Properties

Label 441.2.bb
Level $441$
Weight $2$
Character orbit 441.bb
Rep. character $\chi_{441}(37,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $264$
Newform subspaces $6$
Sturm bound $112$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.bb (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 6 \)
Sturm bound: \(112\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(441, [\chi])\).

Total New Old
Modular forms 720 288 432
Cusp forms 624 264 360
Eisenstein series 96 24 72

Trace form

\( 264 q + 13 q^{2} + 7 q^{4} + 16 q^{5} - 8 q^{7} + 8 q^{8} - 18 q^{10} + 23 q^{11} - 2 q^{13} - 19 q^{14} + 9 q^{16} + 21 q^{17} + 15 q^{19} + 34 q^{20} - 16 q^{22} - 7 q^{23} - 2 q^{25} + 26 q^{26} - 72 q^{28}+ \cdots - 185 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(441, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
441.2.bb.a 441.bb 49.g $12$ $3.521$ \(\Q(\zeta_{21})\) \(\Q(\sqrt{-3}) \) 441.2.bb.a \(0\) \(0\) \(0\) \(1\) $\mathrm{U}(1)[D_{21}]$ \(q+(2-2\zeta_{21}^{2}+2\zeta_{21}^{3}-2\zeta_{21}^{5}+2\zeta_{21}^{6}+\cdots)q^{4}+\cdots\)
441.2.bb.b 441.bb 49.g $24$ $3.521$ None 441.2.bb.b \(0\) \(0\) \(0\) \(28\) $\mathrm{SU}(2)[C_{21}]$
441.2.bb.c 441.bb 49.g $48$ $3.521$ None 147.2.m.a \(1\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{21}]$
441.2.bb.d 441.bb 49.g $48$ $3.521$ None 49.2.g.a \(13\) \(0\) \(14\) \(-14\) $\mathrm{SU}(2)[C_{21}]$
441.2.bb.e 441.bb 49.g $60$ $3.521$ None 147.2.m.b \(-1\) \(0\) \(2\) \(5\) $\mathrm{SU}(2)[C_{21}]$
441.2.bb.f 441.bb 49.g $72$ $3.521$ None 441.2.bb.f \(0\) \(0\) \(0\) \(-28\) $\mathrm{SU}(2)[C_{21}]$

Decomposition of \(S_{2}^{\mathrm{old}}(441, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(441, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)