Properties

Label 153.3.p.b.10.1
Level $153$
Weight $3$
Character 153.10
Analytic conductor $4.169$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(10,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.10"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.p (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,0,-16,0,8,24,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 10.1
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 153.10
Dual form 153.3.p.b.46.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.15851 - 2.79690i) q^{2} +(-3.65205 - 3.65205i) q^{4} +(-7.87510 + 1.56645i) q^{5} +(-7.70353 - 1.53233i) q^{7} +(-3.25778 + 1.34942i) q^{8} +(-4.74219 + 23.8406i) q^{10} +(-4.48649 - 6.71450i) q^{11} +(-0.798835 + 0.798835i) q^{13} +(-13.2104 + 19.7707i) q^{14} -9.98414i q^{16} +(6.50562 - 15.7060i) q^{17} +(1.07647 - 2.59882i) q^{19} +(34.4811 + 23.0395i) q^{20} +(-23.9774 + 4.76941i) q^{22} +(7.13426 - 4.76696i) q^{23} +(36.4664 - 15.1049i) q^{25} +(1.30880 + 3.15972i) q^{26} +(22.5376 + 33.7298i) q^{28} +(0.599020 + 3.01148i) q^{29} +(-7.13254 + 10.6746i) q^{31} +(-40.9557 - 16.9644i) q^{32} +(-36.3911 - 36.3911i) q^{34} +63.0663 q^{35} +(19.6817 + 13.1509i) q^{37} +(-6.02153 - 6.02153i) q^{38} +(23.5416 - 15.7300i) q^{40} +(-21.4206 - 4.26082i) q^{41} +(-8.89197 - 21.4671i) q^{43} +(-8.13684 + 40.9066i) q^{44} +(-5.06757 - 25.4764i) q^{46} +(-55.6597 + 55.6597i) q^{47} +(11.7262 + 4.85715i) q^{49} -119.492i q^{50} +5.83478 q^{52} +(22.9922 - 55.5080i) q^{53} +(45.8495 + 45.8495i) q^{55} +(27.1642 - 5.40329i) q^{56} +(9.11677 + 1.81344i) q^{58} +(25.3733 - 10.5100i) q^{59} +(7.11302 - 35.7596i) q^{61} +(21.5926 + 32.3156i) q^{62} +(-66.6561 + 66.6561i) q^{64} +(5.03957 - 7.54224i) q^{65} -117.219i q^{67} +(-81.1179 + 33.6001i) q^{68} +(73.0632 - 176.390i) q^{70} +(-88.1108 - 58.8738i) q^{71} +(-59.8620 + 11.9073i) q^{73} +(59.5832 - 39.8122i) q^{74} +(-13.4223 + 5.55971i) q^{76} +(24.2730 + 58.6001i) q^{77} +(52.9382 + 79.2276i) q^{79} +(15.6397 + 78.6261i) q^{80} +(-36.7331 + 54.9749i) q^{82} +(109.791 + 45.4770i) q^{83} +(-26.6297 + 133.877i) q^{85} -70.3428 q^{86} +(23.6767 + 15.8202i) q^{88} +(61.4534 + 61.4534i) q^{89} +(7.37792 - 4.92977i) q^{91} +(-43.4639 - 8.64551i) q^{92} +(91.1920 + 220.157i) q^{94} +(-4.40634 + 22.1522i) q^{95} +(4.79748 + 24.1185i) q^{97} +(27.1699 - 27.1699i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 16 q^{5} + 8 q^{7} + 24 q^{8} + 16 q^{10} + 8 q^{11} + 16 q^{13} - 8 q^{14} + 80 q^{20} - 104 q^{22} + 56 q^{23} + 64 q^{25} - 176 q^{26} + 152 q^{28} - 48 q^{29} + 24 q^{31} - 88 q^{32}+ \cdots + 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{3}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15851 2.79690i 0.579256 1.39845i −0.314225 0.949348i \(-0.601745\pi\)
0.893481 0.449100i \(-0.148255\pi\)
\(3\) 0 0
\(4\) −3.65205 3.65205i −0.913014 0.913014i
\(5\) −7.87510 + 1.56645i −1.57502 + 0.313291i −0.903796 0.427964i \(-0.859231\pi\)
−0.671224 + 0.741255i \(0.734231\pi\)
\(6\) 0 0
\(7\) −7.70353 1.53233i −1.10050 0.218904i −0.388757 0.921340i \(-0.627096\pi\)
−0.711746 + 0.702436i \(0.752096\pi\)
\(8\) −3.25778 + 1.34942i −0.407223 + 0.168677i
\(9\) 0 0
\(10\) −4.74219 + 23.8406i −0.474219 + 2.38406i
\(11\) −4.48649 6.71450i −0.407863 0.610410i 0.569497 0.821993i \(-0.307138\pi\)
−0.977360 + 0.211584i \(0.932138\pi\)
\(12\) 0 0
\(13\) −0.798835 + 0.798835i −0.0614489 + 0.0614489i −0.737163 0.675715i \(-0.763835\pi\)
0.675715 + 0.737163i \(0.263835\pi\)
\(14\) −13.2104 + 19.7707i −0.943599 + 1.41220i
\(15\) 0 0
\(16\) 9.98414i 0.624009i
\(17\) 6.50562 15.7060i 0.382683 0.923880i
\(18\) 0 0
\(19\) 1.07647 2.59882i 0.0566561 0.136780i −0.893017 0.450023i \(-0.851416\pi\)
0.949673 + 0.313244i \(0.101416\pi\)
\(20\) 34.4811 + 23.0395i 1.72405 + 1.15198i
\(21\) 0 0
\(22\) −23.9774 + 4.76941i −1.08988 + 0.216791i
\(23\) 7.13426 4.76696i 0.310185 0.207259i −0.390727 0.920507i \(-0.627776\pi\)
0.700912 + 0.713247i \(0.252776\pi\)
\(24\) 0 0
\(25\) 36.4664 15.1049i 1.45866 0.604195i
\(26\) 1.30880 + 3.15972i 0.0503384 + 0.121528i
\(27\) 0 0
\(28\) 22.5376 + 33.7298i 0.804913 + 1.20464i
\(29\) 0.599020 + 3.01148i 0.0206559 + 0.103844i 0.989738 0.142895i \(-0.0456410\pi\)
−0.969082 + 0.246739i \(0.920641\pi\)
\(30\) 0 0
\(31\) −7.13254 + 10.6746i −0.230082 + 0.344342i −0.928490 0.371358i \(-0.878892\pi\)
0.698408 + 0.715700i \(0.253892\pi\)
\(32\) −40.9557 16.9644i −1.27987 0.530138i
\(33\) 0 0
\(34\) −36.3911 36.3911i −1.07033 1.07033i
\(35\) 63.0663 1.80190
\(36\) 0 0
\(37\) 19.6817 + 13.1509i 0.531938 + 0.355429i 0.792349 0.610068i \(-0.208858\pi\)
−0.260411 + 0.965498i \(0.583858\pi\)
\(38\) −6.02153 6.02153i −0.158461 0.158461i
\(39\) 0 0
\(40\) 23.5416 15.7300i 0.588539 0.393249i
\(41\) −21.4206 4.26082i −0.522453 0.103922i −0.0731833 0.997319i \(-0.523316\pi\)
−0.449270 + 0.893396i \(0.648316\pi\)
\(42\) 0 0
\(43\) −8.89197 21.4671i −0.206790 0.499235i 0.786124 0.618069i \(-0.212085\pi\)
−0.992914 + 0.118833i \(0.962085\pi\)
\(44\) −8.13684 + 40.9066i −0.184928 + 0.929696i
\(45\) 0 0
\(46\) −5.06757 25.4764i −0.110164 0.553834i
\(47\) −55.6597 + 55.6597i −1.18425 + 1.18425i −0.205617 + 0.978632i \(0.565920\pi\)
−0.978632 + 0.205617i \(0.934080\pi\)
\(48\) 0 0
\(49\) 11.7262 + 4.85715i 0.239310 + 0.0991254i
\(50\) 119.492i 2.38984i
\(51\) 0 0
\(52\) 5.83478 0.112207
\(53\) 22.9922 55.5080i 0.433815 1.04732i −0.544232 0.838935i \(-0.683179\pi\)
0.978047 0.208386i \(-0.0668212\pi\)
\(54\) 0 0
\(55\) 45.8495 + 45.8495i 0.833627 + 0.833627i
\(56\) 27.1642 5.40329i 0.485074 0.0964873i
\(57\) 0 0
\(58\) 9.11677 + 1.81344i 0.157186 + 0.0312662i
\(59\) 25.3733 10.5100i 0.430057 0.178135i −0.157146 0.987575i \(-0.550229\pi\)
0.587202 + 0.809440i \(0.300229\pi\)
\(60\) 0 0
\(61\) 7.11302 35.7596i 0.116607 0.586223i −0.877659 0.479286i \(-0.840896\pi\)
0.994266 0.106937i \(-0.0341043\pi\)
\(62\) 21.5926 + 32.3156i 0.348268 + 0.521220i
\(63\) 0 0
\(64\) −66.6561 + 66.6561i −1.04150 + 1.04150i
\(65\) 5.03957 7.54224i 0.0775318 0.116035i
\(66\) 0 0
\(67\) 117.219i 1.74953i −0.484544 0.874767i \(-0.661015\pi\)
0.484544 0.874767i \(-0.338985\pi\)
\(68\) −81.1179 + 33.6001i −1.19291 + 0.494119i
\(69\) 0 0
\(70\) 73.0632 176.390i 1.04376 2.51986i
\(71\) −88.1108 58.8738i −1.24100 0.829208i −0.250685 0.968069i \(-0.580656\pi\)
−0.990312 + 0.138861i \(0.955656\pi\)
\(72\) 0 0
\(73\) −59.8620 + 11.9073i −0.820028 + 0.163114i −0.587239 0.809414i \(-0.699785\pi\)
−0.232789 + 0.972527i \(0.574785\pi\)
\(74\) 59.5832 39.8122i 0.805178 0.538003i
\(75\) 0 0
\(76\) −13.4223 + 5.55971i −0.176610 + 0.0731541i
\(77\) 24.2730 + 58.6001i 0.315233 + 0.761041i
\(78\) 0 0
\(79\) 52.9382 + 79.2276i 0.670103 + 1.00288i 0.998301 + 0.0582714i \(0.0185589\pi\)
−0.328197 + 0.944609i \(0.606441\pi\)
\(80\) 15.6397 + 78.6261i 0.195496 + 0.982826i
\(81\) 0 0
\(82\) −36.7331 + 54.9749i −0.447964 + 0.670426i
\(83\) 109.791 + 45.4770i 1.32279 + 0.547916i 0.928589 0.371110i \(-0.121023\pi\)
0.394197 + 0.919026i \(0.371023\pi\)
\(84\) 0 0
\(85\) −26.6297 + 133.877i −0.313291 + 1.57502i
\(86\) −70.3428 −0.817939
\(87\) 0 0
\(88\) 23.6767 + 15.8202i 0.269053 + 0.179776i
\(89\) 61.4534 + 61.4534i 0.690488 + 0.690488i 0.962339 0.271851i \(-0.0876359\pi\)
−0.271851 + 0.962339i \(0.587636\pi\)
\(90\) 0 0
\(91\) 7.37792 4.92977i 0.0810761 0.0541733i
\(92\) −43.4639 8.64551i −0.472434 0.0939729i
\(93\) 0 0
\(94\) 91.1920 + 220.157i 0.970128 + 2.34210i
\(95\) −4.40634 + 22.1522i −0.0463826 + 0.233181i
\(96\) 0 0
\(97\) 4.79748 + 24.1185i 0.0494585 + 0.248645i 0.997603 0.0691943i \(-0.0220428\pi\)
−0.948145 + 0.317839i \(0.897043\pi\)
\(98\) 27.1699 27.1699i 0.277244 0.277244i
\(99\) 0 0
\(100\) −188.341 78.0135i −1.88341 0.780135i
\(101\) 7.70266i 0.0762640i −0.999273 0.0381320i \(-0.987859\pi\)
0.999273 0.0381320i \(-0.0121407\pi\)
\(102\) 0 0
\(103\) 41.5688 0.403581 0.201790 0.979429i \(-0.435324\pi\)
0.201790 + 0.979429i \(0.435324\pi\)
\(104\) 1.52447 3.68039i 0.0146584 0.0353884i
\(105\) 0 0
\(106\) −128.614 128.614i −1.21333 1.21333i
\(107\) −86.7136 + 17.2484i −0.810407 + 0.161200i −0.582866 0.812568i \(-0.698069\pi\)
−0.227541 + 0.973768i \(0.573069\pi\)
\(108\) 0 0
\(109\) 18.2754 + 3.63521i 0.167665 + 0.0333506i 0.278209 0.960521i \(-0.410259\pi\)
−0.110544 + 0.993871i \(0.535259\pi\)
\(110\) 181.354 75.1191i 1.64867 0.682901i
\(111\) 0 0
\(112\) −15.2990 + 76.9131i −0.136598 + 0.686724i
\(113\) 33.6909 + 50.4220i 0.298150 + 0.446212i 0.950053 0.312090i \(-0.101029\pi\)
−0.651903 + 0.758302i \(0.726029\pi\)
\(114\) 0 0
\(115\) −48.7158 + 48.7158i −0.423615 + 0.423615i
\(116\) 8.81043 13.1857i 0.0759520 0.113670i
\(117\) 0 0
\(118\) 83.1426i 0.704598i
\(119\) −74.1828 + 111.022i −0.623385 + 0.932962i
\(120\) 0 0
\(121\) 21.3487 51.5403i 0.176436 0.425953i
\(122\) −91.7753 61.3223i −0.752257 0.502642i
\(123\) 0 0
\(124\) 65.0326 12.9358i 0.524456 0.104321i
\(125\) −96.6108 + 64.5533i −0.772886 + 0.516426i
\(126\) 0 0
\(127\) 110.168 45.6333i 0.867468 0.359317i 0.0958444 0.995396i \(-0.469445\pi\)
0.771624 + 0.636079i \(0.219445\pi\)
\(128\) 41.3506 + 99.8291i 0.323051 + 0.779915i
\(129\) 0 0
\(130\) −15.2565 22.8329i −0.117358 0.175638i
\(131\) −33.4238 168.033i −0.255144 1.28269i −0.869605 0.493748i \(-0.835627\pi\)
0.614461 0.788947i \(-0.289373\pi\)
\(132\) 0 0
\(133\) −12.2748 + 18.3706i −0.0922919 + 0.138125i
\(134\) −327.849 135.799i −2.44663 1.01343i
\(135\) 0 0
\(136\) 59.9454i 0.440775i
\(137\) 173.113 1.26360 0.631799 0.775132i \(-0.282317\pi\)
0.631799 + 0.775132i \(0.282317\pi\)
\(138\) 0 0
\(139\) −149.307 99.7637i −1.07415 0.717724i −0.112957 0.993600i \(-0.536032\pi\)
−0.961193 + 0.275876i \(0.911032\pi\)
\(140\) −230.322 230.322i −1.64515 1.64515i
\(141\) 0 0
\(142\) −266.741 + 178.231i −1.87846 + 1.25515i
\(143\) 8.94775 + 1.77982i 0.0625717 + 0.0124463i
\(144\) 0 0
\(145\) −9.43469 22.7774i −0.0650668 0.157085i
\(146\) −36.0474 + 181.223i −0.246900 + 1.24125i
\(147\) 0 0
\(148\) −23.8509 119.906i −0.161154 0.810178i
\(149\) −31.6842 + 31.6842i −0.212646 + 0.212646i −0.805391 0.592745i \(-0.798044\pi\)
0.592745 + 0.805391i \(0.298044\pi\)
\(150\) 0 0
\(151\) −121.384 50.2789i −0.803868 0.332973i −0.0573634 0.998353i \(-0.518269\pi\)
−0.746504 + 0.665380i \(0.768269\pi\)
\(152\) 9.91898i 0.0652565i
\(153\) 0 0
\(154\) 192.019 1.24688
\(155\) 39.4482 95.2363i 0.254504 0.614428i
\(156\) 0 0
\(157\) 25.4694 + 25.4694i 0.162225 + 0.162225i 0.783552 0.621327i \(-0.213406\pi\)
−0.621327 + 0.783552i \(0.713406\pi\)
\(158\) 282.921 56.2765i 1.79064 0.356180i
\(159\) 0 0
\(160\) 349.104 + 69.4412i 2.18190 + 0.434007i
\(161\) −62.2635 + 25.7904i −0.386730 + 0.160189i
\(162\) 0 0
\(163\) 31.1596 156.650i 0.191163 0.961041i −0.759427 0.650592i \(-0.774521\pi\)
0.950590 0.310449i \(-0.100479\pi\)
\(164\) 62.6684 + 93.7898i 0.382124 + 0.571889i
\(165\) 0 0
\(166\) 254.389 254.389i 1.53246 1.53246i
\(167\) 61.5214 92.0734i 0.368392 0.551337i −0.600246 0.799816i \(-0.704930\pi\)
0.968637 + 0.248478i \(0.0799305\pi\)
\(168\) 0 0
\(169\) 167.724i 0.992448i
\(170\) 343.588 + 229.578i 2.02111 + 1.35046i
\(171\) 0 0
\(172\) −45.9251 + 110.873i −0.267006 + 0.644611i
\(173\) 148.047 + 98.9216i 0.855761 + 0.571801i 0.904241 0.427023i \(-0.140438\pi\)
−0.0484797 + 0.998824i \(0.515438\pi\)
\(174\) 0 0
\(175\) −304.066 + 60.4824i −1.73752 + 0.345614i
\(176\) −67.0386 + 44.7937i −0.380901 + 0.254510i
\(177\) 0 0
\(178\) 243.074 100.684i 1.36558 0.565642i
\(179\) −96.5028 232.978i −0.539122 1.30155i −0.925337 0.379146i \(-0.876218\pi\)
0.386215 0.922409i \(-0.373782\pi\)
\(180\) 0 0
\(181\) 167.421 + 250.563i 0.924977 + 1.38433i 0.923197 + 0.384328i \(0.125567\pi\)
0.00178027 + 0.999998i \(0.499433\pi\)
\(182\) −5.24064 26.3465i −0.0287947 0.144761i
\(183\) 0 0
\(184\) −16.8092 + 25.1568i −0.0913546 + 0.136722i
\(185\) −175.596 72.7341i −0.949165 0.393157i
\(186\) 0 0
\(187\) −134.645 + 26.7826i −0.720027 + 0.143222i
\(188\) 406.545 2.16247
\(189\) 0 0
\(190\) 56.8526 + 37.9877i 0.299224 + 0.199935i
\(191\) −93.7287 93.7287i −0.490726 0.490726i 0.417809 0.908535i \(-0.362798\pi\)
−0.908535 + 0.417809i \(0.862798\pi\)
\(192\) 0 0
\(193\) 264.917 177.012i 1.37263 0.917161i 0.372687 0.927957i \(-0.378436\pi\)
0.999942 + 0.0107958i \(0.00343648\pi\)
\(194\) 73.0150 + 14.5236i 0.376366 + 0.0748639i
\(195\) 0 0
\(196\) −25.0861 60.5632i −0.127990 0.308996i
\(197\) −22.5650 + 113.442i −0.114543 + 0.575847i 0.880300 + 0.474418i \(0.157341\pi\)
−0.994843 + 0.101429i \(0.967659\pi\)
\(198\) 0 0
\(199\) −57.7166 290.161i −0.290033 1.45809i −0.801088 0.598547i \(-0.795745\pi\)
0.511055 0.859548i \(-0.329255\pi\)
\(200\) −98.4168 + 98.4168i −0.492084 + 0.492084i
\(201\) 0 0
\(202\) −21.5436 8.92363i −0.106651 0.0441764i
\(203\) 24.1169i 0.118802i
\(204\) 0 0
\(205\) 175.364 0.855432
\(206\) 48.1580 116.264i 0.233777 0.564387i
\(207\) 0 0
\(208\) 7.97568 + 7.97568i 0.0383446 + 0.0383446i
\(209\) −22.2793 + 4.43163i −0.106600 + 0.0212040i
\(210\) 0 0
\(211\) −225.325 44.8199i −1.06789 0.212417i −0.370300 0.928912i \(-0.620745\pi\)
−0.697592 + 0.716495i \(0.745745\pi\)
\(212\) −286.687 + 118.750i −1.35230 + 0.560140i
\(213\) 0 0
\(214\) −52.2168 + 262.511i −0.244004 + 1.22669i
\(215\) 103.652 + 155.127i 0.482104 + 0.721520i
\(216\) 0 0
\(217\) 71.3026 71.3026i 0.328584 0.328584i
\(218\) 31.3396 46.9031i 0.143760 0.215152i
\(219\) 0 0
\(220\) 334.890i 1.52223i
\(221\) 7.34955 + 17.7434i 0.0332559 + 0.0802868i
\(222\) 0 0
\(223\) −139.061 + 335.723i −0.623593 + 1.50549i 0.223863 + 0.974621i \(0.428133\pi\)
−0.847456 + 0.530865i \(0.821867\pi\)
\(224\) 289.509 + 193.443i 1.29245 + 0.863587i
\(225\) 0 0
\(226\) 180.056 35.8155i 0.796710 0.158475i
\(227\) 80.5890 53.8478i 0.355017 0.237215i −0.365253 0.930908i \(-0.619018\pi\)
0.720271 + 0.693693i \(0.244018\pi\)
\(228\) 0 0
\(229\) −334.120 + 138.397i −1.45904 + 0.604353i −0.964329 0.264706i \(-0.914725\pi\)
−0.494708 + 0.869059i \(0.664725\pi\)
\(230\) 79.8152 + 192.691i 0.347022 + 0.837786i
\(231\) 0 0
\(232\) −6.01522 9.00241i −0.0259277 0.0388035i
\(233\) −54.6542 274.765i −0.234567 1.17925i −0.901045 0.433725i \(-0.857199\pi\)
0.666478 0.745525i \(-0.267801\pi\)
\(234\) 0 0
\(235\) 351.137 525.514i 1.49420 2.23623i
\(236\) −131.048 54.2818i −0.555288 0.230008i
\(237\) 0 0
\(238\) 224.577 + 336.103i 0.943599 + 1.41220i
\(239\) −328.551 −1.37469 −0.687345 0.726331i \(-0.741224\pi\)
−0.687345 + 0.726331i \(0.741224\pi\)
\(240\) 0 0
\(241\) −201.560 134.678i −0.836349 0.558831i 0.0620186 0.998075i \(-0.480246\pi\)
−0.898368 + 0.439244i \(0.855246\pi\)
\(242\) −119.420 119.420i −0.493472 0.493472i
\(243\) 0 0
\(244\) −156.573 + 104.619i −0.641693 + 0.428765i
\(245\) −99.9534 19.8820i −0.407973 0.0811509i
\(246\) 0 0
\(247\) 1.21611 + 2.93595i 0.00492352 + 0.0118864i
\(248\) 8.83176 44.4003i 0.0356119 0.179033i
\(249\) 0 0
\(250\) 68.6240 + 344.996i 0.274496 + 1.37999i
\(251\) 155.463 155.463i 0.619375 0.619375i −0.325996 0.945371i \(-0.605700\pi\)
0.945371 + 0.325996i \(0.105700\pi\)
\(252\) 0 0
\(253\) −64.0155 26.5161i −0.253026 0.104807i
\(254\) 360.996i 1.42125i
\(255\) 0 0
\(256\) −49.9468 −0.195105
\(257\) −124.463 + 300.480i −0.484292 + 1.16918i 0.473260 + 0.880923i \(0.343077\pi\)
−0.957552 + 0.288261i \(0.906923\pi\)
\(258\) 0 0
\(259\) −131.467 131.467i −0.507595 0.507595i
\(260\) −45.9494 + 9.13991i −0.176729 + 0.0351535i
\(261\) 0 0
\(262\) −508.693 101.185i −1.94158 0.386203i
\(263\) −128.172 + 53.0907i −0.487347 + 0.201866i −0.612806 0.790233i \(-0.709959\pi\)
0.125460 + 0.992099i \(0.459959\pi\)
\(264\) 0 0
\(265\) −94.1149 + 473.147i −0.355150 + 1.78546i
\(266\) 37.1600 + 55.6139i 0.139699 + 0.209075i
\(267\) 0 0
\(268\) −428.089 + 428.089i −1.59735 + 1.59735i
\(269\) 180.493 270.126i 0.670976 1.00419i −0.327267 0.944932i \(-0.606128\pi\)
0.998243 0.0592547i \(-0.0188724\pi\)
\(270\) 0 0
\(271\) 19.1867i 0.0707996i 0.999373 + 0.0353998i \(0.0112705\pi\)
−0.999373 + 0.0353998i \(0.988730\pi\)
\(272\) −156.810 64.9530i −0.576509 0.238798i
\(273\) 0 0
\(274\) 200.554 484.179i 0.731947 1.76708i
\(275\) −265.028 177.086i −0.963738 0.643949i
\(276\) 0 0
\(277\) 302.084 60.0883i 1.09056 0.216925i 0.383118 0.923700i \(-0.374850\pi\)
0.707439 + 0.706774i \(0.249850\pi\)
\(278\) −452.003 + 302.018i −1.62591 + 1.08640i
\(279\) 0 0
\(280\) −205.456 + 85.1028i −0.733773 + 0.303939i
\(281\) 33.1106 + 79.9361i 0.117831 + 0.284470i 0.971781 0.235886i \(-0.0757992\pi\)
−0.853949 + 0.520356i \(0.825799\pi\)
\(282\) 0 0
\(283\) 4.15656 + 6.22073i 0.0146875 + 0.0219814i 0.838741 0.544531i \(-0.183292\pi\)
−0.824053 + 0.566512i \(0.808292\pi\)
\(284\) 106.775 + 536.796i 0.375969 + 1.89013i
\(285\) 0 0
\(286\) 15.3440 22.9640i 0.0536505 0.0802937i
\(287\) 158.485 + 65.6466i 0.552213 + 0.228734i
\(288\) 0 0
\(289\) −204.354 204.354i −0.707107 0.707107i
\(290\) −74.6361 −0.257366
\(291\) 0 0
\(292\) 262.105 + 175.133i 0.897621 + 0.599771i
\(293\) −54.4583 54.4583i −0.185864 0.185864i 0.608041 0.793906i \(-0.291956\pi\)
−0.793906 + 0.608041i \(0.791956\pi\)
\(294\) 0 0
\(295\) −183.354 + 122.513i −0.621540 + 0.415300i
\(296\) −81.8647 16.2839i −0.276570 0.0550132i
\(297\) 0 0
\(298\) 51.9110 + 125.324i 0.174198 + 0.420551i
\(299\) −1.89108 + 9.50711i −0.00632469 + 0.0317964i
\(300\) 0 0
\(301\) 35.6049 + 178.998i 0.118289 + 0.594677i
\(302\) −281.250 + 281.250i −0.931291 + 0.931291i
\(303\) 0 0
\(304\) −25.9470 10.7476i −0.0853519 0.0353539i
\(305\) 292.752i 0.959844i
\(306\) 0 0
\(307\) −159.680 −0.520132 −0.260066 0.965591i \(-0.583744\pi\)
−0.260066 + 0.965591i \(0.583744\pi\)
\(308\) 125.365 302.657i 0.407028 0.982653i
\(309\) 0 0
\(310\) −220.665 220.665i −0.711822 0.711822i
\(311\) 326.615 64.9678i 1.05021 0.208900i 0.360331 0.932825i \(-0.382664\pi\)
0.689879 + 0.723925i \(0.257664\pi\)
\(312\) 0 0
\(313\) 386.986 + 76.9763i 1.23638 + 0.245931i 0.769647 0.638470i \(-0.220432\pi\)
0.466729 + 0.884400i \(0.345432\pi\)
\(314\) 100.742 41.7286i 0.320834 0.132894i
\(315\) 0 0
\(316\) 96.0103 482.676i 0.303830 1.52746i
\(317\) 77.2775 + 115.654i 0.243778 + 0.364839i 0.933101 0.359615i \(-0.117092\pi\)
−0.689323 + 0.724454i \(0.742092\pi\)
\(318\) 0 0
\(319\) 17.5331 17.5331i 0.0549627 0.0549627i
\(320\) 420.509 629.337i 1.31409 1.96668i
\(321\) 0 0
\(322\) 204.023i 0.633612i
\(323\) −33.8138 33.8138i −0.104687 0.104687i
\(324\) 0 0
\(325\) −17.0643 + 41.1970i −0.0525057 + 0.126760i
\(326\) −402.034 268.631i −1.23323 0.824021i
\(327\) 0 0
\(328\) 75.5332 15.0245i 0.230284 0.0458064i
\(329\) 514.065 343.487i 1.56251 1.04403i
\(330\) 0 0
\(331\) 146.717 60.7720i 0.443252 0.183601i −0.149883 0.988704i \(-0.547890\pi\)
0.593136 + 0.805103i \(0.297890\pi\)
\(332\) −234.879 567.048i −0.707467 1.70798i
\(333\) 0 0
\(334\) −186.246 278.737i −0.557624 0.834543i
\(335\) 183.618 + 923.109i 0.548113 + 2.75555i
\(336\) 0 0
\(337\) −267.981 + 401.062i −0.795195 + 1.19009i 0.183144 + 0.983086i \(0.441372\pi\)
−0.978339 + 0.207008i \(0.933628\pi\)
\(338\) 469.106 + 194.310i 1.38789 + 0.574882i
\(339\) 0 0
\(340\) 586.178 391.672i 1.72405 1.15198i
\(341\) 103.675 0.304031
\(342\) 0 0
\(343\) 237.116 + 158.436i 0.691299 + 0.461912i
\(344\) 57.9362 + 57.9362i 0.168419 + 0.168419i
\(345\) 0 0
\(346\) 448.188 299.469i 1.29534 0.865518i
\(347\) 19.4096 + 3.86080i 0.0559353 + 0.0111262i 0.222979 0.974823i \(-0.428422\pi\)
−0.167043 + 0.985950i \(0.553422\pi\)
\(348\) 0 0
\(349\) −149.801 361.651i −0.429229 1.03625i −0.979533 0.201286i \(-0.935488\pi\)
0.550304 0.834965i \(-0.314512\pi\)
\(350\) −183.101 + 920.510i −0.523145 + 2.63003i
\(351\) 0 0
\(352\) 69.8398 + 351.108i 0.198408 + 0.997466i
\(353\) −138.024 + 138.024i −0.391003 + 0.391003i −0.875045 0.484042i \(-0.839168\pi\)
0.484042 + 0.875045i \(0.339168\pi\)
\(354\) 0 0
\(355\) 786.104 + 325.615i 2.21438 + 0.917226i
\(356\) 448.863i 1.26085i
\(357\) 0 0
\(358\) −763.416 −2.13245
\(359\) −136.163 + 328.726i −0.379284 + 0.915672i 0.612817 + 0.790225i \(0.290036\pi\)
−0.992100 + 0.125447i \(0.959964\pi\)
\(360\) 0 0
\(361\) 249.670 + 249.670i 0.691608 + 0.691608i
\(362\) 894.758 177.978i 2.47171 0.491653i
\(363\) 0 0
\(364\) −44.9484 8.94078i −0.123485 0.0245626i
\(365\) 452.767 187.542i 1.24046 0.513814i
\(366\) 0 0
\(367\) −15.9442 + 80.1568i −0.0434446 + 0.218411i −0.996409 0.0846717i \(-0.973016\pi\)
0.952964 + 0.303083i \(0.0980158\pi\)
\(368\) −47.5940 71.2294i −0.129331 0.193558i
\(369\) 0 0
\(370\) −406.859 + 406.859i −1.09962 + 1.09962i
\(371\) −262.177 + 392.376i −0.706677 + 1.05762i
\(372\) 0 0
\(373\) 76.8209i 0.205954i 0.994684 + 0.102977i \(0.0328368\pi\)
−0.994684 + 0.102977i \(0.967163\pi\)
\(374\) −81.0799 + 407.616i −0.216791 + 1.08988i
\(375\) 0 0
\(376\) 106.219 256.436i 0.282498 0.682009i
\(377\) −2.88419 1.92716i −0.00765038 0.00511182i
\(378\) 0 0
\(379\) 577.940 114.959i 1.52491 0.303323i 0.639739 0.768592i \(-0.279043\pi\)
0.885169 + 0.465269i \(0.154043\pi\)
\(380\) 96.9932 64.8088i 0.255245 0.170549i
\(381\) 0 0
\(382\) −370.735 + 153.564i −0.970511 + 0.401999i
\(383\) 89.4016 + 215.834i 0.233424 + 0.563537i 0.996576 0.0826832i \(-0.0263490\pi\)
−0.763151 + 0.646220i \(0.776349\pi\)
\(384\) 0 0
\(385\) −282.946 423.459i −0.734926 1.09989i
\(386\) −188.175 946.017i −0.487499 2.45082i
\(387\) 0 0
\(388\) 70.5616 105.603i 0.181860 0.272172i
\(389\) −372.916 154.467i −0.958653 0.397087i −0.152177 0.988353i \(-0.548628\pi\)
−0.806477 + 0.591266i \(0.798628\pi\)
\(390\) 0 0
\(391\) −28.4569 143.062i −0.0727797 0.365888i
\(392\) −44.7557 −0.114173
\(393\) 0 0
\(394\) 291.143 + 194.536i 0.738943 + 0.493746i
\(395\) −541.000 541.000i −1.36962 1.36962i
\(396\) 0 0
\(397\) 219.332 146.553i 0.552474 0.369151i −0.247776 0.968817i \(-0.579700\pi\)
0.800251 + 0.599666i \(0.204700\pi\)
\(398\) −878.415 174.728i −2.20707 0.439014i
\(399\) 0 0
\(400\) −150.809 364.086i −0.377023 0.910214i
\(401\) −46.6830 + 234.691i −0.116416 + 0.585265i 0.877904 + 0.478837i \(0.158941\pi\)
−0.994320 + 0.106428i \(0.966059\pi\)
\(402\) 0 0
\(403\) −2.82952 14.2250i −0.00702114 0.0352977i
\(404\) −28.1305 + 28.1305i −0.0696300 + 0.0696300i
\(405\) 0 0
\(406\) −67.4525 27.9397i −0.166139 0.0688171i
\(407\) 191.154i 0.469666i
\(408\) 0 0
\(409\) 259.903 0.635461 0.317730 0.948181i \(-0.397079\pi\)
0.317730 + 0.948181i \(0.397079\pi\)
\(410\) 203.161 490.474i 0.495514 1.19628i
\(411\) 0 0
\(412\) −151.812 151.812i −0.368475 0.368475i
\(413\) −211.569 + 42.0837i −0.512274 + 0.101898i
\(414\) 0 0
\(415\) −935.855 186.153i −2.25507 0.448562i
\(416\) 46.2687 19.1651i 0.111223 0.0460700i
\(417\) 0 0
\(418\) −13.4161 + 67.4471i −0.0320958 + 0.161357i
\(419\) 95.3087 + 142.640i 0.227467 + 0.340429i 0.927594 0.373590i \(-0.121873\pi\)
−0.700127 + 0.714018i \(0.746873\pi\)
\(420\) 0 0
\(421\) 443.214 443.214i 1.05276 1.05276i 0.0542356 0.998528i \(-0.482728\pi\)
0.998528 0.0542356i \(-0.0172722\pi\)
\(422\) −386.399 + 578.287i −0.915637 + 1.37035i
\(423\) 0 0
\(424\) 211.859i 0.499668i
\(425\) 671.006i 1.57884i
\(426\) 0 0
\(427\) −109.591 + 264.575i −0.256653 + 0.619614i
\(428\) 379.675 + 253.691i 0.887090 + 0.592735i
\(429\) 0 0
\(430\) 553.956 110.189i 1.28827 0.256253i
\(431\) 633.734 423.447i 1.47038 0.982477i 0.475684 0.879616i \(-0.342201\pi\)
0.994696 0.102860i \(-0.0327995\pi\)
\(432\) 0 0
\(433\) 87.4681 36.2305i 0.202005 0.0836732i −0.279387 0.960179i \(-0.590131\pi\)
0.481392 + 0.876505i \(0.340131\pi\)
\(434\) −116.821 282.031i −0.269173 0.649841i
\(435\) 0 0
\(436\) −53.4669 80.0189i −0.122630 0.183530i
\(437\) −4.70868 23.6721i −0.0107750 0.0541696i
\(438\) 0 0
\(439\) −20.5441 + 30.7465i −0.0467976 + 0.0700375i −0.854131 0.520059i \(-0.825910\pi\)
0.807333 + 0.590096i \(0.200910\pi\)
\(440\) −211.238 87.4976i −0.480086 0.198858i
\(441\) 0 0
\(442\) 58.1410 0.131541
\(443\) 634.146 1.43148 0.715740 0.698367i \(-0.246089\pi\)
0.715740 + 0.698367i \(0.246089\pi\)
\(444\) 0 0
\(445\) −580.216 387.688i −1.30386 0.871209i
\(446\) 777.880 + 777.880i 1.74412 + 1.74412i
\(447\) 0 0
\(448\) 615.626 411.348i 1.37416 0.918187i
\(449\) −433.336 86.1959i −0.965114 0.191973i −0.312713 0.949848i \(-0.601238\pi\)
−0.652400 + 0.757874i \(0.726238\pi\)
\(450\) 0 0
\(451\) 67.4939 + 162.945i 0.149654 + 0.361296i
\(452\) 61.1029 307.185i 0.135183 0.679613i
\(453\) 0 0
\(454\) −57.2435 287.782i −0.126087 0.633882i
\(455\) −50.3796 + 50.3796i −0.110724 + 0.110724i
\(456\) 0 0
\(457\) 246.501 + 102.104i 0.539390 + 0.223423i 0.635710 0.771928i \(-0.280707\pi\)
−0.0963202 + 0.995350i \(0.530707\pi\)
\(458\) 1094.83i 2.39046i
\(459\) 0 0
\(460\) 355.825 0.773533
\(461\) −172.768 + 417.100i −0.374769 + 0.904772i 0.618159 + 0.786053i \(0.287879\pi\)
−0.992928 + 0.118719i \(0.962121\pi\)
\(462\) 0 0
\(463\) −57.1171 57.1171i −0.123363 0.123363i 0.642730 0.766093i \(-0.277802\pi\)
−0.766093 + 0.642730i \(0.777802\pi\)
\(464\) 30.0670 5.98070i 0.0647996 0.0128894i
\(465\) 0 0
\(466\) −831.808 165.457i −1.78499 0.355058i
\(467\) −76.1879 + 31.5580i −0.163143 + 0.0675761i −0.462760 0.886483i \(-0.653141\pi\)
0.299617 + 0.954059i \(0.403141\pi\)
\(468\) 0 0
\(469\) −179.617 + 902.998i −0.382979 + 1.92537i
\(470\) −1063.01 1590.91i −2.26173 3.38492i
\(471\) 0 0
\(472\) −68.4785 + 68.4785i −0.145082 + 0.145082i
\(473\) −104.247 + 156.017i −0.220396 + 0.329846i
\(474\) 0 0
\(475\) 111.029i 0.233746i
\(476\) 676.380 134.540i 1.42097 0.282648i
\(477\) 0 0
\(478\) −380.630 + 918.923i −0.796298 + 1.92243i
\(479\) −382.794 255.775i −0.799153 0.533977i 0.0876357 0.996153i \(-0.472069\pi\)
−0.886788 + 0.462176i \(0.847069\pi\)
\(480\) 0 0
\(481\) −26.2278 + 5.21704i −0.0545277 + 0.0108462i
\(482\) −610.191 + 407.717i −1.26596 + 0.845885i
\(483\) 0 0
\(484\) −266.195 + 110.261i −0.549989 + 0.227813i
\(485\) −75.5612 182.421i −0.155796 0.376125i
\(486\) 0 0
\(487\) 290.646 + 434.982i 0.596809 + 0.893187i 0.999757 0.0220352i \(-0.00701459\pi\)
−0.402948 + 0.915223i \(0.632015\pi\)
\(488\) 25.0819 + 126.095i 0.0513974 + 0.258392i
\(489\) 0 0
\(490\) −171.405 + 256.526i −0.349806 + 0.523522i
\(491\) 451.862 + 187.167i 0.920289 + 0.381196i 0.791986 0.610539i \(-0.209047\pi\)
0.128303 + 0.991735i \(0.459047\pi\)
\(492\) 0 0
\(493\) 51.1951 + 10.1833i 0.103844 + 0.0206559i
\(494\) 9.62041 0.0194745
\(495\) 0 0
\(496\) 106.577 + 71.2122i 0.214872 + 0.143573i
\(497\) 588.550 + 588.550i 1.18421 + 1.18421i
\(498\) 0 0
\(499\) −421.610 + 281.711i −0.844910 + 0.564551i −0.900972 0.433876i \(-0.857145\pi\)
0.0560623 + 0.998427i \(0.482145\pi\)
\(500\) 588.580 + 117.076i 1.17716 + 0.234152i
\(501\) 0 0
\(502\) −254.709 614.921i −0.507388 1.22494i
\(503\) 131.577 661.484i 0.261585 1.31508i −0.596932 0.802292i \(-0.703614\pi\)
0.858517 0.512785i \(-0.171386\pi\)
\(504\) 0 0
\(505\) 12.0659 + 60.6592i 0.0238928 + 0.120117i
\(506\) −148.326 + 148.326i −0.293134 + 0.293134i
\(507\) 0 0
\(508\) −568.996 235.686i −1.12007 0.463949i
\(509\) 349.504i 0.686648i 0.939217 + 0.343324i \(0.111553\pi\)
−0.939217 + 0.343324i \(0.888447\pi\)
\(510\) 0 0
\(511\) 479.395 0.938150
\(512\) −223.266 + 539.012i −0.436067 + 1.05276i
\(513\) 0 0
\(514\) 696.221 + 696.221i 1.35451 + 1.35451i
\(515\) −327.358 + 65.1157i −0.635648 + 0.126438i
\(516\) 0 0
\(517\) 623.444 + 124.011i 1.20589 + 0.239866i
\(518\) −520.006 + 215.393i −1.00387 + 0.415818i
\(519\) 0 0
\(520\) −6.24017 + 31.3715i −0.0120003 + 0.0603297i
\(521\) 175.223 + 262.240i 0.336320 + 0.503339i 0.960627 0.277840i \(-0.0896186\pi\)
−0.624307 + 0.781179i \(0.714619\pi\)
\(522\) 0 0
\(523\) −145.221 + 145.221i −0.277669 + 0.277669i −0.832178 0.554509i \(-0.812906\pi\)
0.554509 + 0.832178i \(0.312906\pi\)
\(524\) −491.600 + 735.731i −0.938168 + 1.40407i
\(525\) 0 0
\(526\) 419.991i 0.798461i
\(527\) 121.253 + 181.468i 0.230082 + 0.344342i
\(528\) 0 0
\(529\) −174.266 + 420.715i −0.329425 + 0.795302i
\(530\) 1214.31 + 811.377i 2.29115 + 1.53090i
\(531\) 0 0
\(532\) 111.919 22.2620i 0.210373 0.0418459i
\(533\) 20.5152 13.7078i 0.0384901 0.0257182i
\(534\) 0 0
\(535\) 655.859 271.666i 1.22590 0.507786i
\(536\) 158.177 + 381.873i 0.295106 + 0.712450i
\(537\) 0 0
\(538\) −546.412 817.764i −1.01564 1.52001i
\(539\) −19.9961 100.527i −0.0370985 0.186507i
\(540\) 0 0
\(541\) 439.282 657.431i 0.811981 1.21522i −0.161596 0.986857i \(-0.551664\pi\)
0.973577 0.228358i \(-0.0733358\pi\)
\(542\) 53.6632 + 22.2280i 0.0990096 + 0.0410111i
\(543\) 0 0
\(544\) −532.885 + 532.885i −0.979568 + 0.979568i
\(545\) −149.615 −0.274523
\(546\) 0 0
\(547\) −783.860 523.758i −1.43302 0.957511i −0.998380 0.0569051i \(-0.981877\pi\)
−0.434637 0.900606i \(-0.643123\pi\)
\(548\) −632.218 632.218i −1.15368 1.15368i
\(549\) 0 0
\(550\) −802.330 + 536.099i −1.45878 + 0.974726i
\(551\) 8.47111 + 1.68501i 0.0153741 + 0.00305809i
\(552\) 0 0
\(553\) −286.408 691.450i −0.517917 1.25036i
\(554\) 181.908 914.512i 0.328353 1.65074i
\(555\) 0 0
\(556\) 180.934 + 909.619i 0.325422 + 1.63601i
\(557\) 303.284 303.284i 0.544495 0.544495i −0.380348 0.924843i \(-0.624196\pi\)
0.924843 + 0.380348i \(0.124196\pi\)
\(558\) 0 0
\(559\) 24.2519 + 10.0455i 0.0433844 + 0.0179704i
\(560\) 629.663i 1.12440i
\(561\) 0 0
\(562\) 261.932 0.466071
\(563\) 264.879 639.473i 0.470477 1.13583i −0.493476 0.869759i \(-0.664274\pi\)
0.963953 0.266072i \(-0.0857260\pi\)
\(564\) 0 0
\(565\) −344.303 344.303i −0.609386 0.609386i
\(566\) 22.2142 4.41867i 0.0392476 0.00780684i
\(567\) 0 0
\(568\) 366.491 + 72.8996i 0.645231 + 0.128344i
\(569\) 370.173 153.331i 0.650567 0.269474i −0.0328958 0.999459i \(-0.510473\pi\)
0.683463 + 0.729985i \(0.260473\pi\)
\(570\) 0 0
\(571\) 127.142 639.187i 0.222666 1.11942i −0.694065 0.719912i \(-0.744182\pi\)
0.916731 0.399505i \(-0.130818\pi\)
\(572\) −26.1777 39.1776i −0.0457651 0.0684924i
\(573\) 0 0
\(574\) 367.214 367.214i 0.639745 0.639745i
\(575\) 188.156 281.596i 0.327229 0.489732i
\(576\) 0 0
\(577\) 684.109i 1.18563i 0.805339 + 0.592815i \(0.201983\pi\)
−0.805339 + 0.592815i \(0.798017\pi\)
\(578\) −808.303 + 334.810i −1.39845 + 0.579256i
\(579\) 0 0
\(580\) −48.7281 + 117.640i −0.0840140 + 0.202828i
\(581\) −776.094 518.569i −1.33579 0.892546i
\(582\) 0 0
\(583\) −475.863 + 94.6550i −0.816232 + 0.162359i
\(584\) 178.950 119.570i 0.306420 0.204744i
\(585\) 0 0
\(586\) −215.405 + 89.2236i −0.367585 + 0.152259i
\(587\) 141.750 + 342.216i 0.241483 + 0.582991i 0.997430 0.0716408i \(-0.0228235\pi\)
−0.755948 + 0.654632i \(0.772824\pi\)
\(588\) 0 0
\(589\) 20.0634 + 30.0270i 0.0340635 + 0.0509796i
\(590\) 130.239 + 654.756i 0.220744 + 1.10976i
\(591\) 0 0
\(592\) 131.300 196.505i 0.221791 0.331934i
\(593\) −585.245 242.416i −0.986922 0.408797i −0.169937 0.985455i \(-0.554356\pi\)
−0.816985 + 0.576658i \(0.804356\pi\)
\(594\) 0 0
\(595\) 410.286 990.517i 0.689556 1.66473i
\(596\) 231.425 0.388297
\(597\) 0 0
\(598\) 24.3996 + 16.3033i 0.0408020 + 0.0272630i
\(599\) −315.855 315.855i −0.527304 0.527304i 0.392463 0.919768i \(-0.371623\pi\)
−0.919768 + 0.392463i \(0.871623\pi\)
\(600\) 0 0
\(601\) 362.279 242.067i 0.602794 0.402774i −0.216388 0.976307i \(-0.569428\pi\)
0.819182 + 0.573533i \(0.194428\pi\)
\(602\) 541.887 + 107.788i 0.900145 + 0.179050i
\(603\) 0 0
\(604\) 259.680 + 626.922i 0.429933 + 1.03795i
\(605\) −87.3876 + 439.327i −0.144442 + 0.726160i
\(606\) 0 0
\(607\) 123.803 + 622.400i 0.203959 + 1.02537i 0.938098 + 0.346371i \(0.112586\pi\)
−0.734139 + 0.679000i \(0.762414\pi\)
\(608\) −88.1749 + 88.1749i −0.145025 + 0.145025i
\(609\) 0 0
\(610\) 818.798 + 339.157i 1.34229 + 0.555996i
\(611\) 88.9259i 0.145542i
\(612\) 0 0
\(613\) −692.422 −1.12956 −0.564782 0.825240i \(-0.691040\pi\)
−0.564782 + 0.825240i \(0.691040\pi\)
\(614\) −184.992 + 446.610i −0.301290 + 0.727377i
\(615\) 0 0
\(616\) −158.152 158.152i −0.256740 0.256740i
\(617\) 263.077 52.3292i 0.426381 0.0848124i 0.0227645 0.999741i \(-0.492753\pi\)
0.403616 + 0.914928i \(0.367753\pi\)
\(618\) 0 0
\(619\) −153.549 30.5428i −0.248060 0.0493422i 0.0694940 0.997582i \(-0.477862\pi\)
−0.317554 + 0.948240i \(0.602862\pi\)
\(620\) −491.875 + 203.741i −0.793346 + 0.328615i
\(621\) 0 0
\(622\) 196.680 988.775i 0.316205 1.58967i
\(623\) −379.241 567.575i −0.608734 0.911035i
\(624\) 0 0
\(625\) −38.0547 + 38.0547i −0.0608875 + 0.0608875i
\(626\) 663.623 993.182i 1.06010 1.58655i
\(627\) 0 0
\(628\) 186.031i 0.296228i
\(629\) 334.589 223.565i 0.531938 0.355429i
\(630\) 0 0
\(631\) −119.803 + 289.230i −0.189862 + 0.458368i −0.989933 0.141538i \(-0.954795\pi\)
0.800071 + 0.599906i \(0.204795\pi\)
\(632\) −279.372 186.670i −0.442044 0.295365i
\(633\) 0 0
\(634\) 412.999 82.1506i 0.651418 0.129575i
\(635\) −796.105 + 531.940i −1.25371 + 0.837701i
\(636\) 0 0
\(637\) −13.2473 + 5.48723i −0.0207965 + 0.00861418i
\(638\) −28.7259 69.3506i −0.0450250 0.108700i
\(639\) 0 0
\(640\) −482.018 721.390i −0.753153 1.12717i
\(641\) 72.2074 + 363.011i 0.112648 + 0.566320i 0.995345 + 0.0963771i \(0.0307255\pi\)
−0.882697 + 0.469943i \(0.844275\pi\)
\(642\) 0 0
\(643\) −122.220 + 182.915i −0.190077 + 0.284471i −0.914252 0.405146i \(-0.867221\pi\)
0.724175 + 0.689616i \(0.242221\pi\)
\(644\) 321.577 + 133.202i 0.499344 + 0.206835i
\(645\) 0 0
\(646\) −133.748 + 55.4001i −0.207040 + 0.0857586i
\(647\) −769.098 −1.18871 −0.594357 0.804201i \(-0.702593\pi\)
−0.594357 + 0.804201i \(0.702593\pi\)
\(648\) 0 0
\(649\) −184.407 123.217i −0.284140 0.189856i
\(650\) 95.4544 + 95.4544i 0.146853 + 0.146853i
\(651\) 0 0
\(652\) −685.889 + 458.297i −1.05198 + 0.702909i
\(653\) 41.6201 + 8.27876i 0.0637368 + 0.0126780i 0.226856 0.973928i \(-0.427155\pi\)
−0.163119 + 0.986606i \(0.552155\pi\)
\(654\) 0 0
\(655\) 526.432 + 1270.92i 0.803713 + 1.94033i
\(656\) −42.5406 + 213.866i −0.0648485 + 0.326015i
\(657\) 0 0
\(658\) −365.148 1835.72i −0.554936 2.78985i
\(659\) −472.719 + 472.719i −0.717328 + 0.717328i −0.968057 0.250729i \(-0.919330\pi\)
0.250729 + 0.968057i \(0.419330\pi\)
\(660\) 0 0
\(661\) −380.158 157.467i −0.575126 0.238225i 0.0761113 0.997099i \(-0.475750\pi\)
−0.651237 + 0.758874i \(0.725750\pi\)
\(662\) 480.756i 0.726218i
\(663\) 0 0
\(664\) −419.043 −0.631089
\(665\) 67.8888 163.898i 0.102088 0.246463i
\(666\) 0 0
\(667\) 18.6292 + 18.6292i 0.0279298 + 0.0279298i
\(668\) −560.937 + 111.577i −0.839725 + 0.167032i
\(669\) 0 0
\(670\) 2794.56 + 555.873i 4.17099 + 0.829662i
\(671\) −272.020 + 112.675i −0.405395 + 0.167920i
\(672\) 0 0
\(673\) 3.16371 15.9051i 0.00470091 0.0236331i −0.978364 0.206893i \(-0.933665\pi\)
0.983065 + 0.183260i \(0.0586649\pi\)
\(674\) 811.269 + 1214.15i 1.20366 + 1.80141i
\(675\) 0 0
\(676\) 612.536 612.536i 0.906119 0.906119i
\(677\) 571.240 854.921i 0.843782 1.26281i −0.119099 0.992882i \(-0.538001\pi\)
0.962881 0.269926i \(-0.0869993\pi\)
\(678\) 0 0
\(679\) 193.149i 0.284461i
\(680\) −93.9017 472.076i −0.138091 0.694229i
\(681\) 0 0
\(682\) 120.108 289.967i 0.176112 0.425172i
\(683\) −188.201 125.752i −0.275551 0.184117i 0.410114 0.912034i \(-0.365489\pi\)
−0.685666 + 0.727917i \(0.740489\pi\)
\(684\) 0 0
\(685\) −1363.28 + 271.173i −1.99019 + 0.395874i
\(686\) 717.830 479.639i 1.04640 0.699181i
\(687\) 0 0
\(688\) −214.331 + 88.7787i −0.311527 + 0.129039i
\(689\) 25.9748 + 62.7087i 0.0376993 + 0.0910141i
\(690\) 0 0
\(691\) −21.7058 32.4851i −0.0314122 0.0470117i 0.815431 0.578854i \(-0.196500\pi\)
−0.846843 + 0.531842i \(0.821500\pi\)
\(692\) −179.407 901.942i −0.259259 1.30338i
\(693\) 0 0
\(694\) 33.2845 49.8138i 0.0479604 0.0717778i
\(695\) 1332.08 + 551.766i 1.91666 + 0.793908i
\(696\) 0 0
\(697\) −206.274 + 308.711i −0.295946 + 0.442914i
\(698\) −1185.05 −1.69778
\(699\) 0 0
\(700\) 1331.35 + 889.579i 1.90193 + 1.27083i
\(701\) 401.261 + 401.261i 0.572412 + 0.572412i 0.932802 0.360390i \(-0.117356\pi\)
−0.360390 + 0.932802i \(0.617356\pi\)
\(702\) 0 0
\(703\) 55.3634 36.9927i 0.0787531 0.0526212i
\(704\) 746.614 + 148.511i 1.06053 + 0.210953i
\(705\) 0 0
\(706\) 226.136 + 545.941i 0.320306 + 0.773288i
\(707\) −11.8030 + 59.3377i −0.0166945 + 0.0839288i
\(708\) 0 0
\(709\) 55.6759 + 279.901i 0.0785273 + 0.394783i 0.999980 + 0.00629329i \(0.00200323\pi\)
−0.921453 + 0.388490i \(0.872997\pi\)
\(710\) 1821.42 1821.42i 2.56539 2.56539i
\(711\) 0 0
\(712\) −283.128 117.276i −0.397652 0.164713i
\(713\) 110.156i 0.154496i
\(714\) 0 0
\(715\) −73.2524 −0.102451
\(716\) −498.416 + 1203.28i −0.696112 + 1.68056i
\(717\) 0 0
\(718\) 761.667 + 761.667i 1.06082 + 1.06082i
\(719\) −601.644 + 119.674i −0.836779 + 0.166446i −0.594838 0.803845i \(-0.702784\pi\)
−0.241941 + 0.970291i \(0.577784\pi\)
\(720\) 0 0
\(721\) −320.226 63.6970i −0.444142 0.0883453i
\(722\) 987.549 409.056i 1.36780 0.566560i
\(723\) 0 0
\(724\) 303.640 1526.50i 0.419392 2.10842i
\(725\) 67.3322 + 100.770i 0.0928719 + 0.138993i
\(726\) 0 0
\(727\) 244.413 244.413i 0.336194 0.336194i −0.518739 0.854933i \(-0.673598\pi\)
0.854933 + 0.518739i \(0.173598\pi\)
\(728\) −17.3833 + 26.0160i −0.0238782 + 0.0357363i
\(729\) 0 0
\(730\) 1483.61i 2.03235i
\(731\) −395.009 −0.540368
\(732\) 0 0
\(733\) 516.266 1246.38i 0.704319 1.70038i −0.00941053 0.999956i \(-0.502996\pi\)
0.713730 0.700421i \(-0.247004\pi\)
\(734\) 205.719 + 137.457i 0.280271 + 0.187271i
\(735\) 0 0
\(736\) −373.058 + 74.2058i −0.506872 + 0.100823i
\(737\) −787.066 + 525.901i −1.06793 + 0.713569i
\(738\) 0 0
\(739\) 602.925 249.740i 0.815866 0.337943i 0.0645741 0.997913i \(-0.479431\pi\)
0.751292 + 0.659970i \(0.229431\pi\)
\(740\) 375.656 + 906.913i 0.507643 + 1.22556i
\(741\) 0 0
\(742\) 793.700 + 1187.86i 1.06968 + 1.60088i
\(743\) 43.5044 + 218.711i 0.0585523 + 0.294362i 0.998955 0.0456999i \(-0.0145518\pi\)
−0.940403 + 0.340062i \(0.889552\pi\)
\(744\) 0 0
\(745\) 199.885 299.149i 0.268302 0.401542i
\(746\) 214.860 + 88.9980i 0.288016 + 0.119300i
\(747\) 0 0
\(748\) 589.542 + 393.920i 0.788158 + 0.526631i
\(749\) 694.430 0.927143
\(750\) 0 0
\(751\) −373.353 249.467i −0.497142 0.332180i 0.281592 0.959534i \(-0.409138\pi\)
−0.778734 + 0.627355i \(0.784138\pi\)
\(752\) 555.715 + 555.715i 0.738982 + 0.738982i
\(753\) 0 0
\(754\) −8.73143 + 5.83416i −0.0115802 + 0.00773761i
\(755\) 1034.67 + 205.809i 1.37043 + 0.272595i
\(756\) 0 0
\(757\) −17.6369 42.5792i −0.0232984 0.0562473i 0.911802 0.410630i \(-0.134691\pi\)
−0.935101 + 0.354382i \(0.884691\pi\)
\(758\) 348.021 1749.62i 0.459131 2.30821i
\(759\) 0 0
\(760\) −15.5376 78.1130i −0.0204443 0.102780i
\(761\) 552.081 552.081i 0.725467 0.725467i −0.244246 0.969713i \(-0.578540\pi\)
0.969713 + 0.244246i \(0.0785404\pi\)
\(762\) 0 0
\(763\) −135.215 56.0079i −0.177215 0.0734048i
\(764\) 684.604i 0.896079i
\(765\) 0 0
\(766\) 707.240 0.923289
\(767\) −11.8734 + 28.6649i −0.0154803 + 0.0373727i
\(768\) 0 0
\(769\) −625.504 625.504i −0.813400 0.813400i 0.171742 0.985142i \(-0.445060\pi\)
−0.985142 + 0.171742i \(0.945060\pi\)
\(770\) −1512.17 + 300.789i −1.96386 + 0.390635i
\(771\) 0 0
\(772\) −1613.95 321.035i −2.09061 0.415848i
\(773\) −1123.75 + 465.474i −1.45376 + 0.602166i −0.963090 0.269181i \(-0.913247\pi\)
−0.490667 + 0.871347i \(0.663247\pi\)
\(774\) 0 0
\(775\) −98.8595 + 497.000i −0.127561 + 0.641291i
\(776\) −48.1751 72.0992i −0.0620813 0.0929113i
\(777\) 0 0
\(778\) −864.056 + 864.056i −1.11061 + 1.11061i
\(779\) −34.1316 + 51.0816i −0.0438146 + 0.0655733i
\(780\) 0 0
\(781\) 855.757i 1.09572i
\(782\) −433.098 86.1486i −0.553834 0.110164i
\(783\) 0 0
\(784\) 48.4944 117.076i 0.0618551 0.149331i
\(785\) −240.470 160.677i −0.306332 0.204684i
\(786\) 0 0
\(787\) −190.336 + 37.8601i −0.241850 + 0.0481069i −0.314527 0.949249i \(-0.601846\pi\)
0.0726771 + 0.997356i \(0.476846\pi\)
\(788\) 496.704 331.887i 0.630336 0.421177i
\(789\) 0 0
\(790\) −2139.88 + 886.365i −2.70870 + 1.12198i
\(791\) −182.276 440.053i −0.230437 0.556324i
\(792\) 0 0
\(793\) 22.8839 + 34.2481i 0.0288573 + 0.0431881i
\(794\) −155.795 783.233i −0.196215 0.986440i
\(795\) 0 0
\(796\) −848.899 + 1270.47i −1.06646 + 1.59606i
\(797\) −118.577 49.1164i −0.148780 0.0616266i 0.307051 0.951693i \(-0.400658\pi\)
−0.455831 + 0.890066i \(0.650658\pi\)
\(798\) 0 0
\(799\) 512.088 + 1236.29i 0.640911 + 1.54730i
\(800\) −1749.75 −2.18719
\(801\) 0 0
\(802\) 602.324 + 402.460i 0.751028 + 0.501821i
\(803\) 348.522 + 348.522i 0.434025 + 0.434025i
\(804\) 0 0
\(805\) 449.932 300.635i 0.558921 0.373459i
\(806\) −43.0638 8.56592i −0.0534290 0.0106277i
\(807\) 0 0
\(808\) 10.3941 + 25.0936i 0.0128640 + 0.0310564i
\(809\) −68.1098 + 342.411i −0.0841902 + 0.423253i 0.915587 + 0.402121i \(0.131727\pi\)
−0.999777 + 0.0211316i \(0.993273\pi\)
\(810\) 0 0
\(811\) 36.2150 + 182.065i 0.0446547 + 0.224494i 0.996668 0.0815613i \(-0.0259906\pi\)
−0.952014 + 0.306056i \(0.900991\pi\)
\(812\) −88.0762 + 88.0762i −0.108468 + 0.108468i
\(813\) 0 0
\(814\) −534.639 221.455i −0.656804 0.272057i
\(815\) 1282.44i 1.57355i
\(816\) 0 0
\(817\) −65.3610 −0.0800013
\(818\) 301.101 726.923i 0.368095 0.888659i
\(819\) 0 0
\(820\) −640.437 640.437i −0.781021 0.781021i
\(821\) −1545.78 + 307.474i −1.88280 + 0.374512i −0.996130 0.0878920i \(-0.971987\pi\)
−0.886669 + 0.462404i \(0.846987\pi\)
\(822\) 0 0
\(823\) 986.291 + 196.185i 1.19841 + 0.238378i 0.753653 0.657273i \(-0.228290\pi\)
0.444757 + 0.895651i \(0.353290\pi\)
\(824\) −135.422 + 56.0937i −0.164347 + 0.0680749i
\(825\) 0 0
\(826\) −127.402 + 640.491i −0.154239 + 0.775413i
\(827\) 883.014 + 1321.52i 1.06773 + 1.59797i 0.764001 + 0.645216i \(0.223232\pi\)
0.303731 + 0.952758i \(0.401768\pi\)
\(828\) 0 0
\(829\) −269.747 + 269.747i −0.325388 + 0.325388i −0.850830 0.525442i \(-0.823900\pi\)
0.525442 + 0.850830i \(0.323900\pi\)
\(830\) −1604.85 + 2401.83i −1.93355 + 2.89377i
\(831\) 0 0
\(832\) 106.494i 0.127998i
\(833\) 152.572 152.572i 0.183160 0.183160i
\(834\) 0 0
\(835\) −340.259 + 821.457i −0.407495 + 0.983781i
\(836\) 97.5499 + 65.1807i 0.116686 + 0.0779674i
\(837\) 0 0
\(838\) 509.365 101.319i 0.607834 0.120906i
\(839\) 30.7798 20.5664i 0.0366862 0.0245130i −0.537092 0.843524i \(-0.680477\pi\)
0.573778 + 0.819011i \(0.305477\pi\)
\(840\) 0 0
\(841\) 768.273 318.229i 0.913523 0.378393i
\(842\) −726.154 1753.09i −0.862416 2.08206i
\(843\) 0 0
\(844\) 659.215 + 986.584i 0.781060 + 1.16894i
\(845\) −262.732 1320.84i −0.310925 1.56313i
\(846\) 0 0
\(847\) −243.437 + 364.329i −0.287411 + 0.430141i
\(848\) −554.200 229.557i −0.653538 0.270704i
\(849\) 0 0
\(850\) −1876.74 777.369i −2.20792 0.914552i
\(851\) 203.104 0.238665
\(852\) 0 0
\(853\) −65.5718 43.8137i −0.0768720 0.0513642i 0.516540 0.856263i \(-0.327220\pi\)
−0.593412 + 0.804899i \(0.702220\pi\)
\(854\) 613.028 + 613.028i 0.717831 + 0.717831i
\(855\) 0 0
\(856\) 259.219 173.204i 0.302825 0.202342i
\(857\) 653.288 + 129.947i 0.762297 + 0.151630i 0.560905 0.827880i \(-0.310453\pi\)
0.201392 + 0.979511i \(0.435453\pi\)
\(858\) 0 0
\(859\) −530.649 1281.10i −0.617752 1.49138i −0.854308 0.519767i \(-0.826019\pi\)
0.236556 0.971618i \(-0.423981\pi\)
\(860\) 187.987 945.076i 0.218590 1.09893i
\(861\) 0 0
\(862\) −450.150 2263.06i −0.522216 2.62536i
\(863\) 375.548 375.548i 0.435166 0.435166i −0.455215 0.890381i \(-0.650438\pi\)
0.890381 + 0.455215i \(0.150438\pi\)
\(864\) 0 0
\(865\) −1320.84 547.109i −1.52698 0.632496i
\(866\) 286.613i 0.330962i
\(867\) 0 0
\(868\) −520.802 −0.600002
\(869\) 294.467 710.907i 0.338858 0.818075i
\(870\) 0 0
\(871\) 93.6384 + 93.6384i 0.107507 + 0.107507i
\(872\) −64.4428 + 12.8185i −0.0739023 + 0.0147001i
\(873\) 0 0
\(874\) −71.6635 14.2548i −0.0819949 0.0163098i
\(875\) 843.160 349.249i 0.963612 0.399141i
\(876\) 0 0
\(877\) −48.4908 + 243.780i −0.0552917 + 0.277970i −0.998534 0.0541366i \(-0.982759\pi\)
0.943242 + 0.332107i \(0.107759\pi\)
\(878\) 62.1940 + 93.0800i 0.0708360 + 0.106014i
\(879\) 0 0
\(880\) 457.768 457.768i 0.520191 0.520191i
\(881\) 81.3688 121.777i 0.0923595 0.138226i −0.782412 0.622761i \(-0.786011\pi\)
0.874772 + 0.484535i \(0.161011\pi\)
\(882\) 0 0
\(883\) 322.505i 0.365237i 0.983184 + 0.182619i \(0.0584574\pi\)
−0.983184 + 0.182619i \(0.941543\pi\)
\(884\) 37.9588 91.6407i 0.0429399 0.103666i
\(885\) 0 0
\(886\) 734.666 1773.64i 0.829194 2.00185i
\(887\) 52.2618 + 34.9202i 0.0589197 + 0.0393689i 0.584681 0.811263i \(-0.301220\pi\)
−0.525762 + 0.850632i \(0.676220\pi\)
\(888\) 0 0
\(889\) −918.610 + 182.723i −1.03331 + 0.205538i
\(890\) −1756.51 + 1173.66i −1.97361 + 1.31872i
\(891\) 0 0
\(892\) 1733.94 718.221i 1.94388 0.805180i
\(893\) 84.7337 + 204.565i 0.0948866 + 0.229077i
\(894\) 0 0
\(895\) 1124.92 + 1683.56i 1.25689 + 1.88107i
\(896\) −165.574 832.399i −0.184793 0.929016i
\(897\) 0 0
\(898\) −743.106 + 1112.14i −0.827513 + 1.23846i
\(899\) −36.4189 15.0852i −0.0405104 0.0167800i
\(900\) 0 0
\(901\) −722.228 722.228i −0.801585 0.801585i
\(902\) 533.932 0.591942
\(903\) 0 0
\(904\) −177.798 118.801i −0.196679 0.131417i
\(905\) −1710.95 1710.95i −1.89055 1.89055i
\(906\) 0 0
\(907\) −182.765 + 122.120i −0.201505 + 0.134641i −0.652229 0.758022i \(-0.726166\pi\)
0.450724 + 0.892663i \(0.351166\pi\)
\(908\) −490.970 97.6601i −0.540716 0.107555i
\(909\) 0 0
\(910\) 82.5412 + 199.272i 0.0907046 + 0.218980i
\(911\) −98.5913 + 495.652i −0.108223 + 0.544074i 0.888192 + 0.459473i \(0.151962\pi\)
−0.996415 + 0.0846014i \(0.973038\pi\)
\(912\) 0 0
\(913\) −187.221 941.226i −0.205062 1.03092i
\(914\) 571.150 571.150i 0.624890 0.624890i
\(915\) 0 0
\(916\) 1725.66 + 714.790i 1.88390 + 0.780338i
\(917\) 1345.66i 1.46746i
\(918\) 0 0
\(919\) −930.196 −1.01218 −0.506091 0.862480i \(-0.668910\pi\)
−0.506091 + 0.862480i \(0.668910\pi\)
\(920\) 92.9674 224.443i 0.101052 0.243960i
\(921\) 0 0
\(922\) 966.431 + 966.431i 1.04819 + 1.04819i
\(923\) 117.416 23.3556i 0.127212 0.0253040i
\(924\) 0 0
\(925\) 916.364 + 182.276i 0.990663 + 0.197055i
\(926\) −225.922 + 93.5798i −0.243976 + 0.101058i
\(927\) 0 0
\(928\) 26.5547 133.499i 0.0286150 0.143857i
\(929\) −637.592 954.224i −0.686321 1.02715i −0.997058 0.0766557i \(-0.975576\pi\)
0.310737 0.950496i \(-0.399424\pi\)
\(930\) 0 0
\(931\) 25.2457 25.2457i 0.0271167 0.0271167i
\(932\) −803.857 + 1203.06i −0.862508 + 1.29083i
\(933\) 0 0
\(934\) 249.650i 0.267291i
\(935\) 1018.39 421.831i 1.08919 0.451156i
\(936\) 0 0
\(937\) 517.380 1249.07i 0.552166 1.33305i −0.363682 0.931523i \(-0.618481\pi\)
0.915848 0.401524i \(-0.131519\pi\)
\(938\) 2317.50 + 1548.51i 2.47068 + 1.65086i
\(939\) 0 0
\(940\) −3201.58 + 636.834i −3.40594 + 0.677483i
\(941\) 1529.70 1022.11i 1.62561 1.08620i 0.695743 0.718291i \(-0.255075\pi\)
0.929864 0.367905i \(-0.119925\pi\)
\(942\) 0 0
\(943\) −173.131 + 71.7133i −0.183596 + 0.0760480i
\(944\) −104.933 253.331i −0.111158 0.268359i
\(945\) 0 0
\(946\) 315.592 + 472.317i 0.333607 + 0.499278i
\(947\) 7.67691 + 38.5945i 0.00810656 + 0.0407544i 0.984627 0.174671i \(-0.0558862\pi\)
−0.976520 + 0.215425i \(0.930886\pi\)
\(948\) 0 0
\(949\) 38.3079 57.3319i 0.0403666 0.0604129i
\(950\) −310.538 128.629i −0.326882 0.135399i
\(951\) 0 0
\(952\) 91.8559 461.791i 0.0964873 0.485074i
\(953\) −183.445 −0.192492 −0.0962458 0.995358i \(-0.530683\pi\)
−0.0962458 + 0.995358i \(0.530683\pi\)
\(954\) 0 0
\(955\) 884.944 + 591.301i 0.926643 + 0.619163i
\(956\) 1199.89 + 1199.89i 1.25511 + 1.25511i
\(957\) 0 0
\(958\) −1158.85 + 774.317i −1.20965 + 0.808264i
\(959\) −1333.58 265.266i −1.39059 0.276606i
\(960\) 0 0
\(961\) 304.685 + 735.574i 0.317050 + 0.765426i
\(962\) −15.7937 + 79.4005i −0.0164176 + 0.0825369i
\(963\) 0 0
\(964\) 244.257 + 1227.96i 0.253378 + 1.27382i
\(965\) −1808.97 + 1808.97i −1.87458 + 1.87458i
\(966\) 0 0
\(967\) 1181.69 + 489.471i 1.22201 + 0.506175i 0.898050 0.439894i \(-0.144984\pi\)
0.323965 + 0.946069i \(0.394984\pi\)
\(968\) 196.715i 0.203218i
\(969\) 0 0
\(970\) −597.751 −0.616238
\(971\) 349.777 844.437i 0.360224 0.869657i −0.635043 0.772477i \(-0.719018\pi\)
0.995267 0.0971803i \(-0.0309823\pi\)
\(972\) 0 0
\(973\) 997.319 + 997.319i 1.02499 + 1.02499i
\(974\) 1553.32 308.974i 1.59478 0.317222i
\(975\) 0 0
\(976\) −357.029 71.0174i −0.365808 0.0727637i
\(977\) 408.510 169.210i 0.418126 0.173194i −0.163694 0.986511i \(-0.552341\pi\)
0.581820 + 0.813318i \(0.302341\pi\)
\(978\) 0 0
\(979\) 136.919 688.340i 0.139856 0.703105i
\(980\) 292.425 + 437.645i 0.298393 + 0.446577i
\(981\) 0 0
\(982\) 1046.98 1046.98i 1.06617 1.06617i
\(983\) −369.695 + 553.287i −0.376088 + 0.562856i −0.970438 0.241351i \(-0.922410\pi\)
0.594350 + 0.804207i \(0.297410\pi\)
\(984\) 0 0
\(985\) 928.713i 0.942856i
\(986\) 87.7920 131.390i 0.0890385 0.133256i
\(987\) 0 0
\(988\) 6.28094 15.1635i 0.00635723 0.0153477i
\(989\) −165.770 110.764i −0.167614 0.111996i
\(990\) 0 0
\(991\) −1534.80 + 305.291i −1.54874 + 0.308063i −0.894096 0.447876i \(-0.852181\pi\)
−0.654642 + 0.755939i \(0.727181\pi\)
\(992\) 473.207 316.187i 0.477023 0.318736i
\(993\) 0 0
\(994\) 2327.96 964.271i 2.34201 0.970092i
\(995\) 909.048 + 2194.64i 0.913616 + 2.20566i
\(996\) 0 0
\(997\) −855.639 1280.55i −0.858213 1.28441i −0.957232 0.289321i \(-0.906570\pi\)
0.0990189 0.995086i \(-0.468430\pi\)
\(998\) 299.476 + 1505.57i 0.300076 + 1.50858i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.p.b.10.1 8
3.2 odd 2 17.3.e.a.10.1 8
12.11 even 2 272.3.bh.c.129.1 8
15.2 even 4 425.3.t.a.299.1 8
15.8 even 4 425.3.t.c.299.1 8
15.14 odd 2 425.3.u.b.401.1 8
17.12 odd 16 inner 153.3.p.b.46.1 8
51.2 odd 8 289.3.e.d.40.1 8
51.5 even 16 289.3.e.c.131.1 8
51.8 odd 8 289.3.e.l.249.1 8
51.11 even 16 289.3.e.b.224.1 8
51.14 even 16 289.3.e.m.158.1 8
51.20 even 16 289.3.e.i.158.1 8
51.23 even 16 289.3.e.d.224.1 8
51.26 odd 8 289.3.e.k.249.1 8
51.29 even 16 17.3.e.a.12.1 yes 8
51.32 odd 8 289.3.e.b.40.1 8
51.38 odd 4 289.3.e.i.75.1 8
51.41 even 16 289.3.e.k.65.1 8
51.44 even 16 289.3.e.l.65.1 8
51.47 odd 4 289.3.e.m.75.1 8
51.50 odd 2 289.3.e.c.214.1 8
204.131 odd 16 272.3.bh.c.97.1 8
255.29 even 16 425.3.u.b.301.1 8
255.182 odd 16 425.3.t.c.199.1 8
255.233 odd 16 425.3.t.a.199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.10.1 8 3.2 odd 2
17.3.e.a.12.1 yes 8 51.29 even 16
153.3.p.b.10.1 8 1.1 even 1 trivial
153.3.p.b.46.1 8 17.12 odd 16 inner
272.3.bh.c.97.1 8 204.131 odd 16
272.3.bh.c.129.1 8 12.11 even 2
289.3.e.b.40.1 8 51.32 odd 8
289.3.e.b.224.1 8 51.11 even 16
289.3.e.c.131.1 8 51.5 even 16
289.3.e.c.214.1 8 51.50 odd 2
289.3.e.d.40.1 8 51.2 odd 8
289.3.e.d.224.1 8 51.23 even 16
289.3.e.i.75.1 8 51.38 odd 4
289.3.e.i.158.1 8 51.20 even 16
289.3.e.k.65.1 8 51.41 even 16
289.3.e.k.249.1 8 51.26 odd 8
289.3.e.l.65.1 8 51.44 even 16
289.3.e.l.249.1 8 51.8 odd 8
289.3.e.m.75.1 8 51.47 odd 4
289.3.e.m.158.1 8 51.14 even 16
425.3.t.a.199.1 8 255.233 odd 16
425.3.t.a.299.1 8 15.2 even 4
425.3.t.c.199.1 8 255.182 odd 16
425.3.t.c.299.1 8 15.8 even 4
425.3.u.b.301.1 8 255.29 even 16
425.3.u.b.401.1 8 15.14 odd 2