \(0.898929\pi\)
\(252\) 0 0
\(253\) −1.08487 + 4.75312i −0.0682051 + 0.298826i
\(254\) −19.2553 + 13.1280i −1.20818 + 0.823725i
\(255\) 0 0
\(256\) 62.6521 + 42.7154i 3.91575 + 2.66972i
\(257\) −8.90974 + 1.34293i −0.555774 + 0.0837695i −0.420923 0.907096i \(-0.638294\pi\)
−0.134851 + 0.990866i \(0.543056\pi\)
\(258\) 0 0
\(259\) 5.41329 7.47440i 0.336366 0.464436i
\(260\) 4.04065 + 1.94587i 0.250590 + 0.120678i
\(261\) 0 0
\(262\) 4.00018 10.1923i 0.247132 0.629682i
\(263\) −7.66738 13.2803i −0.472791 0.818898i 0.526724 0.850036i \(-0.323420\pi\)
−0.999515 + 0.0311383i \(0.990087\pi\)
\(264\) 0 0
\(265\) −1.08009 1.35439i −0.0663494 0.0831995i
\(266\) −40.1406 + 7.96925i −2.46118 + 0.488626i
\(267\) 0 0
\(268\) −12.9848 33.0849i −0.793176 2.02098i
\(269\) −0.714185 9.53014i −0.0435447 0.581063i −0.975715 0.219043i \(-0.929706\pi\)
0.932170 0.362020i \(-0.117913\pi\)
\(270\) 0 0
\(271\) −5.98378 15.2464i −0.363489 0.926154i −0.989263 0.146149i \(-0.953312\pi\)
0.625774 0.780004i \(-0.284783\pi\)
\(272\) 7.52550 9.43668i 0.456301 0.572183i
\(273\) 0 0
\(274\) 24.0584 + 30.1683i 1.45342 + 1.82253i
\(275\) −3.67694 + 6.36864i −0.221728 + 0.384044i
\(276\) 0 0
\(277\) −7.23614 + 18.4374i −0.434778 + 1.10780i 0.530758 + 0.847524i \(0.321907\pi\)
−0.965535 + 0.260272i \(0.916188\pi\)
\(278\) 51.9085 + 16.0116i 3.11326 + 0.960314i
\(279\) 0 0
\(280\) 0.756283 4.20347i 0.0451966 0.251206i
\(281\) −1.83386 + 0.883140i −0.109399 + 0.0526837i −0.487783 0.872965i \(-0.662194\pi\)
0.378384 + 0.925649i \(0.376480\pi\)
\(282\) 0 0
\(283\) 19.8825 + 13.5557i 1.18189 + 0.805802i 0.984648 0.174552i \(-0.0558476\pi\)
0.197247 + 0.980354i \(0.436800\pi\)
\(284\) 3.16108 2.93305i 0.187575 0.174045i
\(285\) 0 0
\(286\) 4.53630 19.8748i 0.268237 1.17522i
\(287\) −5.65018 8.81538i −0.333520 0.520356i
\(288\) 0 0
\(289\) 12.0837 + 11.2120i 0.710804 + 0.659530i
\(290\) −1.63088 0.245815i −0.0957683 0.0144347i
\(291\) 0 0
\(292\) 0.253462 3.38222i 0.0148327 0.197929i
\(293\) −26.0006 −1.51897 −0.759487 0.650523i \(-0.774550\pi\)
−0.759487 + 0.650523i \(0.774550\pi\)
\(294\) 0 0
\(295\) −2.04850 −0.119268
\(296\) 2.64894 35.3476i 0.153966 2.05454i
\(297\) 0 0
\(298\) −7.83173 1.18044i −0.453680 0.0683813i
\(299\) 12.0394 + 11.1709i 0.696254 + 0.646029i
\(300\) 0 0
\(301\) −14.8088 9.12043i −0.853566 0.525693i
\(302\) −3.24830 + 14.2317i −0.186919 + 0.818944i
\(303\) 0 0
\(304\) −68.7996 + 63.8367i −3.94593 + 3.66129i
\(305\) 0.472670 + 0.322261i 0.0270650 + 0.0184526i
\(306\) 0 0
\(307\) −5.79149 + 2.78904i −0.330538 + 0.159179i −0.591791 0.806092i \(-0.701579\pi\)
0.261253 + 0.965270i \(0.415864\pi\)
\(308\) −22.1496 + 1.02815i −1.26209 + 0.0585843i
\(309\) 0 0
\(310\) 0.310194 + 0.0956821i 0.0176178 + 0.00543438i
\(311\) −11.4931 + 29.2840i −0.651715 + 1.66054i 0.0950645 + 0.995471i \(0.469694\pi\)
−0.746779 + 0.665072i \(0.768401\pi\)
\(312\) 0 0
\(313\) 9.77989 16.9393i 0.552792 0.957464i −0.445280 0.895392i \(-0.646896\pi\)
0.998072 0.0620724i \(-0.0197710\pi\)
\(314\) −27.2399 34.1577i −1.53723 1.92763i
\(315\) 0 0
\(316\) −0.224988 + 0.282126i −0.0126566 + 0.0158708i
\(317\) −9.40932 23.9746i −0.528480 1.34655i −0.907070 0.420981i \(-0.861686\pi\)
0.378589 0.925565i \(-0.376409\pi\)
\(318\) 0 0
\(319\) 0.414153 + 5.52648i 0.0231881 + 0.309424i
\(320\) −2.26235 5.76438i −0.126469 0.322239i
\(321\) 0 0
\(322\) 11.0993 21.4656i 0.618540 1.19623i
\(323\) 2.50138 + 3.13664i 0.139181 + 0.174527i
\(324\) 0 0
\(325\) 12.3865 + 21.4540i 0.687079 + 1.19006i
\(326\) −15.8304 + 40.3353i −0.876767 + 2.23397i
\(327\) 0 0
\(328\) −36.2341 17.4494i −2.00069 0.963484i
\(329\) 18.0131 + 20.5551i 0.993095 + 1.13324i
\(330\) 0 0
\(331\) −13.0158 + 1.96182i −0.715415 + 0.107831i −0.496656 0.867948i \(-0.665439\pi\)
−0.218759 + 0.975779i \(0.570201\pi\)
\(332\) −39.8945 27.1996i −2.18949 1.49277i
\(333\) 0 0
\(334\) 23.2077 15.8227i 1.26987 0.865780i
\(335\) −0.221598 + 0.970883i −0.0121072 + 0.0530450i
\(336\) 0 0
\(337\) −3.06582 13.4322i −0.167006 0.731700i −0.987183 0.159591i \(-0.948982\pi\)
0.820177 0.572109i \(-0.193875\pi\)
\(338\) −23.9504 22.2228i −1.30273 1.20876i
\(339\) 0 0
\(340\) −0.618162 + 0.190678i −0.0335245 + 0.0103410i
\(341\) 0.0815137 1.08773i 0.00441422 0.0589036i
\(342\) 0 0
\(343\) 13.4440 + 12.7381i 0.725908 + 0.687791i
\(344\) −66.8010 −3.60167
\(345\) 0 0
\(346\) −65.1659 + 20.1010i −3.50334 + 1.08064i
\(347\) 14.4821 + 2.18282i 0.777439 + 0.117180i 0.525763 0.850631i \(-0.323780\pi\)
0.251677 + 0.967811i \(0.419018\pi\)
\(348\) 0 0
\(349\) 4.39555 + 19.2582i 0.235289 + 1.03087i 0.945179 + 0.326554i \(0.105887\pi\)
−0.709890 + 0.704313i \(0.751255\pi\)
\(350\) 25.5418 26.0049i 1.36526 1.39002i
\(351\) 0 0
\(352\) −32.0141 + 21.8268i −1.70636 + 1.16337i
\(353\) −7.02774 + 6.52079i −0.374049 + 0.347067i −0.844688 0.535259i \(-0.820214\pi\)
0.470639 + 0.882326i \(0.344023\pi\)
\(354\) 0 0
\(355\) −0.119475 + 0.0180080i −0.00634109 + 0.000955766i
\(356\) 4.35182 2.09573i 0.230646 0.111073i
\(357\) 0 0
\(358\) −44.5126 21.4362i −2.35257 1.13294i
\(359\) 15.4279 + 4.75887i 0.814252 + 0.251164i 0.673790 0.738922i \(-0.264665\pi\)
0.140462 + 0.990086i \(0.455141\pi\)
\(360\) 0 0
\(361\) −6.09789 10.5619i −0.320942 0.555888i
\(362\) 0.584579 1.01252i 0.0307248 0.0532169i
\(363\) 0 0
\(364\) −34.3081 + 66.3504i −1.79823 + 3.47771i
\(365\) −0.0592519 + 0.0742996i −0.00310139 + 0.00388902i
\(366\) 0 0
\(367\) 1.44595 + 19.2948i 0.0754777 + 1.00718i 0.898443 + 0.439089i \(0.144699\pi\)
−0.822966 + 0.568091i \(0.807682\pi\)
\(368\) −4.14154 55.2650i −0.215893 2.88089i
\(369\) 0 0
\(370\) −0.956758 + 1.19974i −0.0497395 + 0.0623713i
\(371\) 23.0598 17.3411i 1.19720 0.900305i
\(372\) 0 0
\(373\) −4.78444 + 8.28690i −0.247729 + 0.429079i −0.962895 0.269875i \(-0.913018\pi\)
0.715166 + 0.698954i \(0.246351\pi\)
\(374\) 1.47027 + 2.54659i 0.0760260 + 0.131681i
\(375\) 0 0
\(376\) 100.312 + 30.9421i 5.17319 + 1.59572i
\(377\) 16.8204 + 8.10028i 0.866295 + 0.417186i
\(378\) 0 0
\(379\) −19.8820 + 9.57467i −1.02127 + 0.491818i −0.868104 0.496383i \(-0.834661\pi\)
−0.153166 + 0.988200i \(0.548947\pi\)
\(380\) 4.97400 0.749710i 0.255161 0.0384593i
\(381\) 0 0
\(382\) −19.9926 + 18.5504i −1.02291 + 0.949123i
\(383\) −2.22696 + 1.51832i −0.113792 + 0.0775824i −0.618879 0.785486i \(-0.712413\pi\)
0.505087 + 0.863069i \(0.331461\pi\)
\(384\) 0 0
\(385\) 0.529003 + 0.325802i 0.0269605 + 0.0166044i
\(386\) 4.23232 + 18.5430i 0.215419 + 0.943814i
\(387\) 0 0
\(388\) 60.6223 + 9.13734i 3.07763 + 0.463878i
\(389\) 24.0751 7.42619i 1.22066 0.376523i 0.383529 0.923529i \(-0.374709\pi\)
0.837129 + 0.547006i \(0.184232\pi\)
\(390\) 0 0
\(391\) −2.36900 −0.119806
\(392\) 69.6241 + 14.5801i 3.51655 + 0.736406i
\(393\) 0 0
\(394\) 2.89726 38.6612i 0.145962 1.94772i
\(395\) 0.00966162 0.00298022i 0.000486129 0.000149951i
\(396\) 0 0
\(397\) −6.55527 6.08240i −0.329000 0.305267i 0.498326 0.866990i \(-0.333948\pi\)
−0.827326 + 0.561723i \(0.810139\pi\)
\(398\) −10.7749 47.2080i −0.540098 2.36632i
\(399\) 0 0
\(400\) 18.6015 81.4983i 0.930073 4.07492i
\(401\) −31.2139 + 21.2813i −1.55875 + 1.06274i −0.592349 + 0.805681i \(0.701800\pi\)
−0.966397 + 0.257054i \(0.917248\pi\)
\(402\) 0 0
\(403\) −3.03601 2.06991i −0.151234 0.103110i
\(404\) −68.6102 + 10.3413i −3.41349 + 0.514500i
\(405\) 0 0
\(406\) 4.86419 27.0355i 0.241406 1.34175i
\(407\) 4.64567 + 2.23724i 0.230277 + 0.110896i
\(408\) 0 0
\(409\) −2.52891 + 6.44357i −0.125047 + 0.318614i −0.979664 0.200644i \(-0.935696\pi\)
0.854617 + 0.519258i \(0.173792\pi\)
\(410\) 0.870511 + 1.50777i 0.0429915 + 0.0744634i
\(411\) 0 0
\(412\) −18.2585 22.8954i −0.899530 1.12797i
\(413\) 0.969330 34.1047i 0.0476976 1.67818i
\(414\) 0 0
\(415\) 0.494267 + 1.25937i 0.0242626 + 0.0618201i
\(416\) 9.75423 + 130.161i 0.478240 + 6.38167i
\(417\) 0 0
\(418\) −8.35356 21.2845i −0.408586 1.04106i
\(419\) −21.7028 + 27.2144i −1.06025 + 1.32951i −0.118592 + 0.992943i \(0.537838\pi\)
−0.941659 + 0.336569i \(0.890733\pi\)
\(420\) 0 0
\(421\) 5.44856 + 6.83228i 0.265547 + 0.332985i 0.896672 0.442696i \(-0.145978\pi\)
−0.631125 + 0.775681i \(0.717406\pi\)
\(422\) 31.3044 54.2208i 1.52387 2.63943i
\(423\) 0 0
\(424\) 40.4869 103.159i 1.96622 5.00984i
\(425\) −3.41460 1.05326i −0.165632 0.0510908i
\(426\) 0 0
\(427\) −5.58885 + 7.71680i −0.270464 + 0.373442i
\(428\) 19.6174 9.44725i 0.948244 0.456650i
\(429\) 0 0
\(430\) 2.38938 + 1.62905i 0.115226 + 0.0785598i
\(431\) −1.36907 + 1.27031i −0.0659456 + 0.0611886i −0.712457 0.701716i \(-0.752418\pi\)
0.646512 + 0.762904i \(0.276227\pi\)
\(432\) 0 0
\(433\) −7.94869 + 34.8255i −0.381990 + 1.67361i 0.309250 + 0.950981i \(0.399922\pi\)
−0.691240 + 0.722625i \(0.742935\pi\)
\(434\) −1.73975 + 5.11902i −0.0835109 + 0.245721i
\(435\) 0 0
\(436\) −10.5100 9.75187i −0.503338 0.467030i
\(437\) 18.2152 + 2.74549i 0.871349 + 0.131335i
\(438\) 0 0
\(439\) −0.406215 + 5.42056i −0.0193876 + 0.258709i 0.979085 + 0.203453i \(0.0652165\pi\)
−0.998472 + 0.0552558i \(0.982403\pi\)
\(440\) 2.38628 0.113761
\(441\) 0 0
\(442\) 9.90582 0.471172
\(443\) −2.30793 + 30.7971i −0.109653 + 1.46322i 0.622791 + 0.782388i \(0.285999\pi\)
−0.732444 + 0.680828i \(0.761620\pi\)
\(444\) 0 0
\(445\) −0.133826 0.0201710i −0.00634394 0.000956196i
\(446\) 3.06360 + 2.84260i 0.145065 + 0.134601i
\(447\) 0 0
\(448\) 97.0394 34.9374i 4.58468 1.65064i
\(449\) −1.41120 + 6.18287i −0.0665986 + 0.291788i −0.997249 0.0741215i \(-0.976385\pi\)
0.930651 + 0.365909i \(0.119242\pi\)
\(450\) 0 0
\(451\) 4.28850 3.97914i 0.201937 0.187371i
\(452\) 14.3490 + 9.78296i 0.674919 + 0.460152i
\(453\) 0 0
\(454\) 4.62858 2.22901i 0.217230 0.104612i
\(455\) 1.84151 0.994538i 0.0863314 0.0466246i
\(456\) 0 0
\(457\) −25.9268 7.99736i −1.21281 0.374101i −0.378603 0.925559i \(-0.623595\pi\)
−0.834202 + 0.551458i \(0.814072\pi\)
\(458\) 15.1909 38.7058i 0.709825 1.80861i
\(459\) 0 0
\(460\) −1.48514 + 2.57235i −0.0692452 + 0.119936i
\(461\) −2.03252 2.54870i −0.0946641 0.118705i 0.732243 0.681043i \(-0.238473\pi\)
−0.826907 + 0.562338i \(0.809902\pi\)
\(462\) 0 0
\(463\) −18.4772 + 23.1697i −0.858709 + 1.07679i 0.137561 + 0.990493i \(0.456074\pi\)
−0.996270 + 0.0862933i \(0.972498\pi\)
\(464\) −23.0156 58.6429i −1.06847 2.72243i
\(465\) 0 0
\(466\) 3.07114 + 40.9816i 0.142268 + 1.89843i
\(467\) 12.6796 + 32.3070i 0.586740 + 1.49499i 0.848147 + 0.529760i \(0.177718\pi\)
−0.261408 + 0.965228i \(0.584187\pi\)
\(468\) 0 0
\(469\) −16.0590 4.14870i −0.741535 0.191569i
\(470\) −2.83344 3.55302i −0.130697 0.163889i
\(471\) 0 0
\(472\) −65.5227 113.489i −3.01592 5.22373i
\(473\) 3.55013 9.04557i 0.163235 0.415916i
\(474\) 0 0
\(475\) 25.0340 + 12.0557i 1.14864 + 0.553155i
\(476\) −2.88201 10.3818i −0.132097 0.475847i
\(477\) 0 0
\(478\) 20.0043 3.01516i 0.914975 0.137910i
\(479\) 18.7408 + 12.7773i 0.856289 + 0.583808i 0.909934 0.414752i \(-0.136132\pi\)
−0.0536456 + 0.998560i \(0.517084\pi\)
\(480\) 0 0
\(481\) 14.3518 9.78489i 0.654386 0.446153i
\(482\) −3.54639 + 15.5377i −0.161534 + 0.707725i
\(483\) 0 0
\(484\) 11.1205 + 48.7221i 0.505477 + 2.21464i
\(485\) −1.25922 1.16838i −0.0571782 0.0530536i
\(486\) 0 0
\(487\) −29.2489 + 9.02210i −1.32540 + 0.408830i −0.875054 0.484026i \(-0.839174\pi\)
−0.450342 + 0.892856i \(0.648698\pi\)
\(488\) −2.73485 + 36.4940i −0.123801 + 1.65201i
\(489\) 0 0
\(490\) −2.13480 2.21941i −0.0964403 0.100263i
\(491\) 7.93412 0.358062 0.179031 0.983843i \(-0.442704\pi\)
0.179031 + 0.983843i \(0.442704\pi\)
\(492\) 0 0
\(493\) −2.57328 + 0.793753i −0.115895 + 0.0357488i
\(494\) −76.1653 11.4801i −3.42684 0.516513i
\(495\) 0 0
\(496\) 2.75909 + 12.0884i 0.123887 + 0.542784i
\(497\) −0.243274 1.99762i −0.0109123 0.0896055i
\(498\) 0 0
\(499\) 27.8754 19.0052i 1.24788 0.850788i 0.254656 0.967032i \(-0.418038\pi\)
0.993221 + 0.116244i \(0.0370855\pi\)
\(500\) −6.58526 + 6.11023i −0.294502 + 0.273258i
\(501\) 0 0
\(502\) 8.06886 1.21618i 0.360131 0.0542810i
\(503\) −18.3233 + 8.82406i −0.816997 + 0.393445i −0.795223 0.606318i \(-0.792646\pi\)
−0.0217749 + 0.999763i \(0.506932\pi\)
\(504\) 0 0
\(505\) 1.75159 + 0.843521i 0.0779447 + 0.0375362i
\(506\) 12.9019 + 3.97969i 0.573557 + 0.176919i
\(507\) 0 0
\(508\) 23.8546 + 41.3174i 1.05838 + 1.83316i
\(509\) 10.0193 17.3539i 0.444097 0.769199i −0.553892 0.832589i \(-0.686858\pi\)
0.997989 + 0.0633901i \(0.0201912\pi\)
\(510\) 0 0
\(511\) −1.20895 1.02162i −0.0534807 0.0451938i
\(512\) 61.6817 77.3464i 2.72597 3.41826i
\(513\) 0 0
\(514\) 1.86475 + 24.8833i 0.0822505 + 1.09756i
\(515\) 0.0613177 + 0.818228i 0.00270198 + 0.0360555i
\(516\) 0 0
\(517\) −9.52095 + 11.9389i −0.418731 + 0.525072i
\(518\) −19.5212 16.4964i −0.857713 0.724810i
\(519\) 0 0
\(520\) 4.01932 6.96167i 0.176259 0.305289i
\(521\) −18.7782 32.5248i −0.822687 1.42494i −0.903674 0.428221i \(-0.859141\pi\)
0.0809869 0.996715i \(-0.474193\pi\)
\(522\) 0 0
\(523\) −30.8956 9.53003i −1.35097 0.416719i −0.466998 0.884258i \(-0.654665\pi\)
−0.883972 + 0.467539i \(0.845141\pi\)
\(524\) −20.1952 9.72552i −0.882233 0.424861i
\(525\) 0 0
\(526\) −38.2621 + 18.4260i −1.66831 + 0.803414i
\(527\) 0.524103 0.0789958i 0.0228303 0.00344111i
\(528\) 0 0
\(529\) 8.88648 8.24545i 0.386369 0.358498i
\(530\) −3.96386 + 2.70251i −0.172179 + 0.117390i
\(531\) 0 0
\(532\) 10.1280 + 83.1649i 0.439103 + 3.60566i
\(533\) −4.38534 19.2134i −0.189950 0.832226i
\(534\) 0 0
\(535\) −0.603268 0.0909280i −0.0260815 0.00393116i
\(536\) −60.8756 + 18.7776i −2.62943 + 0.811071i
\(537\) 0 0
\(538\) −26.4665 −1.14105
\(539\) −5.67446 + 8.65299i −0.244416 + 0.372711i
\(540\) 0 0
\(541\) 1.49211 19.9108i 0.0641506 0.856030i −0.868601 0.495512i \(-0.834981\pi\)
0.932752 0.360519i \(-0.117400\pi\)
\(542\) −43.3433 + 13.3697i −1.86176 + 0.574276i
\(543\) 0 0
\(544\) −13.8016 12.8060i −0.591739 0.549053i
\(545\) 0.0893913 + 0.391649i 0.00382910 + 0.0167764i
\(546\) 0 0
\(547\) 3.83205 16.7893i 0.163846 0.717858i −0.824528 0.565821i \(-0.808559\pi\)
0.988375 0.152037i \(-0.0485834\pi\)
\(548\) 65.2682 44.4991i 2.78812 1.90091i
\(549\) 0 0
\(550\) 16.8269 + 11.4724i 0.717501 + 0.489184i
\(551\) 20.7058 3.12089i 0.882095 0.132954i
\(552\) 0 0
\(553\) 0.0450447 + 0.162263i 0.00191549 + 0.00690012i
\(554\) 49.4197 + 23.7993i 2.09964 + 1.01113i
\(555\) 0 0
\(556\) 40.6285 103.520i 1.72303 4.39022i
\(557\) 3.01437 + 5.22104i 0.127723 + 0.221222i 0.922794 0.385294i \(-0.125900\pi\)
−0.795071 + 0.606516i \(0.792567\pi\)
\(558\) 0 0
\(559\) −20.4097 25.5930i −0.863238 1.08247i
\(560\) −6.83784 1.76650i −0.288951 0.0746482i
\(561\) 0 0
\(562\) 2.05938 + 5.24721i 0.0868697 + 0.221340i
\(563\) 0.713440 + 9.52019i 0.0300679 + 0.401228i 0.991850 + 0.127412i \(0.0406670\pi\)
−0.961782 + 0.273816i \(0.911714\pi\)
\(564\) 0 0
\(565\) −0.177775 0.452962i −0.00747903 0.0190563i
\(566\) 41.5506 52.1028i 1.74650 2.19005i
\(567\) 0 0
\(568\) −4.81916 6.04303i −0.202207 0.253560i
\(569\) 9.26009 16.0389i 0.388203 0.672387i −0.604005 0.796981i \(-0.706429\pi\)
0.992208 + 0.124593i \(0.0397626\pi\)
\(570\) 0 0
\(571\) −0.0465428 + 0.118589i −0.00194776 + 0.00496280i −0.931844 0.362858i \(-0.881801\pi\)
0.929897 + 0.367821i \(0.119896\pi\)
\(572\) −39.8798 12.3013i −1.66746 0.514343i
\(573\) 0 0
\(574\) −25.5142 + 13.7793i −1.06494 + 0.575138i
\(575\) −14.7824 + 7.11883i −0.616469 + 0.296876i
\(576\) 0 0
\(577\) −7.07883 4.82626i −0.294695 0.200920i 0.406942 0.913454i \(-0.366595\pi\)
−0.701638 + 0.712534i \(0.747547\pi\)
\(578\) 33.4642 31.0502i 1.39193 1.29152i
\(579\) 0 0
\(580\) −0.751325 + 3.29177i −0.0311971 + 0.136683i
\(581\) −21.2007 + 7.63293i −0.879552 + 0.316667i
\(582\) 0 0
\(583\) 11.8172 + 10.9647i 0.489417 + 0.454112i
\(584\) −6.01147 0.906083i −0.248756 0.0374940i
\(585\) 0 0
\(586\) −5.38098 + 71.8042i −0.222286 + 2.96620i
\(587\) −37.2781 −1.53863 −0.769317 0.638868i \(-0.779403\pi\)
−0.769317 + 0.638868i \(0.779403\pi\)
\(588\) 0 0
\(589\) −4.12135 −0.169817
\(590\) −0.423949 + 5.65720i −0.0174537 + 0.232903i
\(591\) 0 0
\(592\) −57.9590 8.73591i −2.38210 0.359044i
\(593\) −15.2016 14.1050i −0.624255 0.579224i 0.303307 0.952893i \(-0.401909\pi\)
−0.927562 + 0.373669i \(0.878100\pi\)
\(594\) 0 0
\(595\) −0.0971434 + 0.285833i −0.00398249 + 0.0117180i
\(596\) −3.60799 + 15.8076i −0.147789 + 0.647506i
\(597\) 0 0
\(598\) 33.3415 30.9364i 1.36343 1.26508i
\(599\) 9.05227 + 6.17173i 0.369866 + 0.252170i 0.733961 0.679191i \(-0.237669\pi\)
−0.364095 + 0.931362i \(0.618622\pi\)
\(600\) 0 0
\(601\) 34.4798 16.6046i 1.40646 0.677315i 0.431999 0.901874i \(-0.357809\pi\)
0.974460 + 0.224559i \(0.0720942\pi\)
\(602\) −28.2520 + 39.0090i −1.15147 + 1.58989i
\(603\) 0 0
\(604\) 28.5566 + 8.80856i 1.16195 + 0.358415i
\(605\) 0.511573 1.30347i 0.0207984 0.0529935i
\(606\) 0 0
\(607\) 3.50859 6.07705i 0.142409 0.246660i −0.785994 0.618234i \(-0.787848\pi\)
0.928403 + 0.371574i \(0.121182\pi\)
\(608\) 91.2786 + 114.460i 3.70184 + 4.64196i
\(609\) 0 0
\(610\) 0.987787 1.23865i 0.0399943 0.0501513i
\(611\) 18.7937 + 47.8855i 0.760310 + 1.93724i
\(612\) 0 0
\(613\) −2.56850 34.2742i −0.103741 1.38432i −0.769734 0.638365i \(-0.779611\pi\)
0.665993 0.745958i \(-0.268008\pi\)
\(614\) 6.50371 + 16.5712i 0.262468 + 0.668758i
\(615\) 0 0
\(616\) −1.12916 + 39.7282i −0.0454952 + 1.60069i
\(617\) 21.5991 + 27.0844i 0.869548 + 1.09038i 0.995157 + 0.0982984i \(0.0313400\pi\)
−0.125609 + 0.992080i \(0.540089\pi\)
\(618\) 0 0
\(619\) 7.97891 + 13.8199i 0.320699 + 0.555468i 0.980633 0.195857i \(-0.0627487\pi\)
−0.659933 + 0.751324i \(0.729415\pi\)
\(620\) 0.242787 0.618612i 0.00975057 0.0248440i
\(621\) 0 0
\(622\) 78.4930 + 37.8002i 3.14728 + 1.51565i
\(623\) 0.399144 2.21847i 0.0159913 0.0888810i
\(624\) 0 0
\(625\) −24.3471 + 3.66974i −0.973885 + 0.146789i
\(626\) −44.7560 30.5141i −1.78881 1.21959i
\(627\) 0 0
\(628\) −73.8991 + 50.3836i −2.94890 + 2.01052i
\(629\) −0.557531 + 2.44270i −0.0222302 + 0.0973969i
\(630\) 0 0
\(631\) −1.01937 4.46616i −0.0405805 0.177795i 0.950576 0.310491i \(-0.100494\pi\)
−0.991157 + 0.132696i \(0.957636\pi\)
\(632\) 0.474140 + 0.439937i 0.0188603 + 0.0174998i
\(633\) 0 0
\(634\) −68.1562 + 21.0234i −2.70683 + 0.834946i
\(635\) 0.0998972 1.33304i 0.00396430 0.0528999i
\(636\) 0 0
\(637\) 15.6863 + 31.1292i 0.621513 + 1.23338i
\(638\) 15.3478 0.607626
\(639\) 0 0
\(640\) −8.42971 + 2.60022i −0.333213 + 0.102783i
\(641\) −0.955720 0.144052i −0.0377487 0.00568970i 0.130141 0.991496i \(-0.458457\pi\)
−0.167889 + 0.985806i \(0.553695\pi\)
\(642\) 0 0
\(643\) −7.16570 31.3950i −0.282588 1.23810i −0.894463 0.447143i \(-0.852442\pi\)
0.611875 0.790954i \(-0.290416\pi\)
\(644\) −42.1232 25.9428i −1.65989 1.02229i
\(645\) 0 0
\(646\) 9.17990 6.25875i 0.361179 0.246247i
\(647\) −4.50360 + 4.17873i −0.177055 + 0.164283i −0.763722 0.645545i \(-0.776630\pi\)
0.586667 + 0.809828i \(0.300440\pi\)
\(648\) 0 0
\(649\) 18.8498 2.84114i 0.739918 0.111525i
\(650\) 61.8116 29.7669i 2.42445 1.16755i
\(651\) 0 0
\(652\) 79.9213 + 38.4881i 3.12996 + 1.50731i
\(653\) −21.1621 6.52765i −0.828137 0.255447i −0.148423 0.988924i \(-0.547420\pi\)
−0.679714 + 0.733477i \(0.737896\pi\)
\(654\) 0 0
\(655\) 0.314026 + 0.543908i 0.0122700 + 0.0212523i
\(656\) −33.2506 + 57.5918i −1.29822 + 2.24858i
\(657\) 0 0
\(658\) 60.4936 45.4916i 2.35829 1.77345i
\(659\) 12.7464 15.9834i 0.496528 0.622627i −0.468914 0.883244i \(-0.655355\pi\)
0.965442 + 0.260617i \(0.0839260\pi\)
\(660\) 0 0
\(661\) 2.01235 + 26.8529i 0.0782712 + 1.04446i 0.888661 + 0.458565i \(0.151636\pi\)
−0.810390 + 0.585891i \(0.800745\pi\)
\(662\) 2.72413 + 36.3509i 0.105876 + 1.41282i
\(663\) 0 0
\(664\) −53.9607 + 67.6646i −2.09408 + 2.62590i
\(665\) 1.07819 2.08517i 0.0418104 0.0808595i
\(666\) 0 0
\(667\) −6.18236 + 10.7082i −0.239382 + 0.414621i
\(668\) −28.7511 49.7983i −1.11241 1.92675i
\(669\) 0 0
\(670\) 2.63536 + 0.812901i 0.101813 + 0.0314051i
\(671\) −4.79634 2.30979i −0.185161 0.0891686i
\(672\) 0 0
\(673\) 25.2078 12.1395i 0.971691 0.467942i 0.120451 0.992719i \(-0.461566\pi\)
0.851239 + 0.524778i \(0.175852\pi\)
\(674\) −37.7294 + 5.68679i −1.45328 + 0.219047i
\(675\) 0 0
\(676\) −49.0311 + 45.4942i −1.88581 + 1.74978i
\(677\) −26.7394 + 18.2306i −1.02768 + 0.700660i −0.954973 0.296694i \(-0.904116\pi\)
−0.0727063 + 0.997353i \(0.523164\pi\)
\(678\) 0 0
\(679\) 20.0478 20.4114i 0.769365 0.783316i
\(680\) 0.258018 + 1.13045i 0.00989455 + 0.0433509i
\(681\) 0 0
\(682\) −2.98703 0.450222i −0.114379 0.0172399i
\(683\) −2.58965 + 0.798802i −0.0990903 + 0.0305653i −0.343904 0.939005i \(-0.611749\pi\)
0.244814 + 0.969570i \(0.421273\pi\)
\(684\) 0 0
\(685\) −2.21336 −0.0845681
\(686\) 37.9602 34.4912i 1.44933 1.31688i
\(687\) 0 0
\(688\) −8.25469 + 110.151i −0.314707 + 4.19947i
\(689\) 51.8924 16.0067i 1.97694 0.609807i
\(690\) 0 0
\(691\) −2.29213 2.12679i −0.0871968 0.0809068i 0.635370 0.772208i \(-0.280847\pi\)
−0.722567 + 0.691301i \(0.757038\pi\)
\(692\) 31.0660 + 136.109i 1.18095 + 5.17410i
\(693\) 0 0
\(694\) 9.02531 39.5424i 0.342596 1.50101i
\(695\) −2.57451 + 1.75527i −0.0976566 + 0.0665811i
\(696\) 0 0
\(697\) 2.34874 + 1.60134i 0.0889649 + 0.0606552i
\(698\) 54.0937 8.15331i 2.04748 0.308607i
\(699\) 0 0
\(700\) −49.1806 56.1210i −1.85885 2.12118i
\(701\) −25.1584 12.1157i −0.950220 0.457602i −0.106457 0.994317i \(-0.533951\pi\)
−0.843763 + 0.536715i \(0.819665\pi\)
\(702\) 0 0
\(703\) 7.11773 18.1357i 0.268450 0.684000i
\(704\) 28.8124 + 49.9046i 1.08591 + 1.88085i
\(705\) 0 0
\(706\) 16.5536 + 20.7575i 0.623002 + 0.781220i
\(707\) −14.8723 + 28.7624i −0.559330 + 1.08172i
\(708\) 0 0
\(709\) 14.5618 + 37.1029i 0.546880 + 1.39343i 0.890786 + 0.454423i \(0.150155\pi\)
−0.343906 + 0.939004i \(0.611750\pi\)
\(710\) 0.0250054 + 0.333674i 0.000938436 + 0.0125226i
\(711\) 0 0
\(712\) −3.16302 8.05923i −0.118539 0.302032i
\(713\) 1.51734 1.90269i 0.0568250 0.0712562i
\(714\) 0 0
\(715\) 0.729079 + 0.914236i 0.0272660 + 0.0341905i
\(716\) −50.5710 + 87.5916i −1.88993 + 3.27345i
\(717\) 0 0
\(718\) 16.3351 41.6212i 0.609622 1.55329i
\(719\) −41.0406 12.6593i −1.53056 0.472114i −0.588762 0.808306i \(-0.700385\pi\)
−0.941793 + 0.336193i \(0.890861\pi\)
\(720\) 0 0
\(721\) −13.6514 + 0.633677i −0.508404 + 0.0235994i
\(722\) −30.4300 + 14.6543i −1.13249 + 0.545376i
\(723\) 0 0
\(724\) −1.97759 1.34830i −0.0734967 0.0501092i
\(725\) −13.6719 + 12.6857i −0.507761 + 0.471134i
\(726\) 0 0
\(727\) 0.0236792 0.103745i 0.000878213 0.00384770i −0.974487 0.224444i \(-0.927943\pi\)
0.975365 + 0.220597i \(0.0708004\pi\)
\(728\) 114.000 + 70.2103i 4.22513 + 2.60217i
\(729\) 0 0
\(730\) 0.192926 + 0.179009i 0.00714049 + 0.00662541i
\(731\) 4.66903 + 0.703743i 0.172690 + 0.0260289i
\(732\) 0 0
\(733\) −0.0587855 + 0.784438i −0.00217129 + 0.0289739i −0.998184 0.0602353i \(-0.980815\pi\)
0.996013 + 0.0892092i \(0.0284340\pi\)
\(734\) 53.5844 1.97783
\(735\) 0 0
\(736\) −86.4479 −3.18651
\(737\) 0.692528 9.24115i 0.0255096 0.340402i
\(738\) 0 0
\(739\) 12.5382 + 1.88984i 0.461227 + 0.0695187i 0.375546 0.926804i \(-0.377455\pi\)
0.0856810 + 0.996323i \(0.472693\pi\)
\(740\) 2.30285 + 2.13673i 0.0846544 + 0.0785478i
\(741\) 0 0
\(742\) −43.1174 67.2715i −1.58289 2.46961i
\(743\) 8.81831 38.6356i 0.323513 1.41740i −0.507742 0.861509i \(-0.669520\pi\)
0.831255 0.555892i \(-0.187623\pi\)
\(744\) 0 0
\(745\) 0.333031 0.309008i 0.0122013 0.0113212i
\(746\) 21.8952 + 14.9279i 0.801640 + 0.546549i
\(747\) 0 0
\(748\) 5.42371 2.61192i 0.198310 0.0955012i
\(749\) 1.79928 10.0005i 0.0657444 0.365412i
\(750\) 0 0
\(751\) −15.5823 4.80651i −0.568607 0.175392i −0.00289640 0.999996i \(-0.500922\pi\)
−0.565711 + 0.824604i \(0.691398\pi\)
\(752\) 63.4175 161.585i 2.31260 5.89240i
\(753\) 0 0
\(754\) 25.8511 44.7754i 0.941441 1.63062i
\(755\) −0.522070 0.654655i −0.0190001 0.0238253i
\(756\) 0 0
\(757\) 2.42579 3.04185i 0.0881669 0.110558i −0.735791 0.677208i \(-0.763190\pi\)
0.823958 + 0.566651i \(0.191761\pi\)
\(758\) 22.3270 + 56.8883i 0.810954 + 2.06628i
\(759\) 0 0
\(760\) −0.673784 8.99102i −0.0244407 0.326139i
\(761\) −12.2832 31.2970i −0.445264 1.13451i −0.960701 0.277586i \(-0.910466\pi\)
0.515437 0.856928i \(-0.327630\pi\)
\(762\) 0 0
\(763\) −6.56271 + 1.30292i −0.237586 + 0.0471687i
\(764\) 34.8115 + 43.6522i 1.25943 + 1.57928i
\(765\) 0 0
\(766\) 3.73215 + 6.46427i 0.134848 + 0.233564i
\(767\) 23.4609 59.7774i 0.847123 2.15844i
\(768\) 0 0
\(769\) 16.1710 + 7.78754i 0.583141 + 0.280826i 0.702106 0.712072i \(-0.252243\pi\)
−0.118965 + 0.992898i \(0.537958\pi\)
\(770\) 1.00922 1.39348i 0.0363699 0.0502177i
\(771\) 0 0
\(772\) 38.5024 5.80330i 1.38573 0.208865i
\(773\) 39.1048 + 26.6612i 1.40650 + 0.958936i 0.998953 + 0.0457515i \(0.0145682\pi\)
0.407547 + 0.913184i \(0.366384\pi\)
\(774\) 0 0
\(775\) 3.03298 2.06785i 0.108948 0.0742794i
\(776\) 24.4525 107.133i 0.877792 3.84586i
\(777\) 0 0
\(778\) −15.5259 68.0235i −0.556631 2.43876i
\(779\) −16.2035 15.0347i −0.580551 0.538673i
\(780\) 0 0
\(781\) 1.07440 0.331410i 0.0384452 0.0118588i
\(782\) −0.490279 + 6.54231i −0.0175323 + 0.233953i
\(783\) 0 0
\(784\) 32.6453 113.005i 1.16590 4.03588i
\(785\) 2.50605 0.0894447
\(786\) 0 0
\(787\) 8.74001 2.69594i 0.311548 0.0960997i −0.135038 0.990840i \(-0.543116\pi\)
0.446586 + 0.894741i \(0.352640\pi\)
\(788\) −78.4823 11.8293i −2.79582 0.421402i
\(789\) 0 0
\(790\) −0.00623073 0.0272986i −0.000221679 0.000971241i
\(791\) 7.62531 2.74536i 0.271125 0.0976138i
\(792\) 0 0
\(793\) −14.8172 + 10.1022i −0.526176 + 0.358741i
\(794\) −18.1540 + 16.8444i −0.644261 + 0.597787i
\(795\) 0 0
\(796\) −98.0219 + 14.7744i −3.47429 + 0.523666i
\(797\) 7.37350 3.55089i 0.261183 0.125779i −0.298710 0.954344i \(-0.596556\pi\)
0.559893 + 0.828565i \(0.310842\pi\)
\(798\) 0 0
\(799\) −6.68528 3.21946i −0.236508 0.113896i
\(800\) −124.603 38.4349i −4.40538 1.35888i
\(801\) 0 0
\(802\) 52.3111 + 90.6055i 1.84717 + 3.19939i
\(803\) 0.442172 0.765864i 0.0156039 0.0270268i
\(804\) 0 0
\(805\) 0.565700 + 1.26545i 0.0199383 + 0.0446014i
\(806\) −6.34466 + 7.95595i −0.223481 + 0.280236i
\(807\) 0 0
\(808\) 9.29402 + 124.020i 0.326963 + 4.36301i
\(809\) 0.0625196 + 0.834265i 0.00219807 + 0.0293312i 0.998195 0.0600564i \(-0.0191281\pi\)
−0.995997 + 0.0893876i \(0.971509\pi\)
\(810\) 0 0
\(811\) 18.1407 22.7477i 0.637005 0.798779i −0.353620 0.935389i \(-0.615049\pi\)
0.990625 + 0.136610i \(0.0436207\pi\)
\(812\) −54.4479 14.0661i −1.91075 0.493625i
\(813\) 0 0
\(814\) 7.13987 12.3666i 0.250252 0.433450i
\(815\) −1.24274 2.15248i −0.0435311 0.0753981i
\(816\) 0 0
\(817\) −35.0844 10.8221i −1.22745 0.378617i
\(818\) 17.2714 + 8.31746i 0.603880 + 0.290813i
\(819\) 0 0
\(820\) 3.21124 1.54645i 0.112141 0.0540044i
\(821\) −31.4921 + 4.74666i −1.09908 + 0.165660i −0.673447 0.739236i \(-0.735187\pi\)
−0.425634 + 0.904896i \(0.639949\pi\)
\(822\) 0 0
\(823\) 24.3761 22.6178i 0.849699 0.788405i −0.129442 0.991587i \(-0.541319\pi\)
0.979141 + 0.203182i \(0.0651282\pi\)
\(824\) −43.3692 + 29.5686i −1.51084 + 1.03007i
\(825\) 0 0
\(826\) −93.9839 9.73509i −3.27012 0.338727i
\(827\) −7.79416 34.1485i −0.271030 1.18746i −0.908800 0.417232i \(-0.863000\pi\)
0.637770 0.770227i \(-0.279857\pi\)
\(828\) 0 0
\(829\) −41.6779 6.28194i −1.44753 0.218181i −0.622215 0.782847i \(-0.713767\pi\)
−0.825319 + 0.564666i \(0.809005\pi\)
\(830\) 3.58021 1.10435i 0.124271 0.0383325i
\(831\) 0 0
\(832\) 194.121 6.72992
\(833\) −4.71275 1.75255i −0.163287 0.0607224i
\(834\) 0 0
\(835\) −0.120402 + 1.60666i −0.00416670 + 0.0556007i
\(836\) −44.7296 + 13.7973i −1.54701 + 0.477188i
\(837\) 0 0
\(838\) 70.6647 + 65.5673i 2.44107 + 2.26498i
\(839\) −0.399501 1.75033i −0.0137923 0.0604281i 0.967563 0.252628i \(-0.0812949\pi\)
−0.981356 + 0.192200i \(0.938438\pi\)
\(840\) 0 0
\(841\) 3.32549 14.5699i 0.114672 0.502411i
\(842\) 19.9959 13.6329i 0.689103 0.469822i
\(843\) 0 0
\(844\) −105.901 72.2019i −3.64526 2.48529i
\(845\) 1.85317 0.279320i 0.0637509 0.00960891i
\(846\) 0 0
\(847\) 21.4588 + 9.13377i 0.737334 + 0.313840i
\(848\) −165.100 79.5081i −5.66957 2.73032i
\(849\) 0 0
\(850\) −3.61539 + 9.21187i −0.124007 + 0.315965i
\(851\) 5.75212 + 9.96297i 0.197180 + 0.341526i
\(852\) 0 0
\(853\) −14.1630 17.7599i −0.484933 0.608086i 0.477824 0.878456i \(-0.341426\pi\)
−0.962757 + 0.270369i \(0.912854\pi\)
\(854\) 20.1543 + 17.0314i 0.689666 + 0.582802i
\(855\) 0 0
\(856\) −14.2584 36.3299i −0.487343 1.24173i
\(857\) −1.60926 21.4740i −0.0549711 0.733538i −0.954791 0.297277i \(-0.903921\pi\)
0.899820 0.436261i \(-0.143698\pi\)
\(858\) 0 0
\(859\) 8.12797 + 20.7097i 0.277323 + 0.706607i 0.999883 + 0.0152989i \(0.00486999\pi\)
−0.722560 + 0.691308i \(0.757035\pi\)
\(860\) 3.69119 4.62861i 0.125869 0.157834i
\(861\) 0 0
\(862\) 3.22479 + 4.04375i 0.109837 + 0.137731i
\(863\) 27.4119 47.4788i 0.933113 1.61620i 0.155148 0.987891i \(-0.450415\pi\)
0.777965 0.628307i \(-0.216252\pi\)
\(864\) 0 0
\(865\) 1.42912 3.64134i 0.0485916 0.123809i
\(866\) 94.5301 + 29.1587i 3.21226 + 0.990852i
\(867\) 0 0
\(868\) 10.1841 + 4.33479i 0.345672 + 0.147132i
\(869\) −0.0847703 + 0.0408232i −0.00287564 + 0.00138483i
\(870\) 0 0
\(871\) −25.7935 17.5857i −0.873978 0.595868i
\(872\) −18.8384 + 17.4795i −0.637950 + 0.591931i
\(873\) 0 0
\(874\) 11.3518 49.7353i 0.383979 1.68232i
\(875\) 0.506796 + 4.16151i 0.0171328 + 0.140685i
\(876\) 0 0
\(877\) 40.3652 + 37.4535i 1.36304 + 1.26471i 0.932037 + 0.362362i \(0.118030\pi\)
0.431000 + 0.902352i \(0.358161\pi\)
\(878\) 14.8855 + 2.24363i 0.502362 + 0.0757188i
\(879\) 0 0
\(880\) 0.294875 3.93484i 0.00994024 0.132643i
\(881\) 37.6398 1.26812 0.634058 0.773286i \(-0.281388\pi\)
0.634058 + 0.773286i \(0.281388\pi\)
\(882\) 0 0
\(883\) −22.5780 −0.759809 −0.379905 0.925026i \(-0.624043\pi\)
−0.379905 + 0.925026i \(0.624043\pi\)
\(884\) 1.51546 20.2224i 0.0509704 0.680152i
\(885\) 0 0
\(886\) 84.5727 + 12.7473i 2.84127 + 0.428253i
\(887\) 9.19397 + 8.53076i 0.308703 + 0.286435i 0.819276 0.573400i \(-0.194376\pi\)
−0.510572 + 0.859835i \(0.670566\pi\)
\(888\) 0 0
\(889\) 22.1459 + 2.29393i 0.742750 + 0.0769359i
\(890\) −0.0834008 + 0.365403i −0.00279560 + 0.0122483i
\(891\) 0 0
\(892\) 6.27176 5.81935i 0.209994 0.194846i
\(893\) 47.6717 + 32.5020i 1.59527 + 1.08764i
\(894\) 0 0
\(895\) 2.55327 1.22959i 0.0853465 0.0411007i
\(896\) −39.3012 141.573i −1.31296 4.72963i
\(897\) 0 0
\(898\) 16.7827 + 5.17679i 0.560047 + 0.172752i
\(899\) 1.01067 2.57516i 0.0337079 0.0858863i
\(900\) 0 0
\(901\) −3.91658 + 6.78372i −0.130480 + 0.225999i
\(902\) −10.1014 12.6668i −0.336340 0.421757i
\(903\) 0 0
\(904\) 19.4082 24.3371i 0.645508 0.809441i
\(905\) 0.0245011 + 0.0624278i 0.000814445 + 0.00207517i
\(906\) 0 0
\(907\) −0.269698 3.59887i −0.00895518 0.119499i 0.990935 0.134345i \(-0.0428931\pi\)
−0.999890 + 0.0148465i \(0.995274\pi\)
\(908\) −3.84233 9.79009i −0.127512 0.324896i
\(909\) 0 0
\(910\) −2.36543 5.29140i −0.0784134 0.175408i
\(911\) −17.7004 22.1956i −0.586440 0.735373i 0.396756 0.917924i \(-0.370136\pi\)
−0.983196 + 0.182551i \(0.941564\pi\)
\(912\) 0 0
\(913\) −6.29478 10.9029i −0.208327 0.360833i
\(914\) −27.4515 + 69.9452i −0.908014 + 2.31358i
\(915\) 0 0
\(916\) −76.6927 36.9332i −2.53400 1.22031i
\(917\) −9.20391 + 4.97072i −0.303940 + 0.164148i
\(918\) 0 0
\(919\) −38.5354 + 5.80828i −1.27117 + 0.191597i −0.749759 0.661711i \(-0.769831\pi\)
−0.521407 + 0.853308i \(0.674593\pi\)
\(920\) 4.39891 + 2.99913i 0.145028 + 0.0988783i
\(921\) 0 0
\(922\) −7.45922 + 5.08561i −0.245656 + 0.167486i
\(923\) 0.842824 3.69265i 0.0277419 0.121545i
\(924\) 0 0
\(925\) 3.86135 + 16.9177i 0.126960 + 0.556249i
\(926\) 60.1622 + 55.8223i 1.97705 + 1.83444i
\(927\) 0 0
\(928\) −93.9024 + 28.9651i −3.08250 + 0.950825i
\(929\) 0.357723 4.77348i 0.0117365 0.156613i −0.988256 0.152806i \(-0.951169\pi\)
0.999993 0.00380713i \(-0.00121185\pi\)
\(930\) 0 0
\(931\) 34.2050 + 18.9370i 1.12102 + 0.620636i
\(932\) 84.1323 2.75585
\(933\) 0 0
\(934\) 91.8441 28.3301i 3.00523 0.926991i
\(935\) −0.166788 0.0251392i −0.00545454 0.000822140i
\(936\) 0 0
\(937\) 2.04967 + 8.98021i 0.0669599 + 0.293371i 0.997310 0.0733026i \(-0.0233539\pi\)
−0.930350 + 0.366673i \(0.880497\pi\)
\(938\) −14.7807 + 43.4904i −0.482607 + 1.42001i
\(939\) 0 0
\(940\) −7.68685 + 5.24081i −0.250717 + 0.170936i
\(941\) −18.6257 + 17.2821i −0.607180 + 0.563381i −0.922691 0.385541i \(-0.874015\pi\)
0.315511 + 0.948922i \(0.397824\pi\)
\(942\) 0 0
\(943\) 12.9066 1.94536i 0.420296 0.0633495i
\(944\) −195.233 + 94.0193i −6.35430 + 3.06007i
\(945\) 0 0
\(946\) −24.2458 11.6762i −0.788300 0.379625i
\(947\) 29.2549 + 9.02394i 0.950656 + 0.293239i 0.731030 0.682345i \(-0.239040\pi\)
0.219626 + 0.975584i \(0.429516\pi\)
\(948\) 0 0
\(949\) −1.48954 2.57996i −0.0483526 0.0837492i
\(950\) 38.4744 66.6397i 1.24828 2.16208i
\(951\) 0 0
\(952\) −18.9426 + 3.76073i −0.613932 + 0.121886i
\(953\) −24.2399 + 30.3958i −0.785207 + 0.984618i 0.214762 + 0.976666i \(0.431102\pi\)
−0.999968 + 0.00795142i \(0.997469\pi\)
\(954\) 0 0
\(955\) −0.116908 1.56003i −0.00378306 0.0504814i
\(956\) −3.09496 41.2994i −0.100098 1.33572i
\(957\) 0 0
\(958\) 39.1646 49.1108i 1.26535 1.58670i
\(959\) 1.04734 36.8493i 0.0338203 1.18993i
\(960\) 0 0
\(961\) 15.2278 26.3753i 0.491218 0.850815i
\(962\) −24.0521 41.6594i −0.775470 1.34315i
\(963\) 0 0
\(964\) 31.1772 + 9.61690i 1.00415 + 0.309739i
\(965\) −0.982950 0.473364i −0.0316423 0.0152381i
\(966\) 0 0
\(967\) 2.40379 1.15760i 0.0773005 0.0372260i −0.394834 0.918752i \(-0.629198\pi\)
0.472135 + 0.881526i \(0.343484\pi\)
\(968\) 88.5761 13.3507i 2.84694 0.429108i
\(969\) 0 0
\(970\) −3.48725 + 3.23569i −0.111969 + 0.103892i
\(971\) 34.8274 23.7449i 1.11766 0.762010i 0.143904 0.989592i \(-0.454034\pi\)
0.973759 + 0.227582i \(0.0730819\pi\)
\(972\) 0 0
\(973\) −28.0045 43.6925i −0.897784 1.40072i
\(974\) 18.8625 + 82.6419i 0.604393 + 2.64802i
\(975\) 0 0
\(976\) 59.8387 + 9.01923i 1.91539 + 0.288698i
\(977\) 3.60479 1.11193i 0.115327 0.0355738i −0.236554 0.971618i \(-0.576018\pi\)
0.351882 + 0.936044i \(0.385542\pi\)
\(978\) 0 0
\(979\) 1.25940 0.0402507
\(980\) −4.85744 + 4.01857i −0.155165 + 0.128369i
\(981\) 0 0
\(982\) 1.64201 21.9111i 0.0523987 0.699212i
\(983\) −57.6292 + 17.7763i −1.83809 + 0.566975i −0.838324 + 0.545172i \(0.816464\pi\)
−0.999762 + 0.0218029i \(0.993059\pi\)
\(984\) 0 0
\(985\) 1.63020 + 1.51260i 0.0519424 + 0.0481955i
\(986\) 1.65950 + 7.27073i 0.0528492 + 0.231547i
\(987\) 0 0
\(988\) −35.0885 + 153.733i −1.11631 + 4.89089i
\(989\) 17.9131 12.2129i 0.569603 0.388348i
\(990\) 0 0
\(991\) 22.3240 + 15.2202i 0.709145 + 0.483487i 0.863384 0.504547i \(-0.168340\pi\)
−0.154239 + 0.988034i \(0.549293\pi\)
\(992\) 19.1252 2.88266i 0.607225 0.0915244i
\(993\) 0 0
\(994\) −5.56703 + 0.258414i −0.176576 + 0.00819639i
\(995\) 2.50246 + 1.20512i 0.0793332 + 0.0382049i
\(996\) 0 0
\(997\) 16.1618 41.1795i 0.511848 1.30417i −0.408389 0.912808i \(-0.633909\pi\)
0.920238 0.391360i \(-0.127995\pi\)
\(998\) −46.7163 80.9149i −1.47878 2.56132i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.bb.c.415.4 48
3.2 odd 2 147.2.m.a.121.1 48
49.32 even 21 inner 441.2.bb.c.424.4 48
147.32 odd 42 147.2.m.a.130.1 yes 48
147.89 even 42 7203.2.a.k.1.1 24
147.107 odd 42 7203.2.a.i.1.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.2.m.a.121.1 48 3.2 odd 2
147.2.m.a.130.1 yes 48 147.32 odd 42
441.2.bb.c.415.4 48 1.1 even 1 trivial
441.2.bb.c.424.4 48 49.32 even 21 inner
7203.2.a.i.1.1 24 147.107 odd 42
7203.2.a.k.1.1 24 147.89 even 42