Properties

Label 425.3.u.b.401.1
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,8,0,0,-8,-8,24,-16,0,-8,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.1
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.b.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.15851 - 2.79690i) q^{2} +(0.675577 + 0.451406i) q^{3} +(-3.65205 - 3.65205i) q^{4} +(2.04520 - 1.36656i) q^{6} +(7.70353 + 1.53233i) q^{7} +(-3.25778 + 1.34942i) q^{8} +(-3.19151 - 7.70500i) q^{9} +(4.48649 + 6.71450i) q^{11} +(-0.818684 - 4.11580i) q^{12} +(0.798835 - 0.798835i) q^{13} +(13.2104 - 19.7707i) q^{14} -9.98414i q^{16} +(6.50562 - 15.7060i) q^{17} -25.2475 q^{18} +(1.07647 - 2.59882i) q^{19} +(4.51262 + 4.51262i) q^{21} +(23.9774 - 4.76941i) q^{22} +(7.13426 - 4.76696i) q^{23} +(-2.81002 - 0.558947i) q^{24} +(-1.30880 - 3.15972i) q^{26} +(2.74858 - 13.8181i) q^{27} +(-22.5376 - 33.7298i) q^{28} +(-0.599020 - 3.01148i) q^{29} +(-7.13254 + 10.6746i) q^{31} +(-40.9557 - 16.9644i) q^{32} +6.56139i q^{33} +(-36.3911 - 36.3911i) q^{34} +(-16.4835 + 39.7946i) q^{36} +(-19.6817 - 13.1509i) q^{37} +(-6.02153 - 6.02153i) q^{38} +(0.900273 - 0.179075i) q^{39} +(21.4206 + 4.26082i) q^{41} +(17.8493 - 7.39341i) q^{42} +(8.89197 + 21.4671i) q^{43} +(8.13684 - 40.9066i) q^{44} +(-5.06757 - 25.4764i) q^{46} +(-55.6597 + 55.6597i) q^{47} +(4.50690 - 6.74505i) q^{48} +(11.7262 + 4.85715i) q^{49} +(11.4848 - 7.67390i) q^{51} -5.83478 q^{52} +(22.9922 - 55.5080i) q^{53} +(-35.4634 - 23.6959i) q^{54} +(-27.1642 + 5.40329i) q^{56} +(1.90036 - 1.26978i) q^{57} +(-9.11677 - 1.81344i) q^{58} +(-25.3733 + 10.5100i) q^{59} +(7.11302 - 35.7596i) q^{61} +(21.5926 + 32.3156i) q^{62} +(-12.7793 - 64.2461i) q^{63} +(-66.6561 + 66.6561i) q^{64} +(18.3515 + 7.60145i) q^{66} +117.219i q^{67} +(-81.1179 + 33.6001i) q^{68} +6.97157 q^{69} +(88.1108 + 58.8738i) q^{71} +(20.7945 + 20.7945i) q^{72} +(59.8620 - 11.9073i) q^{73} +(-59.5832 + 39.8122i) q^{74} +(-13.4223 + 5.55971i) q^{76} +(24.2730 + 58.6001i) q^{77} +(0.542122 - 2.72543i) q^{78} +(52.9382 + 79.2276i) q^{79} +(-44.9799 + 44.9799i) q^{81} +(36.7331 - 54.9749i) q^{82} +(109.791 + 45.4770i) q^{83} -32.9607i q^{84} +70.3428 q^{86} +(0.954715 - 2.30489i) q^{87} +(-23.6767 - 15.8202i) q^{88} +(-61.4534 - 61.4534i) q^{89} +(7.37792 - 4.92977i) q^{91} +(-43.4639 - 8.64551i) q^{92} +(-9.63715 + 3.99184i) q^{93} +(91.1920 + 220.157i) q^{94} +(-20.0109 - 29.9484i) q^{96} +(-4.79748 - 24.1185i) q^{97} +(27.1699 - 27.1699i) q^{98} +(37.4165 - 55.9978i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} - 8 q^{6} - 8 q^{7} + 24 q^{8} - 16 q^{9} - 8 q^{11} - 48 q^{12} - 16 q^{13} + 8 q^{14} - 56 q^{18} - 64 q^{21} + 104 q^{22} + 56 q^{23} - 80 q^{24} + 176 q^{26} - 40 q^{27} - 152 q^{28}+ \cdots - 224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15851 2.79690i 0.579256 1.39845i −0.314225 0.949348i \(-0.601745\pi\)
0.893481 0.449100i \(-0.148255\pi\)
\(3\) 0.675577 + 0.451406i 0.225192 + 0.150469i 0.663049 0.748576i \(-0.269262\pi\)
−0.437857 + 0.899045i \(0.644262\pi\)
\(4\) −3.65205 3.65205i −0.913014 0.913014i
\(5\) 0 0
\(6\) 2.04520 1.36656i 0.340867 0.227760i
\(7\) 7.70353 + 1.53233i 1.10050 + 0.218904i 0.711746 0.702436i \(-0.247904\pi\)
0.388757 + 0.921340i \(0.372904\pi\)
\(8\) −3.25778 + 1.34942i −0.407223 + 0.168677i
\(9\) −3.19151 7.70500i −0.354613 0.856111i
\(10\) 0 0
\(11\) 4.48649 + 6.71450i 0.407863 + 0.610410i 0.977360 0.211584i \(-0.0678621\pi\)
−0.569497 + 0.821993i \(0.692862\pi\)
\(12\) −0.818684 4.11580i −0.0682236 0.342983i
\(13\) 0.798835 0.798835i 0.0614489 0.0614489i −0.675715 0.737163i \(-0.736165\pi\)
0.737163 + 0.675715i \(0.236165\pi\)
\(14\) 13.2104 19.7707i 0.943599 1.41220i
\(15\) 0 0
\(16\) 9.98414i 0.624009i
\(17\) 6.50562 15.7060i 0.382683 0.923880i
\(18\) −25.2475 −1.40264
\(19\) 1.07647 2.59882i 0.0566561 0.136780i −0.893017 0.450023i \(-0.851416\pi\)
0.949673 + 0.313244i \(0.101416\pi\)
\(20\) 0 0
\(21\) 4.51262 + 4.51262i 0.214887 + 0.214887i
\(22\) 23.9774 4.76941i 1.08988 0.216791i
\(23\) 7.13426 4.76696i 0.310185 0.207259i −0.390727 0.920507i \(-0.627776\pi\)
0.700912 + 0.713247i \(0.252776\pi\)
\(24\) −2.81002 0.558947i −0.117084 0.0232895i
\(25\) 0 0
\(26\) −1.30880 3.15972i −0.0503384 0.121528i
\(27\) 2.74858 13.8181i 0.101799 0.511780i
\(28\) −22.5376 33.7298i −0.804913 1.20464i
\(29\) −0.599020 3.01148i −0.0206559 0.103844i 0.969082 0.246739i \(-0.0793590\pi\)
−0.989738 + 0.142895i \(0.954359\pi\)
\(30\) 0 0
\(31\) −7.13254 + 10.6746i −0.230082 + 0.344342i −0.928490 0.371358i \(-0.878892\pi\)
0.698408 + 0.715700i \(0.253892\pi\)
\(32\) −40.9557 16.9644i −1.27987 0.530138i
\(33\) 6.56139i 0.198830i
\(34\) −36.3911 36.3911i −1.07033 1.07033i
\(35\) 0 0
\(36\) −16.4835 + 39.7946i −0.457875 + 1.10541i
\(37\) −19.6817 13.1509i −0.531938 0.355429i 0.260411 0.965498i \(-0.416142\pi\)
−0.792349 + 0.610068i \(0.791142\pi\)
\(38\) −6.02153 6.02153i −0.158461 0.158461i
\(39\) 0.900273 0.179075i 0.0230839 0.00459168i
\(40\) 0 0
\(41\) 21.4206 + 4.26082i 0.522453 + 0.103922i 0.449270 0.893396i \(-0.351684\pi\)
0.0731833 + 0.997319i \(0.476684\pi\)
\(42\) 17.8493 7.39341i 0.424982 0.176034i
\(43\) 8.89197 + 21.4671i 0.206790 + 0.499235i 0.992914 0.118833i \(-0.0379154\pi\)
−0.786124 + 0.618069i \(0.787915\pi\)
\(44\) 8.13684 40.9066i 0.184928 0.929696i
\(45\) 0 0
\(46\) −5.06757 25.4764i −0.110164 0.553834i
\(47\) −55.6597 + 55.6597i −1.18425 + 1.18425i −0.205617 + 0.978632i \(0.565920\pi\)
−0.978632 + 0.205617i \(0.934080\pi\)
\(48\) 4.50690 6.74505i 0.0938937 0.140522i
\(49\) 11.7262 + 4.85715i 0.239310 + 0.0991254i
\(50\) 0 0
\(51\) 11.4848 7.67390i 0.225192 0.150469i
\(52\) −5.83478 −0.112207
\(53\) 22.9922 55.5080i 0.433815 1.04732i −0.544232 0.838935i \(-0.683179\pi\)
0.978047 0.208386i \(-0.0668212\pi\)
\(54\) −35.4634 23.6959i −0.656730 0.438813i
\(55\) 0 0
\(56\) −27.1642 + 5.40329i −0.485074 + 0.0964873i
\(57\) 1.90036 1.26978i 0.0333396 0.0222768i
\(58\) −9.11677 1.81344i −0.157186 0.0312662i
\(59\) −25.3733 + 10.5100i −0.430057 + 0.178135i −0.587202 0.809440i \(-0.699771\pi\)
0.157146 + 0.987575i \(0.449771\pi\)
\(60\) 0 0
\(61\) 7.11302 35.7596i 0.116607 0.586223i −0.877659 0.479286i \(-0.840896\pi\)
0.994266 0.106937i \(-0.0341043\pi\)
\(62\) 21.5926 + 32.3156i 0.348268 + 0.521220i
\(63\) −12.7793 64.2461i −0.202847 1.01978i
\(64\) −66.6561 + 66.6561i −1.04150 + 1.04150i
\(65\) 0 0
\(66\) 18.3515 + 7.60145i 0.278054 + 0.115174i
\(67\) 117.219i 1.74953i 0.484544 + 0.874767i \(0.338985\pi\)
−0.484544 + 0.874767i \(0.661015\pi\)
\(68\) −81.1179 + 33.6001i −1.19291 + 0.494119i
\(69\) 6.97157 0.101037
\(70\) 0 0
\(71\) 88.1108 + 58.8738i 1.24100 + 0.829208i 0.990312 0.138861i \(-0.0443440\pi\)
0.250685 + 0.968069i \(0.419344\pi\)
\(72\) 20.7945 + 20.7945i 0.288813 + 0.288813i
\(73\) 59.8620 11.9073i 0.820028 0.163114i 0.232789 0.972527i \(-0.425215\pi\)
0.587239 + 0.809414i \(0.300215\pi\)
\(74\) −59.5832 + 39.8122i −0.805178 + 0.538003i
\(75\) 0 0
\(76\) −13.4223 + 5.55971i −0.176610 + 0.0731541i
\(77\) 24.2730 + 58.6001i 0.315233 + 0.761041i
\(78\) 0.542122 2.72543i 0.00695029 0.0349414i
\(79\) 52.9382 + 79.2276i 0.670103 + 1.00288i 0.998301 + 0.0582714i \(0.0185589\pi\)
−0.328197 + 0.944609i \(0.606441\pi\)
\(80\) 0 0
\(81\) −44.9799 + 44.9799i −0.555308 + 0.555308i
\(82\) 36.7331 54.9749i 0.447964 0.670426i
\(83\) 109.791 + 45.4770i 1.32279 + 0.547916i 0.928589 0.371110i \(-0.121023\pi\)
0.394197 + 0.919026i \(0.371023\pi\)
\(84\) 32.9607i 0.392389i
\(85\) 0 0
\(86\) 70.3428 0.817939
\(87\) 0.954715 2.30489i 0.0109737 0.0264929i
\(88\) −23.6767 15.8202i −0.269053 0.179776i
\(89\) −61.4534 61.4534i −0.690488 0.690488i 0.271851 0.962339i \(-0.412364\pi\)
−0.962339 + 0.271851i \(0.912364\pi\)
\(90\) 0 0
\(91\) 7.37792 4.92977i 0.0810761 0.0541733i
\(92\) −43.4639 8.64551i −0.472434 0.0939729i
\(93\) −9.63715 + 3.99184i −0.103625 + 0.0429230i
\(94\) 91.1920 + 220.157i 0.970128 + 2.34210i
\(95\) 0 0
\(96\) −20.0109 29.9484i −0.208447 0.311963i
\(97\) −4.79748 24.1185i −0.0494585 0.248645i 0.948145 0.317839i \(-0.102957\pi\)
−0.997603 + 0.0691943i \(0.977957\pi\)
\(98\) 27.1699 27.1699i 0.277244 0.277244i
\(99\) 37.4165 55.9978i 0.377945 0.565635i
\(100\) 0 0
\(101\) 7.70266i 0.0762640i 0.999273 + 0.0381320i \(0.0121407\pi\)
−0.999273 + 0.0381320i \(0.987859\pi\)
\(102\) −8.15782 41.0121i −0.0799786 0.402080i
\(103\) −41.5688 −0.403581 −0.201790 0.979429i \(-0.564676\pi\)
−0.201790 + 0.979429i \(0.564676\pi\)
\(104\) −1.52447 + 3.68039i −0.0146584 + 0.0353884i
\(105\) 0 0
\(106\) −128.614 128.614i −1.21333 1.21333i
\(107\) −86.7136 + 17.2484i −0.810407 + 0.161200i −0.582866 0.812568i \(-0.698069\pi\)
−0.227541 + 0.973768i \(0.573069\pi\)
\(108\) −60.5023 + 40.4263i −0.560206 + 0.374318i
\(109\) 18.2754 + 3.63521i 0.167665 + 0.0333506i 0.278209 0.960521i \(-0.410259\pi\)
−0.110544 + 0.993871i \(0.535259\pi\)
\(110\) 0 0
\(111\) −7.36011 17.7689i −0.0663073 0.160080i
\(112\) 15.2990 76.9131i 0.136598 0.686724i
\(113\) 33.6909 + 50.4220i 0.298150 + 0.446212i 0.950053 0.312090i \(-0.101029\pi\)
−0.651903 + 0.758302i \(0.726029\pi\)
\(114\) −1.34985 6.78616i −0.0118408 0.0595277i
\(115\) 0 0
\(116\) −8.81043 + 13.1857i −0.0759520 + 0.113670i
\(117\) −8.70452 3.60553i −0.0743976 0.0308165i
\(118\) 83.1426i 0.704598i
\(119\) 74.1828 111.022i 0.623385 0.932962i
\(120\) 0 0
\(121\) 21.3487 51.5403i 0.176436 0.425953i
\(122\) −91.7753 61.3223i −0.752257 0.502642i
\(123\) 12.5479 + 12.5479i 0.102015 + 0.102015i
\(124\) 65.0326 12.9358i 0.524456 0.104321i
\(125\) 0 0
\(126\) −194.495 38.6874i −1.54361 0.307043i
\(127\) −110.168 + 45.6333i −0.867468 + 0.359317i −0.771624 0.636079i \(-0.780555\pi\)
−0.0958444 + 0.995396i \(0.530555\pi\)
\(128\) 41.3506 + 99.8291i 0.323051 + 0.779915i
\(129\) −3.68317 + 18.5166i −0.0285517 + 0.143539i
\(130\) 0 0
\(131\) 33.4238 + 168.033i 0.255144 + 1.28269i 0.869605 + 0.493748i \(0.164373\pi\)
−0.614461 + 0.788947i \(0.710627\pi\)
\(132\) 23.9626 23.9626i 0.181534 0.181534i
\(133\) 12.2748 18.3706i 0.0922919 0.138125i
\(134\) 327.849 + 135.799i 2.44663 + 1.01343i
\(135\) 0 0
\(136\) 59.9454i 0.440775i
\(137\) 173.113 1.26360 0.631799 0.775132i \(-0.282317\pi\)
0.631799 + 0.775132i \(0.282317\pi\)
\(138\) 8.07666 19.4988i 0.0585265 0.141295i
\(139\) −149.307 99.7637i −1.07415 0.717724i −0.112957 0.993600i \(-0.536032\pi\)
−0.961193 + 0.275876i \(0.911032\pi\)
\(140\) 0 0
\(141\) −62.7276 + 12.4773i −0.444876 + 0.0884914i
\(142\) 266.741 178.231i 1.87846 1.25515i
\(143\) 8.94775 + 1.77982i 0.0625717 + 0.0124463i
\(144\) −76.9278 + 31.8645i −0.534221 + 0.221281i
\(145\) 0 0
\(146\) 36.0474 181.223i 0.246900 1.24125i
\(147\) 5.72939 + 8.57464i 0.0389755 + 0.0583309i
\(148\) 23.8509 + 119.906i 0.161154 + 0.810178i
\(149\) 31.6842 31.6842i 0.212646 0.212646i −0.592745 0.805391i \(-0.701956\pi\)
0.805391 + 0.592745i \(0.201956\pi\)
\(150\) 0 0
\(151\) −121.384 50.2789i −0.803868 0.332973i −0.0573634 0.998353i \(-0.518269\pi\)
−0.746504 + 0.665380i \(0.768269\pi\)
\(152\) 9.91898i 0.0652565i
\(153\) −141.777 −0.926648
\(154\) 192.019 1.24688
\(155\) 0 0
\(156\) −3.94184 2.63385i −0.0252682 0.0168837i
\(157\) −25.4694 25.4694i −0.162225 0.162225i 0.621327 0.783552i \(-0.286594\pi\)
−0.783552 + 0.621327i \(0.786594\pi\)
\(158\) 282.921 56.2765i 1.79064 0.356180i
\(159\) 40.5896 27.1211i 0.255281 0.170573i
\(160\) 0 0
\(161\) 62.2635 25.7904i 0.386730 0.160189i
\(162\) 73.6944 + 177.914i 0.454904 + 1.09823i
\(163\) −31.1596 + 156.650i −0.191163 + 0.961041i 0.759427 + 0.650592i \(0.225479\pi\)
−0.950590 + 0.310449i \(0.899521\pi\)
\(164\) −62.6684 93.7898i −0.382124 0.571889i
\(165\) 0 0
\(166\) 254.389 254.389i 1.53246 1.53246i
\(167\) 61.5214 92.0734i 0.368392 0.551337i −0.600246 0.799816i \(-0.704930\pi\)
0.968637 + 0.248478i \(0.0799305\pi\)
\(168\) −20.7905 8.61173i −0.123753 0.0512603i
\(169\) 167.724i 0.992448i
\(170\) 0 0
\(171\) −23.4594 −0.137190
\(172\) 45.9251 110.873i 0.267006 0.644611i
\(173\) 148.047 + 98.9216i 0.855761 + 0.571801i 0.904241 0.427023i \(-0.140438\pi\)
−0.0484797 + 0.998824i \(0.515438\pi\)
\(174\) −5.34048 5.34048i −0.0306924 0.0306924i
\(175\) 0 0
\(176\) 67.0386 44.7937i 0.380901 0.254510i
\(177\) −21.8859 4.35338i −0.123649 0.0245954i
\(178\) −243.074 + 100.684i −1.36558 + 0.565642i
\(179\) 96.5028 + 232.978i 0.539122 + 1.30155i 0.925337 + 0.379146i \(0.123782\pi\)
−0.386215 + 0.922409i \(0.626218\pi\)
\(180\) 0 0
\(181\) 167.421 + 250.563i 0.924977 + 1.38433i 0.923197 + 0.384328i \(0.125567\pi\)
0.00178027 + 0.999998i \(0.499433\pi\)
\(182\) −5.24064 26.3465i −0.0287947 0.144761i
\(183\) 20.9475 20.9475i 0.114467 0.114467i
\(184\) −16.8092 + 25.1568i −0.0913546 + 0.136722i
\(185\) 0 0
\(186\) 31.5787i 0.169778i
\(187\) 134.645 26.7826i 0.720027 0.143222i
\(188\) 406.545 2.16247
\(189\) 42.3476 102.236i 0.224061 0.540931i
\(190\) 0 0
\(191\) 93.7287 + 93.7287i 0.490726 + 0.490726i 0.908535 0.417809i \(-0.137202\pi\)
−0.417809 + 0.908535i \(0.637202\pi\)
\(192\) −75.1202 + 14.9423i −0.391251 + 0.0778247i
\(193\) −264.917 + 177.012i −1.37263 + 0.917161i −0.999942 0.0107958i \(-0.996564\pi\)
−0.372687 + 0.927957i \(0.621564\pi\)
\(194\) −73.0150 14.5236i −0.376366 0.0748639i
\(195\) 0 0
\(196\) −25.0861 60.5632i −0.127990 0.308996i
\(197\) −22.5650 + 113.442i −0.114543 + 0.575847i 0.880300 + 0.474418i \(0.157341\pi\)
−0.994843 + 0.101429i \(0.967659\pi\)
\(198\) −113.273 169.524i −0.572084 0.856184i
\(199\) −57.7166 290.161i −0.290033 1.45809i −0.801088 0.598547i \(-0.795745\pi\)
0.511055 0.859548i \(-0.329255\pi\)
\(200\) 0 0
\(201\) −52.9132 + 79.1902i −0.263250 + 0.393981i
\(202\) 21.5436 + 8.92363i 0.106651 + 0.0441764i
\(203\) 24.1169i 0.118802i
\(204\) −69.9686 13.9176i −0.342983 0.0682236i
\(205\) 0 0
\(206\) −48.1580 + 116.264i −0.233777 + 0.564387i
\(207\) −59.4985 39.7556i −0.287432 0.192056i
\(208\) −7.97568 7.97568i −0.0383446 0.0383446i
\(209\) 22.2793 4.43163i 0.106600 0.0212040i
\(210\) 0 0
\(211\) −225.325 44.8199i −1.06789 0.212417i −0.370300 0.928912i \(-0.620745\pi\)
−0.697592 + 0.716495i \(0.745745\pi\)
\(212\) −286.687 + 118.750i −1.35230 + 0.560140i
\(213\) 32.9496 + 79.5475i 0.154693 + 0.373462i
\(214\) −52.2168 + 262.511i −0.244004 + 1.22669i
\(215\) 0 0
\(216\) 9.69205 + 48.7252i 0.0448706 + 0.225580i
\(217\) −71.3026 + 71.3026i −0.328584 + 0.328584i
\(218\) 31.3396 46.9031i 0.143760 0.215152i
\(219\) 45.8164 + 18.9778i 0.209207 + 0.0866565i
\(220\) 0 0
\(221\) −7.34955 17.7434i −0.0332559 0.0802868i
\(222\) −58.2245 −0.262272
\(223\) 139.061 335.723i 0.623593 1.50549i −0.223863 0.974621i \(-0.571867\pi\)
0.847456 0.530865i \(-0.178133\pi\)
\(224\) −289.509 193.443i −1.29245 0.863587i
\(225\) 0 0
\(226\) 180.056 35.8155i 0.796710 0.158475i
\(227\) 80.5890 53.8478i 0.355017 0.237215i −0.365253 0.930908i \(-0.619018\pi\)
0.720271 + 0.693693i \(0.244018\pi\)
\(228\) −11.5775 2.30291i −0.0507785 0.0101005i
\(229\) −334.120 + 138.397i −1.45904 + 0.604353i −0.964329 0.264706i \(-0.914725\pi\)
−0.494708 + 0.869059i \(0.664725\pi\)
\(230\) 0 0
\(231\) −10.0542 + 50.5458i −0.0435246 + 0.218813i
\(232\) 6.01522 + 9.00241i 0.0259277 + 0.0388035i
\(233\) −54.6542 274.765i −0.234567 1.17925i −0.901045 0.433725i \(-0.857199\pi\)
0.666478 0.745525i \(-0.267801\pi\)
\(234\) −20.1686 + 20.1686i −0.0861905 + 0.0861905i
\(235\) 0 0
\(236\) 131.048 + 54.2818i 0.555288 + 0.230008i
\(237\) 77.4209i 0.326670i
\(238\) −224.577 336.103i −0.943599 1.41220i
\(239\) 328.551 1.37469 0.687345 0.726331i \(-0.258776\pi\)
0.687345 + 0.726331i \(0.258776\pi\)
\(240\) 0 0
\(241\) −201.560 134.678i −0.836349 0.558831i 0.0620186 0.998075i \(-0.480246\pi\)
−0.898368 + 0.439244i \(0.855246\pi\)
\(242\) −119.420 119.420i −0.493472 0.493472i
\(243\) −175.054 + 34.8204i −0.720387 + 0.143294i
\(244\) −156.573 + 104.619i −0.641693 + 0.428765i
\(245\) 0 0
\(246\) 49.6320 20.5583i 0.201756 0.0835701i
\(247\) −1.21611 2.93595i −0.00492352 0.0118864i
\(248\) 8.83176 44.4003i 0.0356119 0.179033i
\(249\) 53.6438 + 80.2836i 0.215437 + 0.322424i
\(250\) 0 0
\(251\) −155.463 + 155.463i −0.619375 + 0.619375i −0.945371 0.325996i \(-0.894300\pi\)
0.325996 + 0.945371i \(0.394300\pi\)
\(252\) −187.959 + 281.301i −0.745870 + 1.11627i
\(253\) 64.0155 + 26.5161i 0.253026 + 0.104807i
\(254\) 360.996i 1.42125i
\(255\) 0 0
\(256\) −49.9468 −0.195105
\(257\) −124.463 + 300.480i −0.484292 + 1.16918i 0.473260 + 0.880923i \(0.343077\pi\)
−0.957552 + 0.288261i \(0.906923\pi\)
\(258\) 47.5219 + 31.7531i 0.184194 + 0.123074i
\(259\) −131.467 131.467i −0.507595 0.507595i
\(260\) 0 0
\(261\) −21.2917 + 14.2266i −0.0815772 + 0.0545082i
\(262\) 508.693 + 101.185i 1.94158 + 0.386203i
\(263\) −128.172 + 53.0907i −0.487347 + 0.201866i −0.612806 0.790233i \(-0.709959\pi\)
0.125460 + 0.992099i \(0.459959\pi\)
\(264\) −8.85405 21.3756i −0.0335381 0.0809681i
\(265\) 0 0
\(266\) −37.1600 55.6139i −0.139699 0.209075i
\(267\) −13.7761 69.2570i −0.0515957 0.259389i
\(268\) 428.089 428.089i 1.59735 1.59735i
\(269\) −180.493 + 270.126i −0.670976 + 1.00419i 0.327267 + 0.944932i \(0.393872\pi\)
−0.998243 + 0.0592547i \(0.981128\pi\)
\(270\) 0 0
\(271\) 19.1867i 0.0707996i 0.999373 + 0.0353998i \(0.0112705\pi\)
−0.999373 + 0.0353998i \(0.988730\pi\)
\(272\) −156.810 64.9530i −0.576509 0.238798i
\(273\) 7.20968 0.0264091
\(274\) 200.554 484.179i 0.731947 1.76708i
\(275\) 0 0
\(276\) −25.4606 25.4606i −0.0922484 0.0922484i
\(277\) −302.084 + 60.0883i −1.09056 + 0.216925i −0.707439 0.706774i \(-0.750150\pi\)
−0.383118 + 0.923700i \(0.625150\pi\)
\(278\) −452.003 + 302.018i −1.62591 + 1.08640i
\(279\) 105.011 + 20.8880i 0.376385 + 0.0748676i
\(280\) 0 0
\(281\) −33.1106 79.9361i −0.117831 0.284470i 0.853949 0.520356i \(-0.174201\pi\)
−0.971781 + 0.235886i \(0.924201\pi\)
\(282\) −37.7730 + 189.898i −0.133947 + 0.673396i
\(283\) −4.15656 6.22073i −0.0146875 0.0219814i 0.824053 0.566512i \(-0.191708\pi\)
−0.838741 + 0.544531i \(0.816708\pi\)
\(284\) −106.775 536.796i −0.375969 1.89013i
\(285\) 0 0
\(286\) 15.3440 22.9640i 0.0536505 0.0802937i
\(287\) 158.485 + 65.6466i 0.552213 + 0.228734i
\(288\) 369.706i 1.28370i
\(289\) −204.354 204.354i −0.707107 0.707107i
\(290\) 0 0
\(291\) 7.64619 18.4595i 0.0262756 0.0634348i
\(292\) −262.105 175.133i −0.897621 0.599771i
\(293\) −54.4583 54.4583i −0.185864 0.185864i 0.608041 0.793906i \(-0.291956\pi\)
−0.793906 + 0.608041i \(0.791956\pi\)
\(294\) 30.6200 6.09069i 0.104150 0.0207166i
\(295\) 0 0
\(296\) 81.8647 + 16.2839i 0.276570 + 0.0550132i
\(297\) 105.113 43.5392i 0.353915 0.146597i
\(298\) −51.9110 125.324i −0.174198 0.420551i
\(299\) 1.89108 9.50711i 0.00632469 0.0317964i
\(300\) 0 0
\(301\) 35.6049 + 178.998i 0.118289 + 0.594677i
\(302\) −281.250 + 281.250i −0.931291 + 0.931291i
\(303\) −3.47703 + 5.20374i −0.0114753 + 0.0171741i
\(304\) −25.9470 10.7476i −0.0853519 0.0353539i
\(305\) 0 0
\(306\) −164.251 + 396.536i −0.536767 + 1.29587i
\(307\) 159.680 0.520132 0.260066 0.965591i \(-0.416256\pi\)
0.260066 + 0.965591i \(0.416256\pi\)
\(308\) 125.365 302.657i 0.407028 0.982653i
\(309\) −28.0829 18.7644i −0.0908832 0.0607262i
\(310\) 0 0
\(311\) −326.615 + 64.9678i −1.05021 + 0.208900i −0.689879 0.723925i \(-0.742336\pi\)
−0.360331 + 0.932825i \(0.617336\pi\)
\(312\) −2.69125 + 1.79823i −0.00862579 + 0.00576357i
\(313\) −386.986 76.9763i −1.23638 0.245931i −0.466729 0.884400i \(-0.654568\pi\)
−0.769647 + 0.638470i \(0.779568\pi\)
\(314\) −100.742 + 41.7286i −0.320834 + 0.132894i
\(315\) 0 0
\(316\) 96.0103 482.676i 0.303830 1.52746i
\(317\) 77.2775 + 115.654i 0.243778 + 0.364839i 0.933101 0.359615i \(-0.117092\pi\)
−0.689323 + 0.724454i \(0.742092\pi\)
\(318\) −28.8314 144.945i −0.0906647 0.455802i
\(319\) 17.5331 17.5331i 0.0549627 0.0549627i
\(320\) 0 0
\(321\) −66.3677 27.4904i −0.206753 0.0856399i
\(322\) 204.023i 0.633612i
\(323\) −33.8138 33.8138i −0.104687 0.104687i
\(324\) 328.538 1.01401
\(325\) 0 0
\(326\) 402.034 + 268.631i 1.23323 + 0.824021i
\(327\) 10.7055 + 10.7055i 0.0327385 + 0.0327385i
\(328\) −75.5332 + 15.0245i −0.230284 + 0.0458064i
\(329\) −514.065 + 343.487i −1.56251 + 1.04403i
\(330\) 0 0
\(331\) 146.717 60.7720i 0.443252 0.183601i −0.149883 0.988704i \(-0.547890\pi\)
0.593136 + 0.805103i \(0.297890\pi\)
\(332\) −234.879 567.048i −0.707467 1.70798i
\(333\) −38.5132 + 193.619i −0.115655 + 0.581438i
\(334\) −186.246 278.737i −0.557624 0.834543i
\(335\) 0 0
\(336\) 45.0546 45.0546i 0.134091 0.134091i
\(337\) 267.981 401.062i 0.795195 1.19009i −0.183144 0.983086i \(-0.558628\pi\)
0.978339 0.207008i \(-0.0663725\pi\)
\(338\) 469.106 + 194.310i 1.38789 + 0.574882i
\(339\) 49.2722i 0.145346i
\(340\) 0 0
\(341\) −103.675 −0.304031
\(342\) −27.1781 + 65.6136i −0.0794680 + 0.191853i
\(343\) −237.116 158.436i −0.691299 0.461912i
\(344\) −57.9362 57.9362i −0.168419 0.168419i
\(345\) 0 0
\(346\) 448.188 299.469i 1.29534 0.865518i
\(347\) 19.4096 + 3.86080i 0.0559353 + 0.0111262i 0.222979 0.974823i \(-0.428422\pi\)
−0.167043 + 0.985950i \(0.553422\pi\)
\(348\) −11.9042 + 4.93090i −0.0342076 + 0.0141692i
\(349\) −149.801 361.651i −0.429229 1.03625i −0.979533 0.201286i \(-0.935488\pi\)
0.550304 0.834965i \(-0.314512\pi\)
\(350\) 0 0
\(351\) −8.84268 13.2340i −0.0251928 0.0377037i
\(352\) −69.8398 351.108i −0.198408 0.997466i
\(353\) −138.024 + 138.024i −0.391003 + 0.391003i −0.875045 0.484042i \(-0.839168\pi\)
0.484042 + 0.875045i \(0.339168\pi\)
\(354\) −37.5311 + 56.1692i −0.106020 + 0.158670i
\(355\) 0 0
\(356\) 448.863i 1.26085i
\(357\) 100.232 41.5176i 0.280763 0.116296i
\(358\) 763.416 2.13245
\(359\) 136.163 328.726i 0.379284 0.915672i −0.612817 0.790225i \(-0.709964\pi\)
0.992100 0.125447i \(-0.0400364\pi\)
\(360\) 0 0
\(361\) 249.670 + 249.670i 0.691608 + 0.691608i
\(362\) 894.758 177.978i 2.47171 0.491653i
\(363\) 37.6883 25.1825i 0.103824 0.0693733i
\(364\) −44.9484 8.94078i −0.123485 0.0245626i
\(365\) 0 0
\(366\) −34.3200 82.8558i −0.0937705 0.226382i
\(367\) 15.9442 80.1568i 0.0434446 0.218411i −0.952964 0.303083i \(-0.901984\pi\)
0.996409 + 0.0846717i \(0.0269842\pi\)
\(368\) −47.5940 71.2294i −0.129331 0.193558i
\(369\) −35.5345 178.644i −0.0962994 0.484130i
\(370\) 0 0
\(371\) 262.177 392.376i 0.706677 1.05762i
\(372\) 49.7738 + 20.6170i 0.133801 + 0.0554220i
\(373\) 76.8209i 0.205954i −0.994684 0.102977i \(-0.967163\pi\)
0.994684 0.102977i \(-0.0328368\pi\)
\(374\) 81.0799 407.616i 0.216791 1.08988i
\(375\) 0 0
\(376\) 106.219 256.436i 0.282498 0.682009i
\(377\) −2.88419 1.92716i −0.00765038 0.00511182i
\(378\) −236.883 236.883i −0.626676 0.626676i
\(379\) 577.940 114.959i 1.52491 0.303323i 0.639739 0.768592i \(-0.279043\pi\)
0.885169 + 0.465269i \(0.154043\pi\)
\(380\) 0 0
\(381\) −95.0264 18.9019i −0.249413 0.0496113i
\(382\) 370.735 153.564i 0.970511 0.401999i
\(383\) 89.4016 + 215.834i 0.233424 + 0.563537i 0.996576 0.0826832i \(-0.0263490\pi\)
−0.763151 + 0.646220i \(0.776349\pi\)
\(384\) −17.1280 + 86.1081i −0.0446041 + 0.224240i
\(385\) 0 0
\(386\) 188.175 + 946.017i 0.487499 + 2.45082i
\(387\) 137.025 137.025i 0.354070 0.354070i
\(388\) −70.5616 + 105.603i −0.181860 + 0.272172i
\(389\) 372.916 + 154.467i 0.958653 + 0.397087i 0.806477 0.591266i \(-0.201372\pi\)
0.152177 + 0.988353i \(0.451372\pi\)
\(390\) 0 0
\(391\) −28.4569 143.062i −0.0727797 0.365888i
\(392\) −44.7557 −0.114173
\(393\) −53.2707 + 128.607i −0.135549 + 0.327244i
\(394\) 291.143 + 194.536i 0.738943 + 0.493746i
\(395\) 0 0
\(396\) −341.154 + 67.8598i −0.861501 + 0.171363i
\(397\) −219.332 + 146.553i −0.552474 + 0.369151i −0.800251 0.599666i \(-0.795300\pi\)
0.247776 + 0.968817i \(0.420300\pi\)
\(398\) −878.415 174.728i −2.20707 0.439014i
\(399\) 16.5852 6.86980i 0.0415668 0.0172175i
\(400\) 0 0
\(401\) 46.6830 234.691i 0.116416 0.585265i −0.877904 0.478837i \(-0.841059\pi\)
0.994320 0.106428i \(-0.0339414\pi\)
\(402\) 160.186 + 239.736i 0.398473 + 0.596358i
\(403\) 2.82952 + 14.2250i 0.00702114 + 0.0352977i
\(404\) 28.1305 28.1305i 0.0696300 0.0696300i
\(405\) 0 0
\(406\) −67.4525 27.9397i −0.166139 0.0688171i
\(407\) 191.154i 0.469666i
\(408\) −27.0597 + 40.4977i −0.0663228 + 0.0992590i
\(409\) 259.903 0.635461 0.317730 0.948181i \(-0.397079\pi\)
0.317730 + 0.948181i \(0.397079\pi\)
\(410\) 0 0
\(411\) 116.951 + 78.1442i 0.284552 + 0.190132i
\(412\) 151.812 + 151.812i 0.368475 + 0.368475i
\(413\) −211.569 + 42.0837i −0.512274 + 0.101898i
\(414\) −180.122 + 120.354i −0.435078 + 0.290710i
\(415\) 0 0
\(416\) −46.2687 + 19.1651i −0.111223 + 0.0460700i
\(417\) −55.8343 134.796i −0.133895 0.323252i
\(418\) 13.4161 67.4471i 0.0320958 0.161357i
\(419\) −95.3087 142.640i −0.227467 0.340429i 0.700127 0.714018i \(-0.253127\pi\)
−0.927594 + 0.373590i \(0.878127\pi\)
\(420\) 0 0
\(421\) 443.214 443.214i 1.05276 1.05276i 0.0542356 0.998528i \(-0.482728\pi\)
0.998528 0.0542356i \(-0.0172722\pi\)
\(422\) −386.399 + 578.287i −0.915637 + 1.37035i
\(423\) 606.497 + 251.219i 1.43380 + 0.593899i
\(424\) 211.859i 0.499668i
\(425\) 0 0
\(426\) 260.659 0.611875
\(427\) 109.591 264.575i 0.256653 0.619614i
\(428\) 379.675 + 253.691i 0.887090 + 0.592735i
\(429\) 5.24147 + 5.24147i 0.0122179 + 0.0122179i
\(430\) 0 0
\(431\) −633.734 + 423.447i −1.47038 + 0.982477i −0.475684 + 0.879616i \(0.657799\pi\)
−0.994696 + 0.102860i \(0.967201\pi\)
\(432\) −137.961 27.4422i −0.319355 0.0635237i
\(433\) −87.4681 + 36.2305i −0.202005 + 0.0836732i −0.481392 0.876505i \(-0.659869\pi\)
0.279387 + 0.960179i \(0.409869\pi\)
\(434\) 116.821 + 282.031i 0.269173 + 0.649841i
\(435\) 0 0
\(436\) −53.4669 80.0189i −0.122630 0.183530i
\(437\) −4.70868 23.6721i −0.0107750 0.0541696i
\(438\) 106.158 106.158i 0.242369 0.242369i
\(439\) −20.5441 + 30.7465i −0.0467976 + 0.0700375i −0.854131 0.520059i \(-0.825910\pi\)
0.807333 + 0.590096i \(0.200910\pi\)
\(440\) 0 0
\(441\) 105.852i 0.240027i
\(442\) −58.1410 −0.131541
\(443\) 634.146 1.43148 0.715740 0.698367i \(-0.246089\pi\)
0.715740 + 0.698367i \(0.246089\pi\)
\(444\) −38.0134 + 91.7724i −0.0856157 + 0.206695i
\(445\) 0 0
\(446\) −777.880 777.880i −1.74412 1.74412i
\(447\) 35.7076 7.10268i 0.0798828 0.0158897i
\(448\) −615.626 + 411.348i −1.37416 + 0.918187i
\(449\) 433.336 + 86.1959i 0.965114 + 0.191973i 0.652400 0.757874i \(-0.273762\pi\)
0.312713 + 0.949848i \(0.398762\pi\)
\(450\) 0 0
\(451\) 67.4939 + 162.945i 0.149654 + 0.361296i
\(452\) 61.1029 307.185i 0.135183 0.679613i
\(453\) −59.3080 88.7607i −0.130923 0.195940i
\(454\) −57.2435 287.782i −0.126087 0.633882i
\(455\) 0 0
\(456\) −4.47749 + 6.70103i −0.00981905 + 0.0146953i
\(457\) −246.501 102.104i −0.539390 0.223423i 0.0963202 0.995350i \(-0.469293\pi\)
−0.635710 + 0.771928i \(0.719293\pi\)
\(458\) 1094.83i 2.39046i
\(459\) −199.145 133.064i −0.433866 0.289900i
\(460\) 0 0
\(461\) 172.768 417.100i 0.374769 0.904772i −0.618159 0.786053i \(-0.712121\pi\)
0.992928 0.118719i \(-0.0378787\pi\)
\(462\) 129.724 + 86.6785i 0.280787 + 0.187616i
\(463\) 57.1171 + 57.1171i 0.123363 + 0.123363i 0.766093 0.642730i \(-0.222198\pi\)
−0.642730 + 0.766093i \(0.722198\pi\)
\(464\) −30.0670 + 5.98070i −0.0647996 + 0.0128894i
\(465\) 0 0
\(466\) −831.808 165.457i −1.78499 0.355058i
\(467\) −76.1879 + 31.5580i −0.163143 + 0.0675761i −0.462760 0.886483i \(-0.653141\pi\)
0.299617 + 0.954059i \(0.403141\pi\)
\(468\) 18.6218 + 44.9569i 0.0397901 + 0.0960619i
\(469\) −179.617 + 902.998i −0.382979 + 1.92537i
\(470\) 0 0
\(471\) −5.70949 28.7035i −0.0121221 0.0609417i
\(472\) 68.4785 68.4785i 0.145082 0.145082i
\(473\) −104.247 + 156.017i −0.220396 + 0.329846i
\(474\) 216.538 + 89.6931i 0.456832 + 0.189226i
\(475\) 0 0
\(476\) −676.380 + 134.540i −1.42097 + 0.282648i
\(477\) −501.069 −1.05046
\(478\) 380.630 918.923i 0.796298 1.92243i
\(479\) 382.794 + 255.775i 0.799153 + 0.533977i 0.886788 0.462176i \(-0.152931\pi\)
−0.0876357 + 0.996153i \(0.527931\pi\)
\(480\) 0 0
\(481\) −26.2278 + 5.21704i −0.0545277 + 0.0108462i
\(482\) −610.191 + 407.717i −1.26596 + 0.845885i
\(483\) 53.7057 + 10.6827i 0.111192 + 0.0221174i
\(484\) −266.195 + 110.261i −0.549989 + 0.227813i
\(485\) 0 0
\(486\) −105.413 + 529.948i −0.216900 + 1.09043i
\(487\) −290.646 434.982i −0.596809 0.893187i 0.402948 0.915223i \(-0.367985\pi\)
−0.999757 + 0.0220352i \(0.992985\pi\)
\(488\) 25.0819 + 126.095i 0.0513974 + 0.258392i
\(489\) −91.7633 + 91.7633i −0.187655 + 0.187655i
\(490\) 0 0
\(491\) −451.862 187.167i −0.920289 0.381196i −0.128303 0.991735i \(-0.540953\pi\)
−0.791986 + 0.610539i \(0.790953\pi\)
\(492\) 91.6511i 0.186283i
\(493\) −51.1951 10.1833i −0.103844 0.0206559i
\(494\) −9.62041 −0.0194745
\(495\) 0 0
\(496\) 106.577 + 71.2122i 0.214872 + 0.143573i
\(497\) 588.550 + 588.550i 1.18421 + 1.18421i
\(498\) 286.692 57.0266i 0.575687 0.114511i
\(499\) −421.610 + 281.711i −0.844910 + 0.564551i −0.900972 0.433876i \(-0.857145\pi\)
0.0560623 + 0.998427i \(0.482145\pi\)
\(500\) 0 0
\(501\) 83.1249 34.4315i 0.165918 0.0687255i
\(502\) 254.709 + 614.921i 0.507388 + 1.22494i
\(503\) 131.577 661.484i 0.261585 1.31508i −0.596932 0.802292i \(-0.703614\pi\)
0.858517 0.512785i \(-0.171386\pi\)
\(504\) 128.327 + 192.055i 0.254617 + 0.381062i
\(505\) 0 0
\(506\) 148.326 148.326i 0.293134 0.293134i
\(507\) −75.7115 + 113.310i −0.149332 + 0.223492i
\(508\) 568.996 + 235.686i 1.12007 + 0.463949i
\(509\) 349.504i 0.686648i −0.939217 0.343324i \(-0.888447\pi\)
0.939217 0.343324i \(-0.111553\pi\)
\(510\) 0 0
\(511\) 479.395 0.938150
\(512\) −223.266 + 539.012i −0.436067 + 1.05276i
\(513\) −32.9519 22.0177i −0.0642337 0.0429196i
\(514\) 696.221 + 696.221i 1.35451 + 1.35451i
\(515\) 0 0
\(516\) 81.0747 54.1724i 0.157121 0.104985i
\(517\) −623.444 124.011i −1.20589 0.239866i
\(518\) −520.006 + 215.393i −1.00387 + 0.415818i
\(519\) 55.3631 + 133.658i 0.106673 + 0.257530i
\(520\) 0 0
\(521\) −175.223 262.240i −0.336320 0.503339i 0.624307 0.781179i \(-0.285381\pi\)
−0.960627 + 0.277840i \(0.910381\pi\)
\(522\) 15.1238 + 76.0323i 0.0289727 + 0.145656i
\(523\) 145.221 145.221i 0.277669 0.277669i −0.554509 0.832178i \(-0.687094\pi\)
0.832178 + 0.554509i \(0.187094\pi\)
\(524\) 491.600 735.731i 0.938168 1.40407i
\(525\) 0 0
\(526\) 419.991i 0.798461i
\(527\) 121.253 + 181.468i 0.230082 + 0.344342i
\(528\) 65.5098 0.124072
\(529\) −174.266 + 420.715i −0.329425 + 0.795302i
\(530\) 0 0
\(531\) 161.959 + 161.959i 0.305007 + 0.305007i
\(532\) −111.919 + 22.2620i −0.210373 + 0.0418459i
\(533\) 20.5152 13.7078i 0.0384901 0.0257182i
\(534\) −209.664 41.7048i −0.392630 0.0780989i
\(535\) 0 0
\(536\) −158.177 381.873i −0.295106 0.712450i
\(537\) −39.9728 + 200.957i −0.0744372 + 0.374221i
\(538\) 546.412 + 817.764i 1.01564 + 1.52001i
\(539\) 19.9961 + 100.527i 0.0370985 + 0.186507i
\(540\) 0 0
\(541\) 439.282 657.431i 0.811981 1.21522i −0.161596 0.986857i \(-0.551664\pi\)
0.973577 0.228358i \(-0.0733358\pi\)
\(542\) 53.6632 + 22.2280i 0.0990096 + 0.0410111i
\(543\) 244.849i 0.450919i
\(544\) −532.885 + 532.885i −0.979568 + 0.979568i
\(545\) 0 0
\(546\) 8.35251 20.1647i 0.0152976 0.0369317i
\(547\) 783.860 + 523.758i 1.43302 + 0.957511i 0.998380 + 0.0569051i \(0.0181232\pi\)
0.434637 + 0.900606i \(0.356877\pi\)
\(548\) −632.218 632.218i −1.15368 1.15368i
\(549\) −298.229 + 59.3214i −0.543222 + 0.108054i
\(550\) 0 0
\(551\) −8.47111 1.68501i −0.0153741 0.00305809i
\(552\) −22.7119 + 9.40756i −0.0411447 + 0.0170427i
\(553\) 286.408 + 691.450i 0.517917 + 1.25036i
\(554\) −181.908 + 914.512i −0.328353 + 1.65074i
\(555\) 0 0
\(556\) 180.934 + 909.619i 0.325422 + 1.63601i
\(557\) 303.284 303.284i 0.544495 0.544495i −0.380348 0.924843i \(-0.624196\pi\)
0.924843 + 0.380348i \(0.124196\pi\)
\(558\) 180.079 269.507i 0.322722 0.482987i
\(559\) 24.2519 + 10.0455i 0.0433844 + 0.0179704i
\(560\) 0 0
\(561\) 103.053 + 42.6859i 0.183695 + 0.0760889i
\(562\) −261.932 −0.466071
\(563\) 264.879 639.473i 0.470477 1.13583i −0.493476 0.869759i \(-0.664274\pi\)
0.963953 0.266072i \(-0.0857260\pi\)
\(564\) 274.652 + 183.517i 0.486972 + 0.325384i
\(565\) 0 0
\(566\) −22.2142 + 4.41867i −0.0392476 + 0.00780684i
\(567\) −415.428 + 277.580i −0.732677 + 0.489559i
\(568\) −366.491 72.8996i −0.645231 0.128344i
\(569\) −370.173 + 153.331i −0.650567 + 0.269474i −0.683463 0.729985i \(-0.739527\pi\)
0.0328958 + 0.999459i \(0.489527\pi\)
\(570\) 0 0
\(571\) 127.142 639.187i 0.222666 1.11942i −0.694065 0.719912i \(-0.744182\pi\)
0.916731 0.399505i \(-0.130818\pi\)
\(572\) −26.1777 39.1776i −0.0457651 0.0684924i
\(573\) 21.0112 + 105.631i 0.0366688 + 0.184347i
\(574\) 367.214 367.214i 0.639745 0.639745i
\(575\) 0 0
\(576\) 726.319 + 300.851i 1.26097 + 0.522311i
\(577\) 684.109i 1.18563i −0.805339 0.592815i \(-0.798017\pi\)
0.805339 0.592815i \(-0.201983\pi\)
\(578\) −808.303 + 334.810i −1.39845 + 0.579256i
\(579\) −258.876 −0.447109
\(580\) 0 0
\(581\) 776.094 + 518.569i 1.33579 + 0.892546i
\(582\) −42.7712 42.7712i −0.0734900 0.0734900i
\(583\) 475.863 94.6550i 0.816232 0.162359i
\(584\) −178.950 + 119.570i −0.306420 + 0.204744i
\(585\) 0 0
\(586\) −215.405 + 89.2236i −0.367585 + 0.152259i
\(587\) 141.750 + 342.216i 0.241483 + 0.582991i 0.997430 0.0716408i \(-0.0228235\pi\)
−0.755948 + 0.654632i \(0.772824\pi\)
\(588\) 10.3910 52.2391i 0.0176718 0.0888420i
\(589\) 20.0634 + 30.0270i 0.0340635 + 0.0509796i
\(590\) 0 0
\(591\) −66.4527 + 66.4527i −0.112441 + 0.112441i
\(592\) −131.300 + 196.505i −0.221791 + 0.331934i
\(593\) −585.245 242.416i −0.986922 0.408797i −0.169937 0.985455i \(-0.554356\pi\)
−0.816985 + 0.576658i \(0.804356\pi\)
\(594\) 344.431i 0.579850i
\(595\) 0 0
\(596\) −231.425 −0.388297
\(597\) 91.9883 222.080i 0.154084 0.371992i
\(598\) −24.3996 16.3033i −0.0408020 0.0272630i
\(599\) 315.855 + 315.855i 0.527304 + 0.527304i 0.919768 0.392463i \(-0.128377\pi\)
−0.392463 + 0.919768i \(0.628377\pi\)
\(600\) 0 0
\(601\) 362.279 242.067i 0.602794 0.402774i −0.216388 0.976307i \(-0.569428\pi\)
0.819182 + 0.573533i \(0.194428\pi\)
\(602\) 541.887 + 107.788i 0.900145 + 0.179050i
\(603\) 903.170 374.105i 1.49779 0.620407i
\(604\) 259.680 + 626.922i 0.429933 + 1.03795i
\(605\) 0 0
\(606\) 10.5261 + 15.7535i 0.0173699 + 0.0259958i
\(607\) −123.803 622.400i −0.203959 1.02537i −0.938098 0.346371i \(-0.887414\pi\)
0.734139 0.679000i \(-0.237586\pi\)
\(608\) −88.1749 + 88.1749i −0.145025 + 0.145025i
\(609\) 10.8865 16.2928i 0.0178760 0.0267534i
\(610\) 0 0
\(611\) 88.9259i 0.145542i
\(612\) 517.778 + 517.778i 0.846042 + 0.846042i
\(613\) 692.422 1.12956 0.564782 0.825240i \(-0.308960\pi\)
0.564782 + 0.825240i \(0.308960\pi\)
\(614\) 184.992 446.610i 0.301290 0.727377i
\(615\) 0 0
\(616\) −158.152 158.152i −0.256740 0.256740i
\(617\) 263.077 52.3292i 0.426381 0.0848124i 0.0227645 0.999741i \(-0.492753\pi\)
0.403616 + 0.914928i \(0.367753\pi\)
\(618\) −85.0165 + 56.8062i −0.137567 + 0.0919195i
\(619\) −153.549 30.5428i −0.248060 0.0493422i 0.0694940 0.997582i \(-0.477862\pi\)
−0.317554 + 0.948240i \(0.602862\pi\)
\(620\) 0 0
\(621\) −46.2610 111.684i −0.0744944 0.179845i
\(622\) −196.680 + 988.775i −0.316205 + 1.58967i
\(623\) −379.241 567.575i −0.608734 0.911035i
\(624\) −1.78791 8.98845i −0.00286525 0.0144046i
\(625\) 0 0
\(626\) −663.623 + 993.182i −1.06010 + 1.58655i
\(627\) 17.0519 + 7.06311i 0.0271959 + 0.0112649i
\(628\) 186.031i 0.296228i
\(629\) −334.589 + 223.565i −0.531938 + 0.355429i
\(630\) 0 0
\(631\) −119.803 + 289.230i −0.189862 + 0.458368i −0.989933 0.141538i \(-0.954795\pi\)
0.800071 + 0.599906i \(0.204795\pi\)
\(632\) −279.372 186.670i −0.442044 0.295365i
\(633\) −131.992 131.992i −0.208519 0.208519i
\(634\) 412.999 82.1506i 0.651418 0.129575i
\(635\) 0 0
\(636\) −247.283 49.1877i −0.388810 0.0773392i
\(637\) 13.2473 5.48723i 0.0207965 0.00861418i
\(638\) −28.7259 69.3506i −0.0450250 0.108700i
\(639\) 172.415 866.790i 0.269820 1.35648i
\(640\) 0 0
\(641\) −72.2074 363.011i −0.112648 0.566320i −0.995345 0.0963771i \(-0.969275\pi\)
0.882697 0.469943i \(-0.155725\pi\)
\(642\) −153.776 + 153.776i −0.239526 + 0.239526i
\(643\) 122.220 182.915i 0.190077 0.284471i −0.724175 0.689616i \(-0.757779\pi\)
0.914252 + 0.405146i \(0.132779\pi\)
\(644\) −321.577 133.202i −0.499344 0.206835i
\(645\) 0 0
\(646\) −133.748 + 55.4001i −0.207040 + 0.0857586i
\(647\) −769.098 −1.18871 −0.594357 0.804201i \(-0.702593\pi\)
−0.594357 + 0.804201i \(0.702593\pi\)
\(648\) 85.8381 207.231i 0.132466 0.319802i
\(649\) −184.407 123.217i −0.284140 0.189856i
\(650\) 0 0
\(651\) −80.3568 + 15.9840i −0.123436 + 0.0245529i
\(652\) 685.889 458.297i 1.05198 0.702909i
\(653\) 41.6201 + 8.27876i 0.0637368 + 0.0126780i 0.226856 0.973928i \(-0.427155\pi\)
−0.163119 + 0.986606i \(0.552155\pi\)
\(654\) 42.3446 17.5397i 0.0647472 0.0268192i
\(655\) 0 0
\(656\) 42.5406 213.866i 0.0648485 0.326015i
\(657\) −282.796 423.234i −0.430436 0.644192i
\(658\) 365.148 + 1835.72i 0.554936 + 2.78985i
\(659\) 472.719 472.719i 0.717328 0.717328i −0.250729 0.968057i \(-0.580670\pi\)
0.968057 + 0.250729i \(0.0806703\pi\)
\(660\) 0 0
\(661\) −380.158 157.467i −0.575126 0.238225i 0.0761113 0.997099i \(-0.475750\pi\)
−0.651237 + 0.758874i \(0.725750\pi\)
\(662\) 480.756i 0.726218i
\(663\) 3.04428 15.3046i 0.00459168 0.0230839i
\(664\) −419.043 −0.631089
\(665\) 0 0
\(666\) 496.914 + 332.027i 0.746116 + 0.498539i
\(667\) −18.6292 18.6292i −0.0279298 0.0279298i
\(668\) −560.937 + 111.577i −0.839725 + 0.167032i
\(669\) 245.494 164.034i 0.366957 0.245193i
\(670\) 0 0
\(671\) 272.020 112.675i 0.405395 0.167920i
\(672\) −108.264 261.372i −0.161107 0.388946i
\(673\) −3.16371 + 15.9051i −0.00470091 + 0.0236331i −0.983065 0.183260i \(-0.941335\pi\)
0.978364 + 0.206893i \(0.0663351\pi\)
\(674\) −811.269 1214.15i −1.20366 1.80141i
\(675\) 0 0
\(676\) 612.536 612.536i 0.906119 0.906119i
\(677\) 571.240 854.921i 0.843782 1.26281i −0.119099 0.992882i \(-0.538001\pi\)
0.962881 0.269926i \(-0.0869993\pi\)
\(678\) 137.809 + 57.0825i 0.203258 + 0.0841924i
\(679\) 193.149i 0.284461i
\(680\) 0 0
\(681\) 78.7512 0.115641
\(682\) −120.108 + 289.967i −0.176112 + 0.425172i
\(683\) −188.201 125.752i −0.275551 0.184117i 0.410114 0.912034i \(-0.365489\pi\)
−0.685666 + 0.727917i \(0.740489\pi\)
\(684\) 85.6752 + 85.6752i 0.125256 + 0.125256i
\(685\) 0 0
\(686\) −717.830 + 479.639i −1.04640 + 0.699181i
\(687\) −288.197 57.3259i −0.419500 0.0834438i
\(688\) 214.331 88.7787i 0.311527 0.129039i
\(689\) −25.9748 62.7087i −0.0376993 0.0910141i
\(690\) 0 0
\(691\) −21.7058 32.4851i −0.0314122 0.0470117i 0.815431 0.578854i \(-0.196500\pi\)
−0.846843 + 0.531842i \(0.821500\pi\)
\(692\) −179.407 901.942i −0.259259 1.30338i
\(693\) 374.046 374.046i 0.539749 0.539749i
\(694\) 33.2845 49.8138i 0.0479604 0.0717778i
\(695\) 0 0
\(696\) 8.79713i 0.0126395i
\(697\) 206.274 308.711i 0.295946 0.442914i
\(698\) −1185.05 −1.69778
\(699\) 87.1075 210.296i 0.124617 0.300853i
\(700\) 0 0
\(701\) −401.261 401.261i −0.572412 0.572412i 0.360390 0.932802i \(-0.382644\pi\)
−0.932802 + 0.360390i \(0.882644\pi\)
\(702\) −47.2585 + 9.40031i −0.0673198 + 0.0133908i
\(703\) −55.3634 + 36.9927i −0.0787531 + 0.0526212i
\(704\) −746.614 148.511i −1.06053 0.210953i
\(705\) 0 0
\(706\) 226.136 + 545.941i 0.320306 + 0.773288i
\(707\) −11.8030 + 59.3377i −0.0166945 + 0.0839288i
\(708\) 64.0298 + 95.8273i 0.0904375 + 0.135349i
\(709\) 55.6759 + 279.901i 0.0785273 + 0.394783i 0.999980 + 0.00629329i \(0.00200323\pi\)
−0.921453 + 0.388490i \(0.872997\pi\)
\(710\) 0 0
\(711\) 441.495 660.744i 0.620950 0.929317i
\(712\) 283.128 + 117.276i 0.397652 + 0.164713i
\(713\) 110.156i 0.154496i
\(714\) 328.438i 0.459998i
\(715\) 0 0
\(716\) 498.416 1203.28i 0.696112 1.68056i
\(717\) 221.961 + 148.310i 0.309569 + 0.206848i
\(718\) −761.667 761.667i −1.06082 1.06082i
\(719\) 601.644 119.674i 0.836779 0.166446i 0.241941 0.970291i \(-0.422216\pi\)
0.594838 + 0.803845i \(0.297216\pi\)
\(720\) 0 0
\(721\) −320.226 63.6970i −0.444142 0.0883453i
\(722\) 987.549 409.056i 1.36780 0.566560i
\(723\) −75.3748 181.971i −0.104253 0.251689i
\(724\) 303.640 1526.50i 0.419392 2.10842i
\(725\) 0 0
\(726\) −26.7705 134.585i −0.0368740 0.185378i
\(727\) −244.413 + 244.413i −0.336194 + 0.336194i −0.854933 0.518739i \(-0.826402\pi\)
0.518739 + 0.854933i \(0.326402\pi\)
\(728\) −17.3833 + 26.0160i −0.0238782 + 0.0357363i
\(729\) 394.941 + 163.590i 0.541758 + 0.224403i
\(730\) 0 0
\(731\) 395.009 0.540368
\(732\) −153.003 −0.209020
\(733\) −516.266 + 1246.38i −0.704319 + 1.70038i 0.00941053 + 0.999956i \(0.497004\pi\)
−0.713730 + 0.700421i \(0.752996\pi\)
\(734\) −205.719 137.457i −0.280271 0.187271i
\(735\) 0 0
\(736\) −373.058 + 74.2058i −0.506872 + 0.100823i
\(737\) −787.066 + 525.901i −1.06793 + 0.713569i
\(738\) −540.816 107.575i −0.732813 0.145766i
\(739\) 602.925 249.740i 0.815866 0.337943i 0.0645741 0.997913i \(-0.479431\pi\)
0.751292 + 0.659970i \(0.229431\pi\)
\(740\) 0 0
\(741\) 0.503729 2.53241i 0.000679796 0.00341756i
\(742\) −793.700 1187.86i −1.06968 1.60088i
\(743\) 43.5044 + 218.711i 0.0585523 + 0.294362i 0.998955 0.0456999i \(-0.0145518\pi\)
−0.940403 + 0.340062i \(0.889552\pi\)
\(744\) 26.0091 26.0091i 0.0349584 0.0349584i
\(745\) 0 0
\(746\) −214.860 88.9980i −0.288016 0.119300i
\(747\) 991.082i 1.32675i
\(748\) −589.542 393.920i −0.788158 0.526631i
\(749\) −694.430 −0.927143
\(750\) 0 0
\(751\) −373.353 249.467i −0.497142 0.332180i 0.281592 0.959534i \(-0.409138\pi\)
−0.778734 + 0.627355i \(0.784138\pi\)
\(752\) 555.715 + 555.715i 0.738982 + 0.738982i
\(753\) −175.204 + 34.8503i −0.232675 + 0.0462820i
\(754\) −8.73143 + 5.83416i −0.0115802 + 0.00773761i
\(755\) 0 0
\(756\) −528.027 + 218.716i −0.698449 + 0.289307i
\(757\) 17.6369 + 42.5792i 0.0232984 + 0.0562473i 0.935101 0.354382i \(-0.115309\pi\)
−0.911802 + 0.410630i \(0.865309\pi\)
\(758\) 348.021 1749.62i 0.459131 2.30821i
\(759\) 31.2779 + 46.8107i 0.0412093 + 0.0616741i
\(760\) 0 0
\(761\) −552.081 + 552.081i −0.725467 + 0.725467i −0.969713 0.244246i \(-0.921460\pi\)
0.244246 + 0.969713i \(0.421460\pi\)
\(762\) −162.956 + 243.881i −0.213853 + 0.320054i
\(763\) 135.215 + 56.0079i 0.177215 + 0.0734048i
\(764\) 684.604i 0.896079i
\(765\) 0 0
\(766\) 707.240 0.923289
\(767\) −11.8734 + 28.6649i −0.0154803 + 0.0373727i
\(768\) −33.7429 22.5463i −0.0439360 0.0293571i
\(769\) −625.504 625.504i −0.813400 0.813400i 0.171742 0.985142i \(-0.445060\pi\)
−0.985142 + 0.171742i \(0.945060\pi\)
\(770\) 0 0
\(771\) −219.723 + 146.814i −0.284984 + 0.190420i
\(772\) 1613.95 + 321.035i 2.09061 + 0.415848i
\(773\) −1123.75 + 465.474i −1.45376 + 0.602166i −0.963090 0.269181i \(-0.913247\pi\)
−0.490667 + 0.871347i \(0.663247\pi\)
\(774\) −224.500 541.991i −0.290052 0.700247i
\(775\) 0 0
\(776\) 48.1751 + 72.0992i 0.0620813 + 0.0929113i
\(777\) −29.4711 148.161i −0.0379293 0.190683i
\(778\) 864.056 864.056i 1.11061 1.11061i
\(779\) 34.1316 51.0816i 0.0438146 0.0655733i
\(780\) 0 0
\(781\) 855.757i 1.09572i
\(782\) −433.098 86.1486i −0.553834 0.110164i
\(783\) −43.2592 −0.0552481
\(784\) 48.4944 117.076i 0.0618551 0.149331i
\(785\) 0 0
\(786\) 297.985 + 297.985i 0.379116 + 0.379116i
\(787\) 190.336 37.8601i 0.241850 0.0481069i −0.0726771 0.997356i \(-0.523154\pi\)
0.314527 + 0.949249i \(0.398154\pi\)
\(788\) 496.704 331.887i 0.630336 0.421177i
\(789\) −110.556 21.9909i −0.140121 0.0278718i
\(790\) 0 0
\(791\) 182.276 + 440.053i 0.230437 + 0.556324i
\(792\) −46.3305 + 232.919i −0.0584981 + 0.294090i
\(793\) −22.8839 34.2481i −0.0288573 0.0431881i
\(794\) 155.795 + 783.233i 0.196215 + 0.986440i
\(795\) 0 0
\(796\) −848.899 + 1270.47i −1.06646 + 1.59606i
\(797\) −118.577 49.1164i −0.148780 0.0616266i 0.307051 0.951693i \(-0.400658\pi\)
−0.455831 + 0.890066i \(0.650658\pi\)
\(798\) 54.3457i 0.0681024i
\(799\) 512.088 + 1236.29i 0.640911 + 1.54730i
\(800\) 0 0
\(801\) −277.369 + 669.628i −0.346278 + 0.835990i
\(802\) −602.324 402.460i −0.751028 0.501821i
\(803\) 348.522 + 348.522i 0.434025 + 0.434025i
\(804\) 482.449 95.9651i 0.600061 0.119360i
\(805\) 0 0
\(806\) 43.0638 + 8.56592i 0.0534290 + 0.0106277i
\(807\) −243.873 + 101.016i −0.302197 + 0.125174i
\(808\) −10.3941 25.0936i −0.0128640 0.0310564i
\(809\) 68.1098 342.411i 0.0841902 0.423253i −0.915587 0.402121i \(-0.868273\pi\)
0.999777 0.0211316i \(-0.00672688\pi\)
\(810\) 0 0
\(811\) 36.2150 + 182.065i 0.0446547 + 0.224494i 0.996668 0.0815613i \(-0.0259906\pi\)
−0.952014 + 0.306056i \(0.900991\pi\)
\(812\) −88.0762 + 88.0762i −0.108468 + 0.108468i
\(813\) −8.66099 + 12.9621i −0.0106531 + 0.0159435i
\(814\) −534.639 221.455i −0.656804 0.272057i
\(815\) 0 0
\(816\) −76.6173 114.666i −0.0938937 0.140522i
\(817\) 65.3610 0.0800013
\(818\) 301.101 726.923i 0.368095 0.888659i
\(819\) −61.5306 41.1134i −0.0751290 0.0501996i
\(820\) 0 0
\(821\) 1545.78 307.474i 1.88280 0.374512i 0.886669 0.462404i \(-0.153013\pi\)
0.996130 + 0.0878920i \(0.0280130\pi\)
\(822\) 354.051 236.569i 0.430718 0.287797i
\(823\) −986.291 196.185i −1.19841 0.238378i −0.444757 0.895651i \(-0.646710\pi\)
−0.753653 + 0.657273i \(0.771710\pi\)
\(824\) 135.422 56.0937i 0.164347 0.0680749i
\(825\) 0 0
\(826\) −127.402 + 640.491i −0.154239 + 0.775413i
\(827\) 883.014 + 1321.52i 1.06773 + 1.59797i 0.764001 + 0.645216i \(0.223232\pi\)
0.303731 + 0.952758i \(0.401768\pi\)
\(828\) 72.1020 + 362.481i 0.0870798 + 0.437780i
\(829\) −269.747 + 269.747i −0.325388 + 0.325388i −0.850830 0.525442i \(-0.823900\pi\)
0.525442 + 0.850830i \(0.323900\pi\)
\(830\) 0 0
\(831\) −231.205 95.7684i −0.278225 0.115245i
\(832\) 106.494i 0.127998i
\(833\) 152.572 152.572i 0.183160 0.183160i
\(834\) −441.695 −0.529611
\(835\) 0 0
\(836\) −97.5499 65.1807i −0.116686 0.0779674i
\(837\) 127.898 + 127.898i 0.152805 + 0.152805i
\(838\) −509.365 + 101.319i −0.607834 + 0.120906i
\(839\) −30.7798 + 20.5664i −0.0366862 + 0.0245130i −0.573778 0.819011i \(-0.694523\pi\)
0.537092 + 0.843524i \(0.319523\pi\)
\(840\) 0 0
\(841\) 768.273 318.229i 0.913523 0.378393i
\(842\) −726.154 1753.09i −0.862416 2.08206i
\(843\) 13.7149 68.9493i 0.0162691 0.0817904i
\(844\) 659.215 + 986.584i 0.781060 + 1.16894i
\(845\) 0 0
\(846\) 1405.27 1405.27i 1.66107 1.66107i
\(847\) 243.437 364.329i 0.287411 0.430141i
\(848\) −554.200 229.557i −0.653538 0.270704i
\(849\) 6.07887i 0.00716004i
\(850\) 0 0
\(851\) −203.104 −0.238665
\(852\) 170.178 410.846i 0.199739 0.482213i
\(853\) 65.5718 + 43.8137i 0.0768720 + 0.0513642i 0.593412 0.804899i \(-0.297780\pi\)
−0.516540 + 0.856263i \(0.672780\pi\)
\(854\) −613.028 613.028i −0.717831 0.717831i
\(855\) 0 0
\(856\) 259.219 173.204i 0.302825 0.202342i
\(857\) 653.288 + 129.947i 0.762297 + 0.151630i 0.560905 0.827880i \(-0.310453\pi\)
0.201392 + 0.979511i \(0.435453\pi\)
\(858\) 20.7322 8.58754i 0.0241634 0.0100088i
\(859\) −530.649 1281.10i −0.617752 1.49138i −0.854308 0.519767i \(-0.826019\pi\)
0.236556 0.971618i \(-0.423981\pi\)
\(860\) 0 0
\(861\) 77.4355 + 115.890i 0.0899367 + 0.134600i
\(862\) 450.150 + 2263.06i 0.522216 + 2.62536i
\(863\) 375.548 375.548i 0.435166 0.435166i −0.455215 0.890381i \(-0.650438\pi\)
0.890381 + 0.455215i \(0.150438\pi\)
\(864\) −346.986 + 519.301i −0.401604 + 0.601042i
\(865\) 0 0
\(866\) 286.613i 0.330962i
\(867\) −45.8102 230.303i −0.0528376 0.265632i
\(868\) 520.802 0.600002
\(869\) −294.467 + 710.907i −0.338858 + 0.818075i
\(870\) 0 0
\(871\) 93.6384 + 93.6384i 0.107507 + 0.107507i
\(872\) −64.4428 + 12.8185i −0.0739023 + 0.0147001i
\(873\) −170.522 + 113.939i −0.195329 + 0.130515i
\(874\) −71.6635 14.2548i −0.0819949 0.0163098i
\(875\) 0 0
\(876\) −98.0161 236.632i −0.111891 0.270128i
\(877\) 48.4908 243.780i 0.0552917 0.277970i −0.943242 0.332107i \(-0.892241\pi\)
0.998534 + 0.0541366i \(0.0172406\pi\)
\(878\) 62.1940 + 93.0800i 0.0708360 + 0.106014i
\(879\) −12.2080 61.3735i −0.0138885 0.0698220i
\(880\) 0 0
\(881\) −81.3688 + 121.777i −0.0923595 + 0.138226i −0.874772 0.484535i \(-0.838989\pi\)
0.782412 + 0.622761i \(0.213989\pi\)
\(882\) −296.057 122.631i −0.335665 0.139037i
\(883\) 322.505i 0.365237i −0.983184 0.182619i \(-0.941543\pi\)
0.983184 0.182619i \(-0.0584574\pi\)
\(884\) −37.9588 + 91.6407i −0.0429399 + 0.103666i
\(885\) 0 0
\(886\) 734.666 1773.64i 0.829194 2.00185i
\(887\) 52.2618 + 34.9202i 0.0589197 + 0.0393689i 0.584681 0.811263i \(-0.301220\pi\)
−0.525762 + 0.850632i \(0.676220\pi\)
\(888\) 47.9552 + 47.9552i 0.0540037 + 0.0540037i
\(889\) −918.610 + 182.723i −1.03331 + 0.205538i
\(890\) 0 0
\(891\) −503.820 100.216i −0.565454 0.112476i
\(892\) −1733.94 + 718.221i −1.94388 + 0.805180i
\(893\) 84.7337 + 204.565i 0.0948866 + 0.229077i
\(894\) 21.5022 108.099i 0.0240517 0.120916i
\(895\) 0 0
\(896\) 165.574 + 832.399i 0.184793 + 0.929016i
\(897\) 5.56914 5.56914i 0.00620863 0.00620863i
\(898\) 743.106 1112.14i 0.827513 1.23846i
\(899\) 36.4189 + 15.0852i 0.0405104 + 0.0167800i
\(900\) 0 0
\(901\) −722.228 722.228i −0.801585 0.801585i
\(902\) 533.932 0.591942
\(903\) −56.7469 + 136.999i −0.0628426 + 0.151715i
\(904\) −177.798 118.801i −0.196679 0.131417i
\(905\) 0 0
\(906\) −316.964 + 63.0480i −0.349850 + 0.0695894i
\(907\) 182.765 122.120i 0.201505 0.134641i −0.450724 0.892663i \(-0.648834\pi\)
0.652229 + 0.758022i \(0.273834\pi\)
\(908\) −490.970 97.6601i −0.540716 0.107555i
\(909\) 59.3490 24.5832i 0.0652904 0.0270442i
\(910\) 0 0
\(911\) 98.5913 495.652i 0.108223 0.544074i −0.888192 0.459473i \(-0.848038\pi\)
0.996415 0.0846014i \(-0.0269617\pi\)
\(912\) −12.6776 18.9734i −0.0139009 0.0208042i
\(913\) 187.221 + 941.226i 0.205062 + 1.03092i
\(914\) −571.150 + 571.150i −0.624890 + 0.624890i
\(915\) 0 0
\(916\) 1725.66 + 714.790i 1.88390 + 0.780338i
\(917\) 1345.66i 1.46746i
\(918\) −602.878 + 402.830i −0.656730 + 0.438813i
\(919\) −930.196 −1.01218 −0.506091 0.862480i \(-0.668910\pi\)
−0.506091 + 0.862480i \(0.668910\pi\)
\(920\) 0 0
\(921\) 107.876 + 72.0807i 0.117130 + 0.0782635i
\(922\) −966.431 966.431i −1.04819 1.04819i
\(923\) 117.416 23.3556i 0.127212 0.0253040i
\(924\) 221.315 147.878i 0.239518 0.160041i
\(925\) 0 0
\(926\) 225.922 93.5798i 0.243976 0.101058i
\(927\) 132.667 + 320.288i 0.143115 + 0.345510i
\(928\) −26.5547 + 133.499i −0.0286150 + 0.143857i
\(929\) 637.592 + 954.224i 0.686321 + 1.02715i 0.997058 + 0.0766557i \(0.0244242\pi\)
−0.310737 + 0.950496i \(0.600576\pi\)
\(930\) 0 0
\(931\) 25.2457 25.2457i 0.0271167 0.0271167i
\(932\) −803.857 + 1203.06i −0.862508 + 1.29083i
\(933\) −249.980 103.545i −0.267932 0.110981i
\(934\) 249.650i 0.267291i
\(935\) 0 0
\(936\) 33.2228 0.0354944
\(937\) −517.380 + 1249.07i −0.552166 + 1.33305i 0.363682 + 0.931523i \(0.381519\pi\)
−0.915848 + 0.401524i \(0.868481\pi\)
\(938\) 2317.50 + 1548.51i 2.47068 + 1.65086i
\(939\) −226.691 226.691i −0.241418 0.241418i
\(940\) 0 0
\(941\) −1529.70 + 1022.11i −1.62561 + 1.08620i −0.695743 + 0.718291i \(0.744925\pi\)
−0.929864 + 0.367905i \(0.880075\pi\)
\(942\) −86.8953 17.2846i −0.0922455 0.0183488i
\(943\) 173.131 71.7133i 0.183596 0.0760480i
\(944\) 104.933 + 253.331i 0.111158 + 0.268359i
\(945\) 0 0
\(946\) 315.592 + 472.317i 0.333607 + 0.499278i
\(947\) 7.67691 + 38.5945i 0.00810656 + 0.0407544i 0.984627 0.174671i \(-0.0558862\pi\)
−0.976520 + 0.215425i \(0.930886\pi\)
\(948\) 282.745 282.745i 0.298255 0.298255i
\(949\) 38.3079 57.3319i 0.0403666 0.0604129i
\(950\) 0 0
\(951\) 113.017i 0.118840i
\(952\) −91.8559 + 461.791i −0.0964873 + 0.485074i
\(953\) −183.445 −0.192492 −0.0962458 0.995358i \(-0.530683\pi\)
−0.0962458 + 0.995358i \(0.530683\pi\)
\(954\) −580.495 + 1401.44i −0.608485 + 1.46901i
\(955\) 0 0
\(956\) −1199.89 1199.89i −1.25511 1.25511i
\(957\) 19.7595 3.93041i 0.0206473 0.00410701i
\(958\) 1158.85 774.317i 1.20965 0.808264i
\(959\) 1333.58 + 265.266i 1.39059 + 0.276606i
\(960\) 0 0
\(961\) 304.685 + 735.574i 0.317050 + 0.765426i
\(962\) −15.7937 + 79.4005i −0.0164176 + 0.0825369i
\(963\) 409.646 + 613.079i 0.425386 + 0.636635i
\(964\) 244.257 + 1227.96i 0.253378 + 1.27382i
\(965\) 0 0
\(966\) 92.0972 137.833i 0.0953387 0.142684i
\(967\) −1181.69 489.471i −1.22201 0.506175i −0.323965 0.946069i \(-0.605016\pi\)
−0.898050 + 0.439894i \(0.855016\pi\)
\(968\) 196.715i 0.203218i
\(969\) −7.58007 38.1076i −0.00782257 0.0393267i
\(970\) 0 0
\(971\) −349.777 + 844.437i −0.360224 + 0.869657i 0.635043 + 0.772477i \(0.280982\pi\)
−0.995267 + 0.0971803i \(0.969018\pi\)
\(972\) 766.473 + 512.141i 0.788553 + 0.526894i
\(973\) −997.319 997.319i −1.02499 1.02499i
\(974\) −1553.32 + 308.974i −1.59478 + 0.317222i
\(975\) 0 0
\(976\) −357.029 71.0174i −0.365808 0.0727637i
\(977\) 408.510 169.210i 0.418126 0.173194i −0.163694 0.986511i \(-0.552341\pi\)
0.581820 + 0.813318i \(0.302341\pi\)
\(978\) 150.343 + 362.961i 0.153725 + 0.371126i
\(979\) 136.919 688.340i 0.139856 0.703105i
\(980\) 0 0
\(981\) −30.3170 152.414i −0.0309042 0.155366i
\(982\) −1046.98 + 1046.98i −1.06617 + 1.06617i
\(983\) −369.695 + 553.287i −0.376088 + 0.562856i −0.970438 0.241351i \(-0.922410\pi\)
0.594350 + 0.804207i \(0.297410\pi\)
\(984\) −57.8106 23.9459i −0.0587506 0.0243353i
\(985\) 0 0
\(986\) −87.7920 + 131.390i −0.0890385 + 0.133256i
\(987\) −502.343 −0.508959
\(988\) −6.28094 + 15.1635i −0.00635723 + 0.0153477i
\(989\) 165.770 + 110.764i 0.167614 + 0.111996i
\(990\) 0 0
\(991\) −1534.80 + 305.291i −1.54874 + 0.308063i −0.894096 0.447876i \(-0.852181\pi\)
−0.654642 + 0.755939i \(0.727181\pi\)
\(992\) 473.207 316.187i 0.477023 0.318736i
\(993\) 126.551 + 25.1726i 0.127443 + 0.0253500i
\(994\) 2327.96 964.271i 2.34201 0.970092i
\(995\) 0 0
\(996\) 97.2901 489.110i 0.0976808 0.491075i
\(997\) 855.639 + 1280.55i 0.858213 + 1.28441i 0.957232 + 0.289321i \(0.0934296\pi\)
−0.0990189 + 0.995086i \(0.531570\pi\)
\(998\) 299.476 + 1505.57i 0.300076 + 1.50858i
\(999\) −235.817 + 235.817i −0.236053 + 0.236053i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.b.401.1 8
5.2 odd 4 425.3.t.c.299.1 8
5.3 odd 4 425.3.t.a.299.1 8
5.4 even 2 17.3.e.a.10.1 8
15.14 odd 2 153.3.p.b.10.1 8
17.12 odd 16 inner 425.3.u.b.301.1 8
20.19 odd 2 272.3.bh.c.129.1 8
85.4 even 4 289.3.e.i.75.1 8
85.9 even 8 289.3.e.k.249.1 8
85.12 even 16 425.3.t.a.199.1 8
85.14 odd 16 289.3.e.m.158.1 8
85.19 even 8 289.3.e.d.40.1 8
85.24 odd 16 289.3.e.k.65.1 8
85.29 odd 16 17.3.e.a.12.1 yes 8
85.39 odd 16 289.3.e.c.131.1 8
85.44 odd 16 289.3.e.l.65.1 8
85.49 even 8 289.3.e.b.40.1 8
85.54 odd 16 289.3.e.i.158.1 8
85.59 even 8 289.3.e.l.249.1 8
85.63 even 16 425.3.t.c.199.1 8
85.64 even 4 289.3.e.m.75.1 8
85.74 odd 16 289.3.e.d.224.1 8
85.79 odd 16 289.3.e.b.224.1 8
85.84 even 2 289.3.e.c.214.1 8
255.29 even 16 153.3.p.b.46.1 8
340.199 even 16 272.3.bh.c.97.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.10.1 8 5.4 even 2
17.3.e.a.12.1 yes 8 85.29 odd 16
153.3.p.b.10.1 8 15.14 odd 2
153.3.p.b.46.1 8 255.29 even 16
272.3.bh.c.97.1 8 340.199 even 16
272.3.bh.c.129.1 8 20.19 odd 2
289.3.e.b.40.1 8 85.49 even 8
289.3.e.b.224.1 8 85.79 odd 16
289.3.e.c.131.1 8 85.39 odd 16
289.3.e.c.214.1 8 85.84 even 2
289.3.e.d.40.1 8 85.19 even 8
289.3.e.d.224.1 8 85.74 odd 16
289.3.e.i.75.1 8 85.4 even 4
289.3.e.i.158.1 8 85.54 odd 16
289.3.e.k.65.1 8 85.24 odd 16
289.3.e.k.249.1 8 85.9 even 8
289.3.e.l.65.1 8 85.44 odd 16
289.3.e.l.249.1 8 85.59 even 8
289.3.e.m.75.1 8 85.64 even 4
289.3.e.m.158.1 8 85.14 odd 16
425.3.t.a.199.1 8 85.12 even 16
425.3.t.a.299.1 8 5.3 odd 4
425.3.t.c.199.1 8 85.63 even 16
425.3.t.c.299.1 8 5.2 odd 4
425.3.u.b.301.1 8 17.12 odd 16 inner
425.3.u.b.401.1 8 1.1 even 1 trivial