Properties

Label 289.3.e.k.65.1
Level $289$
Weight $3$
Character 289.65
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 65.1
Root \(-0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.65
Dual form 289.3.e.k.249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.79690 - 1.15851i) q^{2} +(-0.158513 + 0.796897i) q^{3} +(3.65205 - 3.65205i) q^{4} +(-6.67619 + 4.46088i) q^{5} +(0.479872 + 2.41248i) q^{6} +(6.53073 + 4.36370i) q^{7} +(1.34942 - 3.25778i) q^{8} +(7.70500 + 3.19151i) q^{9} +(-13.5046 + 20.2111i) q^{10} +(7.92030 - 1.57545i) q^{11} +(2.33141 + 3.48921i) q^{12} +(0.798835 + 0.798835i) q^{13} +(23.3212 + 4.63887i) q^{14} +(-2.49661 - 6.02734i) q^{15} +9.98414i q^{16} +25.2475 q^{18} +(-2.59882 + 1.07647i) q^{19} +(-8.09040 + 40.6732i) q^{20} +(-4.51262 + 4.51262i) q^{21} +(20.3271 - 13.5821i) q^{22} +(-1.67393 - 8.41543i) q^{23} +(2.38222 + 1.59175i) q^{24} +(15.1049 - 36.4664i) q^{25} +(3.15972 + 1.30880i) q^{26} +(-7.82730 + 11.7144i) q^{27} +(39.7870 - 7.91414i) q^{28} +(-1.70587 - 2.55301i) q^{29} +(-13.9655 - 13.9655i) q^{30} +(-12.5915 - 2.50461i) q^{31} +(16.9644 + 40.9557i) q^{32} +6.56139i q^{33} -63.0663 q^{35} +(39.7946 - 16.4835i) q^{36} +(4.61798 - 23.2161i) q^{37} +(-6.02153 + 6.02153i) q^{38} +(-0.763215 + 0.509964i) q^{39} +(5.52363 + 27.7692i) q^{40} +(-18.1595 - 12.1338i) q^{41} +(-7.39341 + 17.8493i) q^{42} +(21.4671 + 8.89197i) q^{43} +(23.1717 - 34.6790i) q^{44} +(-65.6770 + 13.0640i) q^{45} +(-14.4312 - 21.5978i) q^{46} +(-55.6597 - 55.6597i) q^{47} +(-7.95633 - 1.58261i) q^{48} +(4.85715 + 11.7262i) q^{49} -119.492i q^{50} +5.83478 q^{52} +(55.5080 - 22.9922i) q^{53} +(-8.32089 + 41.8320i) q^{54} +(-45.8495 + 45.8495i) q^{55} +(23.0287 - 15.3873i) q^{56} +(-0.445887 - 2.24162i) q^{57} +(-7.72882 - 5.16424i) q^{58} +(-10.5100 + 25.3733i) q^{59} +(-31.1299 - 12.8944i) q^{60} +(20.2562 - 30.3155i) q^{61} +(-38.1189 + 7.58231i) q^{62} +(36.3925 + 54.4652i) q^{63} +(66.6561 + 66.6561i) q^{64} +(-8.89668 - 1.76966i) q^{65} +(7.60145 + 18.3515i) q^{66} +117.219i q^{67} +6.97157 q^{69} +(-176.390 + 73.0632i) q^{70} +(20.6737 - 103.934i) q^{71} +(20.7945 - 20.7945i) q^{72} +(50.7486 - 33.9091i) q^{73} +(-13.9802 - 70.2832i) q^{74} +(26.6657 + 17.8174i) q^{75} +(-5.55971 + 13.4223i) q^{76} +(58.6001 + 24.2730i) q^{77} +(-1.54383 + 2.31051i) q^{78} +(93.4553 - 18.5894i) q^{79} +(-44.5381 - 66.6560i) q^{80} +(44.9799 + 44.9799i) q^{81} +(-64.8474 - 12.8989i) q^{82} +(-45.4770 - 109.791i) q^{83} +32.9607i q^{84} +70.3428 q^{86} +(2.30489 - 0.954715i) q^{87} +(5.55533 - 27.9285i) q^{88} +(61.4534 - 61.4534i) q^{89} +(-168.557 + 112.626i) q^{90} +(1.73111 + 8.70285i) q^{91} +(-36.8469 - 24.6203i) q^{92} +(3.99184 - 9.63715i) q^{93} +(-220.157 - 91.1920i) q^{94} +(12.5482 - 18.7797i) q^{95} +(-35.3266 + 7.02689i) q^{96} +(13.6621 + 20.4467i) q^{97} +(27.1699 + 27.1699i) q^{98} +(66.0539 + 13.1389i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 16 q^{5} - 8 q^{6} + 40 q^{7} + 40 q^{8} - 8 q^{9} - 48 q^{10} - 8 q^{11} + 72 q^{12} - 16 q^{13} + 104 q^{14} + 56 q^{18} + 48 q^{19} - 16 q^{20} + 64 q^{21} - 24 q^{22} + 56 q^{23} + 24 q^{24}+ \cdots + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.79690 1.15851i 1.39845 0.579256i 0.449100 0.893481i \(-0.351745\pi\)
0.949348 + 0.314225i \(0.101745\pi\)
\(3\) −0.158513 + 0.796897i −0.0528376 + 0.265632i −0.998170 0.0604771i \(-0.980738\pi\)
0.945332 + 0.326109i \(0.105738\pi\)
\(4\) 3.65205 3.65205i 0.913014 0.913014i
\(5\) −6.67619 + 4.46088i −1.33524 + 0.892177i −0.998773 0.0495193i \(-0.984231\pi\)
−0.336464 + 0.941696i \(0.609231\pi\)
\(6\) 0.479872 + 2.41248i 0.0799786 + 0.402080i
\(7\) 6.53073 + 4.36370i 0.932962 + 0.623385i 0.926379 0.376593i \(-0.122904\pi\)
0.00658318 + 0.999978i \(0.497904\pi\)
\(8\) 1.34942 3.25778i 0.168677 0.407223i
\(9\) 7.70500 + 3.19151i 0.856111 + 0.354613i
\(10\) −13.5046 + 20.2111i −1.35046 + 2.02111i
\(11\) 7.92030 1.57545i 0.720027 0.143222i 0.178542 0.983932i \(-0.442862\pi\)
0.541486 + 0.840710i \(0.317862\pi\)
\(12\) 2.33141 + 3.48921i 0.194285 + 0.290767i
\(13\) 0.798835 + 0.798835i 0.0614489 + 0.0614489i 0.737163 0.675715i \(-0.236165\pi\)
−0.675715 + 0.737163i \(0.736165\pi\)
\(14\) 23.3212 + 4.63887i 1.66580 + 0.331348i
\(15\) −2.49661 6.02734i −0.166440 0.401823i
\(16\) 9.98414i 0.624009i
\(17\) 0 0
\(18\) 25.2475 1.40264
\(19\) −2.59882 + 1.07647i −0.136780 + 0.0566561i −0.450023 0.893017i \(-0.648584\pi\)
0.313244 + 0.949673i \(0.398584\pi\)
\(20\) −8.09040 + 40.6732i −0.404520 + 2.03366i
\(21\) −4.51262 + 4.51262i −0.214887 + 0.214887i
\(22\) 20.3271 13.5821i 0.923958 0.617369i
\(23\) −1.67393 8.41543i −0.0727797 0.365888i 0.927182 0.374611i \(-0.122224\pi\)
−0.999962 + 0.00872222i \(0.997224\pi\)
\(24\) 2.38222 + 1.59175i 0.0992590 + 0.0663228i
\(25\) 15.1049 36.4664i 0.604195 1.45866i
\(26\) 3.15972 + 1.30880i 0.121528 + 0.0503384i
\(27\) −7.82730 + 11.7144i −0.289900 + 0.433866i
\(28\) 39.7870 7.91414i 1.42097 0.282648i
\(29\) −1.70587 2.55301i −0.0588230 0.0880348i 0.800892 0.598809i \(-0.204359\pi\)
−0.859715 + 0.510774i \(0.829359\pi\)
\(30\) −13.9655 13.9655i −0.465517 0.465517i
\(31\) −12.5915 2.50461i −0.406179 0.0807940i −0.0122273 0.999925i \(-0.503892\pi\)
−0.393951 + 0.919131i \(0.628892\pi\)
\(32\) 16.9644 + 40.9557i 0.530138 + 1.27987i
\(33\) 6.56139i 0.198830i
\(34\) 0 0
\(35\) −63.0663 −1.80190
\(36\) 39.7946 16.4835i 1.10541 0.457875i
\(37\) 4.61798 23.2161i 0.124810 0.627463i −0.866848 0.498572i \(-0.833858\pi\)
0.991659 0.128892i \(-0.0411420\pi\)
\(38\) −6.02153 + 6.02153i −0.158461 + 0.158461i
\(39\) −0.763215 + 0.509964i −0.0195696 + 0.0130760i
\(40\) 5.52363 + 27.7692i 0.138091 + 0.694229i
\(41\) −18.1595 12.1338i −0.442914 0.295946i 0.314045 0.949408i \(-0.398316\pi\)
−0.756959 + 0.653462i \(0.773316\pi\)
\(42\) −7.39341 + 17.8493i −0.176034 + 0.424982i
\(43\) 21.4671 + 8.89197i 0.499235 + 0.206790i 0.618069 0.786124i \(-0.287915\pi\)
−0.118833 + 0.992914i \(0.537915\pi\)
\(44\) 23.1717 34.6790i 0.526631 0.788158i
\(45\) −65.6770 + 13.0640i −1.45949 + 0.290310i
\(46\) −14.4312 21.5978i −0.313722 0.469518i
\(47\) −55.6597 55.6597i −1.18425 1.18425i −0.978632 0.205617i \(-0.934080\pi\)
−0.205617 0.978632i \(-0.565920\pi\)
\(48\) −7.95633 1.58261i −0.165757 0.0329711i
\(49\) 4.85715 + 11.7262i 0.0991254 + 0.239310i
\(50\) 119.492i 2.38984i
\(51\) 0 0
\(52\) 5.83478 0.112207
\(53\) 55.5080 22.9922i 1.04732 0.433815i 0.208386 0.978047i \(-0.433179\pi\)
0.838935 + 0.544232i \(0.183179\pi\)
\(54\) −8.32089 + 41.8320i −0.154091 + 0.774666i
\(55\) −45.8495 + 45.8495i −0.833627 + 0.833627i
\(56\) 23.0287 15.3873i 0.411226 0.274772i
\(57\) −0.445887 2.24162i −0.00782257 0.0393267i
\(58\) −7.72882 5.16424i −0.133256 0.0890385i
\(59\) −10.5100 + 25.3733i −0.178135 + 0.430057i −0.987575 0.157146i \(-0.949771\pi\)
0.809440 + 0.587202i \(0.199771\pi\)
\(60\) −31.1299 12.8944i −0.518832 0.214907i
\(61\) 20.2562 30.3155i 0.332068 0.496976i −0.627436 0.778668i \(-0.715896\pi\)
0.959505 + 0.281692i \(0.0908957\pi\)
\(62\) −38.1189 + 7.58231i −0.614820 + 0.122295i
\(63\) 36.3925 + 54.4652i 0.577658 + 0.864527i
\(64\) 66.6561 + 66.6561i 1.04150 + 1.04150i
\(65\) −8.89668 1.76966i −0.136872 0.0272255i
\(66\) 7.60145 + 18.3515i 0.115174 + 0.278054i
\(67\) 117.219i 1.74953i 0.484544 + 0.874767i \(0.338985\pi\)
−0.484544 + 0.874767i \(0.661015\pi\)
\(68\) 0 0
\(69\) 6.97157 0.101037
\(70\) −176.390 + 73.0632i −2.51986 + 1.04376i
\(71\) 20.6737 103.934i 0.291179 1.46386i −0.507266 0.861789i \(-0.669344\pi\)
0.798446 0.602067i \(-0.205656\pi\)
\(72\) 20.7945 20.7945i 0.288813 0.288813i
\(73\) 50.7486 33.9091i 0.695186 0.464508i −0.157101 0.987583i \(-0.550215\pi\)
0.852287 + 0.523074i \(0.175215\pi\)
\(74\) −13.9802 70.2832i −0.188921 0.949772i
\(75\) 26.6657 + 17.8174i 0.355542 + 0.237566i
\(76\) −5.55971 + 13.4223i −0.0731541 + 0.176610i
\(77\) 58.6001 + 24.2730i 0.761041 + 0.315233i
\(78\) −1.54383 + 2.31051i −0.0197927 + 0.0296219i
\(79\) 93.4553 18.5894i 1.18298 0.235309i 0.435869 0.900010i \(-0.356441\pi\)
0.747109 + 0.664701i \(0.231441\pi\)
\(80\) −44.5381 66.6560i −0.556726 0.833200i
\(81\) 44.9799 + 44.9799i 0.555308 + 0.555308i
\(82\) −64.8474 12.8989i −0.790821 0.157304i
\(83\) −45.4770 109.791i −0.547916 1.32279i −0.919026 0.394197i \(-0.871023\pi\)
0.371110 0.928589i \(-0.378977\pi\)
\(84\) 32.9607i 0.392389i
\(85\) 0 0
\(86\) 70.3428 0.817939
\(87\) 2.30489 0.954715i 0.0264929 0.0109737i
\(88\) 5.55533 27.9285i 0.0631288 0.317370i
\(89\) 61.4534 61.4534i 0.690488 0.690488i −0.271851 0.962339i \(-0.587636\pi\)
0.962339 + 0.271851i \(0.0876359\pi\)
\(90\) −168.557 + 112.626i −1.87286 + 1.25140i
\(91\) 1.73111 + 8.70285i 0.0190231 + 0.0956357i
\(92\) −36.8469 24.6203i −0.400510 0.267612i
\(93\) 3.99184 9.63715i 0.0429230 0.103625i
\(94\) −220.157 91.1920i −2.34210 0.970128i
\(95\) 12.5482 18.7797i 0.132086 0.197681i
\(96\) −35.3266 + 7.02689i −0.367985 + 0.0731968i
\(97\) 13.6621 + 20.4467i 0.140846 + 0.210791i 0.895186 0.445693i \(-0.147043\pi\)
−0.754340 + 0.656484i \(0.772043\pi\)
\(98\) 27.1699 + 27.1699i 0.277244 + 0.277244i
\(99\) 66.0539 + 13.1389i 0.667211 + 0.132717i
\(100\) −78.0135 188.341i −0.780135 1.88341i
\(101\) 7.70266i 0.0762640i −0.999273 0.0381320i \(-0.987859\pi\)
0.999273 0.0381320i \(-0.0121407\pi\)
\(102\) 0 0
\(103\) 41.5688 0.403581 0.201790 0.979429i \(-0.435324\pi\)
0.201790 + 0.979429i \(0.435324\pi\)
\(104\) 3.68039 1.52447i 0.0353884 0.0146584i
\(105\) 9.99681 50.2574i 0.0952078 0.478642i
\(106\) 128.614 128.614i 1.21333 1.21333i
\(107\) −73.5122 + 49.1193i −0.687030 + 0.459059i −0.849454 0.527662i \(-0.823069\pi\)
0.162424 + 0.986721i \(0.448069\pi\)
\(108\) 14.1958 + 71.3673i 0.131443 + 0.660808i
\(109\) −15.4932 10.3522i −0.142139 0.0949743i 0.482467 0.875914i \(-0.339741\pi\)
−0.624607 + 0.780940i \(0.714741\pi\)
\(110\) −75.1191 + 181.354i −0.682901 + 1.64867i
\(111\) 17.7689 + 7.36011i 0.160080 + 0.0663073i
\(112\) −43.5678 + 65.2038i −0.388998 + 0.582176i
\(113\) −59.4768 + 11.8307i −0.526343 + 0.104696i −0.451108 0.892470i \(-0.648971\pi\)
−0.0752358 + 0.997166i \(0.523971\pi\)
\(114\) −3.84405 5.75303i −0.0337197 0.0504651i
\(115\) 48.7158 + 48.7158i 0.423615 + 0.423615i
\(116\) −15.5536 3.09381i −0.134083 0.0266708i
\(117\) 3.60553 + 8.70452i 0.0308165 + 0.0743976i
\(118\) 83.1426i 0.704598i
\(119\) 0 0
\(120\) −23.0047 −0.191706
\(121\) −51.5403 + 21.3487i −0.425953 + 0.176436i
\(122\) 21.5335 108.256i 0.176504 0.887347i
\(123\) 12.5479 12.5479i 0.102015 0.102015i
\(124\) −55.1320 + 36.8380i −0.444613 + 0.297081i
\(125\) 22.6681 + 113.960i 0.181345 + 0.911682i
\(126\) 164.885 + 110.172i 1.30861 + 0.874384i
\(127\) 45.6333 110.168i 0.359317 0.867468i −0.636079 0.771624i \(-0.719445\pi\)
0.995396 0.0958444i \(-0.0305551\pi\)
\(128\) 99.8291 + 41.3506i 0.779915 + 0.323051i
\(129\) −10.4888 + 15.6976i −0.0813085 + 0.121687i
\(130\) −26.9333 + 5.35736i −0.207179 + 0.0412105i
\(131\) 95.1830 + 142.451i 0.726588 + 1.08742i 0.992360 + 0.123380i \(0.0393733\pi\)
−0.265772 + 0.964036i \(0.585627\pi\)
\(132\) 23.9626 + 23.9626i 0.181534 + 0.181534i
\(133\) −21.6696 4.31034i −0.162929 0.0324086i
\(134\) 135.799 + 327.849i 1.01343 + 2.44663i
\(135\) 113.124i 0.837956i
\(136\) 0 0
\(137\) −173.113 −1.26360 −0.631799 0.775132i \(-0.717683\pi\)
−0.631799 + 0.775132i \(0.717683\pi\)
\(138\) 19.4988 8.07666i 0.141295 0.0585265i
\(139\) −35.0323 + 176.119i −0.252031 + 1.26705i 0.622709 + 0.782454i \(0.286032\pi\)
−0.874740 + 0.484593i \(0.838968\pi\)
\(140\) −230.322 + 230.322i −1.64515 + 1.64515i
\(141\) 53.1779 35.5323i 0.377148 0.252002i
\(142\) −62.5864 314.643i −0.440749 2.21579i
\(143\) 7.58553 + 5.06849i 0.0530457 + 0.0354440i
\(144\) −31.8645 + 76.9278i −0.221281 + 0.534221i
\(145\) 22.7774 + 9.43469i 0.157085 + 0.0650668i
\(146\) 102.654 153.633i 0.703112 1.05228i
\(147\) −10.1145 + 2.01190i −0.0688060 + 0.0136864i
\(148\) −67.9215 101.652i −0.458929 0.686836i
\(149\) −31.6842 31.6842i −0.212646 0.212646i 0.592745 0.805391i \(-0.298044\pi\)
−0.805391 + 0.592745i \(0.798044\pi\)
\(150\) 95.2228 + 18.9410i 0.634819 + 0.126273i
\(151\) −50.2789 121.384i −0.332973 0.803868i −0.998353 0.0573634i \(-0.981731\pi\)
0.665380 0.746504i \(-0.268269\pi\)
\(152\) 9.91898i 0.0652565i
\(153\) 0 0
\(154\) 192.019 1.24688
\(155\) 95.2363 39.4482i 0.614428 0.254504i
\(156\) −0.924886 + 4.64972i −0.00592876 + 0.0298059i
\(157\) −25.4694 + 25.4694i −0.162225 + 0.162225i −0.783552 0.621327i \(-0.786594\pi\)
0.621327 + 0.783552i \(0.286594\pi\)
\(158\) 239.849 160.262i 1.51803 1.01432i
\(159\) 9.52367 + 47.8787i 0.0598973 + 0.301124i
\(160\) −295.956 197.752i −1.84973 1.23595i
\(161\) 25.7904 62.2635i 0.160189 0.386730i
\(162\) 177.914 + 73.6944i 1.09823 + 0.454904i
\(163\) 88.7349 132.801i 0.544386 0.814731i −0.452648 0.891689i \(-0.649521\pi\)
0.997034 + 0.0769579i \(0.0245207\pi\)
\(164\) −110.633 + 22.0062i −0.674589 + 0.134184i
\(165\) −29.2696 43.8051i −0.177392 0.265485i
\(166\) −254.389 254.389i −1.53246 1.53246i
\(167\) −108.608 21.6035i −0.650347 0.129362i −0.141117 0.989993i \(-0.545070\pi\)
−0.509229 + 0.860631i \(0.670070\pi\)
\(168\) 8.61173 + 20.7905i 0.0512603 + 0.123753i
\(169\) 167.724i 0.992448i
\(170\) 0 0
\(171\) −23.4594 −0.137190
\(172\) 110.873 45.9251i 0.644611 0.267006i
\(173\) −34.7367 + 174.633i −0.200790 + 1.00944i 0.740556 + 0.671995i \(0.234562\pi\)
−0.941346 + 0.337444i \(0.890438\pi\)
\(174\) 5.34048 5.34048i 0.0306924 0.0306924i
\(175\) 257.774 172.239i 1.47300 0.984224i
\(176\) 15.7295 + 79.0774i 0.0893720 + 0.449303i
\(177\) −18.5540 12.3974i −0.104825 0.0700417i
\(178\) 100.684 243.074i 0.565642 1.36558i
\(179\) −232.978 96.5028i −1.30155 0.539122i −0.379146 0.925337i \(-0.623782\pi\)
−0.922409 + 0.386215i \(0.873782\pi\)
\(180\) −192.146 + 287.566i −1.06748 + 1.59759i
\(181\) 295.559 58.7904i 1.63292 0.324809i 0.708365 0.705847i \(-0.249433\pi\)
0.924559 + 0.381038i \(0.124433\pi\)
\(182\) 14.9241 + 22.3355i 0.0820005 + 0.122722i
\(183\) 20.9475 + 20.9475i 0.114467 + 0.114467i
\(184\) −29.6745 5.90262i −0.161274 0.0320795i
\(185\) 72.7341 + 175.596i 0.393157 + 0.949165i
\(186\) 31.5787i 0.169778i
\(187\) 0 0
\(188\) −406.545 −2.16247
\(189\) −102.236 + 42.3476i −0.540931 + 0.224061i
\(190\) 13.3395 67.0622i 0.0702079 0.352959i
\(191\) −93.7287 + 93.7287i −0.490726 + 0.490726i −0.908535 0.417809i \(-0.862798\pi\)
0.417809 + 0.908535i \(0.362798\pi\)
\(192\) −63.6839 + 42.5522i −0.331687 + 0.221626i
\(193\) 62.1584 + 312.491i 0.322064 + 1.61913i 0.714699 + 0.699432i \(0.246564\pi\)
−0.392635 + 0.919694i \(0.628436\pi\)
\(194\) 61.8991 + 41.3597i 0.319068 + 0.213194i
\(195\) 2.82047 6.80923i 0.0144640 0.0349191i
\(196\) 60.5632 + 25.0861i 0.308996 + 0.127990i
\(197\) 64.2597 96.1714i 0.326191 0.488180i −0.631739 0.775181i \(-0.717659\pi\)
0.957930 + 0.287002i \(0.0926585\pi\)
\(198\) 199.968 39.7760i 1.00994 0.200889i
\(199\) −164.363 245.987i −0.825944 1.23611i −0.969163 0.246422i \(-0.920745\pi\)
0.143218 0.989691i \(-0.454255\pi\)
\(200\) −98.4168 98.4168i −0.492084 0.492084i
\(201\) −93.4113 18.5807i −0.464733 0.0924411i
\(202\) −8.92363 21.5436i −0.0441764 0.106651i
\(203\) 24.1169i 0.118802i
\(204\) 0 0
\(205\) 175.364 0.855432
\(206\) 116.264 48.1580i 0.564387 0.233777i
\(207\) 13.9603 70.1833i 0.0674412 0.339050i
\(208\) −7.97568 + 7.97568i −0.0383446 + 0.0383446i
\(209\) −18.8875 + 12.6202i −0.0903708 + 0.0603839i
\(210\) −30.2638 152.146i −0.144113 0.724505i
\(211\) 191.021 + 127.636i 0.905315 + 0.604912i 0.918682 0.394999i \(-0.129255\pi\)
−0.0133670 + 0.999911i \(0.504255\pi\)
\(212\) 118.750 286.687i 0.560140 1.35230i
\(213\) 79.5475 + 32.9496i 0.373462 + 0.154693i
\(214\) −148.701 + 222.546i −0.694863 + 1.03994i
\(215\) −182.985 + 36.3979i −0.851091 + 0.169292i
\(216\) 27.6006 + 41.3072i 0.127781 + 0.191237i
\(217\) −71.3026 71.3026i −0.328584 0.328584i
\(218\) −55.3260 11.0050i −0.253789 0.0504817i
\(219\) 18.9778 + 45.8164i 0.0866565 + 0.209207i
\(220\) 334.890i 1.52223i
\(221\) 0 0
\(222\) 58.2245 0.262272
\(223\) 335.723 139.061i 1.50549 0.623593i 0.530865 0.847456i \(-0.321867\pi\)
0.974621 + 0.223863i \(0.0718669\pi\)
\(224\) −67.9283 + 341.499i −0.303251 + 1.52455i
\(225\) 232.766 232.766i 1.03452 1.03452i
\(226\) −152.645 + 101.994i −0.675418 + 0.451300i
\(227\) −18.9088 95.0611i −0.0832988 0.418772i −0.999823 0.0187931i \(-0.994018\pi\)
0.916525 0.399978i \(-0.130982\pi\)
\(228\) −9.81493 6.55813i −0.0430480 0.0287637i
\(229\) −138.397 + 334.120i −0.604353 + 1.45904i 0.264706 + 0.964329i \(0.414725\pi\)
−0.869059 + 0.494708i \(0.835275\pi\)
\(230\) 192.691 + 79.8152i 0.837786 + 0.347022i
\(231\) −28.6319 + 42.8507i −0.123948 + 0.185501i
\(232\) −10.6191 + 2.11226i −0.0457719 + 0.00910459i
\(233\) 155.642 + 232.935i 0.667991 + 0.999720i 0.998437 + 0.0558946i \(0.0178011\pi\)
−0.330445 + 0.943825i \(0.607199\pi\)
\(234\) 20.1686 + 20.1686i 0.0861905 + 0.0861905i
\(235\) 619.886 + 123.303i 2.63781 + 0.524694i
\(236\) 54.2818 + 131.048i 0.230008 + 0.555288i
\(237\) 77.4209i 0.326670i
\(238\) 0 0
\(239\) 328.551 1.37469 0.687345 0.726331i \(-0.258776\pi\)
0.687345 + 0.726331i \(0.258776\pi\)
\(240\) 60.1778 24.9265i 0.250741 0.103860i
\(241\) −47.2927 + 237.756i −0.196235 + 0.986541i 0.749599 + 0.661892i \(0.230246\pi\)
−0.945835 + 0.324649i \(0.894754\pi\)
\(242\) −119.420 + 119.420i −0.493472 + 0.493472i
\(243\) −148.404 + 99.1602i −0.610715 + 0.408067i
\(244\) −36.7372 184.691i −0.150562 0.756928i
\(245\) −84.7364 56.6190i −0.345863 0.231098i
\(246\) 20.5583 49.6320i 0.0835701 0.201756i
\(247\) −2.93595 1.21611i −0.0118864 0.00492352i
\(248\) −25.1507 + 37.6407i −0.101414 + 0.151777i
\(249\) 94.7010 18.8372i 0.380325 0.0756514i
\(250\) 195.425 + 292.474i 0.781699 + 1.16989i
\(251\) 155.463 + 155.463i 0.619375 + 0.619375i 0.945371 0.325996i \(-0.105700\pi\)
−0.325996 + 0.945371i \(0.605700\pi\)
\(252\) 331.817 + 66.0025i 1.31673 + 0.261915i
\(253\) −26.5161 64.0155i −0.104807 0.253026i
\(254\) 360.996i 1.42125i
\(255\) 0 0
\(256\) −49.9468 −0.195105
\(257\) −300.480 + 124.463i −1.16918 + 0.484292i −0.880923 0.473260i \(-0.843077\pi\)
−0.288261 + 0.957552i \(0.593077\pi\)
\(258\) −11.1502 + 56.0559i −0.0432179 + 0.217271i
\(259\) 131.467 131.467i 0.507595 0.507595i
\(260\) −38.9541 + 26.0283i −0.149823 + 0.100109i
\(261\) −4.99573 25.1152i −0.0191407 0.0962269i
\(262\) 431.249 + 288.151i 1.64599 + 1.09981i
\(263\) 53.0907 128.172i 0.201866 0.487347i −0.790233 0.612806i \(-0.790041\pi\)
0.992099 + 0.125460i \(0.0400405\pi\)
\(264\) 21.3756 + 8.85405i 0.0809681 + 0.0335381i
\(265\) −268.016 + 401.115i −1.01138 + 1.51364i
\(266\) −65.6011 + 13.0489i −0.246621 + 0.0490559i
\(267\) 39.2309 + 58.7132i 0.146932 + 0.219900i
\(268\) 428.089 + 428.089i 1.59735 + 1.59735i
\(269\) −318.636 63.3806i −1.18452 0.235615i −0.436755 0.899580i \(-0.643872\pi\)
−0.747764 + 0.663965i \(0.768872\pi\)
\(270\) −131.056 316.396i −0.485391 1.17184i
\(271\) 19.1867i 0.0707996i −0.999373 0.0353998i \(-0.988730\pi\)
0.999373 0.0353998i \(-0.0112705\pi\)
\(272\) 0 0
\(273\) −7.20968 −0.0264091
\(274\) −484.179 + 200.554i −1.76708 + 0.731947i
\(275\) 62.1843 312.622i 0.226125 1.13681i
\(276\) 25.4606 25.4606i 0.0922484 0.0922484i
\(277\) −256.095 + 171.117i −0.924529 + 0.617751i −0.924059 0.382249i \(-0.875150\pi\)
−0.000470113 1.00000i \(0.500150\pi\)
\(278\) 106.055 + 533.173i 0.381492 + 1.91789i
\(279\) −89.0243 59.4841i −0.319083 0.213205i
\(280\) −85.1028 + 205.456i −0.303939 + 0.733773i
\(281\) 79.9361 + 33.1106i 0.284470 + 0.117831i 0.520356 0.853949i \(-0.325799\pi\)
−0.235886 + 0.971781i \(0.575799\pi\)
\(282\) 107.568 160.987i 0.381448 0.570877i
\(283\) 7.33785 1.45959i 0.0259288 0.00515756i −0.182109 0.983278i \(-0.558292\pi\)
0.208038 + 0.978121i \(0.433292\pi\)
\(284\) −304.070 455.073i −1.07067 1.60237i
\(285\) 12.9764 + 12.9764i 0.0455314 + 0.0455314i
\(286\) 27.0879 + 5.38811i 0.0947128 + 0.0188396i
\(287\) −65.6466 158.485i −0.228734 0.552213i
\(288\) 369.706i 1.28370i
\(289\) 0 0
\(290\) 74.6361 0.257366
\(291\) −18.4595 + 7.64619i −0.0634348 + 0.0262756i
\(292\) 61.4986 309.174i 0.210612 1.05882i
\(293\) −54.4583 + 54.4583i −0.185864 + 0.185864i −0.793906 0.608041i \(-0.791956\pi\)
0.608041 + 0.793906i \(0.291956\pi\)
\(294\) −25.9584 + 17.3448i −0.0882937 + 0.0589960i
\(295\) −43.0210 216.281i −0.145834 0.733156i
\(296\) −69.4016 46.3726i −0.234465 0.156664i
\(297\) −43.5392 + 105.113i −0.146597 + 0.353915i
\(298\) −125.324 51.9110i −0.420551 0.174198i
\(299\) 5.38535 8.05974i 0.0180112 0.0269557i
\(300\) 162.455 32.3142i 0.541515 0.107714i
\(301\) 101.394 + 151.747i 0.336858 + 0.504143i
\(302\) −281.250 281.250i −0.931291 0.931291i
\(303\) 6.13823 + 1.22097i 0.0202582 + 0.00402960i
\(304\) −10.7476 25.9470i −0.0353539 0.0853519i
\(305\) 292.752i 0.959844i
\(306\) 0 0
\(307\) −159.680 −0.520132 −0.260066 0.965591i \(-0.583744\pi\)
−0.260066 + 0.965591i \(0.583744\pi\)
\(308\) 302.657 125.365i 0.982653 0.407028i
\(309\) −6.58918 + 33.1261i −0.0213242 + 0.107204i
\(310\) 220.665 220.665i 0.711822 0.711822i
\(311\) 276.891 185.013i 0.890324 0.594896i −0.0240745 0.999710i \(-0.507664\pi\)
0.914399 + 0.404814i \(0.132664\pi\)
\(312\) 0.631456 + 3.17454i 0.00202390 + 0.0101748i
\(313\) −328.071 219.210i −1.04815 0.700351i −0.0927565 0.995689i \(-0.529568\pi\)
−0.955393 + 0.295338i \(0.904568\pi\)
\(314\) −41.7286 + 100.742i −0.132894 + 0.320834i
\(315\) −485.926 201.277i −1.54262 0.638975i
\(316\) 273.414 409.193i 0.865235 1.29492i
\(317\) −136.423 + 27.1362i −0.430357 + 0.0856033i −0.405516 0.914088i \(-0.632908\pi\)
−0.0248412 + 0.999691i \(0.507908\pi\)
\(318\) 82.1048 + 122.879i 0.258191 + 0.386411i
\(319\) −17.5331 17.5331i −0.0549627 0.0549627i
\(320\) −742.353 147.663i −2.31985 0.461448i
\(321\) −27.4904 66.3677i −0.0856399 0.206753i
\(322\) 204.023i 0.633612i
\(323\) 0 0
\(324\) 328.538 1.01401
\(325\) 41.1970 17.0643i 0.126760 0.0525057i
\(326\) 94.3306 474.232i 0.289358 1.45470i
\(327\) 10.7055 10.7055i 0.0327385 0.0327385i
\(328\) −64.0340 + 42.7861i −0.195225 + 0.130445i
\(329\) −120.617 606.381i −0.366616 1.84310i
\(330\) −132.613 88.6090i −0.401857 0.268512i
\(331\) 60.7720 146.717i 0.183601 0.443252i −0.805103 0.593136i \(-0.797890\pi\)
0.988704 + 0.149883i \(0.0478898\pi\)
\(332\) −567.048 234.879i −1.70798 0.707467i
\(333\) 109.676 164.142i 0.329358 0.492919i
\(334\) −328.793 + 65.4010i −0.984410 + 0.195811i
\(335\) −522.899 782.574i −1.56089 2.33604i
\(336\) −45.0546 45.0546i −0.134091 0.134091i
\(337\) −473.084 94.1023i −1.40381 0.279235i −0.565644 0.824649i \(-0.691372\pi\)
−0.838167 + 0.545414i \(0.816372\pi\)
\(338\) −194.310 469.106i −0.574882 1.38789i
\(339\) 49.2722i 0.145346i
\(340\) 0 0
\(341\) −103.675 −0.304031
\(342\) −65.6136 + 27.1781i −0.191853 + 0.0794680i
\(343\) 55.6352 279.697i 0.162202 0.815443i
\(344\) 57.9362 57.9362i 0.168419 0.168419i
\(345\) −46.5435 + 31.0994i −0.134909 + 0.0901431i
\(346\) 105.160 + 528.673i 0.303930 + 1.52796i
\(347\) 16.4546 + 10.9946i 0.0474197 + 0.0316848i 0.579054 0.815289i \(-0.303422\pi\)
−0.531634 + 0.846974i \(0.678422\pi\)
\(348\) 4.93090 11.9042i 0.0141692 0.0342076i
\(349\) 361.651 + 149.801i 1.03625 + 0.429229i 0.834965 0.550304i \(-0.185488\pi\)
0.201286 + 0.979533i \(0.435488\pi\)
\(350\) 521.427 780.370i 1.48979 2.22963i
\(351\) −15.6106 + 3.10514i −0.0444746 + 0.00884655i
\(352\) 198.887 + 297.655i 0.565019 + 0.845611i
\(353\) −138.024 138.024i −0.391003 0.391003i 0.484042 0.875045i \(-0.339168\pi\)
−0.875045 + 0.484042i \(0.839168\pi\)
\(354\) −66.2561 13.1792i −0.187164 0.0372293i
\(355\) 325.615 + 786.104i 0.917226 + 2.21438i
\(356\) 448.863i 1.26085i
\(357\) 0 0
\(358\) −763.416 −2.13245
\(359\) −328.726 + 136.163i −0.915672 + 0.379284i −0.790225 0.612817i \(-0.790036\pi\)
−0.125447 + 0.992100i \(0.540036\pi\)
\(360\) −46.0661 + 231.590i −0.127961 + 0.643306i
\(361\) −249.670 + 249.670i −0.691608 + 0.691608i
\(362\) 758.539 506.840i 2.09541 1.40011i
\(363\) −8.84292 44.4564i −0.0243607 0.122469i
\(364\) 38.1054 + 25.4612i 0.104685 + 0.0699484i
\(365\) −187.542 + 452.767i −0.513814 + 1.24046i
\(366\) 82.8558 + 34.3200i 0.226382 + 0.0937705i
\(367\) −45.4052 + 67.9537i −0.123720 + 0.185160i −0.888159 0.459536i \(-0.848016\pi\)
0.764439 + 0.644696i \(0.223016\pi\)
\(368\) 84.0209 16.7128i 0.228318 0.0454152i
\(369\) −101.194 151.447i −0.274238 0.410426i
\(370\) 406.859 + 406.859i 1.09962 + 1.09962i
\(371\) 462.839 + 92.0644i 1.24754 + 0.248152i
\(372\) −20.6170 49.7738i −0.0554220 0.133801i
\(373\) 76.8209i 0.205954i −0.994684 0.102977i \(-0.967163\pi\)
0.994684 0.102977i \(-0.0328368\pi\)
\(374\) 0 0
\(375\) −94.4077 −0.251754
\(376\) −256.436 + 106.219i −0.682009 + 0.282498i
\(377\) 0.676727 3.40214i 0.00179503 0.00902424i
\(378\) −236.883 + 236.883i −0.626676 + 0.626676i
\(379\) −489.954 + 327.377i −1.29275 + 0.863791i −0.995841 0.0911132i \(-0.970957\pi\)
−0.296914 + 0.954904i \(0.595957\pi\)
\(380\) −22.7578 114.411i −0.0598890 0.301082i
\(381\) 80.5594 + 53.8281i 0.211442 + 0.141281i
\(382\) −153.564 + 370.735i −0.401999 + 0.970511i
\(383\) 215.834 + 89.4016i 0.563537 + 0.233424i 0.646220 0.763151i \(-0.276349\pi\)
−0.0826832 + 0.996576i \(0.526349\pi\)
\(384\) −48.7763 + 72.9989i −0.127022 + 0.190101i
\(385\) −499.504 + 99.3576i −1.29741 + 0.258072i
\(386\) 535.876 + 801.995i 1.38828 + 2.07771i
\(387\) 137.025 + 137.025i 0.354070 + 0.354070i
\(388\) 124.567 + 24.7779i 0.321049 + 0.0638606i
\(389\) 154.467 + 372.916i 0.397087 + 0.958653i 0.988353 + 0.152177i \(0.0486283\pi\)
−0.591266 + 0.806477i \(0.701372\pi\)
\(390\) 22.3123i 0.0572109i
\(391\) 0 0
\(392\) 44.7557 0.114173
\(393\) −128.607 + 53.2707i −0.327244 + 0.135549i
\(394\) 68.3119 343.427i 0.173380 0.871642i
\(395\) −541.000 + 541.000i −1.36962 + 1.36962i
\(396\) 289.217 193.248i 0.730345 0.488001i
\(397\) 51.4626 + 258.720i 0.129629 + 0.651688i 0.989890 + 0.141835i \(0.0453002\pi\)
−0.860262 + 0.509853i \(0.829700\pi\)
\(398\) −744.685 497.582i −1.87107 1.25021i
\(399\) 6.86980 16.5852i 0.0172175 0.0415668i
\(400\) 364.086 + 150.809i 0.910214 + 0.377023i
\(401\) 132.942 198.962i 0.331526 0.496164i −0.627835 0.778347i \(-0.716059\pi\)
0.959361 + 0.282183i \(0.0910586\pi\)
\(402\) −282.788 + 56.2499i −0.703452 + 0.139925i
\(403\) −8.05779 12.0593i −0.0199945 0.0299239i
\(404\) −28.1305 28.1305i −0.0696300 0.0696300i
\(405\) −500.945 99.6441i −1.23690 0.246035i
\(406\) −27.9397 67.4525i −0.0688171 0.166139i
\(407\) 191.154i 0.469666i
\(408\) 0 0
\(409\) 259.903 0.635461 0.317730 0.948181i \(-0.397079\pi\)
0.317730 + 0.948181i \(0.397079\pi\)
\(410\) 490.474 203.161i 1.19628 0.495514i
\(411\) 27.4406 137.953i 0.0667654 0.335652i
\(412\) 151.812 151.812i 0.368475 0.368475i
\(413\) −179.360 + 119.844i −0.434285 + 0.290180i
\(414\) −42.2626 212.469i −0.102084 0.513209i
\(415\) 793.379 + 530.119i 1.91176 + 1.27740i
\(416\) −19.1651 + 46.2687i −0.0460700 + 0.111223i
\(417\) −134.796 55.8343i −0.323252 0.133895i
\(418\) −38.2057 + 57.1789i −0.0914012 + 0.136792i
\(419\) −168.255 + 33.4680i −0.401563 + 0.0798758i −0.391740 0.920076i \(-0.628127\pi\)
−0.00982284 + 0.999952i \(0.503127\pi\)
\(420\) −147.034 220.052i −0.350080 0.523932i
\(421\) −443.214 443.214i −1.05276 1.05276i −0.998528 0.0542356i \(-0.982728\pi\)
−0.0542356 0.998528i \(-0.517272\pi\)
\(422\) 682.136 + 135.685i 1.61644 + 0.321529i
\(423\) −251.219 606.497i −0.593899 1.43380i
\(424\) 211.859i 0.499668i
\(425\) 0 0
\(426\) 260.659 0.611875
\(427\) 264.575 109.591i 0.619614 0.256653i
\(428\) −89.0843 + 447.857i −0.208141 + 1.04639i
\(429\) −5.24147 + 5.24147i −0.0122179 + 0.0122179i
\(430\) −469.621 + 313.791i −1.09214 + 0.729747i
\(431\) −148.695 747.540i −0.345000 1.73443i −0.630623 0.776089i \(-0.717201\pi\)
0.285623 0.958342i \(-0.407799\pi\)
\(432\) −116.958 78.1489i −0.270736 0.180900i
\(433\) 36.2305 87.4681i 0.0836732 0.202005i −0.876505 0.481392i \(-0.840131\pi\)
0.960179 + 0.279387i \(0.0901313\pi\)
\(434\) −282.031 116.821i −0.649841 0.269173i
\(435\) −11.1290 + 16.6557i −0.0255839 + 0.0382889i
\(436\) −94.3887 + 18.7751i −0.216488 + 0.0430621i
\(437\) 13.4092 + 20.0682i 0.0306846 + 0.0459228i
\(438\) 106.158 + 106.158i 0.242369 + 0.242369i
\(439\) −36.2679 7.21414i −0.0826149 0.0164331i 0.153610 0.988132i \(-0.450910\pi\)
−0.236225 + 0.971698i \(0.575910\pi\)
\(440\) 87.4976 + 211.238i 0.198858 + 0.480086i
\(441\) 105.852i 0.240027i
\(442\) 0 0
\(443\) −634.146 −1.43148 −0.715740 0.698367i \(-0.753911\pi\)
−0.715740 + 0.698367i \(0.753911\pi\)
\(444\) 91.7724 38.0134i 0.206695 0.0856157i
\(445\) −136.138 + 684.411i −0.305928 + 1.53800i
\(446\) 777.880 777.880i 1.74412 1.74412i
\(447\) 30.2714 20.2267i 0.0677213 0.0452499i
\(448\) 144.446 + 726.180i 0.322424 + 1.62094i
\(449\) −367.365 245.465i −0.818184 0.546693i 0.0745814 0.997215i \(-0.476238\pi\)
−0.892765 + 0.450522i \(0.851238\pi\)
\(450\) 381.360 920.685i 0.847468 2.04597i
\(451\) −162.945 67.4939i −0.361296 0.149654i
\(452\) −174.006 + 260.419i −0.384970 + 0.576148i
\(453\) 104.700 20.8262i 0.231127 0.0459740i
\(454\) −163.016 243.970i −0.359065 0.537379i
\(455\) −50.3796 50.3796i −0.110724 0.110724i
\(456\) −7.90441 1.57228i −0.0173342 0.00344799i
\(457\) 102.104 + 246.501i 0.223423 + 0.539390i 0.995350 0.0963202i \(-0.0307073\pi\)
−0.771928 + 0.635710i \(0.780707\pi\)
\(458\) 1094.83i 2.39046i
\(459\) 0 0
\(460\) 355.825 0.773533
\(461\) −417.100 + 172.768i −0.904772 + 0.374769i −0.786053 0.618159i \(-0.787879\pi\)
−0.118719 + 0.992928i \(0.537879\pi\)
\(462\) −30.4375 + 153.019i −0.0658819 + 0.331211i
\(463\) 57.1171 57.1171i 0.123363 0.123363i −0.642730 0.766093i \(-0.722198\pi\)
0.766093 + 0.642730i \(0.222198\pi\)
\(464\) 25.4896 17.0316i 0.0549345 0.0367060i
\(465\) 16.3400 + 82.1465i 0.0351397 + 0.176659i
\(466\) 705.172 + 471.181i 1.51325 + 1.01112i
\(467\) 31.5580 76.1879i 0.0675761 0.163143i −0.886483 0.462760i \(-0.846859\pi\)
0.954059 + 0.299617i \(0.0968590\pi\)
\(468\) 44.9569 + 18.6218i 0.0960619 + 0.0397901i
\(469\) −511.507 + 765.524i −1.09063 + 1.63225i
\(470\) 1876.61 373.280i 3.99278 0.794213i
\(471\) −16.2592 24.3337i −0.0345207 0.0516638i
\(472\) 68.4785 + 68.4785i 0.145082 + 0.145082i
\(473\) 184.035 + 36.6068i 0.389080 + 0.0773928i
\(474\) 89.6931 + 216.538i 0.189226 + 0.456832i
\(475\) 111.029i 0.233746i
\(476\) 0 0
\(477\) 501.069 1.05046
\(478\) 918.923 380.630i 1.92243 0.796298i
\(479\) 89.8162 451.536i 0.187508 0.942665i −0.766354 0.642418i \(-0.777931\pi\)
0.953862 0.300246i \(-0.0970689\pi\)
\(480\) 204.501 204.501i 0.426043 0.426043i
\(481\) 22.2349 14.8569i 0.0462264 0.0308875i
\(482\) 143.171 + 719.769i 0.297035 + 1.49330i
\(483\) 45.5295 + 30.4218i 0.0942639 + 0.0629852i
\(484\) −110.261 + 266.195i −0.227813 + 0.549989i
\(485\) −182.421 75.5612i −0.376125 0.155796i
\(486\) −300.192 + 449.268i −0.617678 + 0.924421i
\(487\) 513.097 102.061i 1.05359 0.209571i 0.362233 0.932088i \(-0.382015\pi\)
0.691354 + 0.722516i \(0.257015\pi\)
\(488\) −71.4273 106.898i −0.146367 0.219054i
\(489\) 91.7633 + 91.7633i 0.187655 + 0.187655i
\(490\) −302.593 60.1894i −0.617536 0.122836i
\(491\) −187.167 451.862i −0.381196 0.920289i −0.991735 0.128303i \(-0.959047\pi\)
0.610539 0.791986i \(-0.290953\pi\)
\(492\) 91.6511i 0.186283i
\(493\) 0 0
\(494\) −9.62041 −0.0194745
\(495\) −499.600 + 206.941i −1.00929 + 0.418063i
\(496\) 25.0064 125.716i 0.0504161 0.253459i
\(497\) 588.550 588.550i 1.18421 1.18421i
\(498\) 243.046 162.398i 0.488044 0.326100i
\(499\) −98.9237 497.323i −0.198244 0.996639i −0.943881 0.330287i \(-0.892855\pi\)
0.745637 0.666353i \(-0.232145\pi\)
\(500\) 498.974 + 333.404i 0.997948 + 0.666807i
\(501\) 34.4315 83.1249i 0.0687255 0.165918i
\(502\) 614.921 + 254.709i 1.22494 + 0.507388i
\(503\) −374.700 + 560.779i −0.744931 + 1.11487i 0.244470 + 0.969657i \(0.421386\pi\)
−0.989401 + 0.145211i \(0.953614\pi\)
\(504\) 226.544 45.0625i 0.449493 0.0894097i
\(505\) 34.3607 + 51.4244i 0.0680410 + 0.101831i
\(506\) −148.326 148.326i −0.293134 0.293134i
\(507\) 133.659 + 26.5863i 0.263626 + 0.0524385i
\(508\) −235.686 568.996i −0.463949 1.12007i
\(509\) 349.504i 0.686648i 0.939217 + 0.343324i \(0.111553\pi\)
−0.939217 + 0.343324i \(0.888447\pi\)
\(510\) 0 0
\(511\) 479.395 0.938150
\(512\) −539.012 + 223.266i −1.05276 + 0.436067i
\(513\) 7.73160 38.8694i 0.0150713 0.0757688i
\(514\) −696.221 + 696.221i −1.35451 + 1.35451i
\(515\) −277.521 + 185.434i −0.538876 + 0.360065i
\(516\) 19.0228 + 95.6341i 0.0368659 + 0.185337i
\(517\) −528.531 353.153i −1.02230 0.683081i
\(518\) 215.393 520.006i 0.415818 1.00387i
\(519\) −133.658 55.3631i −0.257530 0.106673i
\(520\) −17.7705 + 26.5954i −0.0341741 + 0.0511451i
\(521\) −309.333 + 61.5301i −0.593729 + 0.118100i −0.482803 0.875729i \(-0.660381\pi\)
−0.110925 + 0.993829i \(0.535381\pi\)
\(522\) −43.0688 64.4571i −0.0825074 0.123481i
\(523\) 145.221 + 145.221i 0.277669 + 0.277669i 0.832178 0.554509i \(-0.187094\pi\)
−0.554509 + 0.832178i \(0.687094\pi\)
\(524\) 867.854 + 172.627i 1.65621 + 0.329441i
\(525\) 96.3965 + 232.722i 0.183612 + 0.443279i
\(526\) 419.991i 0.798461i
\(527\) 0 0
\(528\) −65.5098 −0.124072
\(529\) 420.715 174.266i 0.795302 0.329425i
\(530\) −284.918 + 1432.38i −0.537580 + 2.70260i
\(531\) −161.959 + 161.959i −0.305007 + 0.305007i
\(532\) −94.8800 + 63.3968i −0.178346 + 0.119167i
\(533\) −4.81355 24.1993i −0.00903104 0.0454021i
\(534\) 177.745 + 118.765i 0.332855 + 0.222407i
\(535\) 271.666 655.859i 0.507786 1.22590i
\(536\) 381.873 + 158.177i 0.712450 + 0.295106i
\(537\) 113.833 170.363i 0.211979 0.317249i
\(538\) −964.618 + 191.874i −1.79297 + 0.356644i
\(539\) 56.9440 + 85.2227i 0.105648 + 0.158113i
\(540\) −413.135 413.135i −0.765065 0.765065i
\(541\) 775.493 + 154.255i 1.43344 + 0.285130i 0.849897 0.526949i \(-0.176664\pi\)
0.583547 + 0.812079i \(0.301664\pi\)
\(542\) −22.2280 53.6632i −0.0410111 0.0990096i
\(543\) 244.849i 0.450919i
\(544\) 0 0
\(545\) 149.615 0.274523
\(546\) −20.1647 + 8.35251i −0.0369317 + 0.0152976i
\(547\) −183.920 + 924.626i −0.336233 + 1.69036i 0.329490 + 0.944159i \(0.393123\pi\)
−0.665723 + 0.746199i \(0.731877\pi\)
\(548\) −632.218 + 632.218i −1.15368 + 1.15368i
\(549\) 252.826 168.933i 0.460521 0.307710i
\(550\) −188.253 946.412i −0.342278 1.72075i
\(551\) 7.18146 + 4.79850i 0.0130335 + 0.00870871i
\(552\) 9.40756 22.7119i 0.0170427 0.0411447i
\(553\) 691.450 + 286.408i 1.25036 + 0.517917i
\(554\) −518.029 + 775.285i −0.935071 + 1.39943i
\(555\) −151.461 + 30.1274i −0.272902 + 0.0542837i
\(556\) 515.258 + 771.138i 0.926723 + 1.38694i
\(557\) 303.284 + 303.284i 0.544495 + 0.544495i 0.924843 0.380348i \(-0.124196\pi\)
−0.380348 + 0.924843i \(0.624196\pi\)
\(558\) −317.905 63.2352i −0.569722 0.113325i
\(559\) 10.0455 + 24.2519i 0.0179704 + 0.0433844i
\(560\) 629.663i 1.12440i
\(561\) 0 0
\(562\) 261.932 0.466071
\(563\) 639.473 264.879i 1.13583 0.470477i 0.266072 0.963953i \(-0.414274\pi\)
0.869759 + 0.493476i \(0.164274\pi\)
\(564\) 64.4425 323.974i 0.114260 0.574423i
\(565\) 344.303 344.303i 0.609386 0.609386i
\(566\) 18.8323 12.5833i 0.0332725 0.0222320i
\(567\) 97.4731 + 490.031i 0.171910 + 0.864251i
\(568\) −310.696 207.601i −0.547000 0.365494i
\(569\) −153.331 + 370.173i −0.269474 + 0.650567i −0.999459 0.0328958i \(-0.989527\pi\)
0.729985 + 0.683463i \(0.239527\pi\)
\(570\) 51.3272 + 21.2604i 0.0900477 + 0.0372990i
\(571\) 362.070 541.876i 0.634098 0.948995i −0.365734 0.930719i \(-0.619182\pi\)
0.999833 0.0182762i \(-0.00581782\pi\)
\(572\) 46.2132 9.19237i 0.0807923 0.0160706i
\(573\) −59.8349 89.5493i −0.104424 0.156281i
\(574\) −367.214 367.214i −0.639745 0.639745i
\(575\) −332.165 66.0718i −0.577679 0.114907i
\(576\) 300.851 + 726.319i 0.522311 + 1.26097i
\(577\) 684.109i 1.18563i −0.805339 0.592815i \(-0.798017\pi\)
0.805339 0.592815i \(-0.201983\pi\)
\(578\) 0 0
\(579\) −258.876 −0.447109
\(580\) 117.640 48.7281i 0.202828 0.0840140i
\(581\) 182.097 915.465i 0.313421 1.57567i
\(582\) −42.7712 + 42.7712i −0.0734900 + 0.0734900i
\(583\) 403.417 269.555i 0.691968 0.462358i
\(584\) −41.9875 211.085i −0.0718964 0.361448i
\(585\) −62.9010 42.0291i −0.107523 0.0718446i
\(586\) −89.2236 + 215.405i −0.152259 + 0.367585i
\(587\) 342.216 + 141.750i 0.582991 + 0.241483i 0.654632 0.755948i \(-0.272824\pi\)
−0.0716408 + 0.997430i \(0.522824\pi\)
\(588\) −29.5911 + 44.2862i −0.0503250 + 0.0753166i
\(589\) 35.4193 7.04533i 0.0601346 0.0119615i
\(590\) −370.890 555.075i −0.628626 0.940806i
\(591\) 66.4527 + 66.4527i 0.112441 + 0.112441i
\(592\) 231.793 + 46.1065i 0.391543 + 0.0778827i
\(593\) 242.416 + 585.245i 0.408797 + 0.986922i 0.985455 + 0.169937i \(0.0543564\pi\)
−0.576658 + 0.816985i \(0.695644\pi\)
\(594\) 344.431i 0.579850i
\(595\) 0 0
\(596\) −231.425 −0.388297
\(597\) 222.080 91.9883i 0.371992 0.154084i
\(598\) 5.72495 28.7813i 0.00957349 0.0481292i
\(599\) −315.855 + 315.855i −0.527304 + 0.527304i −0.919768 0.392463i \(-0.871623\pi\)
0.392463 + 0.919768i \(0.371623\pi\)
\(600\) 94.0284 62.8278i 0.156714 0.104713i
\(601\) 85.0027 + 427.337i 0.141435 + 0.711044i 0.984799 + 0.173700i \(0.0555723\pi\)
−0.843363 + 0.537344i \(0.819428\pi\)
\(602\) 459.390 + 306.955i 0.763106 + 0.509891i
\(603\) −374.105 + 903.170i −0.620407 + 1.49779i
\(604\) −626.922 259.680i −1.03795 0.429933i
\(605\) 248.859 372.443i 0.411337 0.615609i
\(606\) 18.5825 3.69629i 0.0306642 0.00609949i
\(607\) 352.561 + 527.645i 0.580826 + 0.869267i 0.999240 0.0389892i \(-0.0124138\pi\)
−0.418414 + 0.908257i \(0.637414\pi\)
\(608\) −88.1749 88.1749i −0.145025 0.145025i
\(609\) 19.2187 + 3.82283i 0.0315578 + 0.00627723i
\(610\) 339.157 + 818.798i 0.555996 + 1.34229i
\(611\) 88.9259i 0.145542i
\(612\) 0 0
\(613\) −692.422 −1.12956 −0.564782 0.825240i \(-0.691040\pi\)
−0.564782 + 0.825240i \(0.691040\pi\)
\(614\) −446.610 + 184.992i −0.727377 + 0.301290i
\(615\) −27.7973 + 139.747i −0.0451989 + 0.227230i
\(616\) 158.152 158.152i 0.256740 0.256740i
\(617\) 223.026 149.021i 0.361468 0.241525i −0.361553 0.932352i \(-0.617753\pi\)
0.723021 + 0.690827i \(0.242753\pi\)
\(618\) 19.9477 + 100.284i 0.0322778 + 0.162272i
\(619\) 130.173 + 86.9787i 0.210295 + 0.140515i 0.656258 0.754537i \(-0.272138\pi\)
−0.445962 + 0.895052i \(0.647138\pi\)
\(620\) 203.741 491.875i 0.328615 0.793346i
\(621\) 111.684 + 46.2610i 0.179845 + 0.0744944i
\(622\) 560.096 838.243i 0.900476 1.34766i
\(623\) 669.500 133.172i 1.07464 0.213759i
\(624\) −5.09155 7.62004i −0.00815953 0.0122116i
\(625\) 38.0547 + 38.0547i 0.0608875 + 0.0608875i
\(626\) −1171.54 233.033i −1.87147 0.372258i
\(627\) −7.06311 17.0519i −0.0112649 0.0271959i
\(628\) 186.031i 0.296228i
\(629\) 0 0
\(630\) −1592.27 −2.52741
\(631\) 289.230 119.803i 0.458368 0.189862i −0.141538 0.989933i \(-0.545205\pi\)
0.599906 + 0.800071i \(0.295205\pi\)
\(632\) 65.5499 329.542i 0.103718 0.521427i
\(633\) −131.992 + 131.992i −0.208519 + 0.208519i
\(634\) −350.124 + 233.945i −0.552246 + 0.368999i
\(635\) 186.793 + 939.070i 0.294162 + 1.47885i
\(636\) 209.637 + 140.075i 0.329617 + 0.220243i
\(637\) −5.48723 + 13.2473i −0.00861418 + 0.0207965i
\(638\) −69.3506 28.7259i −0.108700 0.0450250i
\(639\) 490.997 734.829i 0.768384 1.14997i
\(640\) −850.938 + 169.262i −1.32959 + 0.264472i
\(641\) −205.629 307.746i −0.320794 0.480103i 0.635666 0.771964i \(-0.280725\pi\)
−0.956461 + 0.291861i \(0.905725\pi\)
\(642\) −153.776 153.776i −0.239526 0.239526i
\(643\) −215.763 42.9179i −0.335556 0.0667463i 0.0244365 0.999701i \(-0.492221\pi\)
−0.359993 + 0.932955i \(0.617221\pi\)
\(644\) −133.202 321.577i −0.206835 0.499344i
\(645\) 151.589i 0.235022i
\(646\) 0 0
\(647\) 769.098 1.18871 0.594357 0.804201i \(-0.297407\pi\)
0.594357 + 0.804201i \(0.297407\pi\)
\(648\) 207.231 85.8381i 0.319802 0.132466i
\(649\) −43.2679 + 217.522i −0.0666686 + 0.335165i
\(650\) 95.4544 95.4544i 0.146853 0.146853i
\(651\) 68.1232 45.5185i 0.104644 0.0699209i
\(652\) −160.932 809.062i −0.246829 1.24089i
\(653\) 35.2838 + 23.5759i 0.0540334 + 0.0361040i 0.582294 0.812979i \(-0.302155\pi\)
−0.528260 + 0.849083i \(0.677155\pi\)
\(654\) 17.5397 42.3446i 0.0268192 0.0647472i
\(655\) −1270.92 526.432i −1.94033 0.803713i
\(656\) 121.145 181.307i 0.184673 0.276382i
\(657\) 499.239 99.3048i 0.759877 0.151149i
\(658\) −1039.85 1556.25i −1.58032 2.36512i
\(659\) −472.719 472.719i −0.717328 0.717328i 0.250729 0.968057i \(-0.419330\pi\)
−0.968057 + 0.250729i \(0.919330\pi\)
\(660\) −266.873 53.0843i −0.404352 0.0804307i
\(661\) −157.467 380.158i −0.238225 0.575126i 0.758874 0.651237i \(-0.225750\pi\)
−0.997099 + 0.0761113i \(0.975750\pi\)
\(662\) 480.756i 0.726218i
\(663\) 0 0
\(664\) −419.043 −0.631089
\(665\) 163.898 67.8888i 0.246463 0.102088i
\(666\) 116.592 586.150i 0.175064 0.880104i
\(667\) −18.6292 + 18.6292i −0.0279298 + 0.0279298i
\(668\) −475.539 + 317.745i −0.711885 + 0.475666i
\(669\) 57.6010 + 289.580i 0.0861002 + 0.432855i
\(670\) −2369.12 1582.99i −3.53600 2.36268i
\(671\) 112.675 272.020i 0.167920 0.405395i
\(672\) −261.372 108.264i −0.388946 0.161107i
\(673\) 9.00950 13.4837i 0.0133871 0.0200352i −0.824716 0.565547i \(-0.808665\pi\)
0.838103 + 0.545512i \(0.183665\pi\)
\(674\) −1432.19 + 284.880i −2.12491 + 0.422670i
\(675\) 308.951 + 462.378i 0.457705 + 0.685004i
\(676\) −612.536 612.536i −0.906119 0.906119i
\(677\) −1008.45 200.593i −1.48958 0.296297i −0.617858 0.786290i \(-0.711999\pi\)
−0.871726 + 0.489993i \(0.836999\pi\)
\(678\) −57.0825 137.809i −0.0841924 0.203258i
\(679\) 193.149i 0.284461i
\(680\) 0 0
\(681\) 78.7512 0.115641
\(682\) −289.967 + 120.108i −0.425172 + 0.176112i
\(683\) 44.1583 221.999i 0.0646534 0.325035i −0.934900 0.354911i \(-0.884511\pi\)
0.999554 + 0.0298760i \(0.00951125\pi\)
\(684\) −85.6752 + 85.6752i −0.125256 + 0.125256i
\(685\) 1155.73 772.237i 1.68720 1.12735i
\(686\) −168.427 846.738i −0.245520 1.23431i
\(687\) −244.321 163.250i −0.355635 0.237628i
\(688\) −88.7787 + 214.331i −0.129039 + 0.311527i
\(689\) 62.7087 + 25.9748i 0.0910141 + 0.0376993i
\(690\) −94.1484 + 140.903i −0.136447 + 0.204207i
\(691\) −38.3188 + 7.62208i −0.0554541 + 0.0110305i −0.222739 0.974878i \(-0.571500\pi\)
0.167285 + 0.985909i \(0.446500\pi\)
\(692\) 510.909 + 764.629i 0.738308 + 1.10496i
\(693\) 374.046 + 374.046i 0.539749 + 0.539749i
\(694\) 58.7593 + 11.6880i 0.0846676 + 0.0168414i
\(695\) −551.766 1332.08i −0.793908 1.91666i
\(696\) 8.79713i 0.0126395i
\(697\) 0 0
\(698\) 1185.05 1.69778
\(699\) −210.296 + 87.1075i −0.300853 + 0.124617i
\(700\) 312.379 1570.43i 0.446255 2.24348i
\(701\) 401.261 401.261i 0.572412 0.572412i −0.360390 0.932802i \(-0.617356\pi\)
0.932802 + 0.360390i \(0.117356\pi\)
\(702\) −40.0639 + 26.7698i −0.0570710 + 0.0381336i
\(703\) 12.9901 + 65.3056i 0.0184781 + 0.0928956i
\(704\) 632.949 + 422.923i 0.899075 + 0.600743i
\(705\) −196.520 + 474.441i −0.278751 + 0.672965i
\(706\) −545.941 226.136i −0.773288 0.320306i
\(707\) 33.6121 50.3040i 0.0475418 0.0711514i
\(708\) −113.036 + 22.4843i −0.159655 + 0.0317574i
\(709\) 158.551 + 237.289i 0.223627 + 0.334681i 0.926270 0.376862i \(-0.122997\pi\)
−0.702643 + 0.711543i \(0.747997\pi\)
\(710\) 1821.42 + 1821.42i 2.56539 + 2.56539i
\(711\) 779.401 + 155.033i 1.09620 + 0.218049i
\(712\) −117.276 283.128i −0.164713 0.397652i
\(713\) 110.156i 0.154496i
\(714\) 0 0
\(715\) −73.2524 −0.102451
\(716\) −1203.28 + 498.416i −1.68056 + 0.696112i
\(717\) −52.0795 + 261.821i −0.0726353 + 0.365162i
\(718\) −761.667 + 761.667i −1.06082 + 1.06082i
\(719\) −510.049 + 340.804i −0.709387 + 0.473997i −0.857177 0.515022i \(-0.827784\pi\)
0.147790 + 0.989019i \(0.452784\pi\)
\(720\) −130.432 655.728i −0.181156 0.910733i
\(721\) 271.475 + 181.394i 0.376525 + 0.251586i
\(722\) −409.056 + 987.549i −0.566560 + 1.36780i
\(723\) −181.971 75.3748i −0.251689 0.104253i
\(724\) 864.693 1294.10i 1.19433 1.78744i
\(725\) −118.866 + 23.6439i −0.163953 + 0.0326123i
\(726\) −76.2360 114.095i −0.105008 0.157156i
\(727\) −244.413 244.413i −0.336194 0.336194i 0.518739 0.854933i \(-0.326402\pi\)
−0.854933 + 0.518739i \(0.826402\pi\)
\(728\) 30.6880 + 6.10422i 0.0421538 + 0.00838492i
\(729\) 163.590 + 394.941i 0.224403 + 0.541758i
\(730\) 1483.61i 2.03235i
\(731\) 0 0
\(732\) 153.003 0.209020
\(733\) −1246.38 + 516.266i −1.70038 + 0.704319i −0.999956 0.00941053i \(-0.997004\pi\)
−0.700421 + 0.713730i \(0.747004\pi\)
\(734\) −48.2685 + 242.662i −0.0657608 + 0.330602i
\(735\) 58.5513 58.5513i 0.0796617 0.0796617i
\(736\) 316.263 211.320i 0.429705 0.287120i
\(737\) 184.672 + 928.407i 0.250572 + 1.25971i
\(738\) −458.482 306.348i −0.621249 0.415105i
\(739\) 249.740 602.925i 0.337943 0.815866i −0.659970 0.751292i \(-0.729431\pi\)
0.997913 0.0645741i \(-0.0205689\pi\)
\(740\) 906.913 + 375.656i 1.22556 + 0.507643i
\(741\) 1.43450 2.14688i 0.00193589 0.00289727i
\(742\) 1401.17 278.710i 1.88837 0.375620i
\(743\) −123.890 185.415i −0.166743 0.249548i 0.738683 0.674053i \(-0.235448\pi\)
−0.905426 + 0.424505i \(0.860448\pi\)
\(744\) −26.0091 26.0091i −0.0349584 0.0349584i
\(745\) 352.870 + 70.1902i 0.473651 + 0.0942150i
\(746\) −88.9980 214.860i −0.119300 0.288016i
\(747\) 991.082i 1.32675i
\(748\) 0 0
\(749\) −694.430 −0.927143
\(750\) −264.049 + 109.373i −0.352065 + 0.145830i
\(751\) −87.6011 + 440.400i −0.116646 + 0.586419i 0.877609 + 0.479378i \(0.159138\pi\)
−0.994255 + 0.107041i \(0.965862\pi\)
\(752\) 555.715 555.715i 0.738982 0.738982i
\(753\) −148.531 + 99.2453i −0.197252 + 0.131800i
\(754\) −2.04868 10.2994i −0.00271709 0.0136597i
\(755\) 877.152 + 586.094i 1.16179 + 0.776283i
\(756\) −218.716 + 528.027i −0.289307 + 0.698449i
\(757\) 42.5792 + 17.6369i 0.0562473 + 0.0232984i 0.410630 0.911802i \(-0.365309\pi\)
−0.354382 + 0.935101i \(0.615309\pi\)
\(758\) −991.081 + 1483.26i −1.30749 + 1.95680i
\(759\) 55.2169 10.9833i 0.0727496 0.0144708i
\(760\) −44.2475 66.2210i −0.0582203 0.0871329i
\(761\) 552.081 + 552.081i 0.725467 + 0.725467i 0.969713 0.244246i \(-0.0785404\pi\)
−0.244246 + 0.969713i \(0.578540\pi\)
\(762\) 287.677 + 57.2225i 0.377529 + 0.0750952i
\(763\) −56.0079 135.215i −0.0734048 0.177215i
\(764\) 684.604i 0.896079i
\(765\) 0 0
\(766\) 707.240 0.923289
\(767\) −28.6649 + 11.8734i −0.0373727 + 0.0154803i
\(768\) 7.91719 39.8024i 0.0103088 0.0518261i
\(769\) 625.504 625.504i 0.813400 0.813400i −0.171742 0.985142i \(-0.554940\pi\)
0.985142 + 0.171742i \(0.0549396\pi\)
\(770\) −1281.95 + 856.575i −1.66488 + 1.11243i
\(771\) −51.5543 259.181i −0.0668668 0.336162i
\(772\) 1368.24 + 914.229i 1.77233 + 1.18424i
\(773\) 465.474 1123.75i 0.602166 1.45376i −0.269181 0.963090i \(-0.586753\pi\)
0.871347 0.490667i \(-0.163247\pi\)
\(774\) 541.991 + 224.500i 0.700247 + 0.290052i
\(775\) −281.528 + 421.336i −0.363262 + 0.543660i
\(776\) 85.0468 16.9169i 0.109596 0.0218001i
\(777\) 83.9265 + 125.605i 0.108013 + 0.161654i
\(778\) 864.056 + 864.056i 1.11061 + 1.11061i
\(779\) 60.2548 + 11.9854i 0.0773489 + 0.0153857i
\(780\) −14.5671 35.1682i −0.0186758 0.0450874i
\(781\) 855.757i 1.09572i
\(782\) 0 0
\(783\) 43.2592 0.0552481
\(784\) −117.076 + 48.4944i −0.149331 + 0.0618551i
\(785\) 56.4223 283.654i 0.0718755 0.361343i
\(786\) −297.985 + 297.985i −0.379116 + 0.379116i
\(787\) 161.359 107.816i 0.205030 0.136997i −0.448816 0.893624i \(-0.648154\pi\)
0.653846 + 0.756627i \(0.273154\pi\)
\(788\) −116.543 585.903i −0.147898 0.743532i
\(789\) 93.7245 + 62.6247i 0.118789 + 0.0793723i
\(790\) −886.365 + 2139.88i −1.12198 + 2.70870i
\(791\) −440.053 182.276i −0.556324 0.230437i
\(792\) 131.938 197.459i 0.166589 0.249317i
\(793\) 40.3984 8.03575i 0.0509438 0.0101334i
\(794\) 443.666 + 663.993i 0.558773 + 0.836263i
\(795\) −277.163 277.163i −0.348633 0.348633i
\(796\) −1498.62 298.094i −1.88269 0.374490i
\(797\) 49.1164 + 118.577i 0.0616266 + 0.148780i 0.951693 0.307051i \(-0.0993422\pi\)
−0.890066 + 0.455831i \(0.849342\pi\)
\(798\) 54.3457i 0.0681024i
\(799\) 0 0
\(800\) 1749.75 2.18719
\(801\) 669.628 277.369i 0.835990 0.346278i
\(802\) 141.325 710.490i 0.176216 0.885898i
\(803\) 348.522 348.522i 0.434025 0.434025i
\(804\) −409.001 + 273.285i −0.508707 + 0.339907i
\(805\) 105.569 + 530.731i 0.131141 + 0.659293i
\(806\) −36.5077 24.3937i −0.0452949 0.0302651i
\(807\) 101.016 243.873i 0.125174 0.302197i
\(808\) −25.0936 10.3941i −0.0310564 0.0128640i
\(809\) 193.960 290.282i 0.239753 0.358816i −0.692007 0.721891i \(-0.743273\pi\)
0.931760 + 0.363075i \(0.118273\pi\)
\(810\) −1516.53 + 301.656i −1.87226 + 0.372415i
\(811\) 103.131 + 154.347i 0.127166 + 0.190317i 0.889589 0.456761i \(-0.150991\pi\)
−0.762423 + 0.647078i \(0.775991\pi\)
\(812\) −88.0762 88.0762i −0.108468 0.108468i
\(813\) 15.2898 + 3.04133i 0.0188067 + 0.00374088i
\(814\) −221.455 534.639i −0.272057 0.656804i
\(815\) 1282.44i 1.57355i
\(816\) 0 0
\(817\) −65.3610 −0.0800013
\(818\) 726.923 301.101i 0.888659 0.368095i
\(819\) −14.4371 + 72.5803i −0.0176277 + 0.0886206i
\(820\) 640.437 640.437i 0.781021 0.781021i
\(821\) −1310.45 + 875.613i −1.59616 + 1.06652i −0.642221 + 0.766519i \(0.721987\pi\)
−0.953939 + 0.300001i \(0.903013\pi\)
\(822\) −83.0720 417.631i −0.101061 0.508067i
\(823\) −836.137 558.689i −1.01596 0.678844i −0.0681507 0.997675i \(-0.521710\pi\)
−0.947812 + 0.318831i \(0.896710\pi\)
\(824\) 56.0937 135.422i 0.0680749 0.164347i
\(825\) 239.270 + 99.1090i 0.290025 + 0.120132i
\(826\) −362.809 + 542.982i −0.439236 + 0.657363i
\(827\) −1558.84 + 310.073i −1.88494 + 0.374937i −0.996466 0.0839938i \(-0.973232\pi\)
−0.888472 + 0.458931i \(0.848232\pi\)
\(828\) −205.329 307.297i −0.247982 0.371132i
\(829\) 269.747 + 269.747i 0.325388 + 0.325388i 0.850830 0.525442i \(-0.176100\pi\)
−0.525442 + 0.850830i \(0.676100\pi\)
\(830\) 2833.15 + 563.548i 3.41343 + 0.678974i
\(831\) −95.7684 231.205i −0.115245 0.278225i
\(832\) 106.494i 0.127998i
\(833\) 0 0
\(834\) −441.695 −0.529611
\(835\) 821.457 340.259i 0.983781 0.407495i
\(836\) −22.8884 + 115.068i −0.0273785 + 0.137641i
\(837\) 127.898 127.898i 0.152805 0.152805i
\(838\) −431.818 + 288.532i −0.515297 + 0.344310i
\(839\) −7.22195 36.3072i −0.00860781 0.0432744i 0.976243 0.216680i \(-0.0695228\pi\)
−0.984850 + 0.173406i \(0.944523\pi\)
\(840\) −150.238 100.386i −0.178854 0.119507i
\(841\) 318.229 768.273i 0.378393 0.913523i
\(842\) −1753.09 726.154i −2.08206 0.862416i
\(843\) −39.0566 + 58.4524i −0.0463305 + 0.0693386i
\(844\) 1163.76 231.485i 1.37886 0.274272i
\(845\) 748.196 + 1119.75i 0.885439 + 1.32515i
\(846\) −1405.27 1405.27i −1.66107 1.66107i
\(847\) −429.755 85.4837i −0.507385 0.100925i
\(848\) 229.557 + 554.200i 0.270704 + 0.653538i
\(849\) 6.07887i 0.00716004i
\(850\) 0 0
\(851\) −203.104 −0.238665
\(852\) 410.846 170.178i 0.482213 0.199739i
\(853\) −15.3853 + 77.3472i −0.0180367 + 0.0906767i −0.988755 0.149543i \(-0.952220\pi\)
0.970718 + 0.240220i \(0.0772196\pi\)
\(854\) 613.028 613.028i 0.717831 0.717831i
\(855\) 156.620 104.650i 0.183181 0.122398i
\(856\) 60.8213 + 305.769i 0.0710529 + 0.357207i
\(857\) 553.831 + 370.058i 0.646244 + 0.431806i 0.835024 0.550213i \(-0.185453\pi\)
−0.188780 + 0.982019i \(0.560453\pi\)
\(858\) −8.58754 + 20.7322i −0.0100088 + 0.0241634i
\(859\) 1281.10 + 530.649i 1.49138 + 0.617752i 0.971618 0.236556i \(-0.0760187\pi\)
0.519767 + 0.854308i \(0.326019\pi\)
\(860\) −535.342 + 801.196i −0.622491 + 0.931624i
\(861\) 136.702 27.1917i 0.158771 0.0315816i
\(862\) −1281.92 1918.53i −1.48714 2.22567i
\(863\) 375.548 + 375.548i 0.435166 + 0.435166i 0.890381 0.455215i \(-0.150438\pi\)
−0.455215 + 0.890381i \(0.650438\pi\)
\(864\) −612.557 121.845i −0.708978 0.141024i
\(865\) −547.109 1320.84i −0.632496 1.52698i
\(866\) 286.613i 0.330962i
\(867\) 0 0
\(868\) −520.802 −0.600002
\(869\) 710.907 294.467i 0.818075 0.338858i
\(870\) −11.8308 + 59.4773i −0.0135986 + 0.0683647i
\(871\) −93.6384 + 93.6384i −0.107507 + 0.107507i
\(872\) −54.6320 + 36.5039i −0.0626513 + 0.0418623i
\(873\) 40.0101 + 201.145i 0.0458306 + 0.230406i
\(874\) 60.7534 + 40.5941i 0.0695119 + 0.0464464i
\(875\) −349.249 + 843.160i −0.399141 + 0.963612i
\(876\) 236.632 + 98.0161i 0.270128 + 0.111891i
\(877\) −138.090 + 206.666i −0.157457 + 0.235652i −0.901808 0.432138i \(-0.857759\pi\)
0.744350 + 0.667789i \(0.232759\pi\)
\(878\) −109.795 + 21.8396i −0.125052 + 0.0248743i
\(879\) −34.7653 52.0300i −0.0395510 0.0591922i
\(880\) −457.768 457.768i −0.520191 0.520191i
\(881\) −143.646 28.5729i −0.163048 0.0324324i 0.112891 0.993607i \(-0.463989\pi\)
−0.275939 + 0.961175i \(0.588989\pi\)
\(882\) 122.631 + 296.057i 0.139037 + 0.335665i
\(883\) 322.505i 0.365237i −0.983184 0.182619i \(-0.941543\pi\)
0.983184 0.182619i \(-0.0584574\pi\)
\(884\) 0 0
\(885\) 179.173 0.202455
\(886\) −1773.64 + 734.666i −2.00185 + 0.829194i
\(887\) −12.2623 + 61.6470i −0.0138245 + 0.0695005i −0.987082 0.160218i \(-0.948780\pi\)
0.973257 + 0.229718i \(0.0737804\pi\)
\(888\) 47.9552 47.9552i 0.0540037 0.0540037i
\(889\) 778.760 520.351i 0.875996 0.585322i
\(890\) 412.136 + 2071.95i 0.463074 + 2.32803i
\(891\) 427.118 + 285.391i 0.479369 + 0.320304i
\(892\) 718.221 1733.94i 0.805180 1.94388i
\(893\) 204.565 + 84.7337i 0.229077 + 0.0948866i
\(894\) 61.2332 91.6419i 0.0684935 0.102508i
\(895\) 1985.89 395.019i 2.21888 0.441362i
\(896\) 471.516 + 705.674i 0.526246 + 0.787582i
\(897\) 5.56914 + 5.56914i 0.00620863 + 0.00620863i
\(898\) −1311.86 260.944i −1.46086 0.290584i
\(899\) 15.0852 + 36.4189i 0.0167800 + 0.0405104i
\(900\) 1700.15i 1.88905i
\(901\) 0 0
\(902\) −533.932 −0.591942
\(903\) −136.999 + 56.7469i −0.151715 + 0.0628426i
\(904\) −41.7173 + 209.727i −0.0461474 + 0.231999i
\(905\) −1710.95 + 1710.95i −1.89055 + 1.89055i
\(906\) 268.709 179.546i 0.296588 0.198174i
\(907\) −42.8827 215.586i −0.0472797 0.237691i 0.949918 0.312498i \(-0.101166\pi\)
−0.997198 + 0.0748072i \(0.976166\pi\)
\(908\) −416.225 278.112i −0.458397 0.306291i
\(909\) 24.5832 59.3490i 0.0270442 0.0652904i
\(910\) −199.272 82.5412i −0.218980 0.0907046i
\(911\) 280.764 420.193i 0.308193 0.461244i −0.644750 0.764394i \(-0.723038\pi\)
0.952943 + 0.303150i \(0.0980383\pi\)
\(912\) 22.3807 4.45180i 0.0245402 0.00488135i
\(913\) −533.162 797.933i −0.583967 0.873968i
\(914\) 571.150 + 571.150i 0.624890 + 0.624890i
\(915\) −233.294 46.4050i −0.254966 0.0507158i
\(916\) 714.790 + 1725.66i 0.780338 + 1.88390i
\(917\) 1345.66i 1.46746i
\(918\) 0 0
\(919\) −930.196 −1.01218 −0.506091 0.862480i \(-0.668910\pi\)
−0.506091 + 0.862480i \(0.668910\pi\)
\(920\) 224.443 92.9674i 0.243960 0.101052i
\(921\) 25.3114 127.249i 0.0274825 0.138164i
\(922\) −966.431 + 966.431i −1.04819 + 1.04819i
\(923\) 99.5409 66.5111i 0.107845 0.0720597i
\(924\) 51.9277 + 261.058i 0.0561988 + 0.282531i
\(925\) −776.855 519.078i −0.839844 0.561166i
\(926\) 93.5798 225.922i 0.101058 0.243976i
\(927\) 320.288 + 132.667i 0.345510 + 0.143115i
\(928\) 75.6213 113.175i 0.0814885 0.121956i
\(929\) 1125.58 223.893i 1.21161 0.241004i 0.452378 0.891826i \(-0.350576\pi\)
0.759230 + 0.650822i \(0.225576\pi\)
\(930\) 140.869 + 210.825i 0.151472 + 0.226694i
\(931\) −25.2457 25.2457i −0.0271167 0.0271167i
\(932\) 1419.10 + 282.277i 1.52264 + 0.302872i
\(933\) 103.545 + 249.980i 0.110981 + 0.267932i
\(934\) 249.650i 0.267291i
\(935\) 0 0
\(936\) 33.2228 0.0354944
\(937\) −1249.07 + 517.380i −1.33305 + 0.552166i −0.931523 0.363682i \(-0.881519\pi\)
−0.401524 + 0.915848i \(0.631519\pi\)
\(938\) −543.763 + 2733.68i −0.579704 + 2.91437i
\(939\) 226.691 226.691i 0.241418 0.241418i
\(940\) 2714.17 1813.55i 2.88741 1.92931i
\(941\) −358.917 1804.40i −0.381421 1.91753i −0.397365 0.917661i \(-0.630075\pi\)
0.0159438 0.999873i \(-0.494925\pi\)
\(942\) −73.6663 49.2222i −0.0782020 0.0522529i
\(943\) −71.7133 + 173.131i −0.0760480 + 0.183596i
\(944\) −253.331 104.933i −0.268359 0.111158i
\(945\) 493.639 738.783i 0.522370 0.781781i
\(946\) 557.136 110.821i 0.588938 0.117147i
\(947\) −21.8620 32.7188i −0.0230855 0.0345499i 0.819747 0.572725i \(-0.194114\pi\)
−0.842833 + 0.538175i \(0.819114\pi\)
\(948\) 282.745 + 282.745i 0.298255 + 0.298255i
\(949\) 67.6275 + 13.4520i 0.0712619 + 0.0141749i
\(950\) 128.629 + 310.538i 0.135399 + 0.326882i
\(951\) 113.017i 0.118840i
\(952\) 0 0
\(953\) 183.445 0.192492 0.0962458 0.995358i \(-0.469317\pi\)
0.0962458 + 0.995358i \(0.469317\pi\)
\(954\) 1401.44 580.495i 1.46901 0.608485i
\(955\) 207.637 1043.86i 0.217421 1.09305i
\(956\) 1199.89 1199.89i 1.25511 1.25511i
\(957\) 16.7513 11.1929i 0.0175040 0.0116958i
\(958\) −271.904 1366.95i −0.283825 1.42688i
\(959\) −1130.55 755.412i −1.17889 0.787708i
\(960\) 235.345 568.173i 0.245151 0.591847i
\(961\) −735.574 304.685i −0.765426 0.317050i
\(962\) 44.9768 67.3125i 0.0467534 0.0699714i
\(963\) −723.176 + 143.849i −0.750962 + 0.149376i
\(964\) 695.584 + 1041.01i 0.721560 + 1.07989i
\(965\) −1808.97 1808.97i −1.87458 1.87458i
\(966\) 162.585 + 32.3402i 0.168308 + 0.0334785i
\(967\) 489.471 + 1181.69i 0.506175 + 1.22201i 0.946069 + 0.323965i \(0.105016\pi\)
−0.439894 + 0.898050i \(0.644984\pi\)
\(968\) 196.715i 0.203218i
\(969\) 0 0
\(970\) −597.751 −0.616238
\(971\) 844.437 349.777i 0.869657 0.360224i 0.0971803 0.995267i \(-0.469018\pi\)
0.772477 + 0.635043i \(0.219018\pi\)
\(972\) −179.840 + 904.117i −0.185021 + 0.930161i
\(973\) −997.319 + 997.319i −1.02499 + 1.02499i
\(974\) 1316.84 879.884i 1.35199 0.903371i
\(975\) 7.06828 + 35.5346i 0.00724952 + 0.0364458i
\(976\) 302.674 + 202.240i 0.310117 + 0.207214i
\(977\) −169.210 + 408.510i −0.173194 + 0.418126i −0.986511 0.163694i \(-0.947659\pi\)
0.813318 + 0.581820i \(0.197659\pi\)
\(978\) 362.961 + 150.343i 0.371126 + 0.153725i
\(979\) 389.913 583.546i 0.398277 0.596063i
\(980\) −516.238 + 102.686i −0.526773 + 0.104782i
\(981\) −86.3356 129.210i −0.0880078 0.131713i
\(982\) −1046.98 1046.98i −1.06617 1.06617i
\(983\) 652.647 + 129.820i 0.663934 + 0.132065i 0.515542 0.856864i \(-0.327590\pi\)
0.148391 + 0.988929i \(0.452590\pi\)
\(984\) −23.9459 57.8106i −0.0243353 0.0587506i
\(985\) 928.713i 0.942856i
\(986\) 0 0
\(987\) 502.343 0.508959
\(988\) −15.1635 + 6.28094i −0.0153477 + 0.00635723i
\(989\) 38.8953 195.540i 0.0393279 0.197714i
\(990\) −1157.59 + 1157.59i −1.16928 + 1.16928i
\(991\) 1301.14 869.394i 1.31296 0.877289i 0.315525 0.948917i \(-0.397819\pi\)
0.997431 + 0.0716278i \(0.0228194\pi\)
\(992\) −111.030 558.185i −0.111925 0.562687i
\(993\) 107.285 + 71.6854i 0.108041 + 0.0721908i
\(994\) 964.271 2327.96i 0.970092 2.34201i
\(995\) 2194.64 + 909.048i 2.20566 + 0.913616i
\(996\) 277.059 414.648i 0.278171 0.416313i
\(997\) −1510.52 + 300.460i −1.51506 + 0.301364i −0.881446 0.472284i \(-0.843430\pi\)
−0.633615 + 0.773649i \(0.718430\pi\)
\(998\) −852.835 1276.36i −0.854544 1.27891i
\(999\) 235.817 + 235.817i 0.236053 + 0.236053i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.k.65.1 8
17.2 even 8 289.3.e.m.158.1 8
17.3 odd 16 289.3.e.i.75.1 8
17.4 even 4 289.3.e.b.224.1 8
17.5 odd 16 17.3.e.a.10.1 8
17.6 odd 16 289.3.e.l.249.1 8
17.7 odd 16 289.3.e.b.40.1 8
17.8 even 8 289.3.e.c.131.1 8
17.9 even 8 17.3.e.a.12.1 yes 8
17.10 odd 16 289.3.e.d.40.1 8
17.11 odd 16 inner 289.3.e.k.249.1 8
17.12 odd 16 289.3.e.c.214.1 8
17.13 even 4 289.3.e.d.224.1 8
17.14 odd 16 289.3.e.m.75.1 8
17.15 even 8 289.3.e.i.158.1 8
17.16 even 2 289.3.e.l.65.1 8
51.5 even 16 153.3.p.b.10.1 8
51.26 odd 8 153.3.p.b.46.1 8
68.39 even 16 272.3.bh.c.129.1 8
68.43 odd 8 272.3.bh.c.97.1 8
85.9 even 8 425.3.u.b.301.1 8
85.22 even 16 425.3.t.a.299.1 8
85.39 odd 16 425.3.u.b.401.1 8
85.43 odd 8 425.3.t.a.199.1 8
85.73 even 16 425.3.t.c.299.1 8
85.77 odd 8 425.3.t.c.199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.10.1 8 17.5 odd 16
17.3.e.a.12.1 yes 8 17.9 even 8
153.3.p.b.10.1 8 51.5 even 16
153.3.p.b.46.1 8 51.26 odd 8
272.3.bh.c.97.1 8 68.43 odd 8
272.3.bh.c.129.1 8 68.39 even 16
289.3.e.b.40.1 8 17.7 odd 16
289.3.e.b.224.1 8 17.4 even 4
289.3.e.c.131.1 8 17.8 even 8
289.3.e.c.214.1 8 17.12 odd 16
289.3.e.d.40.1 8 17.10 odd 16
289.3.e.d.224.1 8 17.13 even 4
289.3.e.i.75.1 8 17.3 odd 16
289.3.e.i.158.1 8 17.15 even 8
289.3.e.k.65.1 8 1.1 even 1 trivial
289.3.e.k.249.1 8 17.11 odd 16 inner
289.3.e.l.65.1 8 17.16 even 2
289.3.e.l.249.1 8 17.6 odd 16
289.3.e.m.75.1 8 17.14 odd 16
289.3.e.m.158.1 8 17.2 even 8
425.3.t.a.199.1 8 85.43 odd 8
425.3.t.a.299.1 8 85.22 even 16
425.3.t.c.199.1 8 85.77 odd 8
425.3.t.c.299.1 8 85.73 even 16
425.3.u.b.301.1 8 85.9 even 8
425.3.u.b.401.1 8 85.39 odd 16