Properties

Label 441.2.bb.c.415.1
Level $441$
Weight $2$
Character 441.415
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(37,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 32])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.bb (of order \(21\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{21})\)
Twist minimal: no (minimal twist has level 147)
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 415.1
Character \(\chi\) \(=\) 441.415
Dual form 441.2.bb.c.424.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0998595 + 1.33253i) q^{2} +(0.211992 + 0.0319527i) q^{4} +(-2.75951 - 2.56045i) q^{5} +(0.0649242 + 2.64495i) q^{7} +(-0.658443 + 2.88483i) q^{8} +(3.68744 - 3.42144i) q^{10} +(3.72186 + 2.53752i) q^{11} +(-0.0589476 + 0.0283876i) q^{13} +(-3.53097 - 0.177610i) q^{14} +(-3.36865 - 1.03909i) q^{16} +(-2.49491 + 6.35693i) q^{17} +(-1.99519 + 3.45577i) q^{19} +(-0.503181 - 0.630969i) q^{20} +(-3.75299 + 4.70610i) q^{22} +(-1.55211 - 3.95470i) q^{23} +(0.685332 + 9.14512i) q^{25} +(-0.0319410 - 0.0813843i) q^{26} +(-0.0707500 + 0.562784i) q^{28} +(5.59990 + 7.02205i) q^{29} +(-2.05289 - 3.55571i) q^{31} +(-0.441087 + 1.12387i) q^{32} +(-8.22168 - 3.95935i) q^{34} +(6.59311 - 7.46500i) q^{35} +(1.91661 - 0.288883i) q^{37} +(-4.40569 - 3.00375i) q^{38} +(9.20342 - 6.27479i) q^{40} +(1.34401 - 5.88848i) q^{41} +(-0.175833 - 0.770376i) q^{43} +(0.707924 + 0.656858i) q^{44} +(5.42476 - 1.67332i) q^{46} +(-0.0438639 + 0.585323i) q^{47} +(-6.99157 + 0.343443i) q^{49} -12.2546 q^{50} +(-0.0134035 + 0.00413443i) q^{52} +(3.00301 + 0.452631i) q^{53} +(-3.77330 - 16.5319i) q^{55} +(-7.67298 - 1.55426i) q^{56} +(-9.91631 + 6.76083i) q^{58} +(1.36966 - 1.27086i) q^{59} +(4.88060 - 0.735633i) q^{61} +(4.94310 - 2.38047i) q^{62} +(-7.80586 - 3.75910i) q^{64} +(0.235351 + 0.0725962i) q^{65} +(-1.53195 - 2.65342i) q^{67} +(-0.732023 + 1.26790i) q^{68} +(9.28897 + 9.53098i) q^{70} +(3.78229 - 4.74284i) q^{71} +(0.783605 + 10.4565i) q^{73} +(0.193554 + 2.58280i) q^{74} +(-0.533386 + 0.668845i) q^{76} +(-6.46999 + 10.0089i) q^{77} +(6.49358 - 11.2472i) q^{79} +(6.63527 + 11.4926i) q^{80} +(7.71238 + 2.37895i) q^{82} +(-2.60881 - 1.25634i) q^{83} +(23.1613 - 11.1539i) q^{85} +(1.04411 - 0.157374i) q^{86} +(-9.77094 + 9.06610i) q^{88} +(9.50569 - 6.48087i) q^{89} +(-0.0789112 - 0.154071i) q^{91} +(-0.202671 - 0.887960i) q^{92} +(-0.775581 - 0.116900i) q^{94} +(14.3541 - 4.42764i) q^{95} +9.43444 q^{97} +(0.240525 - 9.35079i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + 3 q^{4} - 6 q^{8} + 30 q^{10} + 9 q^{11} + 42 q^{14} + 29 q^{16} + 5 q^{17} - 26 q^{19} + 5 q^{20} + q^{22} + 4 q^{23} - 56 q^{25} + 62 q^{26} + 7 q^{28} - 12 q^{29} - 36 q^{31} + 14 q^{32}+ \cdots - 119 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{19}{21}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0998595 + 1.33253i −0.0706113 + 0.942242i 0.843592 + 0.536985i \(0.180437\pi\)
−0.914203 + 0.405257i \(0.867182\pi\)
\(3\) 0 0
\(4\) 0.211992 + 0.0319527i 0.105996 + 0.0159763i
\(5\) −2.75951 2.56045i −1.23409 1.14507i −0.984251 0.176779i \(-0.943432\pi\)
−0.249838 0.968288i \(-0.580377\pi\)
\(6\) 0 0
\(7\) 0.0649242 + 2.64495i 0.0245391 + 0.999699i
\(8\) −0.658443 + 2.88483i −0.232795 + 1.01994i
\(9\) 0 0
\(10\) 3.68744 3.42144i 1.16607 1.08196i
\(11\) 3.72186 + 2.53752i 1.12218 + 0.765091i 0.974599 0.223958i \(-0.0718980\pi\)
0.147584 + 0.989050i \(0.452850\pi\)
\(12\) 0 0
\(13\) −0.0589476 + 0.0283876i −0.0163491 + 0.00787332i −0.442040 0.896995i \(-0.645745\pi\)
0.425691 + 0.904868i \(0.360031\pi\)
\(14\) −3.53097 0.177610i −0.943691 0.0474683i
\(15\) 0 0
\(16\) −3.36865 1.03909i −0.842162 0.259773i
\(17\) −2.49491 + 6.35693i −0.605105 + 1.54178i 0.219225 + 0.975674i \(0.429647\pi\)
−0.824330 + 0.566109i \(0.808448\pi\)
\(18\) 0 0
\(19\) −1.99519 + 3.45577i −0.457728 + 0.792809i −0.998841 0.0481418i \(-0.984670\pi\)
0.541112 + 0.840950i \(0.318003\pi\)
\(20\) −0.503181 0.630969i −0.112515 0.141089i
\(21\) 0 0
\(22\) −3.75299 + 4.70610i −0.800140 + 1.00334i
\(23\) −1.55211 3.95470i −0.323637 0.824612i −0.996402 0.0847563i \(-0.972989\pi\)
0.672765 0.739856i \(-0.265106\pi\)
\(24\) 0 0
\(25\) 0.685332 + 9.14512i 0.137066 + 1.82902i
\(26\) −0.0319410 0.0813843i −0.00626414 0.0159608i
\(27\) 0 0
\(28\) −0.0707500 + 0.562784i −0.0133705 + 0.106356i
\(29\) 5.59990 + 7.02205i 1.03988 + 1.30396i 0.951425 + 0.307882i \(0.0996203\pi\)
0.0884510 + 0.996081i \(0.471808\pi\)
\(30\) 0 0
\(31\) −2.05289 3.55571i −0.368710 0.638625i 0.620654 0.784085i \(-0.286867\pi\)
−0.989364 + 0.145460i \(0.953534\pi\)
\(32\) −0.441087 + 1.12387i −0.0779739 + 0.198674i
\(33\) 0 0
\(34\) −8.22168 3.95935i −1.41001 0.679023i
\(35\) 6.59311 7.46500i 1.11444 1.26182i
\(36\) 0 0
\(37\) 1.91661 0.288883i 0.315089 0.0474921i 0.0104061 0.999946i \(-0.496688\pi\)
0.304683 + 0.952454i \(0.401449\pi\)
\(38\) −4.40569 3.00375i −0.714697 0.487272i
\(39\) 0 0
\(40\) 9.20342 6.27479i 1.45519 0.992131i
\(41\) 1.34401 5.88848i 0.209899 0.919626i −0.754735 0.656030i \(-0.772234\pi\)
0.964633 0.263596i \(-0.0849085\pi\)
\(42\) 0 0
\(43\) −0.175833 0.770376i −0.0268143 0.117481i 0.959750 0.280857i \(-0.0906188\pi\)
−0.986564 + 0.163376i \(0.947762\pi\)
\(44\) 0.707924 + 0.656858i 0.106724 + 0.0990251i
\(45\) 0 0
\(46\) 5.42476 1.67332i 0.799837 0.246717i
\(47\) −0.0438639 + 0.585323i −0.00639820 + 0.0853781i −0.999489 0.0319725i \(-0.989821\pi\)
0.993091 + 0.117351i \(0.0374401\pi\)
\(48\) 0 0
\(49\) −6.99157 + 0.343443i −0.998796 + 0.0490633i
\(50\) −12.2546 −1.73306
\(51\) 0 0
\(52\) −0.0134035 + 0.00413443i −0.00185873 + 0.000573342i
\(53\) 3.00301 + 0.452631i 0.412496 + 0.0621737i 0.352012 0.935995i \(-0.385498\pi\)
0.0604836 + 0.998169i \(0.480736\pi\)
\(54\) 0 0
\(55\) −3.77330 16.5319i −0.508792 2.22916i
\(56\) −7.67298 1.55426i −1.02535 0.207696i
\(57\) 0 0
\(58\) −9.91631 + 6.76083i −1.30208 + 0.887740i
\(59\) 1.36966 1.27086i 0.178314 0.165451i −0.585966 0.810336i \(-0.699285\pi\)
0.764280 + 0.644884i \(0.223094\pi\)
\(60\) 0 0
\(61\) 4.88060 0.735633i 0.624897 0.0941881i 0.171042 0.985264i \(-0.445287\pi\)
0.453855 + 0.891076i \(0.350048\pi\)
\(62\) 4.94310 2.38047i 0.627775 0.302320i
\(63\) 0 0
\(64\) −7.80586 3.75910i −0.975732 0.469888i
\(65\) 0.235351 + 0.0725962i 0.0291917 + 0.00900445i
\(66\) 0 0
\(67\) −1.53195 2.65342i −0.187158 0.324166i 0.757144 0.653248i \(-0.226594\pi\)
−0.944301 + 0.329082i \(0.893261\pi\)
\(68\) −0.732023 + 1.26790i −0.0887709 + 0.153756i
\(69\) 0 0
\(70\) 9.28897 + 9.53098i 1.11024 + 1.13917i
\(71\) 3.78229 4.74284i 0.448875 0.562871i −0.504983 0.863129i \(-0.668501\pi\)
0.953858 + 0.300258i \(0.0970728\pi\)
\(72\) 0 0
\(73\) 0.783605 + 10.4565i 0.0917140 + 1.22384i 0.833239 + 0.552913i \(0.186484\pi\)
−0.741525 + 0.670925i \(0.765897\pi\)
\(74\) 0.193554 + 2.58280i 0.0225002 + 0.300244i
\(75\) 0 0
\(76\) −0.533386 + 0.668845i −0.0611836 + 0.0767218i
\(77\) −6.46999 + 10.0089i −0.737323 + 1.14062i
\(78\) 0 0
\(79\) 6.49358 11.2472i 0.730585 1.26541i −0.226049 0.974116i \(-0.572581\pi\)
0.956634 0.291294i \(-0.0940858\pi\)
\(80\) 6.63527 + 11.4926i 0.741845 + 1.28491i
\(81\) 0 0
\(82\) 7.71238 + 2.37895i 0.851690 + 0.262711i
\(83\) −2.60881 1.25634i −0.286354 0.137901i 0.285193 0.958470i \(-0.407942\pi\)
−0.571547 + 0.820569i \(0.693657\pi\)
\(84\) 0 0
\(85\) 23.1613 11.1539i 2.51220 1.20981i
\(86\) 1.04411 0.157374i 0.112589 0.0169701i
\(87\) 0 0
\(88\) −9.77094 + 9.06610i −1.04159 + 0.966450i
\(89\) 9.50569 6.48087i 1.00760 0.686971i 0.0573173 0.998356i \(-0.481745\pi\)
0.950284 + 0.311385i \(0.100793\pi\)
\(90\) 0 0
\(91\) −0.0789112 0.154071i −0.00827214 0.0161510i
\(92\) −0.202671 0.887960i −0.0211299 0.0925762i
\(93\) 0 0
\(94\) −0.775581 0.116900i −0.0799951 0.0120573i
\(95\) 14.3541 4.42764i 1.47270 0.454267i
\(96\) 0 0
\(97\) 9.43444 0.957922 0.478961 0.877836i \(-0.341013\pi\)
0.478961 + 0.877836i \(0.341013\pi\)
\(98\) 0.240525 9.35079i 0.0242967 0.944572i
\(99\) 0 0
\(100\) −0.146926 + 1.96059i −0.0146926 + 0.196059i
\(101\) 2.02096 0.623382i 0.201093 0.0620289i −0.192573 0.981283i \(-0.561683\pi\)
0.393665 + 0.919254i \(0.371207\pi\)
\(102\) 0 0
\(103\) 4.79710 + 4.45106i 0.472672 + 0.438576i 0.880190 0.474621i \(-0.157415\pi\)
−0.407518 + 0.913197i \(0.633606\pi\)
\(104\) −0.0430798 0.188745i −0.00422433 0.0185080i
\(105\) 0 0
\(106\) −0.903025 + 3.95641i −0.0877095 + 0.384281i
\(107\) −12.3936 + 8.44979i −1.19813 + 0.816872i −0.987021 0.160590i \(-0.948660\pi\)
−0.211110 + 0.977462i \(0.567708\pi\)
\(108\) 0 0
\(109\) −3.43593 2.34257i −0.329102 0.224378i 0.387484 0.921876i \(-0.373344\pi\)
−0.716586 + 0.697498i \(0.754296\pi\)
\(110\) 22.4061 3.37718i 2.13634 0.322001i
\(111\) 0 0
\(112\) 2.52964 8.97738i 0.239028 0.848283i
\(113\) −12.2623 5.90522i −1.15354 0.555516i −0.243446 0.969915i \(-0.578278\pi\)
−0.910096 + 0.414398i \(0.863992\pi\)
\(114\) 0 0
\(115\) −5.84276 + 14.8871i −0.544840 + 1.38823i
\(116\) 0.962762 + 1.66755i 0.0893902 + 0.154828i
\(117\) 0 0
\(118\) 1.55668 + 1.95202i 0.143304 + 0.179698i
\(119\) −16.9758 6.18621i −1.55617 0.567089i
\(120\) 0 0
\(121\) 3.39447 + 8.64897i 0.308588 + 0.786270i
\(122\) 0.492880 + 6.57702i 0.0446232 + 0.595455i
\(123\) 0 0
\(124\) −0.321583 0.819379i −0.0288790 0.0735824i
\(125\) 9.78907 12.2751i 0.875561 1.09792i
\(126\) 0 0
\(127\) −2.01055 2.52115i −0.178407 0.223716i 0.684585 0.728933i \(-0.259984\pi\)
−0.862992 + 0.505218i \(0.831412\pi\)
\(128\) 4.58128 7.93501i 0.404932 0.701363i
\(129\) 0 0
\(130\) −0.120239 + 0.306364i −0.0105456 + 0.0268699i
\(131\) 8.96036 + 2.76390i 0.782870 + 0.241483i 0.660325 0.750980i \(-0.270418\pi\)
0.122545 + 0.992463i \(0.460895\pi\)
\(132\) 0 0
\(133\) −9.26990 5.05283i −0.803802 0.438136i
\(134\) 3.68874 1.77640i 0.318659 0.153458i
\(135\) 0 0
\(136\) −16.6959 11.3831i −1.43166 0.976090i
\(137\) 5.83694 5.41589i 0.498684 0.462711i −0.390275 0.920698i \(-0.627620\pi\)
0.888959 + 0.457988i \(0.151430\pi\)
\(138\) 0 0
\(139\) −2.20355 + 9.65438i −0.186903 + 0.818874i 0.791334 + 0.611383i \(0.209387\pi\)
−0.978237 + 0.207490i \(0.933470\pi\)
\(140\) 1.63621 1.37186i 0.138285 0.115943i
\(141\) 0 0
\(142\) 5.94229 + 5.51363i 0.498665 + 0.462694i
\(143\) −0.291429 0.0439258i −0.0243705 0.00367326i
\(144\) 0 0
\(145\) 2.52664 33.7156i 0.209826 2.79993i
\(146\) −14.0118 −1.15963
\(147\) 0 0
\(148\) 0.415538 0.0341570
\(149\) 0.369028 4.92434i 0.0302320 0.403418i −0.961474 0.274894i \(-0.911357\pi\)
0.991706 0.128524i \(-0.0410238\pi\)
\(150\) 0 0
\(151\) 14.1090 + 2.12659i 1.14818 + 0.173060i 0.695440 0.718584i \(-0.255210\pi\)
0.452737 + 0.891644i \(0.350448\pi\)
\(152\) −8.65558 8.03121i −0.702061 0.651417i
\(153\) 0 0
\(154\) −12.6911 9.62095i −1.02268 0.775278i
\(155\) −3.43925 + 15.0683i −0.276247 + 1.21032i
\(156\) 0 0
\(157\) −5.68342 + 5.27344i −0.453586 + 0.420867i −0.873595 0.486653i \(-0.838217\pi\)
0.420009 + 0.907520i \(0.362027\pi\)
\(158\) 14.3388 + 9.77604i 1.14074 + 0.777740i
\(159\) 0 0
\(160\) 4.09480 1.97195i 0.323722 0.155896i
\(161\) 10.3592 4.36201i 0.816422 0.343774i
\(162\) 0 0
\(163\) 3.65640 + 1.12785i 0.286391 + 0.0883399i 0.434622 0.900613i \(-0.356882\pi\)
−0.148231 + 0.988953i \(0.547358\pi\)
\(164\) 0.473072 1.20537i 0.0369407 0.0941234i
\(165\) 0 0
\(166\) 1.93462 3.35086i 0.150156 0.260077i
\(167\) 10.3140 + 12.9333i 0.798121 + 1.00081i 0.999772 + 0.0213544i \(0.00679785\pi\)
−0.201651 + 0.979457i \(0.564631\pi\)
\(168\) 0 0
\(169\) −8.10270 + 10.1605i −0.623284 + 0.781574i
\(170\) 12.5501 + 31.9770i 0.962545 + 2.45253i
\(171\) 0 0
\(172\) −0.0126597 0.168932i −0.000965294 0.0128809i
\(173\) −4.33512 11.0457i −0.329593 0.839789i −0.995588 0.0938329i \(-0.970088\pi\)
0.665995 0.745956i \(-0.268007\pi\)
\(174\) 0 0
\(175\) −24.1439 + 2.40641i −1.82511 + 0.181908i
\(176\) −9.90092 12.4154i −0.746310 0.935843i
\(177\) 0 0
\(178\) 7.68673 + 13.3138i 0.576145 + 0.997912i
\(179\) −2.99699 + 7.63620i −0.224006 + 0.570757i −0.998053 0.0623708i \(-0.980134\pi\)
0.774048 + 0.633127i \(0.218229\pi\)
\(180\) 0 0
\(181\) 8.89213 + 4.28223i 0.660947 + 0.318295i 0.734116 0.679024i \(-0.237597\pi\)
−0.0731687 + 0.997320i \(0.523311\pi\)
\(182\) 0.213184 0.0897662i 0.0158022 0.00665392i
\(183\) 0 0
\(184\) 12.4306 1.87361i 0.916396 0.138124i
\(185\) −6.02857 4.11021i −0.443230 0.302189i
\(186\) 0 0
\(187\) −25.4166 + 17.3287i −1.85864 + 1.26720i
\(188\) −0.0280014 + 0.122682i −0.00204221 + 0.00894753i
\(189\) 0 0
\(190\) 4.46659 + 19.5694i 0.324040 + 1.41971i
\(191\) −5.93523 5.50709i −0.429458 0.398479i 0.435608 0.900136i \(-0.356533\pi\)
−0.865066 + 0.501657i \(0.832724\pi\)
\(192\) 0 0
\(193\) 23.6034 7.28070i 1.69901 0.524076i 0.714537 0.699598i \(-0.246637\pi\)
0.984476 + 0.175522i \(0.0561613\pi\)
\(194\) −0.942118 + 12.5717i −0.0676401 + 0.902595i
\(195\) 0 0
\(196\) −1.49313 0.150592i −0.106652 0.0107566i
\(197\) 1.40734 0.100269 0.0501345 0.998742i \(-0.484035\pi\)
0.0501345 + 0.998742i \(0.484035\pi\)
\(198\) 0 0
\(199\) 18.3110 5.64819i 1.29803 0.400390i 0.432676 0.901549i \(-0.357569\pi\)
0.865355 + 0.501160i \(0.167093\pi\)
\(200\) −26.8333 4.04447i −1.89740 0.285988i
\(201\) 0 0
\(202\) 0.628865 + 2.75524i 0.0442468 + 0.193858i
\(203\) −18.2094 + 15.2674i −1.27805 + 1.07156i
\(204\) 0 0
\(205\) −18.7859 + 12.8080i −1.31207 + 0.894552i
\(206\) −6.41021 + 5.94781i −0.446621 + 0.414403i
\(207\) 0 0
\(208\) 0.228071 0.0343761i 0.0158139 0.00238356i
\(209\) −16.1949 + 7.79906i −1.12023 + 0.539472i
\(210\) 0 0
\(211\) −16.5702 7.97978i −1.14074 0.549351i −0.234499 0.972116i \(-0.575345\pi\)
−0.906239 + 0.422766i \(0.861059\pi\)
\(212\) 0.622153 + 0.191909i 0.0427296 + 0.0131803i
\(213\) 0 0
\(214\) −10.0220 17.3586i −0.685090 1.18661i
\(215\) −1.48729 + 2.57607i −0.101433 + 0.175686i
\(216\) 0 0
\(217\) 9.27142 5.66066i 0.629385 0.384270i
\(218\) 3.46466 4.34455i 0.234657 0.294250i
\(219\) 0 0
\(220\) −0.271672 3.62521i −0.0183161 0.244411i
\(221\) −0.0333894 0.445550i −0.00224601 0.0299710i
\(222\) 0 0
\(223\) −2.25162 + 2.82344i −0.150779 + 0.189071i −0.851485 0.524379i \(-0.824297\pi\)
0.700705 + 0.713451i \(0.252869\pi\)
\(224\) −3.00123 1.09369i −0.200528 0.0730752i
\(225\) 0 0
\(226\) 9.09340 15.7502i 0.604884 1.04769i
\(227\) −1.72495 2.98770i −0.114489 0.198301i 0.803086 0.595863i \(-0.203190\pi\)
−0.917575 + 0.397562i \(0.869856\pi\)
\(228\) 0 0
\(229\) −16.1532 4.98261i −1.06744 0.329260i −0.289224 0.957262i \(-0.593397\pi\)
−0.778212 + 0.628001i \(0.783873\pi\)
\(230\) −19.2541 9.27228i −1.26958 0.611396i
\(231\) 0 0
\(232\) −23.9446 + 11.5311i −1.57204 + 0.757055i
\(233\) −19.0102 + 2.86532i −1.24540 + 0.187714i −0.738477 0.674279i \(-0.764455\pi\)
−0.506922 + 0.861992i \(0.669217\pi\)
\(234\) 0 0
\(235\) 1.61973 1.50289i 0.105660 0.0980377i
\(236\) 0.330964 0.225647i 0.0215439 0.0146884i
\(237\) 0 0
\(238\) 9.93852 22.0030i 0.644218 1.42624i
\(239\) −1.24058 5.43532i −0.0802463 0.351582i 0.918825 0.394665i \(-0.129139\pi\)
−0.999072 + 0.0430827i \(0.986282\pi\)
\(240\) 0 0
\(241\) 7.31260 + 1.10220i 0.471046 + 0.0709988i 0.380276 0.924873i \(-0.375829\pi\)
0.0907702 + 0.995872i \(0.471067\pi\)
\(242\) −11.8640 + 3.65956i −0.762647 + 0.235245i
\(243\) 0 0
\(244\) 1.05816 0.0677415
\(245\) 20.1726 + 16.9538i 1.28878 + 1.08314i
\(246\) 0 0
\(247\) 0.0195104 0.260348i 0.00124142 0.0165656i
\(248\) 11.6093 3.58100i 0.737193 0.227394i
\(249\) 0 0
\(250\) 15.3794 + 14.2700i 0.972681 + 0.902516i
\(251\) −6.33379 27.7502i −0.399785 1.75157i −0.628240 0.778020i \(-0.716224\pi\)
0.228454 0.973555i \(-0.426633\pi\)
\(252\) 0 0
\(253\) 4.25842 18.6573i 0.267724 1.17298i
\(254\) 3.56028 2.42736i 0.223392 0.152306i
\(255\) 0 0
\(256\) −4.20064 2.86395i −0.262540 0.178997i
\(257\) 13.5894 2.04827i 0.847683 0.127768i 0.289185 0.957273i \(-0.406616\pi\)
0.558499 + 0.829506i \(0.311378\pi\)
\(258\) 0 0
\(259\) 0.888517 + 5.05060i 0.0552097 + 0.313829i
\(260\) 0.0475730 + 0.0229099i 0.00295035 + 0.00142081i
\(261\) 0 0
\(262\) −4.57777 + 11.6640i −0.282815 + 0.720602i
\(263\) −2.04122 3.53549i −0.125867 0.218008i 0.796205 0.605027i \(-0.206838\pi\)
−0.922071 + 0.387020i \(0.873505\pi\)
\(264\) 0 0
\(265\) −7.12789 8.93809i −0.437863 0.549063i
\(266\) 7.65874 11.8479i 0.469587 0.726439i
\(267\) 0 0
\(268\) −0.239978 0.611454i −0.0146590 0.0373505i
\(269\) 1.69012 + 22.5531i 0.103049 + 1.37509i 0.773811 + 0.633417i \(0.218348\pi\)
−0.670762 + 0.741672i \(0.734033\pi\)
\(270\) 0 0
\(271\) 4.33561 + 11.0469i 0.263369 + 0.671054i 0.999986 0.00525615i \(-0.00167309\pi\)
−0.736617 + 0.676310i \(0.763578\pi\)
\(272\) 15.0099 18.8218i 0.910109 1.14124i
\(273\) 0 0
\(274\) 6.63397 + 8.31874i 0.400773 + 0.502554i
\(275\) −20.6552 + 35.7759i −1.24556 + 2.15737i
\(276\) 0 0
\(277\) 5.05209 12.8725i 0.303551 0.773435i −0.694969 0.719040i \(-0.744582\pi\)
0.998519 0.0543951i \(-0.0173230\pi\)
\(278\) −12.6447 3.90038i −0.758380 0.233929i
\(279\) 0 0
\(280\) 17.1941 + 23.9352i 1.02754 + 1.43040i
\(281\) −8.30552 + 3.99973i −0.495466 + 0.238604i −0.664893 0.746939i \(-0.731523\pi\)
0.169427 + 0.985543i \(0.445808\pi\)
\(282\) 0 0
\(283\) −6.20181 4.22832i −0.368659 0.251348i 0.364793 0.931089i \(-0.381140\pi\)
−0.733452 + 0.679741i \(0.762092\pi\)
\(284\) 0.953362 0.884590i 0.0565716 0.0524908i
\(285\) 0 0
\(286\) 0.0876344 0.383952i 0.00518193 0.0227035i
\(287\) 15.6620 + 3.17253i 0.924500 + 0.187269i
\(288\) 0 0
\(289\) −21.7241 20.1571i −1.27789 1.18571i
\(290\) 44.6749 + 6.73365i 2.62340 + 0.395414i
\(291\) 0 0
\(292\) −0.167995 + 2.24173i −0.00983114 + 0.131187i
\(293\) 18.8716 1.10249 0.551246 0.834343i \(-0.314153\pi\)
0.551246 + 0.834343i \(0.314153\pi\)
\(294\) 0 0
\(295\) −7.03354 −0.409508
\(296\) −0.428603 + 5.71931i −0.0249120 + 0.332428i
\(297\) 0 0
\(298\) 6.52499 + 0.983484i 0.377983 + 0.0569717i
\(299\) 0.203758 + 0.189059i 0.0117836 + 0.0109336i
\(300\) 0 0
\(301\) 2.02619 0.515087i 0.116788 0.0296891i
\(302\) −4.24267 + 18.5884i −0.244138 + 1.06964i
\(303\) 0 0
\(304\) 10.3120 9.56809i 0.591431 0.548768i
\(305\) −15.3516 10.4665i −0.879030 0.599313i
\(306\) 0 0
\(307\) −12.3053 + 5.92590i −0.702298 + 0.338209i −0.750722 0.660618i \(-0.770294\pi\)
0.0484241 + 0.998827i \(0.484580\pi\)
\(308\) −1.69140 + 1.91507i −0.0963763 + 0.109121i
\(309\) 0 0
\(310\) −19.7356 6.08762i −1.12091 0.345754i
\(311\) 1.81450 4.62328i 0.102891 0.262162i −0.870153 0.492782i \(-0.835980\pi\)
0.973044 + 0.230620i \(0.0740753\pi\)
\(312\) 0 0
\(313\) −3.31230 + 5.73707i −0.187222 + 0.324278i −0.944323 0.329020i \(-0.893282\pi\)
0.757101 + 0.653298i \(0.226615\pi\)
\(314\) −6.45949 8.09994i −0.364530 0.457106i
\(315\) 0 0
\(316\) 1.73597 2.17683i 0.0976558 0.122456i
\(317\) 4.44722 + 11.3313i 0.249781 + 0.636432i 0.999685 0.0251156i \(-0.00799538\pi\)
−0.749904 + 0.661547i \(0.769900\pi\)
\(318\) 0 0
\(319\) 3.02344 + 40.3450i 0.169280 + 2.25888i
\(320\) 11.9153 + 30.3597i 0.666087 + 1.69716i
\(321\) 0 0
\(322\) 4.77805 + 14.2396i 0.266270 + 0.793542i
\(323\) −16.9903 21.3052i −0.945365 1.18545i
\(324\) 0 0
\(325\) −0.300007 0.519627i −0.0166414 0.0288237i
\(326\) −1.86802 + 4.75964i −0.103460 + 0.263612i
\(327\) 0 0
\(328\) 16.1023 + 7.75446i 0.889100 + 0.428168i
\(329\) −1.55100 0.0780163i −0.0855094 0.00430118i
\(330\) 0 0
\(331\) 11.4838 1.73091i 0.631208 0.0951393i 0.174357 0.984682i \(-0.444215\pi\)
0.456851 + 0.889543i \(0.348977\pi\)
\(332\) −0.512904 0.349692i −0.0281493 0.0191918i
\(333\) 0 0
\(334\) −18.2640 + 12.4522i −0.999364 + 0.681355i
\(335\) −2.56651 + 11.2446i −0.140223 + 0.614358i
\(336\) 0 0
\(337\) 3.44323 + 15.0858i 0.187565 + 0.821774i 0.977896 + 0.209094i \(0.0670515\pi\)
−0.790331 + 0.612680i \(0.790091\pi\)
\(338\) −12.7300 11.8117i −0.692421 0.642473i
\(339\) 0 0
\(340\) 5.26642 1.62447i 0.285612 0.0880995i
\(341\) 1.38212 18.4431i 0.0748460 0.998751i
\(342\) 0 0
\(343\) −1.36231 18.4701i −0.0735581 0.997291i
\(344\) 2.33818 0.126066
\(345\) 0 0
\(346\) 15.1517 4.67367i 0.814558 0.251258i
\(347\) 32.5408 + 4.90474i 1.74688 + 0.263300i 0.943311 0.331909i \(-0.107693\pi\)
0.803571 + 0.595209i \(0.202931\pi\)
\(348\) 0 0
\(349\) 1.92813 + 8.44767i 0.103210 + 0.452194i 0.999954 + 0.00964245i \(0.00306933\pi\)
−0.896743 + 0.442551i \(0.854074\pi\)
\(350\) −0.795621 32.4129i −0.0425277 1.73254i
\(351\) 0 0
\(352\) −4.49351 + 3.06362i −0.239505 + 0.163292i
\(353\) 16.8163 15.6032i 0.895041 0.830477i −0.0911928 0.995833i \(-0.529068\pi\)
0.986234 + 0.165357i \(0.0528775\pi\)
\(354\) 0 0
\(355\) −22.5810 + 3.40354i −1.19848 + 0.180641i
\(356\) 2.22221 1.07016i 0.117777 0.0567185i
\(357\) 0 0
\(358\) −9.87621 4.75613i −0.521974 0.251369i
\(359\) 9.71518 + 2.99674i 0.512747 + 0.158162i 0.540322 0.841458i \(-0.318302\pi\)
−0.0275749 + 0.999620i \(0.508778\pi\)
\(360\) 0 0
\(361\) 1.53842 + 2.66463i 0.0809697 + 0.140244i
\(362\) −6.59417 + 11.4214i −0.346582 + 0.600297i
\(363\) 0 0
\(364\) −0.0118056 0.0351832i −0.000618781 0.00184410i
\(365\) 24.6109 30.8611i 1.28819 1.61534i
\(366\) 0 0
\(367\) 0.330097 + 4.40484i 0.0172309 + 0.229931i 0.999170 + 0.0407336i \(0.0129695\pi\)
−0.981939 + 0.189197i \(0.939411\pi\)
\(368\) 1.11921 + 14.9348i 0.0583427 + 0.778529i
\(369\) 0 0
\(370\) 6.07900 7.62282i 0.316032 0.396292i
\(371\) −1.00222 + 7.97222i −0.0520327 + 0.413897i
\(372\) 0 0
\(373\) −17.6841 + 30.6298i −0.915648 + 1.58595i −0.109699 + 0.993965i \(0.534989\pi\)
−0.805949 + 0.591985i \(0.798345\pi\)
\(374\) −20.5530 35.5988i −1.06277 1.84077i
\(375\) 0 0
\(376\) −1.65967 0.511941i −0.0855911 0.0264013i
\(377\) −0.529440 0.254965i −0.0272676 0.0131314i
\(378\) 0 0
\(379\) −0.651629 + 0.313808i −0.0334719 + 0.0161192i −0.450545 0.892754i \(-0.648770\pi\)
0.417073 + 0.908873i \(0.363056\pi\)
\(380\) 3.18443 0.479975i 0.163358 0.0246222i
\(381\) 0 0
\(382\) 7.93106 7.35895i 0.405788 0.376516i
\(383\) 2.35203 1.60358i 0.120183 0.0819393i −0.501737 0.865020i \(-0.667305\pi\)
0.621920 + 0.783081i \(0.286353\pi\)
\(384\) 0 0
\(385\) 43.4812 11.0535i 2.21601 0.563341i
\(386\) 7.34473 + 32.1794i 0.373837 + 1.63789i
\(387\) 0 0
\(388\) 2.00003 + 0.301456i 0.101536 + 0.0153041i
\(389\) 21.9466 6.76964i 1.11274 0.343234i 0.316727 0.948517i \(-0.397416\pi\)
0.796011 + 0.605282i \(0.206940\pi\)
\(390\) 0 0
\(391\) 29.0122 1.46721
\(392\) 3.61277 20.3956i 0.182473 1.03013i
\(393\) 0 0
\(394\) −0.140537 + 1.87533i −0.00708013 + 0.0944777i
\(395\) −46.7170 + 14.4103i −2.35059 + 0.725059i
\(396\) 0 0
\(397\) 12.2225 + 11.3409i 0.613432 + 0.569181i 0.924489 0.381210i \(-0.124492\pi\)
−0.311057 + 0.950391i \(0.600683\pi\)
\(398\) 5.69787 + 24.9640i 0.285608 + 1.25133i
\(399\) 0 0
\(400\) 7.19396 31.5188i 0.359698 1.57594i
\(401\) 23.4834 16.0107i 1.17270 0.799537i 0.189471 0.981886i \(-0.439323\pi\)
0.983234 + 0.182350i \(0.0583703\pi\)
\(402\) 0 0
\(403\) 0.221951 + 0.151324i 0.0110562 + 0.00753798i
\(404\) 0.448346 0.0675773i 0.0223060 0.00336209i
\(405\) 0 0
\(406\) −18.5259 25.7893i −0.919425 1.27990i
\(407\) 7.86641 + 3.78826i 0.389923 + 0.187777i
\(408\) 0 0
\(409\) 10.0565 25.6235i 0.497260 1.26700i −0.433429 0.901188i \(-0.642696\pi\)
0.930689 0.365811i \(-0.119208\pi\)
\(410\) −15.1912 26.3119i −0.750238 1.29945i
\(411\) 0 0
\(412\) 0.874725 + 1.09687i 0.0430946 + 0.0540389i
\(413\) 3.45028 + 3.54017i 0.169777 + 0.174200i
\(414\) 0 0
\(415\) 3.98224 + 10.1466i 0.195480 + 0.498076i
\(416\) −0.00590307 0.0787709i −0.000289422 0.00386206i
\(417\) 0 0
\(418\) −8.77528 22.3590i −0.429213 1.09362i
\(419\) −18.7746 + 23.5427i −0.917201 + 1.15013i 0.0710771 + 0.997471i \(0.477356\pi\)
−0.988278 + 0.152663i \(0.951215\pi\)
\(420\) 0 0
\(421\) 5.08112 + 6.37152i 0.247639 + 0.310529i 0.890079 0.455807i \(-0.150649\pi\)
−0.642440 + 0.766336i \(0.722078\pi\)
\(422\) 12.2880 21.2834i 0.598170 1.03606i
\(423\) 0 0
\(424\) −3.28308 + 8.36514i −0.159440 + 0.406247i
\(425\) −59.8448 18.4597i −2.90290 0.895425i
\(426\) 0 0
\(427\) 2.26258 + 12.8612i 0.109494 + 0.622398i
\(428\) −2.89733 + 1.39528i −0.140048 + 0.0674435i
\(429\) 0 0
\(430\) −3.28417 2.23911i −0.158377 0.107980i
\(431\) −13.8220 + 12.8250i −0.665783 + 0.617756i −0.938886 0.344229i \(-0.888140\pi\)
0.273103 + 0.961985i \(0.411950\pi\)
\(432\) 0 0
\(433\) 1.18208 5.17903i 0.0568071 0.248888i −0.938549 0.345145i \(-0.887830\pi\)
0.995357 + 0.0962565i \(0.0306869\pi\)
\(434\) 6.61717 + 12.9197i 0.317634 + 0.620167i
\(435\) 0 0
\(436\) −0.653538 0.606395i −0.0312988 0.0290410i
\(437\) 16.7633 + 2.52666i 0.801897 + 0.120867i
\(438\) 0 0
\(439\) 2.92560 39.0394i 0.139631 1.86325i −0.285843 0.958277i \(-0.592273\pi\)
0.425474 0.904971i \(-0.360108\pi\)
\(440\) 50.1762 2.39206
\(441\) 0 0
\(442\) 0.597044 0.0283985
\(443\) 1.54877 20.6669i 0.0735842 0.981914i −0.831181 0.556002i \(-0.812335\pi\)
0.904765 0.425911i \(-0.140046\pi\)
\(444\) 0 0
\(445\) −42.8249 6.45482i −2.03010 0.305988i
\(446\) −3.53748 3.28230i −0.167504 0.155421i
\(447\) 0 0
\(448\) 9.43587 20.8902i 0.445803 0.986969i
\(449\) −3.76595 + 16.4997i −0.177726 + 0.778668i 0.804951 + 0.593341i \(0.202192\pi\)
−0.982677 + 0.185327i \(0.940666\pi\)
\(450\) 0 0
\(451\) 19.9443 18.5056i 0.939142 0.871397i
\(452\) −2.41083 1.64367i −0.113396 0.0773119i
\(453\) 0 0
\(454\) 4.15346 2.00020i 0.194931 0.0938740i
\(455\) −0.176734 + 0.627206i −0.00828540 + 0.0294039i
\(456\) 0 0
\(457\) 24.7711 + 7.64086i 1.15874 + 0.357425i 0.813769 0.581188i \(-0.197412\pi\)
0.344973 + 0.938613i \(0.387888\pi\)
\(458\) 8.25255 21.0271i 0.385616 0.982534i
\(459\) 0 0
\(460\) −1.71430 + 2.96926i −0.0799298 + 0.138442i
\(461\) 21.5679 + 27.0452i 1.00452 + 1.25962i 0.965505 + 0.260384i \(0.0838491\pi\)
0.0390102 + 0.999239i \(0.487580\pi\)
\(462\) 0 0
\(463\) 5.43211 6.81165i 0.252452 0.316564i −0.639416 0.768861i \(-0.720824\pi\)
0.891868 + 0.452297i \(0.149395\pi\)
\(464\) −11.5675 29.4736i −0.537010 1.36828i
\(465\) 0 0
\(466\) −1.91979 25.6178i −0.0889325 1.18672i
\(467\) 7.20939 + 18.3692i 0.333611 + 0.850027i 0.994990 + 0.0999751i \(0.0318763\pi\)
−0.661379 + 0.750052i \(0.730028\pi\)
\(468\) 0 0
\(469\) 6.91871 4.22421i 0.319476 0.195056i
\(470\) 1.84090 + 2.30842i 0.0849146 + 0.106479i
\(471\) 0 0
\(472\) 2.76436 + 4.78801i 0.127240 + 0.220386i
\(473\) 1.30042 3.31341i 0.0597933 0.152351i
\(474\) 0 0
\(475\) −32.9708 15.8779i −1.51280 0.728528i
\(476\) −3.40107 1.85385i −0.155888 0.0849711i
\(477\) 0 0
\(478\) 7.36663 1.11034i 0.336942 0.0507858i
\(479\) −23.1008 15.7499i −1.05550 0.719631i −0.0943212 0.995542i \(-0.530068\pi\)
−0.961183 + 0.275911i \(0.911020\pi\)
\(480\) 0 0
\(481\) −0.104779 + 0.0714371i −0.00477751 + 0.00325725i
\(482\) −2.19895 + 9.63421i −0.100159 + 0.438826i
\(483\) 0 0
\(484\) 0.443243 + 1.94198i 0.0201474 + 0.0882717i
\(485\) −26.0344 24.1564i −1.18216 1.09688i
\(486\) 0 0
\(487\) −3.73015 + 1.15060i −0.169029 + 0.0521387i −0.378115 0.925759i \(-0.623428\pi\)
0.209085 + 0.977897i \(0.432951\pi\)
\(488\) −1.09143 + 14.5641i −0.0494065 + 0.659284i
\(489\) 0 0
\(490\) −24.6059 + 25.1877i −1.11158 + 1.13786i
\(491\) −21.1430 −0.954172 −0.477086 0.878857i \(-0.658307\pi\)
−0.477086 + 0.878857i \(0.658307\pi\)
\(492\) 0 0
\(493\) −58.6100 + 18.0788i −2.63966 + 0.814228i
\(494\) 0.344974 + 0.0519964i 0.0155211 + 0.00233943i
\(495\) 0 0
\(496\) 3.22076 + 14.1111i 0.144617 + 0.633606i
\(497\) 12.7902 + 9.69605i 0.573717 + 0.434927i
\(498\) 0 0
\(499\) 14.4255 9.83515i 0.645775 0.440282i −0.195637 0.980676i \(-0.562677\pi\)
0.841412 + 0.540394i \(0.181725\pi\)
\(500\) 2.46743 2.28944i 0.110347 0.102387i
\(501\) 0 0
\(502\) 37.6105 5.66887i 1.67864 0.253014i
\(503\) −25.0379 + 12.0576i −1.11638 + 0.537622i −0.898773 0.438414i \(-0.855540\pi\)
−0.217610 + 0.976036i \(0.569826\pi\)
\(504\) 0 0
\(505\) −7.17298 3.45432i −0.319193 0.153715i
\(506\) 24.4363 + 7.53759i 1.08632 + 0.335087i
\(507\) 0 0
\(508\) −0.345663 0.598706i −0.0153363 0.0265633i
\(509\) 9.66821 16.7458i 0.428536 0.742246i −0.568207 0.822885i \(-0.692363\pi\)
0.996743 + 0.0806394i \(0.0256962\pi\)
\(510\) 0 0
\(511\) −27.6060 + 2.75148i −1.22122 + 0.121718i
\(512\) 15.6613 19.6387i 0.692138 0.867914i
\(513\) 0 0
\(514\) 1.37236 + 18.3128i 0.0605321 + 0.807745i
\(515\) −1.84093 24.5654i −0.0811209 1.08248i
\(516\) 0 0
\(517\) −1.64852 + 2.06718i −0.0725020 + 0.0909146i
\(518\) −6.81881 + 0.679627i −0.299601 + 0.0298611i
\(519\) 0 0
\(520\) −0.364393 + 0.631147i −0.0159797 + 0.0276776i
\(521\) 13.1734 + 22.8170i 0.577137 + 0.999631i 0.995806 + 0.0914922i \(0.0291637\pi\)
−0.418668 + 0.908139i \(0.637503\pi\)
\(522\) 0 0
\(523\) −12.1773 3.75619i −0.532475 0.164247i 0.0168464 0.999858i \(-0.494637\pi\)
−0.549321 + 0.835611i \(0.685114\pi\)
\(524\) 1.81121 + 0.872234i 0.0791232 + 0.0381037i
\(525\) 0 0
\(526\) 4.91499 2.36693i 0.214304 0.103203i
\(527\) 27.7252 4.17891i 1.20773 0.182036i
\(528\) 0 0
\(529\) 3.62956 3.36774i 0.157807 0.146423i
\(530\) 12.6221 8.60559i 0.548268 0.373803i
\(531\) 0 0
\(532\) −1.80369 1.36736i −0.0782001 0.0592825i
\(533\) 0.0879342 + 0.385265i 0.00380885 + 0.0166877i
\(534\) 0 0
\(535\) 55.8354 + 8.41583i 2.41397 + 0.363848i
\(536\) 8.66335 2.67229i 0.374200 0.115425i
\(537\) 0 0
\(538\) −30.2216 −1.30294
\(539\) −26.8931 16.4630i −1.15837 0.709112i
\(540\) 0 0
\(541\) −3.27173 + 43.6582i −0.140663 + 1.87701i 0.266747 + 0.963766i \(0.414051\pi\)
−0.407410 + 0.913245i \(0.633568\pi\)
\(542\) −15.1534 + 4.67419i −0.650893 + 0.200774i
\(543\) 0 0
\(544\) −6.04391 5.60793i −0.259130 0.240438i
\(545\) 3.48342 + 15.2619i 0.149213 + 0.653746i
\(546\) 0 0
\(547\) 2.22803 9.76163i 0.0952636 0.417377i −0.904699 0.426052i \(-0.859904\pi\)
0.999962 + 0.00867463i \(0.00276125\pi\)
\(548\) 1.41044 0.961621i 0.0602510 0.0410784i
\(549\) 0 0
\(550\) −45.6099 31.0963i −1.94481 1.32595i
\(551\) −35.4395 + 5.34164i −1.50977 + 0.227562i
\(552\) 0 0
\(553\) 30.1699 + 16.4450i 1.28296 + 0.699313i
\(554\) 16.6486 + 8.01752i 0.707329 + 0.340632i
\(555\) 0 0
\(556\) −0.775619 + 1.97624i −0.0328936 + 0.0838114i
\(557\) 14.0927 + 24.4092i 0.597126 + 1.03425i 0.993243 + 0.116052i \(0.0370239\pi\)
−0.396118 + 0.918200i \(0.629643\pi\)
\(558\) 0 0
\(559\) 0.0322341 + 0.0404203i 0.00136336 + 0.00170960i
\(560\) −29.9667 + 18.2961i −1.26632 + 0.773153i
\(561\) 0 0
\(562\) −4.50038 11.4668i −0.189837 0.483697i
\(563\) 3.02314 + 40.3409i 0.127410 + 1.70017i 0.585023 + 0.811017i \(0.301085\pi\)
−0.457613 + 0.889151i \(0.651295\pi\)
\(564\) 0 0
\(565\) 18.7179 + 47.6925i 0.787469 + 2.00644i
\(566\) 6.25368 7.84187i 0.262862 0.329618i
\(567\) 0 0
\(568\) 11.1918 + 14.0341i 0.469599 + 0.588859i
\(569\) −4.84199 + 8.38657i −0.202987 + 0.351583i −0.949489 0.313799i \(-0.898398\pi\)
0.746503 + 0.665382i \(0.231732\pi\)
\(570\) 0 0
\(571\) −16.4533 + 41.9223i −0.688548 + 1.75439i −0.0327414 + 0.999464i \(0.510424\pi\)
−0.655807 + 0.754929i \(0.727671\pi\)
\(572\) −0.0603771 0.0186239i −0.00252449 0.000778703i
\(573\) 0 0
\(574\) −5.79150 + 20.5533i −0.241733 + 0.857880i
\(575\) 35.1025 16.9045i 1.46388 0.704966i
\(576\) 0 0
\(577\) −25.9882 17.7184i −1.08190 0.737629i −0.115151 0.993348i \(-0.536735\pi\)
−0.966751 + 0.255719i \(0.917688\pi\)
\(578\) 29.0293 26.9352i 1.20746 1.12036i
\(579\) 0 0
\(580\) 1.61293 7.06672i 0.0669734 0.293430i
\(581\) 3.15358 6.98175i 0.130832 0.289652i
\(582\) 0 0
\(583\) 10.0282 + 9.30484i 0.415327 + 0.385367i
\(584\) −30.6811 4.62443i −1.26959 0.191360i
\(585\) 0 0
\(586\) −1.88451 + 25.1470i −0.0778484 + 1.03881i
\(587\) −38.4018 −1.58501 −0.792507 0.609863i \(-0.791224\pi\)
−0.792507 + 0.609863i \(0.791224\pi\)
\(588\) 0 0
\(589\) 16.3836 0.675076
\(590\) 0.702365 9.37241i 0.0289159 0.385856i
\(591\) 0 0
\(592\) −6.75657 1.01839i −0.277693 0.0418555i
\(593\) 15.2351 + 14.1361i 0.625629 + 0.580499i 0.927949 0.372708i \(-0.121571\pi\)
−0.302320 + 0.953207i \(0.597761\pi\)
\(594\) 0 0
\(595\) 31.0053 + 60.5365i 1.27109 + 2.48175i
\(596\) 0.235577 1.03213i 0.00964961 0.0422777i
\(597\) 0 0
\(598\) −0.272275 + 0.252634i −0.0111341 + 0.0103310i
\(599\) −20.3756 13.8919i −0.832526 0.567607i 0.0703424 0.997523i \(-0.477591\pi\)
−0.902869 + 0.429916i \(0.858543\pi\)
\(600\) 0 0
\(601\) −22.0342 + 10.6111i −0.898794 + 0.432836i −0.825453 0.564471i \(-0.809080\pi\)
−0.0733409 + 0.997307i \(0.523366\pi\)
\(602\) 0.484035 + 2.75140i 0.0197278 + 0.112139i
\(603\) 0 0
\(604\) 2.92305 + 0.901643i 0.118937 + 0.0366873i
\(605\) 12.7782 32.5582i 0.519506 1.32368i
\(606\) 0 0
\(607\) 6.95586 12.0479i 0.282330 0.489009i −0.689628 0.724163i \(-0.742226\pi\)
0.971958 + 0.235154i \(0.0755595\pi\)
\(608\) −3.00379 3.76664i −0.121820 0.152757i
\(609\) 0 0
\(610\) 15.4800 19.4113i 0.626767 0.785941i
\(611\) −0.0140303 0.0357485i −0.000567604 0.00144623i
\(612\) 0 0
\(613\) −2.76764 36.9316i −0.111784 1.49165i −0.717828 0.696220i \(-0.754864\pi\)
0.606044 0.795431i \(-0.292755\pi\)
\(614\) −6.66766 16.9889i −0.269085 0.685617i
\(615\) 0 0
\(616\) −24.6138 25.2551i −0.991718 1.01756i
\(617\) 12.6418 + 15.8524i 0.508941 + 0.638192i 0.968220 0.250100i \(-0.0804636\pi\)
−0.459279 + 0.888292i \(0.651892\pi\)
\(618\) 0 0
\(619\) −8.66727 15.0122i −0.348367 0.603390i 0.637592 0.770374i \(-0.279930\pi\)
−0.985960 + 0.166984i \(0.946597\pi\)
\(620\) −1.21057 + 3.08448i −0.0486176 + 0.123876i
\(621\) 0 0
\(622\) 5.97947 + 2.87956i 0.239755 + 0.115460i
\(623\) 17.7588 + 24.7214i 0.711489 + 0.990440i
\(624\) 0 0
\(625\) −13.1011 + 1.97467i −0.524044 + 0.0789869i
\(626\) −7.31406 4.98664i −0.292329 0.199306i
\(627\) 0 0
\(628\) −1.37334 + 0.936328i −0.0548023 + 0.0373636i
\(629\) −2.94537 + 12.9045i −0.117440 + 0.514537i
\(630\) 0 0
\(631\) −10.3175 45.2039i −0.410733 1.79954i −0.580731 0.814095i \(-0.697233\pi\)
0.169998 0.985444i \(-0.445624\pi\)
\(632\) 28.1706 + 26.1385i 1.12057 + 1.03973i
\(633\) 0 0
\(634\) −15.5435 + 4.79453i −0.617310 + 0.190415i
\(635\) −0.907146 + 12.1050i −0.0359990 + 0.480373i
\(636\) 0 0
\(637\) 0.402386 0.218719i 0.0159431 0.00866598i
\(638\) −54.0629 −2.14037
\(639\) 0 0
\(640\) −32.9593 + 10.1666i −1.30283 + 0.401870i
\(641\) −23.6879 3.57038i −0.935616 0.141021i −0.336500 0.941684i \(-0.609243\pi\)
−0.599116 + 0.800662i \(0.704481\pi\)
\(642\) 0 0
\(643\) 8.60440 + 37.6983i 0.339324 + 1.48668i 0.800481 + 0.599358i \(0.204578\pi\)
−0.461156 + 0.887319i \(0.652565\pi\)
\(644\) 2.33546 0.593706i 0.0920299 0.0233953i
\(645\) 0 0
\(646\) 30.0864 20.5126i 1.18373 0.807057i
\(647\) −15.7584 + 14.6216i −0.619526 + 0.574836i −0.926225 0.376970i \(-0.876966\pi\)
0.306699 + 0.951807i \(0.400775\pi\)
\(648\) 0 0
\(649\) 8.32249 1.25441i 0.326686 0.0492401i
\(650\) 0.722379 0.347879i 0.0283340 0.0136449i
\(651\) 0 0
\(652\) 0.739090 + 0.355927i 0.0289450 + 0.0139392i
\(653\) −10.7296 3.30964i −0.419881 0.129516i 0.0776128 0.996984i \(-0.475270\pi\)
−0.497494 + 0.867467i \(0.665746\pi\)
\(654\) 0 0
\(655\) −17.6493 30.5695i −0.689616 1.19445i
\(656\) −10.6461 + 18.4397i −0.415662 + 0.719948i
\(657\) 0 0
\(658\) 0.258841 2.05897i 0.0100907 0.0802668i
\(659\) 25.9561 32.5479i 1.01111 1.26789i 0.0479777 0.998848i \(-0.484722\pi\)
0.963129 0.269039i \(-0.0867062\pi\)
\(660\) 0 0
\(661\) −2.88389 38.4829i −0.112170 1.49681i −0.715103 0.699019i \(-0.753620\pi\)
0.602933 0.797792i \(-0.293999\pi\)
\(662\) 1.15972 + 15.4754i 0.0450739 + 0.601469i
\(663\) 0 0
\(664\) 5.34206 6.69873i 0.207312 0.259961i
\(665\) 12.6428 + 37.6784i 0.490268 + 1.46111i
\(666\) 0 0
\(667\) 19.0785 33.0449i 0.738722 1.27950i
\(668\) 1.77323 + 3.07133i 0.0686084 + 0.118833i
\(669\) 0 0
\(670\) −14.7275 4.54283i −0.568973 0.175505i
\(671\) 20.0316 + 9.64671i 0.773311 + 0.372407i
\(672\) 0 0
\(673\) 35.3237 17.0110i 1.36163 0.655726i 0.396630 0.917978i \(-0.370179\pi\)
0.964999 + 0.262252i \(0.0844651\pi\)
\(674\) −20.4461 + 3.08175i −0.787555 + 0.118705i
\(675\) 0 0
\(676\) −2.04236 + 1.89504i −0.0785524 + 0.0728860i
\(677\) 1.44188 0.983054i 0.0554158 0.0377818i −0.535295 0.844665i \(-0.679800\pi\)
0.590711 + 0.806883i \(0.298847\pi\)
\(678\) 0 0
\(679\) 0.612524 + 24.9537i 0.0235065 + 0.957634i
\(680\) 16.9267 + 74.1606i 0.649108 + 2.84393i
\(681\) 0 0
\(682\) 24.4380 + 3.68344i 0.935780 + 0.141046i
\(683\) −2.01205 + 0.620635i −0.0769890 + 0.0237479i −0.333010 0.942923i \(-0.608064\pi\)
0.256021 + 0.966671i \(0.417588\pi\)
\(684\) 0 0
\(685\) −29.9742 −1.14525
\(686\) 24.7480 + 0.0290854i 0.944884 + 0.00111048i
\(687\) 0 0
\(688\) −0.208170 + 2.77783i −0.00793639 + 0.105904i
\(689\) −0.189869 + 0.0585670i −0.00723345 + 0.00223122i
\(690\) 0 0
\(691\) 11.1804 + 10.3739i 0.425323 + 0.394642i 0.863583 0.504206i \(-0.168215\pi\)
−0.438260 + 0.898848i \(0.644405\pi\)
\(692\) −0.566072 2.48012i −0.0215188 0.0942801i
\(693\) 0 0
\(694\) −9.78523 + 42.8719i −0.371442 + 1.62739i
\(695\) 30.8002 20.9992i 1.16832 0.796547i
\(696\) 0 0
\(697\) 34.0795 + 23.2350i 1.29085 + 0.880089i
\(698\) −11.4493 + 1.72571i −0.433364 + 0.0653191i
\(699\) 0 0
\(700\) −5.19522 0.261323i −0.196361 0.00987708i
\(701\) 8.18394 + 3.94118i 0.309103 + 0.148856i 0.582004 0.813186i \(-0.302269\pi\)
−0.272901 + 0.962042i \(0.587983\pi\)
\(702\) 0 0
\(703\) −2.82570 + 7.19975i −0.106573 + 0.271544i
\(704\) −19.5135 33.7984i −0.735442 1.27382i
\(705\) 0 0
\(706\) 19.1126 + 23.9664i 0.719310 + 0.901987i
\(707\) 1.78003 + 5.30486i 0.0669448 + 0.199510i
\(708\) 0 0
\(709\) −16.6142 42.3322i −0.623958 1.58982i −0.796380 0.604796i \(-0.793255\pi\)
0.172422 0.985023i \(-0.444841\pi\)
\(710\) −2.28040 30.4298i −0.0855819 1.14201i
\(711\) 0 0
\(712\) 12.4372 + 31.6895i 0.466105 + 1.18762i
\(713\) −10.8755 + 13.6374i −0.407290 + 0.510725i
\(714\) 0 0
\(715\) 0.691729 + 0.867401i 0.0258692 + 0.0324390i
\(716\) −0.879336 + 1.52305i −0.0328623 + 0.0569192i
\(717\) 0 0
\(718\) −4.96340 + 12.6465i −0.185232 + 0.471964i
\(719\) 6.59364 + 2.03387i 0.245901 + 0.0758505i 0.415256 0.909705i \(-0.363692\pi\)
−0.169355 + 0.985555i \(0.554168\pi\)
\(720\) 0 0
\(721\) −11.4614 + 12.9771i −0.426845 + 0.483292i
\(722\) −3.70433 + 1.78391i −0.137861 + 0.0663903i
\(723\) 0 0
\(724\) 1.74823 + 1.19193i 0.0649726 + 0.0442976i
\(725\) −60.3797 + 56.0242i −2.24245 + 2.08069i
\(726\) 0 0
\(727\) −0.320126 + 1.40256i −0.0118728 + 0.0520182i −0.980517 0.196433i \(-0.937064\pi\)
0.968645 + 0.248451i \(0.0799214\pi\)
\(728\) 0.496425 0.126198i 0.0183987 0.00467722i
\(729\) 0 0
\(730\) 38.6658 + 35.8766i 1.43108 + 1.32785i
\(731\) 5.33592 + 0.804260i 0.197356 + 0.0297466i
\(732\) 0 0
\(733\) 3.72179 49.6639i 0.137468 1.83438i −0.322648 0.946519i \(-0.604573\pi\)
0.460116 0.887859i \(-0.347808\pi\)
\(734\) −5.90255 −0.217867
\(735\) 0 0
\(736\) 5.12919 0.189065
\(737\) 1.03139 13.7630i 0.0379919 0.506966i
\(738\) 0 0
\(739\) 44.4450 + 6.69900i 1.63493 + 0.246427i 0.901324 0.433145i \(-0.142596\pi\)
0.733609 + 0.679571i \(0.237834\pi\)
\(740\) −1.14668 1.06396i −0.0421527 0.0391120i
\(741\) 0 0
\(742\) −10.5232 2.13159i −0.386317 0.0782532i
\(743\) 5.01037 21.9519i 0.183813 0.805336i −0.795980 0.605322i \(-0.793044\pi\)
0.979793 0.200014i \(-0.0640986\pi\)
\(744\) 0 0
\(745\) −13.6269 + 12.6439i −0.499249 + 0.463236i
\(746\) −39.0492 26.6233i −1.42969 0.974749i
\(747\) 0 0
\(748\) −5.94181 + 2.86143i −0.217254 + 0.104624i
\(749\) −23.1540 32.2318i −0.846027 1.17773i
\(750\) 0 0
\(751\) −48.4830 14.9550i −1.76917 0.545717i −0.773100 0.634284i \(-0.781295\pi\)
−0.996070 + 0.0885668i \(0.971771\pi\)
\(752\) 0.755965 1.92617i 0.0275672 0.0702401i
\(753\) 0 0
\(754\) 0.392618 0.680035i 0.0142983 0.0247654i
\(755\) −33.4889 41.9938i −1.21879 1.52831i
\(756\) 0 0
\(757\) −8.15013 + 10.2199i −0.296222 + 0.371450i −0.907562 0.419917i \(-0.862059\pi\)
0.611341 + 0.791368i \(0.290631\pi\)
\(758\) −0.353088 0.899653i −0.0128247 0.0326769i
\(759\) 0 0
\(760\) 3.32165 + 44.3243i 0.120489 + 1.60781i
\(761\) −12.5547 31.9890i −0.455109 1.15960i −0.955812 0.293979i \(-0.905020\pi\)
0.500703 0.865619i \(-0.333075\pi\)
\(762\) 0 0
\(763\) 5.97293 9.23996i 0.216234 0.334509i
\(764\) −1.08226 1.35711i −0.0391547 0.0490984i
\(765\) 0 0
\(766\) 1.90196 + 3.29428i 0.0687204 + 0.119027i
\(767\) −0.0446613 + 0.113795i −0.00161263 + 0.00410891i
\(768\) 0 0
\(769\) −5.76738 2.77743i −0.207977 0.100157i 0.326995 0.945026i \(-0.393964\pi\)
−0.534973 + 0.844869i \(0.679678\pi\)
\(770\) 10.3872 + 59.0439i 0.374328 + 2.12779i
\(771\) 0 0
\(772\) 5.23638 0.789258i 0.188462 0.0284060i
\(773\) −15.1660 10.3400i −0.545483 0.371904i 0.259002 0.965877i \(-0.416606\pi\)
−0.804485 + 0.593973i \(0.797559\pi\)
\(774\) 0 0
\(775\) 31.1105 21.2108i 1.11752 0.761914i
\(776\) −6.21204 + 27.2167i −0.222999 + 0.977023i
\(777\) 0 0
\(778\) 6.82918 + 29.9206i 0.244838 + 1.07271i
\(779\) 17.6677 + 16.3932i 0.633011 + 0.587348i
\(780\) 0 0
\(781\) 26.1122 8.05454i 0.934367 0.288214i
\(782\) −2.89714 + 38.6596i −0.103601 + 1.38247i
\(783\) 0 0
\(784\) 23.9090 + 6.10793i 0.853893 + 0.218140i
\(785\) 29.1858 1.04169
\(786\) 0 0
\(787\) −40.4077 + 12.4641i −1.44038 + 0.444298i −0.913917 0.405900i \(-0.866958\pi\)
−0.526462 + 0.850198i \(0.676482\pi\)
\(788\) 0.298346 + 0.0449684i 0.0106281 + 0.00160193i
\(789\) 0 0
\(790\) −14.5370 63.6908i −0.517204 2.26602i
\(791\) 14.8229 32.8166i 0.527042 1.16683i
\(792\) 0 0
\(793\) −0.266817 + 0.181913i −0.00947494 + 0.00645991i
\(794\) −16.3326 + 15.1544i −0.579622 + 0.537811i
\(795\) 0 0
\(796\) 4.06226 0.612287i 0.143983 0.0217020i
\(797\) 12.2233 5.88642i 0.432971 0.208508i −0.204687 0.978827i \(-0.565618\pi\)
0.637658 + 0.770320i \(0.279903\pi\)
\(798\) 0 0
\(799\) −3.61142 1.73917i −0.127763 0.0615274i
\(800\) −10.5802 3.26357i −0.374068 0.115385i
\(801\) 0 0
\(802\) 18.9897 + 32.8912i 0.670551 + 1.16143i
\(803\) −23.6171 + 40.9060i −0.833428 + 1.44354i
\(804\) 0 0
\(805\) −39.7551 14.4873i −1.40118 0.510610i
\(806\) −0.223808 + 0.280646i −0.00788329 + 0.00988534i
\(807\) 0 0
\(808\) 0.467666 + 6.24057i 0.0164524 + 0.219542i
\(809\) 2.66732 + 35.5929i 0.0937779 + 1.25138i 0.823373 + 0.567500i \(0.192089\pi\)
−0.729595 + 0.683879i \(0.760292\pi\)
\(810\) 0 0
\(811\) 4.98504 6.25104i 0.175048 0.219504i −0.686566 0.727068i \(-0.740883\pi\)
0.861614 + 0.507564i \(0.169454\pi\)
\(812\) −4.34809 + 2.65473i −0.152588 + 0.0931626i
\(813\) 0 0
\(814\) −5.83351 + 10.1039i −0.204465 + 0.354143i
\(815\) −7.20205 12.4743i −0.252277 0.436956i
\(816\) 0 0
\(817\) 3.01306 + 0.929407i 0.105414 + 0.0325158i
\(818\) 33.1399 + 15.9593i 1.15871 + 0.558004i
\(819\) 0 0
\(820\) −4.39172 + 2.11494i −0.153366 + 0.0738570i
\(821\) −10.1547 + 1.53058i −0.354402 + 0.0534174i −0.323830 0.946115i \(-0.604971\pi\)
−0.0305712 + 0.999533i \(0.509733\pi\)
\(822\) 0 0
\(823\) −9.51480 + 8.82844i −0.331665 + 0.307740i −0.828372 0.560178i \(-0.810733\pi\)
0.496707 + 0.867918i \(0.334542\pi\)
\(824\) −15.9991 + 10.9080i −0.557357 + 0.379999i
\(825\) 0 0
\(826\) −5.06193 + 4.24409i −0.176127 + 0.147671i
\(827\) −2.33354 10.2239i −0.0811453 0.355521i 0.918013 0.396551i \(-0.129793\pi\)
−0.999158 + 0.0410305i \(0.986936\pi\)
\(828\) 0 0
\(829\) −2.85276 0.429984i −0.0990803 0.0149340i 0.0993149 0.995056i \(-0.468335\pi\)
−0.198395 + 0.980122i \(0.563573\pi\)
\(830\) −13.9183 + 4.29323i −0.483111 + 0.149020i
\(831\) 0 0
\(832\) 0.566848 0.0196519
\(833\) 15.2601 45.3018i 0.528732 1.56961i
\(834\) 0 0
\(835\) 4.65361 62.0981i 0.161045 2.14899i
\(836\) −3.68240 + 1.13587i −0.127358 + 0.0392848i
\(837\) 0 0
\(838\) −29.4965 27.3688i −1.01894 0.945438i
\(839\) −9.58144 41.9790i −0.330788 1.44928i −0.817608 0.575775i \(-0.804700\pi\)
0.486820 0.873502i \(-0.338157\pi\)
\(840\) 0 0
\(841\) −11.4972 + 50.3727i −0.396457 + 1.73699i
\(842\) −8.99766 + 6.13450i −0.310080 + 0.211409i
\(843\) 0 0
\(844\) −3.25777 2.22111i −0.112137 0.0764539i
\(845\) 48.3748 7.29132i 1.66414 0.250829i
\(846\) 0 0
\(847\) −22.6557 + 9.53975i −0.778461 + 0.327790i
\(848\) −9.64577 4.64516i −0.331237 0.159515i
\(849\) 0 0
\(850\) 30.5742 77.9017i 1.04869 2.67201i
\(851\) −4.11723 7.13126i −0.141137 0.244456i
\(852\) 0 0
\(853\) 7.69982 + 9.65527i 0.263637 + 0.330590i 0.895977 0.444101i \(-0.146477\pi\)
−0.632340 + 0.774691i \(0.717905\pi\)
\(854\) −17.3639 + 1.73065i −0.594181 + 0.0592217i
\(855\) 0 0
\(856\) −16.2157 41.3170i −0.554242 1.41219i
\(857\) −2.21602 29.5707i −0.0756977 1.01012i −0.897693 0.440621i \(-0.854758\pi\)
0.821995 0.569494i \(-0.192861\pi\)
\(858\) 0 0
\(859\) −9.03533 23.0216i −0.308281 0.785488i −0.998106 0.0615120i \(-0.980408\pi\)
0.689825 0.723976i \(-0.257687\pi\)
\(860\) −0.397607 + 0.498584i −0.0135583 + 0.0170016i
\(861\) 0 0
\(862\) −15.7094 19.6990i −0.535064 0.670949i
\(863\) 15.3500 26.5869i 0.522518 0.905029i −0.477138 0.878828i \(-0.658326\pi\)
0.999657 0.0262003i \(-0.00834076\pi\)
\(864\) 0 0
\(865\) −16.3192 + 41.5805i −0.554868 + 1.41378i
\(866\) 6.78318 + 2.09233i 0.230502 + 0.0711004i
\(867\) 0 0
\(868\) 2.14634 0.903769i 0.0728516 0.0306759i
\(869\) 52.7082 25.3829i 1.78800 0.861057i
\(870\) 0 0
\(871\) 0.165629 + 0.112924i 0.00561212 + 0.00382628i
\(872\) 9.02028 8.36960i 0.305465 0.283430i
\(873\) 0 0
\(874\) −5.04083 + 22.0853i −0.170509 + 0.747047i
\(875\) 33.1026 + 25.0947i 1.11907 + 0.848355i
\(876\) 0 0
\(877\) −5.09060 4.72338i −0.171897 0.159497i 0.589533 0.807744i \(-0.299312\pi\)
−0.761430 + 0.648247i \(0.775502\pi\)
\(878\) 51.7291 + 7.79690i 1.74577 + 0.263133i
\(879\) 0 0
\(880\) −4.46723 + 59.6110i −0.150590 + 2.00949i
\(881\) 46.0347 1.55095 0.775474 0.631380i \(-0.217511\pi\)
0.775474 + 0.631380i \(0.217511\pi\)
\(882\) 0 0
\(883\) −3.48888 −0.117410 −0.0587051 0.998275i \(-0.518697\pi\)
−0.0587051 + 0.998275i \(0.518697\pi\)
\(884\) 0.00715824 0.0955201i 0.000240758 0.00321269i
\(885\) 0 0
\(886\) 27.3846 + 4.12757i 0.920005 + 0.138668i
\(887\) −18.6764 17.3292i −0.627094 0.581858i 0.301266 0.953540i \(-0.402591\pi\)
−0.928360 + 0.371682i \(0.878781\pi\)
\(888\) 0 0
\(889\) 6.53779 5.48149i 0.219270 0.183843i
\(890\) 12.8777 56.4210i 0.431662 1.89124i
\(891\) 0 0
\(892\) −0.567542 + 0.526602i −0.0190027 + 0.0176319i
\(893\) −1.93523 1.31941i −0.0647598 0.0441525i
\(894\) 0 0
\(895\) 27.8223 13.3985i 0.929997 0.447863i
\(896\) 21.2852 + 11.6021i 0.711088 + 0.387599i
\(897\) 0 0
\(898\) −21.6103 6.66589i −0.721145 0.222444i
\(899\) 13.4724 34.3272i 0.449330 1.14487i
\(900\) 0 0
\(901\) −10.3696 + 17.9607i −0.345462 + 0.598357i
\(902\) 22.6677 + 28.4244i 0.754753 + 0.946430i
\(903\) 0 0
\(904\) 25.1096 31.4864i 0.835132 1.04722i
\(905\) −13.5735 34.5847i −0.451198 1.14963i
\(906\) 0 0
\(907\) −3.55651 47.4583i −0.118092 1.57583i −0.670281 0.742107i \(-0.733827\pi\)
0.552189 0.833719i \(-0.313793\pi\)
\(908\) −0.270211 0.688486i −0.00896726 0.0228482i
\(909\) 0 0
\(910\) −0.818124 0.298136i −0.0271205 0.00988311i
\(911\) 33.2652 + 41.7132i 1.10212 + 1.38202i 0.916802 + 0.399342i \(0.130761\pi\)
0.185321 + 0.982678i \(0.440667\pi\)
\(912\) 0 0
\(913\) −6.52164 11.2958i −0.215835 0.373837i
\(914\) −12.6553 + 32.2452i −0.418601 + 1.06658i
\(915\) 0 0
\(916\) −3.26515 1.57241i −0.107884 0.0519540i
\(917\) −6.72866 + 23.8792i −0.222200 + 0.788560i
\(918\) 0 0
\(919\) −43.3486 + 6.53375i −1.42994 + 0.215529i −0.817928 0.575321i \(-0.804877\pi\)
−0.612011 + 0.790849i \(0.709639\pi\)
\(920\) −39.0996 26.6577i −1.28908 0.878877i
\(921\) 0 0
\(922\) −38.1924 + 26.0391i −1.25780 + 0.857553i
\(923\) −0.0883186 + 0.386949i −0.00290704 + 0.0127366i
\(924\) 0 0
\(925\) 3.95538 + 17.3297i 0.130052 + 0.569796i
\(926\) 8.53430 + 7.91867i 0.280454 + 0.260224i
\(927\) 0 0
\(928\) −10.3619 + 3.19623i −0.340147 + 0.104922i
\(929\) 4.43874 59.2309i 0.145630 1.94330i −0.151480 0.988460i \(-0.548404\pi\)
0.297110 0.954843i \(-0.403977\pi\)
\(930\) 0 0
\(931\) 12.7627 24.8465i 0.418279 0.814311i
\(932\) −4.12157 −0.135006
\(933\) 0 0
\(934\) −25.1975 + 7.77241i −0.824488 + 0.254321i
\(935\) 114.506 + 17.2591i 3.74476 + 0.564432i
\(936\) 0 0
\(937\) −5.83159 25.5499i −0.190510 0.834678i −0.976341 0.216237i \(-0.930622\pi\)
0.785831 0.618441i \(-0.212235\pi\)
\(938\) 4.93800 + 9.64122i 0.161231 + 0.314797i
\(939\) 0 0
\(940\) 0.391392 0.266846i 0.0127658 0.00870357i
\(941\) −24.1136 + 22.3742i −0.786082 + 0.729377i −0.967181 0.254087i \(-0.918225\pi\)
0.181099 + 0.983465i \(0.442034\pi\)
\(942\) 0 0
\(943\) −25.3732 + 3.82440i −0.826266 + 0.124540i
\(944\) −5.93443 + 2.85787i −0.193149 + 0.0930157i
\(945\) 0 0
\(946\) 4.28537 + 2.06372i 0.139329 + 0.0670974i
\(947\) −6.79831 2.09700i −0.220915 0.0681434i 0.182322 0.983239i \(-0.441639\pi\)
−0.403237 + 0.915096i \(0.632115\pi\)
\(948\) 0 0
\(949\) −0.343026 0.594139i −0.0111351 0.0192866i
\(950\) 24.4503 42.3491i 0.793271 1.37399i
\(951\) 0 0
\(952\) 29.0237 44.8989i 0.940665 1.45518i
\(953\) −24.2112 + 30.3598i −0.784277 + 0.983452i 0.215699 + 0.976460i \(0.430797\pi\)
−0.999976 + 0.00699191i \(0.997774\pi\)
\(954\) 0 0
\(955\) 2.27769 + 30.3937i 0.0737044 + 0.983516i
\(956\) −0.0893195 1.19189i −0.00288880 0.0385484i
\(957\) 0 0
\(958\) 23.2941 29.2098i 0.752597 0.943727i
\(959\) 14.7037 + 15.0868i 0.474809 + 0.487179i
\(960\) 0 0
\(961\) 7.07127 12.2478i 0.228105 0.395090i
\(962\) −0.0847290 0.146755i −0.00273177 0.00473157i
\(963\) 0 0
\(964\) 1.51500 + 0.467315i 0.0487948 + 0.0150512i
\(965\) −83.7757 40.3442i −2.69683 1.29873i
\(966\) 0 0
\(967\) 9.98184 4.80700i 0.320994 0.154583i −0.266447 0.963850i \(-0.585850\pi\)
0.587441 + 0.809267i \(0.300135\pi\)
\(968\) −27.1858 + 4.09761i −0.873786 + 0.131702i
\(969\) 0 0
\(970\) 34.7889 32.2794i 1.11701 1.03643i
\(971\) −9.52331 + 6.49288i −0.305617 + 0.208366i −0.706411 0.707802i \(-0.749687\pi\)
0.400793 + 0.916168i \(0.368735\pi\)
\(972\) 0 0
\(973\) −25.6785 5.20148i −0.823214 0.166752i
\(974\) −1.16072 5.08545i −0.0371919 0.162948i
\(975\) 0 0
\(976\) −17.2054 2.59330i −0.550732 0.0830095i
\(977\) −45.2838 + 13.9682i −1.44876 + 0.446882i −0.916614 0.399773i \(-0.869089\pi\)
−0.532142 + 0.846655i \(0.678613\pi\)
\(978\) 0 0
\(979\) 51.8242 1.65631
\(980\) 3.73472 + 4.23865i 0.119301 + 0.135399i
\(981\) 0 0
\(982\) 2.11133 28.1738i 0.0673753 0.899061i
\(983\) 7.90001 2.43683i 0.251971 0.0777228i −0.166197 0.986093i \(-0.553149\pi\)
0.418168 + 0.908370i \(0.362672\pi\)
\(984\) 0 0
\(985\) −3.88357 3.60343i −0.123741 0.114815i
\(986\) −18.2378 79.9050i −0.580810 2.54469i
\(987\) 0 0
\(988\) 0.0124549 0.0545684i 0.000396242 0.00173605i
\(989\) −2.77370 + 1.89107i −0.0881984 + 0.0601326i
\(990\) 0 0
\(991\) 10.3543 + 7.05942i 0.328914 + 0.224250i 0.716505 0.697581i \(-0.245740\pi\)
−0.387591 + 0.921831i \(0.626693\pi\)
\(992\) 4.90167 0.738808i 0.155628 0.0234572i
\(993\) 0 0
\(994\) −14.1975 + 16.0750i −0.450318 + 0.509869i
\(995\) −64.9912 31.2981i −2.06036 0.992216i
\(996\) 0 0
\(997\) 3.97139 10.1189i 0.125775 0.320470i −0.854092 0.520123i \(-0.825886\pi\)
0.979867 + 0.199653i \(0.0639814\pi\)
\(998\) 11.6651 + 20.2046i 0.369253 + 0.639566i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.bb.c.415.1 48
3.2 odd 2 147.2.m.a.121.4 48
49.32 even 21 inner 441.2.bb.c.424.1 48
147.32 odd 42 147.2.m.a.130.4 yes 48
147.89 even 42 7203.2.a.k.1.19 24
147.107 odd 42 7203.2.a.i.1.19 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.2.m.a.121.4 48 3.2 odd 2
147.2.m.a.130.4 yes 48 147.32 odd 42
441.2.bb.c.415.1 48 1.1 even 1 trivial
441.2.bb.c.424.1 48 49.32 even 21 inner
7203.2.a.i.1.19 24 147.107 odd 42
7203.2.a.k.1.19 24 147.89 even 42