Newspace parameters
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.bb (of order \(21\), degree \(12\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.52140272914\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{21})\) |
Twist minimal: | no (minimal twist has level 147) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{21}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −1.65175 | + | 1.12614i | 0 | 0.729391 | − | 1.85846i | 0.400180 | + | 0.123439i | 0 | −1.90889 | + | 1.83197i | −0.00157168 | − | 0.00688598i | 0 | −0.800006 | + | 0.246769i | ||||||
37.2 | −0.449603 | + | 0.306534i | 0 | −0.622503 | + | 1.58611i | −1.43317 | − | 0.442074i | 0 | 0.881776 | − | 2.49449i | −0.448490 | − | 1.96496i | 0 | 0.779867 | − | 0.240557i | ||||||
37.3 | 1.08067 | − | 0.736786i | 0 | −0.105696 | + | 0.269309i | −1.01467 | − | 0.312983i | 0 | 0.746631 | + | 2.53822i | 0.666286 | + | 2.91919i | 0 | −1.32712 | + | 0.409362i | ||||||
37.4 | 1.84692 | − | 1.25921i | 0 | 1.09483 | − | 2.78958i | 1.49226 | + | 0.460300i | 0 | 1.29066 | − | 2.30959i | −0.495786 | − | 2.17218i | 0 | 3.33570 | − | 1.02893i | ||||||
46.1 | −0.687295 | + | 1.75120i | 0 | −1.12822 | − | 1.04683i | −2.01668 | − | 1.37495i | 0 | −0.492953 | − | 2.59942i | −0.781251 | + | 0.376230i | 0 | 3.79385 | − | 2.58660i | ||||||
46.2 | −0.293772 | + | 0.748519i | 0 | 0.992125 | + | 0.920558i | 1.11822 | + | 0.762387i | 0 | 1.80149 | + | 1.93768i | −2.42946 | + | 1.16997i | 0 | −0.899162 | + | 0.613038i | ||||||
46.3 | 0.633632 | − | 1.61447i | 0 | −0.738910 | − | 0.685609i | −2.02525 | − | 1.38079i | 0 | 2.55966 | − | 0.669438i | 1.55011 | − | 0.746495i | 0 | −3.51251 | + | 2.39479i | ||||||
46.4 | 0.712776 | − | 1.81612i | 0 | −1.32415 | − | 1.22863i | 2.50104 | + | 1.70518i | 0 | −1.59223 | + | 2.11301i | 0.340382 | − | 0.163920i | 0 | 4.87950 | − | 3.32679i | ||||||
100.1 | −2.24916 | − | 0.693774i | 0 | 2.92492 | + | 1.99418i | 0.982858 | − | 0.148142i | 0 | −2.07146 | − | 1.64592i | −2.26005 | − | 2.83402i | 0 | −2.31338 | − | 0.348686i | ||||||
100.2 | 0.393224 | + | 0.121294i | 0 | −1.51256 | − | 1.03125i | 1.73113 | − | 0.260925i | 0 | −2.49962 | + | 0.867115i | −0.982833 | − | 1.23243i | 0 | 0.712370 | + | 0.107372i | ||||||
100.3 | 0.742928 | + | 0.229163i | 0 | −1.15305 | − | 0.786137i | −1.96019 | + | 0.295451i | 0 | 1.38027 | + | 2.25718i | −1.64597 | − | 2.06398i | 0 | −1.52399 | − | 0.229704i | ||||||
100.4 | 2.06858 | + | 0.638073i | 0 | 2.21941 | + | 1.51317i | 2.32995 | − | 0.351184i | 0 | 0.990624 | − | 2.45330i | 0.926114 | + | 1.16131i | 0 | 5.04378 | + | 0.760227i | ||||||
109.1 | −1.90236 | + | 1.76513i | 0 | 0.353823 | − | 4.72145i | 1.29324 | − | 3.29513i | 0 | −2.54955 | + | 0.706959i | 4.42482 | + | 5.54855i | 0 | 3.35613 | + | 8.55127i | ||||||
109.2 | −0.615612 | + | 0.571205i | 0 | −0.0967566 | + | 1.29113i | 0.568152 | − | 1.44763i | 0 | 1.56778 | − | 2.13121i | −1.72514 | − | 2.16325i | 0 | 0.477130 | + | 1.21571i | ||||||
109.3 | 0.492413 | − | 0.456893i | 0 | −0.115740 | + | 1.54445i | 0.137164 | − | 0.349488i | 0 | 0.0148404 | + | 2.64571i | 1.48629 | + | 1.86375i | 0 | −0.0921371 | − | 0.234762i | ||||||
109.4 | 1.29251 | − | 1.19927i | 0 | 0.0828637 | − | 1.10574i | −1.35494 | + | 3.45233i | 0 | 1.47509 | − | 2.19638i | 0.979680 | + | 1.22848i | 0 | 2.38902 | + | 6.08712i | ||||||
163.1 | −0.687295 | − | 1.75120i | 0 | −1.12822 | + | 1.04683i | −2.01668 | + | 1.37495i | 0 | −0.492953 | + | 2.59942i | −0.781251 | − | 0.376230i | 0 | 3.79385 | + | 2.58660i | ||||||
163.2 | −0.293772 | − | 0.748519i | 0 | 0.992125 | − | 0.920558i | 1.11822 | − | 0.762387i | 0 | 1.80149 | − | 1.93768i | −2.42946 | − | 1.16997i | 0 | −0.899162 | − | 0.613038i | ||||||
163.3 | 0.633632 | + | 1.61447i | 0 | −0.738910 | + | 0.685609i | −2.02525 | + | 1.38079i | 0 | 2.55966 | + | 0.669438i | 1.55011 | + | 0.746495i | 0 | −3.51251 | − | 2.39479i | ||||||
163.4 | 0.712776 | + | 1.81612i | 0 | −1.32415 | + | 1.22863i | 2.50104 | − | 1.70518i | 0 | −1.59223 | − | 2.11301i | 0.340382 | + | 0.163920i | 0 | 4.87950 | + | 3.32679i | ||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.g | even | 21 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 441.2.bb.c | 48 | |
3.b | odd | 2 | 1 | 147.2.m.a | ✓ | 48 | |
49.g | even | 21 | 1 | inner | 441.2.bb.c | 48 | |
147.n | odd | 42 | 1 | 147.2.m.a | ✓ | 48 | |
147.n | odd | 42 | 1 | 7203.2.a.i | 24 | ||
147.o | even | 42 | 1 | 7203.2.a.k | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
147.2.m.a | ✓ | 48 | 3.b | odd | 2 | 1 | |
147.2.m.a | ✓ | 48 | 147.n | odd | 42 | 1 | |
441.2.bb.c | 48 | 1.a | even | 1 | 1 | trivial | |
441.2.bb.c | 48 | 49.g | even | 21 | 1 | inner | |
7203.2.a.i | 24 | 147.n | odd | 42 | 1 | ||
7203.2.a.k | 24 | 147.o | even | 42 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{48} - T_{2}^{47} - 5 T_{2}^{46} + 10 T_{2}^{45} - 12 T_{2}^{44} - 63 T_{2}^{43} + 317 T_{2}^{42} + \cdots + 1681 \)
acting on \(S_{2}^{\mathrm{new}}(441, [\chi])\).