Properties

Label 441.2.bb.c.100.1
Level $441$
Weight $2$
Character 441.100
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(37,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 32])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.bb (of order \(21\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{21})\)
Twist minimal: no (minimal twist has level 147)
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 100.1
Character \(\chi\) \(=\) 441.100
Dual form 441.2.bb.c.172.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.24916 - 0.693774i) q^{2} +(2.92492 + 1.99418i) q^{4} +(0.982858 - 0.148142i) q^{5} +(-2.07146 - 1.64592i) q^{7} +(-2.26005 - 2.83402i) q^{8} +(-2.31338 - 0.348686i) q^{10} +(-3.21592 + 2.98394i) q^{11} +(-0.00383811 - 0.0168159i) q^{13} +(3.51714 + 5.13907i) q^{14} +(0.530409 + 1.35146i) q^{16} +(-0.149951 - 2.00095i) q^{17} +(-0.178003 + 0.308310i) q^{19} +(3.17020 + 1.52669i) q^{20} +(9.30331 - 4.48024i) q^{22} +(0.512321 - 6.83645i) q^{23} +(-3.83380 + 1.18257i) q^{25} +(-0.00303388 + 0.0404844i) q^{26} +(-2.77659 - 8.94505i) q^{28} +(-2.89389 - 1.39362i) q^{29} +(-2.52299 - 4.36995i) q^{31} +(0.286403 + 3.82178i) q^{32} +(-1.05095 + 4.60450i) q^{34} +(-2.27978 - 1.31084i) q^{35} +(-9.67885 + 6.59893i) q^{37} +(0.614254 - 0.569944i) q^{38} +(-2.64115 - 2.45063i) q^{40} +(6.39800 + 8.02284i) q^{41} +(2.58159 - 3.23721i) q^{43} +(-15.3568 + 2.31467i) q^{44} +(-5.89525 + 15.0208i) q^{46} +(-9.52767 - 2.93890i) q^{47} +(1.58188 + 6.81892i) q^{49} +9.44327 q^{50} +(0.0223077 - 0.0568390i) q^{52} +(-4.57690 - 3.12048i) q^{53} +(-2.71875 + 3.40920i) q^{55} +(0.0170352 + 9.59042i) q^{56} +(5.54195 + 5.14218i) q^{58} +(-10.9381 - 1.64865i) q^{59} +(-11.3038 + 7.70678i) q^{61} +(2.64286 + 11.5791i) q^{62} +(2.65341 - 11.6253i) q^{64} +(-0.00626346 - 0.0159590i) q^{65} +(-3.48108 - 6.02941i) q^{67} +(3.55166 - 6.15166i) q^{68} +(4.21816 + 4.52993i) q^{70} +(-3.82385 + 1.84147i) q^{71} +(11.2807 - 3.47963i) q^{73} +(26.3475 - 8.12711i) q^{74} +(-1.13547 + 0.546813i) q^{76} +(11.5730 - 0.887951i) q^{77} +(0.240066 - 0.415807i) q^{79} +(0.721524 + 1.24972i) q^{80} +(-8.82410 - 22.4834i) q^{82} +(0.429851 - 1.88330i) q^{83} +(-0.443806 - 1.94444i) q^{85} +(-8.05230 + 5.48997i) q^{86} +(15.7247 + 2.37012i) q^{88} +(-6.29680 - 5.84258i) q^{89} +(-0.0197271 + 0.0411506i) q^{91} +(15.1316 - 18.9744i) q^{92} +(19.3903 + 13.2201i) q^{94} +(-0.129278 + 0.329394i) q^{95} +12.4244 q^{97} +(1.17289 - 16.4343i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + 3 q^{4} - 6 q^{8} + 30 q^{10} + 9 q^{11} + 42 q^{14} + 29 q^{16} + 5 q^{17} - 26 q^{19} + 5 q^{20} + q^{22} + 4 q^{23} - 56 q^{25} + 62 q^{26} + 7 q^{28} - 12 q^{29} - 36 q^{31} + 14 q^{32}+ \cdots - 119 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{13}{21}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.24916 0.693774i −1.59040 0.490572i −0.631750 0.775172i \(-0.717663\pi\)
−0.958646 + 0.284600i \(0.908139\pi\)
\(3\) 0 0
\(4\) 2.92492 + 1.99418i 1.46246 + 0.997089i
\(5\) 0.982858 0.148142i 0.439547 0.0662511i 0.0744592 0.997224i \(-0.476277\pi\)
0.365088 + 0.930973i \(0.381039\pi\)
\(6\) 0 0
\(7\) −2.07146 1.64592i −0.782938 0.622100i
\(8\) −2.26005 2.83402i −0.799050 1.00198i
\(9\) 0 0
\(10\) −2.31338 0.348686i −0.731555 0.110264i
\(11\) −3.21592 + 2.98394i −0.969638 + 0.899692i −0.994989 0.0999863i \(-0.968120\pi\)
0.0253511 + 0.999679i \(0.491930\pi\)
\(12\) 0 0
\(13\) −0.00383811 0.0168159i −0.00106450 0.00466388i 0.974393 0.224852i \(-0.0721899\pi\)
−0.975457 + 0.220188i \(0.929333\pi\)
\(14\) 3.51714 + 5.13907i 0.939996 + 1.37347i
\(15\) 0 0
\(16\) 0.530409 + 1.35146i 0.132602 + 0.337865i
\(17\) −0.149951 2.00095i −0.0363684 0.485303i −0.985415 0.170167i \(-0.945569\pi\)
0.949047 0.315135i \(-0.102050\pi\)
\(18\) 0 0
\(19\) −0.178003 + 0.308310i −0.0408366 + 0.0707311i −0.885721 0.464217i \(-0.846336\pi\)
0.844885 + 0.534948i \(0.179669\pi\)
\(20\) 3.17020 + 1.52669i 0.708879 + 0.341378i
\(21\) 0 0
\(22\) 9.30331 4.48024i 1.98347 0.955190i
\(23\) 0.512321 6.83645i 0.106826 1.42550i −0.644013 0.765014i \(-0.722732\pi\)
0.750840 0.660485i \(-0.229649\pi\)
\(24\) 0 0
\(25\) −3.83380 + 1.18257i −0.766760 + 0.236514i
\(26\) −0.00303388 + 0.0404844i −0.000594994 + 0.00793964i
\(27\) 0 0
\(28\) −2.77659 8.94505i −0.524727 1.69046i
\(29\) −2.89389 1.39362i −0.537381 0.258789i 0.145450 0.989366i \(-0.453537\pi\)
−0.682831 + 0.730577i \(0.739251\pi\)
\(30\) 0 0
\(31\) −2.52299 4.36995i −0.453143 0.784867i 0.545436 0.838152i \(-0.316364\pi\)
−0.998579 + 0.0532856i \(0.983031\pi\)
\(32\) 0.286403 + 3.82178i 0.0506294 + 0.675602i
\(33\) 0 0
\(34\) −1.05095 + 4.60450i −0.180236 + 0.789665i
\(35\) −2.27978 1.31084i −0.385353 0.221572i
\(36\) 0 0
\(37\) −9.67885 + 6.59893i −1.59119 + 1.08486i −0.643608 + 0.765356i \(0.722563\pi\)
−0.947586 + 0.319502i \(0.896484\pi\)
\(38\) 0.614254 0.569944i 0.0996451 0.0924572i
\(39\) 0 0
\(40\) −2.64115 2.45063i −0.417602 0.387478i
\(41\) 6.39800 + 8.02284i 0.999200 + 1.25296i 0.967345 + 0.253465i \(0.0815703\pi\)
0.0318559 + 0.999492i \(0.489858\pi\)
\(42\) 0 0
\(43\) 2.58159 3.23721i 0.393689 0.493670i −0.545000 0.838436i \(-0.683470\pi\)
0.938689 + 0.344766i \(0.112042\pi\)
\(44\) −15.3568 + 2.31467i −2.31513 + 0.348950i
\(45\) 0 0
\(46\) −5.89525 + 15.0208i −0.869207 + 2.21470i
\(47\) −9.52767 2.93890i −1.38975 0.428682i −0.492544 0.870287i \(-0.663933\pi\)
−0.897209 + 0.441605i \(0.854409\pi\)
\(48\) 0 0
\(49\) 1.58188 + 6.81892i 0.225983 + 0.974131i
\(50\) 9.44327 1.33548
\(51\) 0 0
\(52\) 0.0223077 0.0568390i 0.00309352 0.00788215i
\(53\) −4.57690 3.12048i −0.628685 0.428630i 0.206616 0.978422i \(-0.433755\pi\)
−0.835302 + 0.549792i \(0.814707\pi\)
\(54\) 0 0
\(55\) −2.71875 + 3.40920i −0.366596 + 0.459697i
\(56\) 0.0170352 + 9.59042i 0.00227642 + 1.28157i
\(57\) 0 0
\(58\) 5.54195 + 5.14218i 0.727694 + 0.675202i
\(59\) −10.9381 1.64865i −1.42402 0.214636i −0.608585 0.793489i \(-0.708263\pi\)
−0.815432 + 0.578853i \(0.803501\pi\)
\(60\) 0 0
\(61\) −11.3038 + 7.70678i −1.44730 + 0.986752i −0.451786 + 0.892126i \(0.649213\pi\)
−0.995513 + 0.0946251i \(0.969835\pi\)
\(62\) 2.64286 + 11.5791i 0.335643 + 1.47055i
\(63\) 0 0
\(64\) 2.65341 11.6253i 0.331676 1.45317i
\(65\) −0.00626346 0.0159590i −0.000776886 0.00197947i
\(66\) 0 0
\(67\) −3.48108 6.02941i −0.425282 0.736610i 0.571165 0.820835i \(-0.306492\pi\)
−0.996447 + 0.0842256i \(0.973158\pi\)
\(68\) 3.55166 6.15166i 0.430703 0.745999i
\(69\) 0 0
\(70\) 4.21816 + 4.52993i 0.504167 + 0.541431i
\(71\) −3.82385 + 1.84147i −0.453808 + 0.218542i −0.646802 0.762658i \(-0.723894\pi\)
0.192995 + 0.981200i \(0.438180\pi\)
\(72\) 0 0
\(73\) 11.2807 3.47963i 1.32030 0.407260i 0.447044 0.894512i \(-0.352477\pi\)
0.873261 + 0.487252i \(0.162001\pi\)
\(74\) 26.3475 8.12711i 3.06283 0.944758i
\(75\) 0 0
\(76\) −1.13547 + 0.546813i −0.130247 + 0.0627237i
\(77\) 11.5730 0.887951i 1.31886 0.101191i
\(78\) 0 0
\(79\) 0.240066 0.415807i 0.0270096 0.0467820i −0.852205 0.523209i \(-0.824735\pi\)
0.879214 + 0.476427i \(0.158068\pi\)
\(80\) 0.721524 + 1.24972i 0.0806689 + 0.139723i
\(81\) 0 0
\(82\) −8.82410 22.4834i −0.974458 2.48288i
\(83\) 0.429851 1.88330i 0.0471823 0.206719i −0.945842 0.324626i \(-0.894761\pi\)
0.993025 + 0.117907i \(0.0376186\pi\)
\(84\) 0 0
\(85\) −0.443806 1.94444i −0.0481375 0.210904i
\(86\) −8.05230 + 5.48997i −0.868302 + 0.591998i
\(87\) 0 0
\(88\) 15.7247 + 2.37012i 1.67626 + 0.252655i
\(89\) −6.29680 5.84258i −0.667460 0.619312i 0.271867 0.962335i \(-0.412359\pi\)
−0.939327 + 0.343023i \(0.888549\pi\)
\(90\) 0 0
\(91\) −0.0197271 + 0.0411506i −0.00206796 + 0.00431376i
\(92\) 15.1316 18.9744i 1.57758 1.97822i
\(93\) 0 0
\(94\) 19.3903 + 13.2201i 1.99996 + 1.36355i
\(95\) −0.129278 + 0.329394i −0.0132636 + 0.0337951i
\(96\) 0 0
\(97\) 12.4244 1.26151 0.630754 0.775983i \(-0.282746\pi\)
0.630754 + 0.775983i \(0.282746\pi\)
\(98\) 1.17289 16.4343i 0.118479 1.66012i
\(99\) 0 0
\(100\) −13.5718 4.18635i −1.35718 0.418635i
\(101\) −0.455493 + 1.16058i −0.0453233 + 0.115482i −0.951743 0.306897i \(-0.900709\pi\)
0.906420 + 0.422378i \(0.138805\pi\)
\(102\) 0 0
\(103\) 2.99443 0.451338i 0.295050 0.0444717i 0.000150958 1.00000i \(-0.499952\pi\)
0.294899 + 0.955528i \(0.404714\pi\)
\(104\) −0.0389821 + 0.0488821i −0.00382251 + 0.00479328i
\(105\) 0 0
\(106\) 8.12927 + 10.1938i 0.789585 + 0.990108i
\(107\) 2.73582 + 2.53847i 0.264482 + 0.245403i 0.801255 0.598324i \(-0.204166\pi\)
−0.536773 + 0.843727i \(0.680357\pi\)
\(108\) 0 0
\(109\) 1.83300 1.70078i 0.175570 0.162905i −0.587493 0.809229i \(-0.699885\pi\)
0.763063 + 0.646324i \(0.223695\pi\)
\(110\) 8.48012 5.78165i 0.808548 0.551258i
\(111\) 0 0
\(112\) 1.12568 3.67251i 0.106367 0.347019i
\(113\) 1.50750 6.60481i 0.141814 0.621328i −0.853199 0.521585i \(-0.825341\pi\)
0.995013 0.0997429i \(-0.0318020\pi\)
\(114\) 0 0
\(115\) −0.509227 6.79516i −0.0474856 0.633652i
\(116\) −5.68526 9.84716i −0.527863 0.914286i
\(117\) 0 0
\(118\) 23.4577 + 11.2966i 2.15946 + 1.03994i
\(119\) −2.98280 + 4.39170i −0.273433 + 0.402587i
\(120\) 0 0
\(121\) 0.616230 8.22302i 0.0560209 0.747547i
\(122\) 30.7707 9.49151i 2.78585 0.859321i
\(123\) 0 0
\(124\) 1.33490 17.8131i 0.119878 1.59966i
\(125\) −8.07053 + 3.88656i −0.721850 + 0.347625i
\(126\) 0 0
\(127\) 7.34145 + 3.53546i 0.651449 + 0.313721i 0.730261 0.683168i \(-0.239398\pi\)
−0.0788122 + 0.996889i \(0.525113\pi\)
\(128\) −10.2008 + 17.6683i −0.901632 + 1.56167i
\(129\) 0 0
\(130\) 0.00301556 + 0.0402398i 0.000264482 + 0.00352927i
\(131\) 5.44096 + 13.8633i 0.475379 + 1.21125i 0.944617 + 0.328174i \(0.106433\pi\)
−0.469239 + 0.883071i \(0.655472\pi\)
\(132\) 0 0
\(133\) 0.876179 0.345672i 0.0759744 0.0299736i
\(134\) 3.64646 + 15.9762i 0.315006 + 1.38013i
\(135\) 0 0
\(136\) −5.33184 + 4.94723i −0.457202 + 0.424221i
\(137\) 17.4682 + 2.63291i 1.49241 + 0.224945i 0.844000 0.536344i \(-0.180195\pi\)
0.648413 + 0.761289i \(0.275433\pi\)
\(138\) 0 0
\(139\) −12.4178 15.5715i −1.05327 1.32075i −0.945158 0.326614i \(-0.894092\pi\)
−0.108108 0.994139i \(-0.534479\pi\)
\(140\) −4.05413 8.38038i −0.342637 0.708271i
\(141\) 0 0
\(142\) 9.87802 1.48887i 0.828945 0.124943i
\(143\) 0.0625207 + 0.0426259i 0.00522824 + 0.00356455i
\(144\) 0 0
\(145\) −3.05073 0.941026i −0.253350 0.0781480i
\(146\) −27.7862 −2.29960
\(147\) 0 0
\(148\) −41.4693 −3.40876
\(149\) 18.2025 + 5.61472i 1.49121 + 0.459976i 0.929956 0.367671i \(-0.119845\pi\)
0.561249 + 0.827647i \(0.310321\pi\)
\(150\) 0 0
\(151\) 5.43875 + 3.70808i 0.442600 + 0.301759i 0.764038 0.645171i \(-0.223214\pi\)
−0.321438 + 0.946930i \(0.604166\pi\)
\(152\) 1.27605 0.192334i 0.103501 0.0156003i
\(153\) 0 0
\(154\) −26.6455 6.03190i −2.14716 0.486064i
\(155\) −3.12712 3.92128i −0.251176 0.314965i
\(156\) 0 0
\(157\) −17.9382 2.70374i −1.43162 0.215782i −0.612985 0.790094i \(-0.710032\pi\)
−0.818636 + 0.574312i \(0.805270\pi\)
\(158\) −0.828424 + 0.768665i −0.0659059 + 0.0611517i
\(159\) 0 0
\(160\) 0.847660 + 3.71384i 0.0670134 + 0.293605i
\(161\) −12.3135 + 13.3182i −0.970441 + 1.04962i
\(162\) 0 0
\(163\) −3.41833 8.70977i −0.267744 0.682202i −0.999999 0.00117098i \(-0.999627\pi\)
0.732255 0.681031i \(-0.238468\pi\)
\(164\) 2.71468 + 36.2249i 0.211981 + 2.82869i
\(165\) 0 0
\(166\) −2.27339 + 3.93762i −0.176449 + 0.305619i
\(167\) 4.77897 + 2.30143i 0.369808 + 0.178090i 0.609552 0.792746i \(-0.291349\pi\)
−0.239744 + 0.970836i \(0.577064\pi\)
\(168\) 0 0
\(169\) 11.7123 5.64036i 0.900948 0.433874i
\(170\) −0.350812 + 4.68126i −0.0269060 + 0.359036i
\(171\) 0 0
\(172\) 14.0065 4.32044i 1.06799 0.329430i
\(173\) 1.34974 18.0110i 0.102619 1.36935i −0.673697 0.739008i \(-0.735295\pi\)
0.776315 0.630345i \(-0.217086\pi\)
\(174\) 0 0
\(175\) 9.88798 + 3.86049i 0.747461 + 0.291826i
\(176\) −5.73843 2.76348i −0.432551 0.208305i
\(177\) 0 0
\(178\) 10.1091 + 17.5095i 0.757708 + 1.31239i
\(179\) −0.485682 6.48097i −0.0363016 0.484411i −0.985494 0.169713i \(-0.945716\pi\)
0.949192 0.314698i \(-0.101903\pi\)
\(180\) 0 0
\(181\) −0.428051 + 1.87541i −0.0318168 + 0.139398i −0.988342 0.152252i \(-0.951347\pi\)
0.956525 + 0.291651i \(0.0942045\pi\)
\(182\) 0.0729187 0.0788682i 0.00540509 0.00584610i
\(183\) 0 0
\(184\) −20.5325 + 13.9988i −1.51368 + 1.03201i
\(185\) −8.53536 + 7.91965i −0.627532 + 0.582264i
\(186\) 0 0
\(187\) 6.45296 + 5.98747i 0.471887 + 0.437848i
\(188\) −22.0070 27.5959i −1.60503 2.01264i
\(189\) 0 0
\(190\) 0.519292 0.651171i 0.0376734 0.0472409i
\(191\) −4.61872 + 0.696160i −0.334199 + 0.0503724i −0.313998 0.949424i \(-0.601669\pi\)
−0.0202006 + 0.999796i \(0.506430\pi\)
\(192\) 0 0
\(193\) −0.0593246 + 0.151157i −0.00427028 + 0.0108805i −0.932993 0.359895i \(-0.882813\pi\)
0.928723 + 0.370775i \(0.120908\pi\)
\(194\) −27.9445 8.61974i −2.00630 0.618861i
\(195\) 0 0
\(196\) −8.97126 + 23.0993i −0.640804 + 1.64995i
\(197\) −5.26305 −0.374977 −0.187488 0.982267i \(-0.560035\pi\)
−0.187488 + 0.982267i \(0.560035\pi\)
\(198\) 0 0
\(199\) 5.45072 13.8882i 0.386391 0.984509i −0.596875 0.802334i \(-0.703591\pi\)
0.983266 0.182175i \(-0.0583137\pi\)
\(200\) 12.0160 + 8.19239i 0.849661 + 0.579289i
\(201\) 0 0
\(202\) 1.82966 2.29432i 0.128734 0.161428i
\(203\) 3.70077 + 7.64994i 0.259743 + 0.536921i
\(204\) 0 0
\(205\) 7.47685 + 6.93750i 0.522206 + 0.484536i
\(206\) −7.04809 1.06233i −0.491064 0.0740159i
\(207\) 0 0
\(208\) 0.0206902 0.0141063i 0.00143461 0.000978099i
\(209\) −0.347535 1.52265i −0.0240395 0.105324i
\(210\) 0 0
\(211\) −0.734828 + 3.21949i −0.0505876 + 0.221639i −0.993903 0.110259i \(-0.964832\pi\)
0.943315 + 0.331898i \(0.107689\pi\)
\(212\) −7.16428 18.2543i −0.492045 1.25371i
\(213\) 0 0
\(214\) −4.39217 7.60747i −0.300243 0.520036i
\(215\) 2.05777 3.56416i 0.140339 0.243074i
\(216\) 0 0
\(217\) −1.96633 + 13.2048i −0.133483 + 0.896402i
\(218\) −5.30267 + 2.55363i −0.359142 + 0.172954i
\(219\) 0 0
\(220\) −14.7507 + 4.54998i −0.994491 + 0.306760i
\(221\) −0.0330723 + 0.0102014i −0.00222468 + 0.000686224i
\(222\) 0 0
\(223\) −12.4405 + 5.99104i −0.833079 + 0.401190i −0.801269 0.598304i \(-0.795842\pi\)
−0.0318102 + 0.999494i \(0.510127\pi\)
\(224\) 5.69709 8.38807i 0.380653 0.560451i
\(225\) 0 0
\(226\) −7.97286 + 13.8094i −0.530347 + 0.918588i
\(227\) 4.95599 + 8.58403i 0.328941 + 0.569742i 0.982302 0.187304i \(-0.0599750\pi\)
−0.653361 + 0.757046i \(0.726642\pi\)
\(228\) 0 0
\(229\) 7.46424 + 19.0186i 0.493251 + 1.25678i 0.933394 + 0.358854i \(0.116833\pi\)
−0.440143 + 0.897928i \(0.645072\pi\)
\(230\) −3.56897 + 15.6367i −0.235331 + 1.03105i
\(231\) 0 0
\(232\) 2.59079 + 11.3510i 0.170094 + 0.745229i
\(233\) 11.8038 8.04770i 0.773294 0.527223i −0.111187 0.993799i \(-0.535465\pi\)
0.884481 + 0.466577i \(0.154513\pi\)
\(234\) 0 0
\(235\) −9.79972 1.47707i −0.639263 0.0963534i
\(236\) −28.7053 26.6346i −1.86856 1.73377i
\(237\) 0 0
\(238\) 9.75564 7.80825i 0.632364 0.506134i
\(239\) −1.15092 + 1.44321i −0.0744469 + 0.0933535i −0.817660 0.575701i \(-0.804729\pi\)
0.743213 + 0.669054i \(0.233301\pi\)
\(240\) 0 0
\(241\) −3.11018 2.12049i −0.200345 0.136593i 0.458992 0.888440i \(-0.348211\pi\)
−0.659337 + 0.751848i \(0.729163\pi\)
\(242\) −7.09092 + 18.0674i −0.455822 + 1.16141i
\(243\) 0 0
\(244\) −48.4313 −3.10050
\(245\) 2.56493 + 6.46768i 0.163867 + 0.413205i
\(246\) 0 0
\(247\) 0.00586769 + 0.00180994i 0.000373352 + 0.000115164i
\(248\) −6.68242 + 17.0265i −0.424334 + 1.08119i
\(249\) 0 0
\(250\) 20.8483 3.14238i 1.31856 0.198741i
\(251\) 7.35006 9.21668i 0.463932 0.581752i −0.493742 0.869608i \(-0.664371\pi\)
0.957673 + 0.287857i \(0.0929427\pi\)
\(252\) 0 0
\(253\) 18.7520 + 23.5143i 1.17893 + 1.47833i
\(254\) −14.0593 13.0451i −0.882159 0.818524i
\(255\) 0 0
\(256\) 17.7188 16.4406i 1.10742 1.02754i
\(257\) −16.4532 + 11.2176i −1.02632 + 0.699735i −0.954661 0.297694i \(-0.903782\pi\)
−0.0716610 + 0.997429i \(0.522830\pi\)
\(258\) 0 0
\(259\) 30.9107 + 2.26123i 1.92070 + 0.140506i
\(260\) 0.0135050 0.0591693i 0.000837545 0.00366953i
\(261\) 0 0
\(262\) −2.61956 34.9557i −0.161837 2.15957i
\(263\) −12.5442 21.7272i −0.773509 1.33976i −0.935629 0.352986i \(-0.885166\pi\)
0.162120 0.986771i \(-0.448167\pi\)
\(264\) 0 0
\(265\) −4.96071 2.38895i −0.304734 0.146752i
\(266\) −2.21049 + 0.169602i −0.135534 + 0.0103990i
\(267\) 0 0
\(268\) 1.84182 24.5774i 0.112507 1.50131i
\(269\) 15.7600 4.86132i 0.960905 0.296400i 0.225663 0.974205i \(-0.427545\pi\)
0.735241 + 0.677805i \(0.237069\pi\)
\(270\) 0 0
\(271\) 0.457879 6.10998i 0.0278142 0.371155i −0.965877 0.259002i \(-0.916606\pi\)
0.993691 0.112153i \(-0.0357746\pi\)
\(272\) 2.62467 1.26398i 0.159144 0.0766399i
\(273\) 0 0
\(274\) −37.4622 18.0409i −2.26318 1.08989i
\(275\) 8.80049 15.2429i 0.530690 0.919181i
\(276\) 0 0
\(277\) −2.08589 27.8342i −0.125329 1.67240i −0.605977 0.795482i \(-0.707218\pi\)
0.480648 0.876913i \(-0.340401\pi\)
\(278\) 17.1266 + 43.6378i 1.02718 + 2.61722i
\(279\) 0 0
\(280\) 1.43749 + 9.42350i 0.0859063 + 0.563162i
\(281\) 1.28818 + 5.64389i 0.0768464 + 0.336686i 0.998707 0.0508354i \(-0.0161884\pi\)
−0.921861 + 0.387522i \(0.873331\pi\)
\(282\) 0 0
\(283\) −18.6556 + 17.3098i −1.10896 + 1.02896i −0.109570 + 0.993979i \(0.534947\pi\)
−0.999388 + 0.0349835i \(0.988862\pi\)
\(284\) −14.8567 2.23928i −0.881582 0.132877i
\(285\) 0 0
\(286\) −0.111046 0.139248i −0.00656630 0.00823389i
\(287\) −0.0482251 27.1496i −0.00284664 1.60259i
\(288\) 0 0
\(289\) 12.8288 1.93363i 0.754635 0.113743i
\(290\) 6.20873 + 4.23304i 0.364589 + 0.248573i
\(291\) 0 0
\(292\) 39.9341 + 12.3180i 2.33697 + 0.720859i
\(293\) −5.59675 −0.326966 −0.163483 0.986546i \(-0.552273\pi\)
−0.163483 + 0.986546i \(0.552273\pi\)
\(294\) 0 0
\(295\) −10.9948 −0.640143
\(296\) 40.5762 + 12.5161i 2.35844 + 0.727484i
\(297\) 0 0
\(298\) −37.0449 25.2568i −2.14596 1.46309i
\(299\) −0.116927 + 0.0176240i −0.00676208 + 0.00101922i
\(300\) 0 0
\(301\) −10.6759 + 2.45665i −0.615346 + 0.141599i
\(302\) −9.66006 12.1133i −0.555874 0.697044i
\(303\) 0 0
\(304\) −0.511083 0.0770333i −0.0293126 0.00441816i
\(305\) −9.96830 + 9.24923i −0.570783 + 0.529609i
\(306\) 0 0
\(307\) 7.00991 + 30.7124i 0.400077 + 1.75285i 0.627078 + 0.778957i \(0.284251\pi\)
−0.227001 + 0.973895i \(0.572892\pi\)
\(308\) 35.6208 + 20.4814i 2.02968 + 1.16704i
\(309\) 0 0
\(310\) 4.31290 + 10.9891i 0.244956 + 0.624139i
\(311\) 0.216425 + 2.88799i 0.0122724 + 0.163763i 0.999973 + 0.00740384i \(0.00235674\pi\)
−0.987700 + 0.156359i \(0.950024\pi\)
\(312\) 0 0
\(313\) −11.1490 + 19.3106i −0.630178 + 1.09150i 0.357337 + 0.933975i \(0.383685\pi\)
−0.987515 + 0.157524i \(0.949649\pi\)
\(314\) 38.4700 + 18.5262i 2.17099 + 1.04549i
\(315\) 0 0
\(316\) 1.53137 0.737468i 0.0861462 0.0414858i
\(317\) 0.267380 3.56794i 0.0150176 0.200396i −0.984648 0.174550i \(-0.944153\pi\)
0.999666 0.0258459i \(-0.00822792\pi\)
\(318\) 0 0
\(319\) 13.4650 4.15340i 0.753896 0.232546i
\(320\) 0.885722 11.8191i 0.0495134 0.660710i
\(321\) 0 0
\(322\) 36.9349 21.4119i 2.05830 1.19324i
\(323\) 0.643606 + 0.309944i 0.0358112 + 0.0172458i
\(324\) 0 0
\(325\) 0.0346005 + 0.0599299i 0.00191929 + 0.00332431i
\(326\) 1.64577 + 21.9612i 0.0911505 + 1.21632i
\(327\) 0 0
\(328\) 8.27705 36.2641i 0.457024 2.00235i
\(329\) 14.8990 + 21.7696i 0.821407 + 1.20020i
\(330\) 0 0
\(331\) 4.78132 3.25985i 0.262805 0.179178i −0.424748 0.905312i \(-0.639637\pi\)
0.687553 + 0.726134i \(0.258685\pi\)
\(332\) 5.01292 4.65131i 0.275119 0.255274i
\(333\) 0 0
\(334\) −9.15199 8.49181i −0.500775 0.464651i
\(335\) −4.31462 5.41036i −0.235733 0.295599i
\(336\) 0 0
\(337\) 13.0314 16.3408i 0.709863 0.890141i −0.287854 0.957674i \(-0.592942\pi\)
0.997717 + 0.0675339i \(0.0215131\pi\)
\(338\) −30.2560 + 4.56036i −1.64571 + 0.248051i
\(339\) 0 0
\(340\) 2.57946 6.57236i 0.139891 0.356436i
\(341\) 21.1534 + 6.52497i 1.14552 + 0.353347i
\(342\) 0 0
\(343\) 7.94661 16.7288i 0.429077 0.903268i
\(344\) −15.0089 −0.809223
\(345\) 0 0
\(346\) −15.5314 + 39.5733i −0.834971 + 2.12747i
\(347\) −8.95112 6.10277i −0.480521 0.327614i 0.298717 0.954342i \(-0.403441\pi\)
−0.779238 + 0.626728i \(0.784394\pi\)
\(348\) 0 0
\(349\) −8.36176 + 10.4853i −0.447595 + 0.561266i −0.953527 0.301307i \(-0.902577\pi\)
0.505932 + 0.862573i \(0.331149\pi\)
\(350\) −19.5613 15.5429i −1.04560 0.830802i
\(351\) 0 0
\(352\) −12.3250 11.4360i −0.656927 0.609539i
\(353\) −20.6354 3.11028i −1.09831 0.165544i −0.425210 0.905095i \(-0.639800\pi\)
−0.673100 + 0.739551i \(0.735038\pi\)
\(354\) 0 0
\(355\) −3.48550 + 2.37638i −0.184991 + 0.126125i
\(356\) −6.76651 29.6460i −0.358624 1.57124i
\(357\) 0 0
\(358\) −3.40395 + 14.9137i −0.179905 + 0.788214i
\(359\) 0.908275 + 2.31425i 0.0479369 + 0.122141i 0.952837 0.303483i \(-0.0981497\pi\)
−0.904900 + 0.425625i \(0.860054\pi\)
\(360\) 0 0
\(361\) 9.43663 + 16.3447i 0.496665 + 0.860249i
\(362\) 2.26387 3.92114i 0.118986 0.206090i
\(363\) 0 0
\(364\) −0.139762 + 0.0810229i −0.00732552 + 0.00424676i
\(365\) 10.5718 5.09113i 0.553355 0.266482i
\(366\) 0 0
\(367\) 6.39029 1.97114i 0.333570 0.102893i −0.123446 0.992351i \(-0.539394\pi\)
0.457016 + 0.889458i \(0.348918\pi\)
\(368\) 9.51093 2.93373i 0.495792 0.152931i
\(369\) 0 0
\(370\) 24.6918 11.8910i 1.28367 0.618182i
\(371\) 4.34479 + 13.9972i 0.225570 + 0.726696i
\(372\) 0 0
\(373\) 18.6519 32.3061i 0.965761 1.67275i 0.258204 0.966090i \(-0.416869\pi\)
0.707557 0.706656i \(-0.249797\pi\)
\(374\) −10.3598 17.9437i −0.535692 0.927846i
\(375\) 0 0
\(376\) 13.2042 + 33.6437i 0.680953 + 1.73504i
\(377\) −0.0123279 + 0.0540121i −0.000634920 + 0.00278177i
\(378\) 0 0
\(379\) −1.75528 7.69038i −0.0901626 0.395028i 0.909629 0.415421i \(-0.136366\pi\)
−0.999792 + 0.0203923i \(0.993508\pi\)
\(380\) −1.03500 + 0.705650i −0.0530943 + 0.0361991i
\(381\) 0 0
\(382\) 10.8712 + 1.63857i 0.556220 + 0.0838367i
\(383\) 12.7244 + 11.8065i 0.650185 + 0.603284i 0.934721 0.355382i \(-0.115649\pi\)
−0.284536 + 0.958665i \(0.591840\pi\)
\(384\) 0 0
\(385\) 11.2431 2.58717i 0.572999 0.131855i
\(386\) 0.238299 0.298818i 0.0121291 0.0152094i
\(387\) 0 0
\(388\) 36.3404 + 24.7765i 1.84491 + 1.25784i
\(389\) 3.27199 8.33689i 0.165896 0.422697i −0.823616 0.567148i \(-0.808047\pi\)
0.989512 + 0.144452i \(0.0461418\pi\)
\(390\) 0 0
\(391\) −13.7563 −0.695684
\(392\) 15.7498 19.8942i 0.795485 1.00481i
\(393\) 0 0
\(394\) 11.8374 + 3.65136i 0.596361 + 0.183953i
\(395\) 0.174353 0.444243i 0.00877264 0.0223523i
\(396\) 0 0
\(397\) −20.0460 + 3.02144i −1.00608 + 0.151642i −0.631354 0.775495i \(-0.717501\pi\)
−0.374724 + 0.927136i \(0.622262\pi\)
\(398\) −21.8948 + 27.4552i −1.09749 + 1.37621i
\(399\) 0 0
\(400\) −3.63168 4.55398i −0.181584 0.227699i
\(401\) 11.7873 + 10.9371i 0.588632 + 0.546170i 0.917260 0.398289i \(-0.130396\pi\)
−0.328628 + 0.944459i \(0.606586\pi\)
\(402\) 0 0
\(403\) −0.0638010 + 0.0591987i −0.00317816 + 0.00294890i
\(404\) −3.64668 + 2.48626i −0.181429 + 0.123696i
\(405\) 0 0
\(406\) −3.01630 19.7734i −0.149696 0.981340i
\(407\) 11.4356 50.1028i 0.566843 2.48350i
\(408\) 0 0
\(409\) −0.573863 7.65766i −0.0283757 0.378647i −0.993255 0.115953i \(-0.963008\pi\)
0.964879 0.262694i \(-0.0846111\pi\)
\(410\) −12.0036 20.7908i −0.592814 1.02678i
\(411\) 0 0
\(412\) 9.65853 + 4.65130i 0.475842 + 0.229153i
\(413\) 19.9442 + 21.4183i 0.981392 + 1.05393i
\(414\) 0 0
\(415\) 0.143487 1.91470i 0.00704348 0.0939887i
\(416\) 0.0631674 0.0194846i 0.00309704 0.000955309i
\(417\) 0 0
\(418\) −0.274713 + 3.66580i −0.0134367 + 0.179300i
\(419\) 14.6563 7.05810i 0.716007 0.344811i −0.0401568 0.999193i \(-0.512786\pi\)
0.756164 + 0.654383i \(0.227071\pi\)
\(420\) 0 0
\(421\) −21.8730 10.5335i −1.06602 0.513370i −0.183200 0.983076i \(-0.558646\pi\)
−0.882823 + 0.469706i \(0.844360\pi\)
\(422\) 3.88635 6.73135i 0.189184 0.327677i
\(423\) 0 0
\(424\) 1.50055 + 20.0235i 0.0728732 + 0.972425i
\(425\) 2.94115 + 7.49393i 0.142667 + 0.363509i
\(426\) 0 0
\(427\) 36.1000 + 2.64085i 1.74700 + 0.127800i
\(428\) 2.93990 + 12.8805i 0.142105 + 0.622604i
\(429\) 0 0
\(430\) −7.10098 + 6.58874i −0.342439 + 0.317737i
\(431\) 0.458634 + 0.0691279i 0.0220916 + 0.00332977i 0.160079 0.987104i \(-0.448825\pi\)
−0.137987 + 0.990434i \(0.544063\pi\)
\(432\) 0 0
\(433\) 3.73958 + 4.68928i 0.179713 + 0.225352i 0.863526 0.504305i \(-0.168251\pi\)
−0.683813 + 0.729657i \(0.739680\pi\)
\(434\) 13.5837 28.3356i 0.652041 1.36015i
\(435\) 0 0
\(436\) 8.75304 1.31931i 0.419195 0.0631834i
\(437\) 2.01655 + 1.37486i 0.0964647 + 0.0657685i
\(438\) 0 0
\(439\) −26.2140 8.08594i −1.25112 0.385921i −0.402746 0.915312i \(-0.631944\pi\)
−0.848378 + 0.529391i \(0.822421\pi\)
\(440\) 15.8063 0.753534
\(441\) 0 0
\(442\) 0.0814623 0.00387477
\(443\) −21.2713 6.56133i −1.01063 0.311738i −0.255144 0.966903i \(-0.582123\pi\)
−0.755486 + 0.655165i \(0.772599\pi\)
\(444\) 0 0
\(445\) −7.05439 4.80960i −0.334410 0.227997i
\(446\) 32.1372 4.84390i 1.52174 0.229365i
\(447\) 0 0
\(448\) −24.6308 + 19.7141i −1.16370 + 0.931404i
\(449\) 7.67300 + 9.62163i 0.362111 + 0.454073i 0.929197 0.369586i \(-0.120500\pi\)
−0.567085 + 0.823659i \(0.691929\pi\)
\(450\) 0 0
\(451\) −44.5152 6.70959i −2.09614 0.315942i
\(452\) 17.5805 16.3123i 0.826917 0.767267i
\(453\) 0 0
\(454\) −5.19145 22.7452i −0.243647 1.06749i
\(455\) −0.0132928 + 0.0433676i −0.000623177 + 0.00203311i
\(456\) 0 0
\(457\) −1.02222 2.60456i −0.0478172 0.121836i 0.904970 0.425476i \(-0.139893\pi\)
−0.952787 + 0.303640i \(0.901798\pi\)
\(458\) −3.59368 47.9543i −0.167921 2.24076i
\(459\) 0 0
\(460\) 12.0613 20.8908i 0.562361 0.974038i
\(461\) −7.93737 3.82243i −0.369680 0.178029i 0.239815 0.970819i \(-0.422913\pi\)
−0.609495 + 0.792790i \(0.708628\pi\)
\(462\) 0 0
\(463\) −30.1465 + 14.5178i −1.40103 + 0.674700i −0.973370 0.229241i \(-0.926376\pi\)
−0.427658 + 0.903940i \(0.640661\pi\)
\(464\) 0.348481 4.65016i 0.0161778 0.215878i
\(465\) 0 0
\(466\) −32.1320 + 9.91140i −1.48848 + 0.459137i
\(467\) −3.05427 + 40.7564i −0.141335 + 1.88598i 0.253651 + 0.967296i \(0.418369\pi\)
−0.394986 + 0.918687i \(0.629251\pi\)
\(468\) 0 0
\(469\) −2.71302 + 18.2193i −0.125276 + 0.841287i
\(470\) 21.0164 + 10.1210i 0.969413 + 0.466845i
\(471\) 0 0
\(472\) 20.0483 + 34.7248i 0.922800 + 1.59834i
\(473\) 1.35745 + 18.1139i 0.0624157 + 0.832880i
\(474\) 0 0
\(475\) 0.317829 1.39250i 0.0145830 0.0638922i
\(476\) −17.4823 + 6.89715i −0.801299 + 0.316130i
\(477\) 0 0
\(478\) 3.58987 2.44753i 0.164197 0.111947i
\(479\) −18.9653 + 17.5973i −0.866548 + 0.804039i −0.981923 0.189283i \(-0.939384\pi\)
0.115374 + 0.993322i \(0.463193\pi\)
\(480\) 0 0
\(481\) 0.148115 + 0.137431i 0.00675348 + 0.00626631i
\(482\) 5.52416 + 6.92708i 0.251619 + 0.315520i
\(483\) 0 0
\(484\) 18.2006 22.8228i 0.827299 1.03740i
\(485\) 12.2114 1.84058i 0.554493 0.0835763i
\(486\) 0 0
\(487\) −7.49639 + 19.1005i −0.339694 + 0.865526i 0.654314 + 0.756223i \(0.272957\pi\)
−0.994008 + 0.109304i \(0.965138\pi\)
\(488\) 47.3883 + 14.6173i 2.14517 + 0.661696i
\(489\) 0 0
\(490\) −1.28183 16.3263i −0.0579072 0.737549i
\(491\) −25.4140 −1.14692 −0.573459 0.819234i \(-0.694399\pi\)
−0.573459 + 0.819234i \(0.694399\pi\)
\(492\) 0 0
\(493\) −2.35463 + 5.99951i −0.106047 + 0.270204i
\(494\) −0.0119417 0.00814171i −0.000537282 0.000366313i
\(495\) 0 0
\(496\) 4.56760 5.72759i 0.205091 0.257176i
\(497\) 10.9519 + 2.47923i 0.491258 + 0.111209i
\(498\) 0 0
\(499\) 5.29357 + 4.91172i 0.236973 + 0.219879i 0.789715 0.613473i \(-0.210228\pi\)
−0.552743 + 0.833352i \(0.686419\pi\)
\(500\) −31.3561 4.72618i −1.40229 0.211361i
\(501\) 0 0
\(502\) −22.9257 + 15.6305i −1.02323 + 0.697624i
\(503\) −2.69104 11.7902i −0.119988 0.525700i −0.998820 0.0485691i \(-0.984534\pi\)
0.878832 0.477131i \(-0.158323\pi\)
\(504\) 0 0
\(505\) −0.275755 + 1.20816i −0.0122709 + 0.0537624i
\(506\) −25.8626 65.8970i −1.14974 2.92948i
\(507\) 0 0
\(508\) 14.4228 + 24.9811i 0.639910 + 1.10836i
\(509\) −18.3510 + 31.7848i −0.813392 + 1.40884i 0.0970849 + 0.995276i \(0.469048\pi\)
−0.910477 + 0.413560i \(0.864285\pi\)
\(510\) 0 0
\(511\) −29.0947 11.3592i −1.28707 0.502502i
\(512\) −14.4960 + 6.98090i −0.640638 + 0.308515i
\(513\) 0 0
\(514\) 44.7884 13.8154i 1.97553 0.609370i
\(515\) 2.87624 0.887203i 0.126742 0.0390948i
\(516\) 0 0
\(517\) 39.4098 18.9787i 1.73324 0.834684i
\(518\) −67.9542 26.5309i −2.98574 1.16570i
\(519\) 0 0
\(520\) −0.0310724 + 0.0538190i −0.00136262 + 0.00236012i
\(521\) −7.40909 12.8329i −0.324598 0.562221i 0.656833 0.754036i \(-0.271896\pi\)
−0.981431 + 0.191816i \(0.938562\pi\)
\(522\) 0 0
\(523\) 4.04898 + 10.3166i 0.177050 + 0.451115i 0.991658 0.128896i \(-0.0411434\pi\)
−0.814608 + 0.580011i \(0.803048\pi\)
\(524\) −11.7316 + 51.3994i −0.512496 + 2.24539i
\(525\) 0 0
\(526\) 13.1402 + 57.5708i 0.572938 + 2.51021i
\(527\) −8.36575 + 5.70367i −0.364418 + 0.248456i
\(528\) 0 0
\(529\) −23.7315 3.57695i −1.03180 0.155519i
\(530\) 9.50005 + 8.81475i 0.412656 + 0.382888i
\(531\) 0 0
\(532\) 3.25209 + 0.736192i 0.140996 + 0.0319180i
\(533\) 0.110355 0.138381i 0.00478000 0.00599393i
\(534\) 0 0
\(535\) 3.06498 + 2.08967i 0.132511 + 0.0903441i
\(536\) −9.22002 + 23.4922i −0.398244 + 1.01471i
\(537\) 0 0
\(538\) −38.8194 −1.67363
\(539\) −25.4345 17.2089i −1.09554 0.741239i
\(540\) 0 0
\(541\) 3.05469 + 0.942248i 0.131331 + 0.0405104i 0.359724 0.933059i \(-0.382871\pi\)
−0.228393 + 0.973569i \(0.573347\pi\)
\(542\) −5.26879 + 13.4246i −0.226314 + 0.576638i
\(543\) 0 0
\(544\) 7.60427 1.14616i 0.326030 0.0491412i
\(545\) 1.54962 1.94317i 0.0663786 0.0832362i
\(546\) 0 0
\(547\) −10.2680 12.8756i −0.439027 0.550522i 0.512260 0.858831i \(-0.328808\pi\)
−0.951286 + 0.308309i \(0.900237\pi\)
\(548\) 45.8427 + 42.5358i 1.95830 + 1.81704i
\(549\) 0 0
\(550\) −30.3688 + 28.1782i −1.29493 + 1.20152i
\(551\) 0.944787 0.644145i 0.0402493 0.0274415i
\(552\) 0 0
\(553\) −1.18167 + 0.466197i −0.0502499 + 0.0198247i
\(554\) −14.6192 + 64.0507i −0.621109 + 2.72125i
\(555\) 0 0
\(556\) −5.26890 70.3086i −0.223451 2.98175i
\(557\) −8.30543 14.3854i −0.351912 0.609530i 0.634672 0.772782i \(-0.281135\pi\)
−0.986585 + 0.163251i \(0.947802\pi\)
\(558\) 0 0
\(559\) −0.0643450 0.0309869i −0.00272150 0.00131061i
\(560\) 0.562329 3.77631i 0.0237627 0.159578i
\(561\) 0 0
\(562\) 1.01826 13.5877i 0.0429527 0.573163i
\(563\) 4.43221 1.36716i 0.186795 0.0576187i −0.199946 0.979807i \(-0.564077\pi\)
0.386742 + 0.922188i \(0.373601\pi\)
\(564\) 0 0
\(565\) 0.503213 6.71491i 0.0211703 0.282499i
\(566\) 53.9684 25.9898i 2.26846 1.09243i
\(567\) 0 0
\(568\) 13.8609 + 6.67504i 0.581589 + 0.280078i
\(569\) 0.117839 0.204103i 0.00494007 0.00855645i −0.863545 0.504272i \(-0.831761\pi\)
0.868485 + 0.495716i \(0.165094\pi\)
\(570\) 0 0
\(571\) −0.387445 5.17010i −0.0162141 0.216362i −0.999426 0.0338919i \(-0.989210\pi\)
0.983211 0.182470i \(-0.0584092\pi\)
\(572\) 0.0978645 + 0.249355i 0.00409192 + 0.0104260i
\(573\) 0 0
\(574\) −18.7272 + 61.0973i −0.781659 + 2.55015i
\(575\) 6.12045 + 26.8155i 0.255240 + 1.11828i
\(576\) 0 0
\(577\) 2.16795 2.01156i 0.0902529 0.0837425i −0.633756 0.773533i \(-0.718488\pi\)
0.724009 + 0.689790i \(0.242297\pi\)
\(578\) −30.1955 4.55124i −1.25597 0.189307i
\(579\) 0 0
\(580\) −7.04658 8.83613i −0.292593 0.366900i
\(581\) −3.99018 + 3.19368i −0.165541 + 0.132496i
\(582\) 0 0
\(583\) 24.0303 3.62198i 0.995233 0.150007i
\(584\) −35.3563 24.1055i −1.46305 0.997494i
\(585\) 0 0
\(586\) 12.5880 + 3.88288i 0.520005 + 0.160400i
\(587\) −18.3860 −0.758871 −0.379435 0.925218i \(-0.623882\pi\)
−0.379435 + 0.925218i \(0.623882\pi\)
\(588\) 0 0
\(589\) 1.79640 0.0740193
\(590\) 24.7291 + 7.62792i 1.01808 + 0.314036i
\(591\) 0 0
\(592\) −14.0519 9.58045i −0.577531 0.393754i
\(593\) −12.6432 + 1.90566i −0.519194 + 0.0782559i −0.403411 0.915019i \(-0.632176\pi\)
−0.115782 + 0.993275i \(0.536938\pi\)
\(594\) 0 0
\(595\) −2.28107 + 4.75830i −0.0935148 + 0.195071i
\(596\) 42.0441 + 52.7216i 1.72219 + 2.15956i
\(597\) 0 0
\(598\) 0.275215 + 0.0414820i 0.0112544 + 0.00169633i
\(599\) 23.2147 21.5401i 0.948526 0.880103i −0.0443793 0.999015i \(-0.514131\pi\)
0.992905 + 0.118912i \(0.0379405\pi\)
\(600\) 0 0
\(601\) −5.75775 25.2263i −0.234864 1.02900i −0.945545 0.325491i \(-0.894471\pi\)
0.710682 0.703514i \(-0.248387\pi\)
\(602\) 25.7161 + 1.88122i 1.04811 + 0.0766730i
\(603\) 0 0
\(604\) 8.51336 + 21.6917i 0.346404 + 0.882622i
\(605\) −0.612508 8.17335i −0.0249020 0.332294i
\(606\) 0 0
\(607\) −2.18386 + 3.78256i −0.0886402 + 0.153529i −0.906937 0.421267i \(-0.861585\pi\)
0.818296 + 0.574796i \(0.194919\pi\)
\(608\) −1.22927 0.591987i −0.0498537 0.0240083i
\(609\) 0 0
\(610\) 28.8372 13.8872i 1.16758 0.562278i
\(611\) −0.0128518 + 0.171496i −0.000519930 + 0.00693798i
\(612\) 0 0
\(613\) −6.50100 + 2.00529i −0.262573 + 0.0809930i −0.423246 0.906015i \(-0.639110\pi\)
0.160674 + 0.987008i \(0.448633\pi\)
\(614\) 5.54107 73.9405i 0.223620 2.98400i
\(615\) 0 0
\(616\) −28.6720 30.7912i −1.15523 1.24061i
\(617\) −34.1847 16.4625i −1.37623 0.662755i −0.408034 0.912967i \(-0.633786\pi\)
−0.968191 + 0.250211i \(0.919500\pi\)
\(618\) 0 0
\(619\) 5.00528 + 8.66939i 0.201179 + 0.348452i 0.948909 0.315551i \(-0.102189\pi\)
−0.747730 + 0.664003i \(0.768856\pi\)
\(620\) −1.32684 17.7055i −0.0532872 0.711068i
\(621\) 0 0
\(622\) 1.51684 6.64571i 0.0608198 0.266469i
\(623\) 3.42714 + 22.4667i 0.137305 + 0.900109i
\(624\) 0 0
\(625\) 9.21812 6.28481i 0.368725 0.251392i
\(626\) 38.4730 35.6978i 1.53769 1.42677i
\(627\) 0 0
\(628\) −47.0760 43.6801i −1.87854 1.74303i
\(629\) 14.6555 + 18.3774i 0.584354 + 0.732756i
\(630\) 0 0
\(631\) 27.9507 35.0491i 1.11270 1.39528i 0.203424 0.979091i \(-0.434793\pi\)
0.909277 0.416192i \(-0.136636\pi\)
\(632\) −1.72097 + 0.259394i −0.0684565 + 0.0103182i
\(633\) 0 0
\(634\) −3.07673 + 7.83937i −0.122192 + 0.311341i
\(635\) 7.73935 + 2.38727i 0.307127 + 0.0947361i
\(636\) 0 0
\(637\) 0.108595 0.0527725i 0.00430268 0.00209092i
\(638\) −33.1665 −1.31307
\(639\) 0 0
\(640\) −7.40852 + 18.8766i −0.292847 + 0.746163i
\(641\) 6.48813 + 4.42353i 0.256266 + 0.174719i 0.684638 0.728883i \(-0.259960\pi\)
−0.428372 + 0.903602i \(0.640913\pi\)
\(642\) 0 0
\(643\) −10.7356 + 13.4620i −0.423371 + 0.530891i −0.947076 0.321009i \(-0.895978\pi\)
0.523705 + 0.851900i \(0.324549\pi\)
\(644\) −62.5749 + 14.3993i −2.46580 + 0.567412i
\(645\) 0 0
\(646\) −1.23254 1.14363i −0.0484937 0.0449955i
\(647\) 22.6750 + 3.41771i 0.891446 + 0.134364i 0.578765 0.815494i \(-0.303535\pi\)
0.312681 + 0.949858i \(0.398773\pi\)
\(648\) 0 0
\(649\) 40.0955 27.3367i 1.57389 1.07306i
\(650\) −0.0362443 0.158797i −0.00142162 0.00622852i
\(651\) 0 0
\(652\) 7.37047 32.2921i 0.288650 1.26466i
\(653\) 11.0092 + 28.0509i 0.430822 + 1.09772i 0.967262 + 0.253779i \(0.0816736\pi\)
−0.536440 + 0.843939i \(0.680231\pi\)
\(654\) 0 0
\(655\) 7.40143 + 12.8197i 0.289198 + 0.500905i
\(656\) −7.44899 + 12.9020i −0.290834 + 0.503740i
\(657\) 0 0
\(658\) −18.4070 59.2999i −0.717580 2.31175i
\(659\) 31.5242 15.1812i 1.22801 0.591377i 0.296477 0.955040i \(-0.404188\pi\)
0.931531 + 0.363663i \(0.118474\pi\)
\(660\) 0 0
\(661\) 11.2852 3.48101i 0.438942 0.135396i −0.0674047 0.997726i \(-0.521472\pi\)
0.506347 + 0.862330i \(0.330996\pi\)
\(662\) −13.0156 + 4.01477i −0.505864 + 0.156038i
\(663\) 0 0
\(664\) −6.30879 + 3.03816i −0.244829 + 0.117903i
\(665\) 0.809951 0.469546i 0.0314086 0.0182082i
\(666\) 0 0
\(667\) −11.0100 + 19.0699i −0.426310 + 0.738391i
\(668\) 9.38865 + 16.2616i 0.363258 + 0.629181i
\(669\) 0 0
\(670\) 5.95070 + 15.1621i 0.229896 + 0.585764i
\(671\) 13.3555 58.5142i 0.515583 2.25892i
\(672\) 0 0
\(673\) 11.1693 + 48.9358i 0.430544 + 1.88634i 0.462089 + 0.886834i \(0.347100\pi\)
−0.0315450 + 0.999502i \(0.510043\pi\)
\(674\) −40.6464 + 27.7123i −1.56564 + 1.06744i
\(675\) 0 0
\(676\) 45.5055 + 6.85885i 1.75021 + 0.263802i
\(677\) −11.5899 10.7538i −0.445435 0.413303i 0.425303 0.905051i \(-0.360168\pi\)
−0.870738 + 0.491748i \(0.836358\pi\)
\(678\) 0 0
\(679\) −25.7367 20.4496i −0.987682 0.784784i
\(680\) −4.50755 + 5.65229i −0.172857 + 0.216756i
\(681\) 0 0
\(682\) −43.0506 29.3514i −1.64849 1.12392i
\(683\) 9.36098 23.8514i 0.358188 0.912648i −0.632260 0.774757i \(-0.717872\pi\)
0.990447 0.137891i \(-0.0440324\pi\)
\(684\) 0 0
\(685\) 17.5588 0.670889
\(686\) −29.4792 + 32.1125i −1.12552 + 1.22606i
\(687\) 0 0
\(688\) 5.74426 + 1.77187i 0.218998 + 0.0675519i
\(689\) −0.0349069 + 0.0889413i −0.00132985 + 0.00338839i
\(690\) 0 0
\(691\) −9.05624 + 1.36501i −0.344516 + 0.0519274i −0.319021 0.947748i \(-0.603354\pi\)
−0.0254945 + 0.999675i \(0.508116\pi\)
\(692\) 39.8651 49.9892i 1.51544 1.90030i
\(693\) 0 0
\(694\) 15.8986 + 19.9362i 0.603501 + 0.756767i
\(695\) −14.5117 13.4649i −0.550461 0.510754i
\(696\) 0 0
\(697\) 15.0940 14.0051i 0.571725 0.530483i
\(698\) 26.0814 17.7820i 0.987195 0.673058i
\(699\) 0 0
\(700\) 21.2231 + 31.0100i 0.802156 + 1.17207i
\(701\) −4.72038 + 20.6813i −0.178286 + 0.781123i 0.804135 + 0.594446i \(0.202629\pi\)
−0.982421 + 0.186677i \(0.940228\pi\)
\(702\) 0 0
\(703\) −0.311652 4.15871i −0.0117542 0.156849i
\(704\) 26.1562 + 45.3038i 0.985798 + 1.70745i
\(705\) 0 0
\(706\) 44.2544 + 21.3118i 1.66554 + 0.802080i
\(707\) 2.85376 1.65438i 0.107327 0.0622195i
\(708\) 0 0
\(709\) −1.05733 + 14.1090i −0.0397087 + 0.529876i 0.941511 + 0.336982i \(0.109406\pi\)
−0.981220 + 0.192893i \(0.938213\pi\)
\(710\) 9.48812 2.92670i 0.356083 0.109837i
\(711\) 0 0
\(712\) −2.32686 + 31.0498i −0.0872028 + 1.16364i
\(713\) −31.1676 + 15.0095i −1.16723 + 0.562110i
\(714\) 0 0
\(715\) 0.0677636 + 0.0326332i 0.00253422 + 0.00122041i
\(716\) 11.5036 19.9249i 0.429911 0.744627i
\(717\) 0 0
\(718\) −0.437291 5.83525i −0.0163196 0.217769i
\(719\) −18.1884 46.3434i −0.678315 1.72832i −0.685214 0.728341i \(-0.740291\pi\)
0.00689962 0.999976i \(-0.497804\pi\)
\(720\) 0 0
\(721\) −6.94571 3.99368i −0.258672 0.148732i
\(722\) −9.88495 43.3088i −0.367880 1.61179i
\(723\) 0 0
\(724\) −4.99192 + 4.63183i −0.185523 + 0.172141i
\(725\) 12.7426 + 1.92064i 0.473250 + 0.0713309i
\(726\) 0 0
\(727\) −3.31554 4.15755i −0.122966 0.154195i 0.716538 0.697548i \(-0.245726\pi\)
−0.839504 + 0.543353i \(0.817154\pi\)
\(728\) 0.161206 0.0370956i 0.00597469 0.00137485i
\(729\) 0 0
\(730\) −27.3098 + 4.11630i −1.01078 + 0.152351i
\(731\) −6.86463 4.68022i −0.253897 0.173104i
\(732\) 0 0
\(733\) −36.1916 11.1636i −1.33677 0.412338i −0.457729 0.889092i \(-0.651337\pi\)
−0.879037 + 0.476754i \(0.841813\pi\)
\(734\) −15.7403 −0.580986
\(735\) 0 0
\(736\) 26.2742 0.968479
\(737\) 29.1863 + 9.00278i 1.07509 + 0.331622i
\(738\) 0 0
\(739\) 34.5927 + 23.5849i 1.27251 + 0.867584i 0.995636 0.0933223i \(-0.0297487\pi\)
0.276875 + 0.960906i \(0.410701\pi\)
\(740\) −40.7584 + 6.14335i −1.49831 + 0.225834i
\(741\) 0 0
\(742\) −0.0612745 34.4962i −0.00224946 1.26639i
\(743\) 10.9103 + 13.6810i 0.400259 + 0.501909i 0.940590 0.339543i \(-0.110273\pi\)
−0.540331 + 0.841452i \(0.681701\pi\)
\(744\) 0 0
\(745\) 18.7222 + 2.82192i 0.685929 + 0.103387i
\(746\) −64.3643 + 59.7214i −2.35655 + 2.18655i
\(747\) 0 0
\(748\) 6.93432 + 30.3812i 0.253544 + 1.11085i
\(749\) −1.48901 9.76128i −0.0544074 0.356670i
\(750\) 0 0
\(751\) 8.47774 + 21.6009i 0.309357 + 0.788229i 0.998005 + 0.0631331i \(0.0201093\pi\)
−0.688648 + 0.725096i \(0.741796\pi\)
\(752\) −1.08176 14.4351i −0.0394477 0.526393i
\(753\) 0 0
\(754\) 0.0651996 0.112929i 0.00237443 0.00411264i
\(755\) 5.89484 + 2.83881i 0.214535 + 0.103315i
\(756\) 0 0
\(757\) −17.7338 + 8.54016i −0.644547 + 0.310397i −0.727450 0.686160i \(-0.759295\pi\)
0.0829038 + 0.996558i \(0.473581\pi\)
\(758\) −1.38748 + 18.5147i −0.0503956 + 0.672483i
\(759\) 0 0
\(760\) 1.22568 0.378073i 0.0444602 0.0137142i
\(761\) 2.59517 34.6301i 0.0940748 1.25534i −0.727847 0.685740i \(-0.759479\pi\)
0.821922 0.569601i \(-0.192902\pi\)
\(762\) 0 0
\(763\) −6.59634 + 0.506112i −0.238804 + 0.0183225i
\(764\) −14.8977 7.17433i −0.538978 0.259558i
\(765\) 0 0
\(766\) −20.4281 35.3825i −0.738098 1.27842i
\(767\) 0.0142581 + 0.190261i 0.000514830 + 0.00686993i
\(768\) 0 0
\(769\) −4.56216 + 19.9881i −0.164516 + 0.720791i 0.823612 + 0.567154i \(0.191956\pi\)
−0.988127 + 0.153636i \(0.950902\pi\)
\(770\) −27.0824 1.98117i −0.975980 0.0713965i
\(771\) 0 0
\(772\) −0.474953 + 0.323817i −0.0170939 + 0.0116544i
\(773\) 34.5058 32.0167i 1.24109 1.15156i 0.258449 0.966025i \(-0.416789\pi\)
0.982638 0.185535i \(-0.0594019\pi\)
\(774\) 0 0
\(775\) 14.8404 + 13.7699i 0.533084 + 0.494630i
\(776\) −28.0798 35.2110i −1.00801 1.26400i
\(777\) 0 0
\(778\) −13.1431 + 16.4810i −0.471204 + 0.590871i
\(779\) −3.61238 + 0.544479i −0.129427 + 0.0195080i
\(780\) 0 0
\(781\) 6.80238 17.3322i 0.243408 0.620194i
\(782\) 30.9400 + 9.54373i 1.10641 + 0.341283i
\(783\) 0 0
\(784\) −8.37645 + 5.75466i −0.299159 + 0.205524i
\(785\) −18.0312 −0.643561
\(786\) 0 0
\(787\) 7.59737 19.3578i 0.270817 0.690030i −0.729167 0.684336i \(-0.760092\pi\)
0.999984 0.00569425i \(-0.00181255\pi\)
\(788\) −15.3940 10.4954i −0.548388 0.373885i
\(789\) 0 0
\(790\) −0.700352 + 0.878213i −0.0249174 + 0.0312454i
\(791\) −13.9937 + 11.2004i −0.497560 + 0.398239i
\(792\) 0 0
\(793\) 0.172981 + 0.160503i 0.00614275 + 0.00569964i
\(794\) 47.1828 + 7.11166i 1.67445 + 0.252383i
\(795\) 0 0
\(796\) 43.6385 29.7522i 1.54673 1.05454i
\(797\) 2.53045 + 11.0866i 0.0896330 + 0.392708i 0.999767 0.0216072i \(-0.00687831\pi\)
−0.910134 + 0.414315i \(0.864021\pi\)
\(798\) 0 0
\(799\) −4.45192 + 19.5051i −0.157498 + 0.690042i
\(800\) −5.61754 14.3133i −0.198610 0.506050i
\(801\) 0 0
\(802\) −18.9238 32.7769i −0.668222 1.15739i
\(803\) −25.8948 + 44.8512i −0.913809 + 1.58276i
\(804\) 0 0
\(805\) −10.1295 + 14.9140i −0.357016 + 0.525651i
\(806\) 0.184569 0.0888839i 0.00650118 0.00313080i
\(807\) 0 0
\(808\) 4.31854 1.33209i 0.151926 0.0468629i
\(809\) −43.2131 + 13.3295i −1.51929 + 0.468639i −0.938461 0.345386i \(-0.887748\pi\)
−0.580830 + 0.814025i \(0.697272\pi\)
\(810\) 0 0
\(811\) 19.9771 9.62047i 0.701492 0.337821i −0.0489096 0.998803i \(-0.515575\pi\)
0.750401 + 0.660983i \(0.229860\pi\)
\(812\) −4.43088 + 29.7555i −0.155493 + 1.04421i
\(813\) 0 0
\(814\) −60.4806 + 104.755i −2.11984 + 3.67168i
\(815\) −4.65002 8.05406i −0.162883 0.282122i
\(816\) 0 0
\(817\) 0.538534 + 1.37216i 0.0188409 + 0.0480059i
\(818\) −4.02198 + 17.6214i −0.140625 + 0.616119i
\(819\) 0 0
\(820\) 8.03458 + 35.2018i 0.280580 + 1.22930i
\(821\) −0.318345 + 0.217044i −0.0111103 + 0.00757488i −0.568862 0.822433i \(-0.692616\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(822\) 0 0
\(823\) −4.31815 0.650856i −0.150521 0.0226874i 0.0733494 0.997306i \(-0.476631\pi\)
−0.223870 + 0.974619i \(0.571869\pi\)
\(824\) −8.04668 7.46623i −0.280320 0.260098i
\(825\) 0 0
\(826\) −29.9983 62.0101i −1.04377 2.15761i
\(827\) −15.2781 + 19.1582i −0.531273 + 0.666196i −0.972960 0.230974i \(-0.925809\pi\)
0.441687 + 0.897169i \(0.354380\pi\)
\(828\) 0 0
\(829\) 45.6653 + 31.1341i 1.58602 + 1.08133i 0.951156 + 0.308710i \(0.0998972\pi\)
0.634866 + 0.772622i \(0.281055\pi\)
\(830\) −1.65109 + 4.20691i −0.0573102 + 0.146024i
\(831\) 0 0
\(832\) −0.205674 −0.00713048
\(833\) 13.4071 4.18777i 0.464530 0.145098i
\(834\) 0 0
\(835\) 5.03798 + 1.55401i 0.174347 + 0.0537788i
\(836\) 2.01992 5.14668i 0.0698605 0.178002i
\(837\) 0 0
\(838\) −37.8611 + 5.70664i −1.30789 + 0.197133i
\(839\) 21.7576 27.2832i 0.751157 0.941921i −0.248486 0.968636i \(-0.579933\pi\)
0.999643 + 0.0267142i \(0.00850440\pi\)
\(840\) 0 0
\(841\) −11.6488 14.6071i −0.401683 0.503695i
\(842\) 41.8880 + 38.8664i 1.44355 + 1.33942i
\(843\) 0 0
\(844\) −8.56955 + 7.95138i −0.294976 + 0.273698i
\(845\) 10.6760 7.27876i 0.367265 0.250397i
\(846\) 0 0
\(847\) −14.8109 + 16.0194i −0.508910 + 0.550432i
\(848\) 1.78957 7.84062i 0.0614541 0.269248i
\(849\) 0 0
\(850\) −1.41603 18.8956i −0.0485693 0.648112i
\(851\) 40.1546 + 69.5498i 1.37648 + 2.38414i
\(852\) 0 0
\(853\) −7.73120 3.72315i −0.264711 0.127478i 0.296821 0.954933i \(-0.404074\pi\)
−0.561532 + 0.827455i \(0.689788\pi\)
\(854\) −79.3626 30.9850i −2.71573 1.06028i
\(855\) 0 0
\(856\) 1.01097 13.4904i 0.0345542 0.461094i
\(857\) −9.92447 + 3.06129i −0.339013 + 0.104572i −0.459587 0.888133i \(-0.652003\pi\)
0.120574 + 0.992704i \(0.461526\pi\)
\(858\) 0 0
\(859\) 2.23764 29.8593i 0.0763474 1.01879i −0.819110 0.573637i \(-0.805532\pi\)
0.895457 0.445148i \(-0.146849\pi\)
\(860\) 13.1264 6.32133i 0.447606 0.215556i
\(861\) 0 0
\(862\) −0.983581 0.473668i −0.0335009 0.0161332i
\(863\) −14.6824 + 25.4307i −0.499795 + 0.865670i −1.00000 0.000236754i \(-0.999925\pi\)
0.500205 + 0.865907i \(0.333258\pi\)
\(864\) 0 0
\(865\) −1.34159 17.9022i −0.0456153 0.608694i
\(866\) −5.15760 13.1414i −0.175263 0.446562i
\(867\) 0 0
\(868\) −32.0841 + 34.7019i −1.08901 + 1.17786i
\(869\) 0.468709 + 2.05355i 0.0158999 + 0.0696619i
\(870\) 0 0
\(871\) −0.0880290 + 0.0816790i −0.00298275 + 0.00276759i
\(872\) −8.96272 1.35091i −0.303516 0.0457477i
\(873\) 0 0
\(874\) −3.58170 4.49131i −0.121153 0.151921i
\(875\) 23.1147 + 5.23261i 0.781421 + 0.176894i
\(876\) 0 0
\(877\) −34.5025 + 5.20042i −1.16507 + 0.175606i −0.702967 0.711222i \(-0.748142\pi\)
−0.462100 + 0.886828i \(0.652904\pi\)
\(878\) 53.3496 + 36.3731i 1.80046 + 1.22753i
\(879\) 0 0
\(880\) −6.04945 1.86601i −0.203927 0.0629031i
\(881\) −39.1959 −1.32054 −0.660272 0.751027i \(-0.729559\pi\)
−0.660272 + 0.751027i \(0.729559\pi\)
\(882\) 0 0
\(883\) −27.6657 −0.931024 −0.465512 0.885042i \(-0.654130\pi\)
−0.465512 + 0.885042i \(0.654130\pi\)
\(884\) −0.117077 0.0361136i −0.00393774 0.00121463i
\(885\) 0 0
\(886\) 43.2905 + 29.5149i 1.45437 + 0.991574i
\(887\) −2.46598 + 0.371686i −0.0827994 + 0.0124800i −0.190311 0.981724i \(-0.560950\pi\)
0.107512 + 0.994204i \(0.465712\pi\)
\(888\) 0 0
\(889\) −9.38843 19.4070i −0.314878 0.650890i
\(890\) 12.5297 + 15.7117i 0.419996 + 0.526658i
\(891\) 0 0
\(892\) −48.3348 7.28529i −1.61837 0.243930i
\(893\) 2.60204 2.41434i 0.0870740 0.0807929i
\(894\) 0 0
\(895\) −1.43746 6.29793i −0.0480490 0.210516i
\(896\) 50.2112 19.8094i 1.67744 0.661787i
\(897\) 0 0
\(898\) −10.5826 26.9639i −0.353145 0.899798i
\(899\) 1.21119 + 16.1622i 0.0403955 + 0.539041i
\(900\) 0 0
\(901\) −5.55762 + 9.62609i −0.185151 + 0.320691i
\(902\) 95.4669 + 45.9744i 3.17870 + 1.53078i
\(903\) 0 0
\(904\) −22.1252 + 10.6549i −0.735873 + 0.354378i
\(905\) −0.142886 + 1.90668i −0.00474968 + 0.0633801i
\(906\) 0 0
\(907\) −36.2296 + 11.1753i −1.20298 + 0.371071i −0.830527 0.556978i \(-0.811961\pi\)
−0.372456 + 0.928050i \(0.621484\pi\)
\(908\) −2.62219 + 34.9908i −0.0870206 + 1.16121i
\(909\) 0 0
\(910\) 0.0599850 0.0883185i 0.00198848 0.00292773i
\(911\) −15.3453 7.38993i −0.508414 0.244839i 0.162048 0.986783i \(-0.448190\pi\)
−0.670462 + 0.741944i \(0.733904\pi\)
\(912\) 0 0
\(913\) 4.23729 + 7.33920i 0.140234 + 0.242892i
\(914\) 0.492148 + 6.56726i 0.0162788 + 0.217226i
\(915\) 0 0
\(916\) −16.0941 + 70.5128i −0.531764 + 2.32981i
\(917\) 11.5473 37.6727i 0.381324 1.24406i
\(918\) 0 0
\(919\) −6.03762 + 4.11638i −0.199163 + 0.135787i −0.658795 0.752322i \(-0.728934\pi\)
0.459632 + 0.888109i \(0.347981\pi\)
\(920\) −18.1067 + 16.8006i −0.596961 + 0.553899i
\(921\) 0 0
\(922\) 15.2005 + 14.1040i 0.500602 + 0.464491i
\(923\) 0.0456423 + 0.0572336i 0.00150233 + 0.00188387i
\(924\) 0 0
\(925\) 29.3031 36.7449i 0.963480 1.20817i
\(926\) 77.8764 11.7380i 2.55918 0.385734i
\(927\) 0 0
\(928\) 4.49731 11.4589i 0.147631 0.376158i
\(929\) 10.1458 + 3.12955i 0.332871 + 0.102677i 0.456685 0.889628i \(-0.349036\pi\)
−0.123814 + 0.992305i \(0.539513\pi\)
\(930\) 0 0
\(931\) −2.38392 0.726077i −0.0781298 0.0237962i
\(932\) 50.5738 1.65660
\(933\) 0 0
\(934\) 35.1453 89.5488i 1.14999 2.93013i
\(935\) 7.22934 + 4.92888i 0.236425 + 0.161192i
\(936\) 0 0
\(937\) −16.2061 + 20.3218i −0.529431 + 0.663886i −0.972582 0.232561i \(-0.925289\pi\)
0.443150 + 0.896447i \(0.353861\pi\)
\(938\) 18.7421 39.0958i 0.611950 1.27652i
\(939\) 0 0
\(940\) −25.7179 23.8627i −0.838824 0.778315i
\(941\) −38.2277 5.76190i −1.24619 0.187832i −0.507364 0.861732i \(-0.669380\pi\)
−0.738823 + 0.673900i \(0.764618\pi\)
\(942\) 0 0
\(943\) 58.1256 39.6294i 1.89283 1.29051i
\(944\) −3.57357 15.6568i −0.116310 0.509587i
\(945\) 0 0
\(946\) 9.51386 41.6829i 0.309322 1.35523i
\(947\) −7.35886 18.7501i −0.239131 0.609295i 0.760046 0.649870i \(-0.225177\pi\)
−0.999177 + 0.0405742i \(0.987081\pi\)
\(948\) 0 0
\(949\) −0.101810 0.176339i −0.00330488 0.00572422i
\(950\) −1.68093 + 2.91145i −0.0545365 + 0.0944600i
\(951\) 0 0
\(952\) 19.1874 1.47218i 0.621869 0.0477136i
\(953\) −0.463686 + 0.223300i −0.0150203 + 0.00723338i −0.441379 0.897321i \(-0.645510\pi\)
0.426359 + 0.904554i \(0.359796\pi\)
\(954\) 0 0
\(955\) −4.43641 + 1.36845i −0.143559 + 0.0442821i
\(956\) −6.24437 + 1.92613i −0.201957 + 0.0622956i
\(957\) 0 0
\(958\) 54.8646 26.4214i 1.77259 0.853637i
\(959\) −31.8512 34.2053i −1.02853 1.10455i
\(960\) 0 0
\(961\) 2.76901 4.79606i 0.0893229 0.154712i
\(962\) −0.237789 0.411863i −0.00766663 0.0132790i
\(963\) 0 0
\(964\) −4.86841 12.4045i −0.156801 0.399523i
\(965\) −0.0359150 + 0.157354i −0.00115615 + 0.00506540i
\(966\) 0 0
\(967\) −11.2256 49.1824i −0.360990 1.58160i −0.750687 0.660658i \(-0.770278\pi\)
0.389697 0.920943i \(-0.372580\pi\)
\(968\) −24.6969 + 16.8381i −0.793789 + 0.541196i
\(969\) 0 0
\(970\) −28.7424 4.33222i −0.922863 0.139099i
\(971\) 25.4043 + 23.5717i 0.815261 + 0.756452i 0.972945 0.231038i \(-0.0742121\pi\)
−0.157683 + 0.987490i \(0.550403\pi\)
\(972\) 0 0
\(973\) 0.0935995 + 52.6944i 0.00300066 + 1.68930i
\(974\) 30.1120 37.7593i 0.964851 1.20989i
\(975\) 0 0
\(976\) −16.4110 11.1888i −0.525304 0.358146i
\(977\) 21.6039 55.0460i 0.691172 1.76108i 0.0436280 0.999048i \(-0.486108\pi\)
0.647544 0.762028i \(-0.275796\pi\)
\(978\) 0 0
\(979\) 37.6840 1.20438
\(980\) −5.39549 + 24.0324i −0.172352 + 0.767687i
\(981\) 0 0
\(982\) 57.1602 + 17.6316i 1.82406 + 0.562646i
\(983\) −0.654461 + 1.66754i −0.0208741 + 0.0531863i −0.940931 0.338599i \(-0.890047\pi\)
0.920057 + 0.391785i \(0.128142\pi\)
\(984\) 0 0
\(985\) −5.17283 + 0.779678i −0.164820 + 0.0248426i
\(986\) 9.45825 11.8603i 0.301212 0.377708i
\(987\) 0 0
\(988\) 0.0135532 + 0.0169952i 0.000431184 + 0.000540688i
\(989\) −20.8084 19.3074i −0.661670 0.613940i
\(990\) 0 0
\(991\) 13.3751 12.4102i 0.424873 0.394224i −0.438549 0.898707i \(-0.644507\pi\)
0.863422 + 0.504483i \(0.168317\pi\)
\(992\) 15.9784 10.8939i 0.507315 0.345882i
\(993\) 0 0
\(994\) −22.9125 13.1743i −0.726739 0.417864i
\(995\) 3.29986 14.4576i 0.104612 0.458337i
\(996\) 0 0
\(997\) 1.77504 + 23.6862i 0.0562160 + 0.750150i 0.952085 + 0.305833i \(0.0989348\pi\)
−0.895869 + 0.444318i \(0.853446\pi\)
\(998\) −8.49847 14.7198i −0.269014 0.465946i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.bb.c.100.1 48
3.2 odd 2 147.2.m.a.100.4 yes 48
49.25 even 21 inner 441.2.bb.c.172.1 48
147.5 even 42 7203.2.a.k.1.24 24
147.44 odd 42 7203.2.a.i.1.24 24
147.74 odd 42 147.2.m.a.25.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.2.m.a.25.4 48 147.74 odd 42
147.2.m.a.100.4 yes 48 3.2 odd 2
441.2.bb.c.100.1 48 1.1 even 1 trivial
441.2.bb.c.172.1 48 49.25 even 21 inner
7203.2.a.i.1.24 24 147.44 odd 42
7203.2.a.k.1.24 24 147.5 even 42