Defining parameters
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.bb (of order \(21\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 49 \) |
Character field: | \(\Q(\zeta_{21})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(441, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 720 | 288 | 432 |
Cusp forms | 624 | 264 | 360 |
Eisenstein series | 96 | 24 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(441, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
441.2.bb.a | $12$ | $3.521$ | \(\Q(\zeta_{21})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(1\) | \(q+(2-2\zeta_{21}^{2}+2\zeta_{21}^{3}-2\zeta_{21}^{5}+2\zeta_{21}^{6}+\cdots)q^{4}+\cdots\) |
441.2.bb.b | $24$ | $3.521$ | None | \(0\) | \(0\) | \(0\) | \(28\) | ||
441.2.bb.c | $48$ | $3.521$ | None | \(1\) | \(0\) | \(0\) | \(0\) | ||
441.2.bb.d | $48$ | $3.521$ | None | \(13\) | \(0\) | \(14\) | \(-14\) | ||
441.2.bb.e | $60$ | $3.521$ | None | \(-1\) | \(0\) | \(2\) | \(5\) | ||
441.2.bb.f | $72$ | $3.521$ | None | \(0\) | \(0\) | \(0\) | \(-28\) |
Decomposition of \(S_{2}^{\mathrm{old}}(441, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(441, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)