Properties

Label 289.3.e.m.75.1
Level $289$
Weight $3$
Character 289.75
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,8,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 75.1
Root \(-0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 289.75
Dual form 289.3.e.m.158.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.15851 - 2.79690i) q^{2} +(0.451406 - 0.675577i) q^{3} +(-3.65205 - 3.65205i) q^{4} +(1.56645 + 7.87510i) q^{5} +(-1.36656 - 2.04520i) q^{6} +(-1.53233 + 7.70353i) q^{7} +(-3.25778 + 1.34942i) q^{8} +(3.19151 + 7.70500i) q^{9} +(23.8406 + 4.74219i) q^{10} +(6.71450 - 4.48649i) q^{11} +(-4.11580 + 0.818684i) q^{12} +(-0.798835 + 0.798835i) q^{13} +(19.7707 + 13.2104i) q^{14} +(6.02734 + 2.49661i) q^{15} -9.98414i q^{16} +25.2475 q^{18} +(-1.07647 + 2.59882i) q^{19} +(23.0395 - 34.4811i) q^{20} +(4.51262 + 4.51262i) q^{21} +(-4.76941 - 23.9774i) q^{22} +(4.76696 + 7.13426i) q^{23} +(-0.558947 + 2.81002i) q^{24} +(-36.4664 + 15.1049i) q^{25} +(1.30880 + 3.15972i) q^{26} +(13.8181 + 2.74858i) q^{27} +(33.7298 - 22.5376i) q^{28} +(3.01148 - 0.599020i) q^{29} +(13.9655 - 13.9655i) q^{30} +(-10.6746 - 7.13254i) q^{31} +(-40.9557 - 16.9644i) q^{32} -6.56139i q^{33} -63.0663 q^{35} +(16.4835 - 39.7946i) q^{36} +(-13.1509 + 19.6817i) q^{37} +(6.02153 + 6.02153i) q^{38} +(0.179075 + 0.900273i) q^{39} +(-15.7300 - 23.5416i) q^{40} +(4.26082 - 21.4206i) q^{41} +(17.8493 - 7.39341i) q^{42} +(8.89197 + 21.4671i) q^{43} +(-40.9066 - 8.13684i) q^{44} +(-55.6783 + 37.2030i) q^{45} +(25.4764 - 5.06757i) q^{46} +(55.6597 - 55.6597i) q^{47} +(-6.74505 - 4.50690i) q^{48} +(-11.7262 - 4.85715i) q^{49} +119.492i q^{50} +5.83478 q^{52} +(22.9922 - 55.5080i) q^{53} +(23.6959 - 35.4634i) q^{54} +(45.8495 + 45.8495i) q^{55} +(-5.40329 - 27.1642i) q^{56} +(1.26978 + 1.90036i) q^{57} +(1.81344 - 9.11677i) q^{58} +(25.3733 - 10.5100i) q^{59} +(-12.8944 - 31.1299i) q^{60} +(-35.7596 - 7.11302i) q^{61} +(-32.3156 + 21.5926i) q^{62} +(-64.2461 + 12.7793i) q^{63} +(-66.6561 + 66.6561i) q^{64} +(-7.54224 - 5.03957i) q^{65} +(-18.3515 - 7.60145i) q^{66} -117.219i q^{67} +6.97157 q^{69} +(-73.0632 + 176.390i) q^{70} +(-58.8738 + 88.1108i) q^{71} +(-20.7945 - 20.7945i) q^{72} +(-11.9073 - 59.8620i) q^{73} +(39.8122 + 59.5832i) q^{74} +(-6.25665 + 31.4543i) q^{75} +(13.4223 - 5.55971i) q^{76} +(24.2730 + 58.6001i) q^{77} +(2.72543 + 0.542122i) q^{78} +(79.2276 - 52.9382i) q^{79} +(78.6261 - 15.6397i) q^{80} +(-44.9799 + 44.9799i) q^{81} +(-54.9749 - 36.7331i) q^{82} +(109.791 + 45.4770i) q^{83} -32.9607i q^{84} +70.3428 q^{86} +(0.954715 - 2.30489i) q^{87} +(-15.8202 + 23.6767i) q^{88} +(-61.4534 - 61.4534i) q^{89} +(39.5490 + 198.826i) q^{90} +(-4.92977 - 7.37792i) q^{91} +(8.64551 - 43.4639i) q^{92} +(-9.63715 + 3.99184i) q^{93} +(-91.1920 - 220.157i) q^{94} +(-22.1522 - 4.40634i) q^{95} +(-29.9484 + 20.0109i) q^{96} +(-24.1185 + 4.79748i) q^{97} +(-27.1699 + 27.1699i) q^{98} +(55.9978 + 37.4165i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} + 16 q^{5} + 24 q^{6} - 8 q^{7} + 24 q^{8} + 16 q^{9} + 48 q^{10} + 48 q^{11} + 40 q^{12} + 16 q^{13} - 8 q^{14} + 16 q^{15} + 56 q^{18} + 32 q^{20} - 64 q^{21} + 56 q^{22} + 40 q^{23}+ \cdots + 272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15851 2.79690i 0.579256 1.39845i −0.314225 0.949348i \(-0.601745\pi\)
0.893481 0.449100i \(-0.148255\pi\)
\(3\) 0.451406 0.675577i 0.150469 0.225192i −0.748576 0.663049i \(-0.769262\pi\)
0.899045 + 0.437857i \(0.144262\pi\)
\(4\) −3.65205 3.65205i −0.913014 0.913014i
\(5\) 1.56645 + 7.87510i 0.313291 + 1.57502i 0.741255 + 0.671224i \(0.234231\pi\)
−0.427964 + 0.903796i \(0.640769\pi\)
\(6\) −1.36656 2.04520i −0.227760 0.340867i
\(7\) −1.53233 + 7.70353i −0.218904 + 1.10050i 0.702436 + 0.711746i \(0.252096\pi\)
−0.921340 + 0.388757i \(0.872904\pi\)
\(8\) −3.25778 + 1.34942i −0.407223 + 0.168677i
\(9\) 3.19151 + 7.70500i 0.354613 + 0.856111i
\(10\) 23.8406 + 4.74219i 2.38406 + 0.474219i
\(11\) 6.71450 4.48649i 0.610410 0.407863i −0.211584 0.977360i \(-0.567862\pi\)
0.821993 + 0.569497i \(0.192862\pi\)
\(12\) −4.11580 + 0.818684i −0.342983 + 0.0682236i
\(13\) −0.798835 + 0.798835i −0.0614489 + 0.0614489i −0.737163 0.675715i \(-0.763835\pi\)
0.675715 + 0.737163i \(0.263835\pi\)
\(14\) 19.7707 + 13.2104i 1.41220 + 0.943599i
\(15\) 6.02734 + 2.49661i 0.401823 + 0.166440i
\(16\) 9.98414i 0.624009i
\(17\) 0 0
\(18\) 25.2475 1.40264
\(19\) −1.07647 + 2.59882i −0.0566561 + 0.136780i −0.949673 0.313244i \(-0.898584\pi\)
0.893017 + 0.450023i \(0.148584\pi\)
\(20\) 23.0395 34.4811i 1.15198 1.72405i
\(21\) 4.51262 + 4.51262i 0.214887 + 0.214887i
\(22\) −4.76941 23.9774i −0.216791 1.08988i
\(23\) 4.76696 + 7.13426i 0.207259 + 0.310185i 0.920507 0.390727i \(-0.127776\pi\)
−0.713247 + 0.700912i \(0.752776\pi\)
\(24\) −0.558947 + 2.81002i −0.0232895 + 0.117084i
\(25\) −36.4664 + 15.1049i −1.45866 + 0.604195i
\(26\) 1.30880 + 3.15972i 0.0503384 + 0.121528i
\(27\) 13.8181 + 2.74858i 0.511780 + 0.101799i
\(28\) 33.7298 22.5376i 1.20464 0.804913i
\(29\) 3.01148 0.599020i 0.103844 0.0206559i −0.142895 0.989738i \(-0.545641\pi\)
0.246739 + 0.969082i \(0.420641\pi\)
\(30\) 13.9655 13.9655i 0.465517 0.465517i
\(31\) −10.6746 7.13254i −0.344342 0.230082i 0.371358 0.928490i \(-0.378892\pi\)
−0.715700 + 0.698408i \(0.753892\pi\)
\(32\) −40.9557 16.9644i −1.27987 0.530138i
\(33\) 6.56139i 0.198830i
\(34\) 0 0
\(35\) −63.0663 −1.80190
\(36\) 16.4835 39.7946i 0.457875 1.10541i
\(37\) −13.1509 + 19.6817i −0.355429 + 0.531938i −0.965498 0.260411i \(-0.916142\pi\)
0.610068 + 0.792349i \(0.291142\pi\)
\(38\) 6.02153 + 6.02153i 0.158461 + 0.158461i
\(39\) 0.179075 + 0.900273i 0.00459168 + 0.0230839i
\(40\) −15.7300 23.5416i −0.393249 0.588539i
\(41\) 4.26082 21.4206i 0.103922 0.522453i −0.893396 0.449270i \(-0.851684\pi\)
0.997319 0.0731833i \(-0.0233158\pi\)
\(42\) 17.8493 7.39341i 0.424982 0.176034i
\(43\) 8.89197 + 21.4671i 0.206790 + 0.499235i 0.992914 0.118833i \(-0.0379154\pi\)
−0.786124 + 0.618069i \(0.787915\pi\)
\(44\) −40.9066 8.13684i −0.929696 0.184928i
\(45\) −55.6783 + 37.2030i −1.23729 + 0.826734i
\(46\) 25.4764 5.06757i 0.553834 0.110164i
\(47\) 55.6597 55.6597i 1.18425 1.18425i 0.205617 0.978632i \(-0.434080\pi\)
0.978632 0.205617i \(-0.0659202\pi\)
\(48\) −6.74505 4.50690i −0.140522 0.0938937i
\(49\) −11.7262 4.85715i −0.239310 0.0991254i
\(50\) 119.492i 2.38984i
\(51\) 0 0
\(52\) 5.83478 0.112207
\(53\) 22.9922 55.5080i 0.433815 1.04732i −0.544232 0.838935i \(-0.683179\pi\)
0.978047 0.208386i \(-0.0668212\pi\)
\(54\) 23.6959 35.4634i 0.438813 0.656730i
\(55\) 45.8495 + 45.8495i 0.833627 + 0.833627i
\(56\) −5.40329 27.1642i −0.0964873 0.485074i
\(57\) 1.26978 + 1.90036i 0.0222768 + 0.0333396i
\(58\) 1.81344 9.11677i 0.0312662 0.157186i
\(59\) 25.3733 10.5100i 0.430057 0.178135i −0.157146 0.987575i \(-0.550229\pi\)
0.587202 + 0.809440i \(0.300229\pi\)
\(60\) −12.8944 31.1299i −0.214907 0.518832i
\(61\) −35.7596 7.11302i −0.586223 0.116607i −0.106937 0.994266i \(-0.534104\pi\)
−0.479286 + 0.877659i \(0.659104\pi\)
\(62\) −32.3156 + 21.5926i −0.521220 + 0.348268i
\(63\) −64.2461 + 12.7793i −1.01978 + 0.202847i
\(64\) −66.6561 + 66.6561i −1.04150 + 1.04150i
\(65\) −7.54224 5.03957i −0.116035 0.0775318i
\(66\) −18.3515 7.60145i −0.278054 0.115174i
\(67\) 117.219i 1.74953i −0.484544 0.874767i \(-0.661015\pi\)
0.484544 0.874767i \(-0.338985\pi\)
\(68\) 0 0
\(69\) 6.97157 0.101037
\(70\) −73.0632 + 176.390i −1.04376 + 2.51986i
\(71\) −58.8738 + 88.1108i −0.829208 + 1.24100i 0.138861 + 0.990312i \(0.455656\pi\)
−0.968069 + 0.250685i \(0.919344\pi\)
\(72\) −20.7945 20.7945i −0.288813 0.288813i
\(73\) −11.9073 59.8620i −0.163114 0.820028i −0.972527 0.232789i \(-0.925215\pi\)
0.809414 0.587239i \(-0.199785\pi\)
\(74\) 39.8122 + 59.5832i 0.538003 + 0.805178i
\(75\) −6.25665 + 31.4543i −0.0834220 + 0.419390i
\(76\) 13.4223 5.55971i 0.176610 0.0731541i
\(77\) 24.2730 + 58.6001i 0.315233 + 0.761041i
\(78\) 2.72543 + 0.542122i 0.0349414 + 0.00695029i
\(79\) 79.2276 52.9382i 1.00288 0.670103i 0.0582714 0.998301i \(-0.481441\pi\)
0.944609 + 0.328197i \(0.106441\pi\)
\(80\) 78.6261 15.6397i 0.982826 0.195496i
\(81\) −44.9799 + 44.9799i −0.555308 + 0.555308i
\(82\) −54.9749 36.7331i −0.670426 0.447964i
\(83\) 109.791 + 45.4770i 1.32279 + 0.547916i 0.928589 0.371110i \(-0.121023\pi\)
0.394197 + 0.919026i \(0.371023\pi\)
\(84\) 32.9607i 0.392389i
\(85\) 0 0
\(86\) 70.3428 0.817939
\(87\) 0.954715 2.30489i 0.0109737 0.0264929i
\(88\) −15.8202 + 23.6767i −0.179776 + 0.269053i
\(89\) −61.4534 61.4534i −0.690488 0.690488i 0.271851 0.962339i \(-0.412364\pi\)
−0.962339 + 0.271851i \(0.912364\pi\)
\(90\) 39.5490 + 198.826i 0.439434 + 2.20918i
\(91\) −4.92977 7.37792i −0.0541733 0.0810761i
\(92\) 8.64551 43.4639i 0.0939729 0.472434i
\(93\) −9.63715 + 3.99184i −0.103625 + 0.0429230i
\(94\) −91.1920 220.157i −0.970128 2.34210i
\(95\) −22.1522 4.40634i −0.233181 0.0463826i
\(96\) −29.9484 + 20.0109i −0.311963 + 0.208447i
\(97\) −24.1185 + 4.79748i −0.248645 + 0.0494585i −0.317839 0.948145i \(-0.602957\pi\)
0.0691943 + 0.997603i \(0.477957\pi\)
\(98\) −27.1699 + 27.1699i −0.277244 + 0.277244i
\(99\) 55.9978 + 37.4165i 0.565635 + 0.377945i
\(100\) 188.341 + 78.0135i 1.88341 + 0.780135i
\(101\) 7.70266i 0.0762640i 0.999273 + 0.0381320i \(0.0121407\pi\)
−0.999273 + 0.0381320i \(0.987859\pi\)
\(102\) 0 0
\(103\) 41.5688 0.403581 0.201790 0.979429i \(-0.435324\pi\)
0.201790 + 0.979429i \(0.435324\pi\)
\(104\) 1.52447 3.68039i 0.0146584 0.0353884i
\(105\) −28.4685 + 42.6061i −0.271129 + 0.405773i
\(106\) −128.614 128.614i −1.21333 1.21333i
\(107\) 17.2484 + 86.7136i 0.161200 + 0.810407i 0.973768 + 0.227541i \(0.0730687\pi\)
−0.812568 + 0.582866i \(0.801931\pi\)
\(108\) −40.4263 60.5023i −0.374318 0.560206i
\(109\) 3.63521 18.2754i 0.0333506 0.167665i −0.960521 0.278209i \(-0.910259\pi\)
0.993871 + 0.110544i \(0.0352593\pi\)
\(110\) 181.354 75.1191i 1.64867 0.682901i
\(111\) 7.36011 + 17.7689i 0.0663073 + 0.160080i
\(112\) 76.9131 + 15.2990i 0.686724 + 0.136598i
\(113\) −50.4220 + 33.6909i −0.446212 + 0.298150i −0.758302 0.651903i \(-0.773971\pi\)
0.312090 + 0.950053i \(0.398971\pi\)
\(114\) 6.78616 1.34985i 0.0595277 0.0118408i
\(115\) −48.7158 + 48.7158i −0.423615 + 0.423615i
\(116\) −13.1857 8.81043i −0.113670 0.0759520i
\(117\) −8.70452 3.60553i −0.0743976 0.0308165i
\(118\) 83.1426i 0.704598i
\(119\) 0 0
\(120\) −23.0047 −0.191706
\(121\) −21.3487 + 51.5403i −0.176436 + 0.425953i
\(122\) −61.3223 + 91.7753i −0.502642 + 0.752257i
\(123\) −12.5479 12.5479i −0.102015 0.102015i
\(124\) 12.9358 + 65.0326i 0.104321 + 0.524456i
\(125\) −64.5533 96.6108i −0.516426 0.772886i
\(126\) −38.6874 + 194.495i −0.307043 + 1.54361i
\(127\) −110.168 + 45.6333i −0.867468 + 0.359317i −0.771624 0.636079i \(-0.780555\pi\)
−0.0958444 + 0.995396i \(0.530555\pi\)
\(128\) 41.3506 + 99.8291i 0.323051 + 0.779915i
\(129\) 18.5166 + 3.68317i 0.143539 + 0.0285517i
\(130\) −22.8329 + 15.2565i −0.175638 + 0.117358i
\(131\) −168.033 + 33.4238i −1.28269 + 0.255144i −0.788947 0.614461i \(-0.789373\pi\)
−0.493748 + 0.869605i \(0.664373\pi\)
\(132\) −23.9626 + 23.9626i −0.181534 + 0.181534i
\(133\) −18.3706 12.2748i −0.138125 0.0922919i
\(134\) −327.849 135.799i −2.44663 1.01343i
\(135\) 113.124i 0.837956i
\(136\) 0 0
\(137\) −173.113 −1.26360 −0.631799 0.775132i \(-0.717683\pi\)
−0.631799 + 0.775132i \(0.717683\pi\)
\(138\) 8.07666 19.4988i 0.0585265 0.141295i
\(139\) 99.7637 149.307i 0.717724 1.07415i −0.275876 0.961193i \(-0.588968\pi\)
0.993600 0.112957i \(-0.0360322\pi\)
\(140\) 230.322 + 230.322i 1.64515 + 1.64515i
\(141\) −12.4773 62.7276i −0.0884914 0.444876i
\(142\) 178.231 + 266.741i 1.25515 + 1.87846i
\(143\) −1.77982 + 8.94775i −0.0124463 + 0.0625717i
\(144\) 76.9278 31.8645i 0.534221 0.221281i
\(145\) 9.43469 + 22.7774i 0.0650668 + 0.157085i
\(146\) −181.223 36.0474i −1.24125 0.246900i
\(147\) −8.57464 + 5.72939i −0.0583309 + 0.0389755i
\(148\) 119.906 23.8509i 0.810178 0.161154i
\(149\) 31.6842 31.6842i 0.212646 0.212646i −0.592745 0.805391i \(-0.701956\pi\)
0.805391 + 0.592745i \(0.201956\pi\)
\(150\) 80.7260 + 53.9394i 0.538173 + 0.359596i
\(151\) 121.384 + 50.2789i 0.803868 + 0.332973i 0.746504 0.665380i \(-0.231731\pi\)
0.0573634 + 0.998353i \(0.481731\pi\)
\(152\) 9.91898i 0.0652565i
\(153\) 0 0
\(154\) 192.019 1.24688
\(155\) 39.4482 95.2363i 0.254504 0.614428i
\(156\) 2.63385 3.94184i 0.0168837 0.0252682i
\(157\) 25.4694 + 25.4694i 0.162225 + 0.162225i 0.783552 0.621327i \(-0.213406\pi\)
−0.621327 + 0.783552i \(0.713406\pi\)
\(158\) −56.2765 282.921i −0.356180 1.79064i
\(159\) −27.1211 40.5896i −0.170573 0.255281i
\(160\) 69.4412 349.104i 0.434007 2.18190i
\(161\) −62.2635 + 25.7904i −0.386730 + 0.160189i
\(162\) 73.6944 + 177.914i 0.454904 + 1.09823i
\(163\) −156.650 31.1596i −0.961041 0.191163i −0.310449 0.950590i \(-0.600479\pi\)
−0.650592 + 0.759427i \(0.725479\pi\)
\(164\) −93.7898 + 62.6684i −0.571889 + 0.382124i
\(165\) 51.6716 10.2781i 0.313161 0.0622916i
\(166\) 254.389 254.389i 1.53246 1.53246i
\(167\) −92.0734 61.5214i −0.551337 0.368392i 0.248478 0.968637i \(-0.420070\pi\)
−0.799816 + 0.600246i \(0.795070\pi\)
\(168\) −20.7905 8.61173i −0.123753 0.0512603i
\(169\) 167.724i 0.992448i
\(170\) 0 0
\(171\) −23.4594 −0.137190
\(172\) 45.9251 110.873i 0.267006 0.644611i
\(173\) 98.9216 148.047i 0.571801 0.855761i −0.427023 0.904241i \(-0.640438\pi\)
0.998824 + 0.0484797i \(0.0154376\pi\)
\(174\) −5.34048 5.34048i −0.0306924 0.0306924i
\(175\) −60.4824 304.066i −0.345614 1.73752i
\(176\) −44.7937 67.0386i −0.254510 0.380901i
\(177\) 4.35338 21.8859i 0.0245954 0.123649i
\(178\) −243.074 + 100.684i −1.36558 + 0.565642i
\(179\) −96.5028 232.978i −0.539122 1.30155i −0.925337 0.379146i \(-0.876218\pi\)
0.386215 0.922409i \(-0.373782\pi\)
\(180\) 339.207 + 67.4725i 1.88449 + 0.374847i
\(181\) 250.563 167.421i 1.38433 0.924977i 0.384328 0.923197i \(-0.374433\pi\)
0.999998 0.00178027i \(-0.000566678\pi\)
\(182\) −26.3465 + 5.24064i −0.144761 + 0.0287947i
\(183\) −20.9475 + 20.9475i −0.114467 + 0.114467i
\(184\) −25.1568 16.8092i −0.136722 0.0913546i
\(185\) −175.596 72.7341i −0.949165 0.393157i
\(186\) 31.5787i 0.169778i
\(187\) 0 0
\(188\) −406.545 −2.16247
\(189\) −42.3476 + 102.236i −0.224061 + 0.540931i
\(190\) −37.9877 + 56.8526i −0.199935 + 0.299224i
\(191\) 93.7287 + 93.7287i 0.490726 + 0.490726i 0.908535 0.417809i \(-0.137202\pi\)
−0.417809 + 0.908535i \(0.637202\pi\)
\(192\) 14.9423 + 75.1202i 0.0778247 + 0.391251i
\(193\) −177.012 264.917i −0.917161 1.37263i −0.927957 0.372687i \(-0.878436\pi\)
0.0107958 0.999942i \(-0.496564\pi\)
\(194\) −14.5236 + 73.0150i −0.0748639 + 0.376366i
\(195\) −6.80923 + 2.82047i −0.0349191 + 0.0144640i
\(196\) 25.0861 + 60.5632i 0.127990 + 0.308996i
\(197\) −113.442 22.5650i −0.575847 0.114543i −0.101429 0.994843i \(-0.532341\pi\)
−0.474418 + 0.880300i \(0.657341\pi\)
\(198\) 169.524 113.273i 0.856184 0.572084i
\(199\) 290.161 57.7166i 1.45809 0.290033i 0.598547 0.801088i \(-0.295745\pi\)
0.859548 + 0.511055i \(0.170745\pi\)
\(200\) 98.4168 98.4168i 0.492084 0.492084i
\(201\) −79.1902 52.9132i −0.393981 0.263250i
\(202\) 21.5436 + 8.92363i 0.106651 + 0.0441764i
\(203\) 24.1169i 0.118802i
\(204\) 0 0
\(205\) 175.364 0.855432
\(206\) 48.1580 116.264i 0.233777 0.564387i
\(207\) −39.7556 + 59.4985i −0.192056 + 0.287432i
\(208\) 7.97568 + 7.97568i 0.0383446 + 0.0383446i
\(209\) 4.43163 + 22.2793i 0.0212040 + 0.106600i
\(210\) 86.1839 + 128.983i 0.410399 + 0.614206i
\(211\) −44.8199 + 225.325i −0.212417 + 1.06789i 0.716495 + 0.697592i \(0.245745\pi\)
−0.928912 + 0.370300i \(0.879255\pi\)
\(212\) −286.687 + 118.750i −1.35230 + 0.560140i
\(213\) 32.9496 + 79.5475i 0.154693 + 0.373462i
\(214\) 262.511 + 52.2168i 1.22669 + 0.244004i
\(215\) −155.127 + 103.652i −0.721520 + 0.482104i
\(216\) −48.7252 + 9.69205i −0.225580 + 0.0448706i
\(217\) 71.3026 71.3026i 0.328584 0.328584i
\(218\) −46.9031 31.3396i −0.215152 0.143760i
\(219\) −45.8164 18.9778i −0.209207 0.0866565i
\(220\) 334.890i 1.52223i
\(221\) 0 0
\(222\) 58.2245 0.262272
\(223\) 139.061 335.723i 0.623593 1.50549i −0.223863 0.974621i \(-0.571867\pi\)
0.847456 0.530865i \(-0.178133\pi\)
\(224\) 193.443 289.509i 0.863587 1.29245i
\(225\) −232.766 232.766i −1.03452 1.03452i
\(226\) 35.8155 + 180.056i 0.158475 + 0.796710i
\(227\) 53.8478 + 80.5890i 0.237215 + 0.355017i 0.930908 0.365253i \(-0.119018\pi\)
−0.693693 + 0.720271i \(0.744018\pi\)
\(228\) 2.30291 11.5775i 0.0101005 0.0507785i
\(229\) 334.120 138.397i 1.45904 0.604353i 0.494708 0.869059i \(-0.335275\pi\)
0.964329 + 0.264706i \(0.0852749\pi\)
\(230\) 79.8152 + 192.691i 0.347022 + 0.837786i
\(231\) 50.5458 + 10.0542i 0.218813 + 0.0435246i
\(232\) −9.00241 + 6.01522i −0.0388035 + 0.0259277i
\(233\) −274.765 + 54.6542i −1.17925 + 0.234567i −0.745525 0.666478i \(-0.767801\pi\)
−0.433725 + 0.901045i \(0.642801\pi\)
\(234\) −20.1686 + 20.1686i −0.0861905 + 0.0861905i
\(235\) 525.514 + 351.137i 2.23623 + 1.49420i
\(236\) −131.048 54.2818i −0.555288 0.230008i
\(237\) 77.4209i 0.326670i
\(238\) 0 0
\(239\) 328.551 1.37469 0.687345 0.726331i \(-0.258776\pi\)
0.687345 + 0.726331i \(0.258776\pi\)
\(240\) 24.9265 60.1778i 0.103860 0.250741i
\(241\) 134.678 201.560i 0.558831 0.836349i −0.439244 0.898368i \(-0.644754\pi\)
0.998075 + 0.0620186i \(0.0197538\pi\)
\(242\) 119.420 + 119.420i 0.493472 + 0.493472i
\(243\) 34.8204 + 175.054i 0.143294 + 0.720387i
\(244\) 104.619 + 156.573i 0.428765 + 0.641693i
\(245\) 19.8820 99.9534i 0.0811509 0.407973i
\(246\) −49.6320 + 20.5583i −0.201756 + 0.0835701i
\(247\) −1.21611 2.93595i −0.00492352 0.0118864i
\(248\) 44.4003 + 8.83176i 0.179033 + 0.0356119i
\(249\) 80.2836 53.6438i 0.322424 0.215437i
\(250\) −344.996 + 68.6240i −1.37999 + 0.274496i
\(251\) −155.463 + 155.463i −0.619375 + 0.619375i −0.945371 0.325996i \(-0.894300\pi\)
0.325996 + 0.945371i \(0.394300\pi\)
\(252\) 281.301 + 187.959i 1.11627 + 0.745870i
\(253\) 64.0155 + 26.5161i 0.253026 + 0.104807i
\(254\) 360.996i 1.42125i
\(255\) 0 0
\(256\) −49.9468 −0.195105
\(257\) −124.463 + 300.480i −0.484292 + 1.16918i 0.473260 + 0.880923i \(0.343077\pi\)
−0.957552 + 0.288261i \(0.906923\pi\)
\(258\) 31.7531 47.5219i 0.123074 0.184194i
\(259\) −131.467 131.467i −0.507595 0.507595i
\(260\) 9.13991 + 45.9494i 0.0351535 + 0.176729i
\(261\) 14.2266 + 21.2917i 0.0545082 + 0.0815772i
\(262\) −101.185 + 508.693i −0.386203 + 1.94158i
\(263\) −128.172 + 53.0907i −0.487347 + 0.201866i −0.612806 0.790233i \(-0.709959\pi\)
0.125460 + 0.992099i \(0.459959\pi\)
\(264\) 8.85405 + 21.3756i 0.0335381 + 0.0809681i
\(265\) 473.147 + 94.1149i 1.78546 + 0.355150i
\(266\) −55.6139 + 37.1600i −0.209075 + 0.139699i
\(267\) −69.2570 + 13.7761i −0.259389 + 0.0515957i
\(268\) −428.089 + 428.089i −1.59735 + 1.59735i
\(269\) −270.126 180.493i −1.00419 0.670976i −0.0592547 0.998243i \(-0.518872\pi\)
−0.944932 + 0.327267i \(0.893872\pi\)
\(270\) 316.396 + 131.056i 1.17184 + 0.485391i
\(271\) 19.1867i 0.0707996i 0.999373 + 0.0353998i \(0.0112705\pi\)
−0.999373 + 0.0353998i \(0.988730\pi\)
\(272\) 0 0
\(273\) −7.20968 −0.0264091
\(274\) −200.554 + 484.179i −0.731947 + 1.76708i
\(275\) −177.086 + 265.028i −0.643949 + 0.963738i
\(276\) −25.4606 25.4606i −0.0922484 0.0922484i
\(277\) 60.0883 + 302.084i 0.216925 + 1.09056i 0.923700 + 0.383118i \(0.125150\pi\)
−0.706774 + 0.707439i \(0.749850\pi\)
\(278\) −302.018 452.003i −1.08640 1.62591i
\(279\) 20.8880 105.011i 0.0748676 0.376385i
\(280\) 205.456 85.1028i 0.733773 0.303939i
\(281\) 33.1106 + 79.9361i 0.117831 + 0.284470i 0.971781 0.235886i \(-0.0757992\pi\)
−0.853949 + 0.520356i \(0.825799\pi\)
\(282\) −189.898 37.7730i −0.673396 0.133947i
\(283\) 6.22073 4.15656i 0.0219814 0.0146875i −0.544531 0.838741i \(-0.683292\pi\)
0.566512 + 0.824053i \(0.308292\pi\)
\(284\) 536.796 106.775i 1.89013 0.375969i
\(285\) −12.9764 + 12.9764i −0.0455314 + 0.0455314i
\(286\) 22.9640 + 15.3440i 0.0802937 + 0.0536505i
\(287\) 158.485 + 65.6466i 0.552213 + 0.228734i
\(288\) 369.706i 1.28370i
\(289\) 0 0
\(290\) 74.6361 0.257366
\(291\) −7.64619 + 18.4595i −0.0262756 + 0.0634348i
\(292\) −175.133 + 262.105i −0.599771 + 0.897621i
\(293\) 54.4583 + 54.4583i 0.185864 + 0.185864i 0.793906 0.608041i \(-0.208044\pi\)
−0.608041 + 0.793906i \(0.708044\pi\)
\(294\) 6.09069 + 30.6200i 0.0207166 + 0.104150i
\(295\) 122.513 + 183.354i 0.415300 + 0.621540i
\(296\) 16.2839 81.8647i 0.0550132 0.276570i
\(297\) 105.113 43.5392i 0.353915 0.146597i
\(298\) −51.9110 125.324i −0.174198 0.420551i
\(299\) −9.50711 1.89108i −0.0317964 0.00632469i
\(300\) 137.722 92.0231i 0.459075 0.306744i
\(301\) −178.998 + 35.6049i −0.594677 + 0.118289i
\(302\) 281.250 281.250i 0.931291 0.931291i
\(303\) 5.20374 + 3.47703i 0.0171741 + 0.0114753i
\(304\) 25.9470 + 10.7476i 0.0853519 + 0.0353539i
\(305\) 292.752i 0.959844i
\(306\) 0 0
\(307\) −159.680 −0.520132 −0.260066 0.965591i \(-0.583744\pi\)
−0.260066 + 0.965591i \(0.583744\pi\)
\(308\) 125.365 302.657i 0.407028 0.982653i
\(309\) 18.7644 28.0829i 0.0607262 0.0908832i
\(310\) −220.665 220.665i −0.711822 0.711822i
\(311\) −64.9678 326.615i −0.208900 1.05021i −0.932825 0.360331i \(-0.882664\pi\)
0.723925 0.689879i \(-0.242336\pi\)
\(312\) −1.79823 2.69125i −0.00576357 0.00862579i
\(313\) 76.9763 386.986i 0.245931 1.23638i −0.638470 0.769647i \(-0.720432\pi\)
0.884400 0.466729i \(-0.154568\pi\)
\(314\) 100.742 41.7286i 0.320834 0.132894i
\(315\) −201.277 485.926i −0.638975 1.54262i
\(316\) −482.676 96.0103i −1.52746 0.303830i
\(317\) −115.654 + 77.2775i −0.364839 + 0.243778i −0.724454 0.689323i \(-0.757908\pi\)
0.359615 + 0.933101i \(0.382908\pi\)
\(318\) −144.945 + 28.8314i −0.455802 + 0.0906647i
\(319\) 17.5331 17.5331i 0.0549627 0.0549627i
\(320\) −629.337 420.509i −1.96668 1.31409i
\(321\) 66.3677 + 27.4904i 0.206753 + 0.0856399i
\(322\) 204.023i 0.633612i
\(323\) 0 0
\(324\) 328.538 1.01401
\(325\) 17.0643 41.1970i 0.0525057 0.126760i
\(326\) −268.631 + 402.034i −0.824021 + 1.23323i
\(327\) −10.7055 10.7055i −0.0327385 0.0327385i
\(328\) 15.0245 + 75.5332i 0.0458064 + 0.230284i
\(329\) 343.487 + 514.065i 1.04403 + 1.56251i
\(330\) 31.1154 156.427i 0.0942890 0.474023i
\(331\) −146.717 + 60.7720i −0.443252 + 0.183601i −0.593136 0.805103i \(-0.702110\pi\)
0.149883 + 0.988704i \(0.452110\pi\)
\(332\) −234.879 567.048i −0.707467 1.70798i
\(333\) −193.619 38.5132i −0.581438 0.115655i
\(334\) −278.737 + 186.246i −0.834543 + 0.557624i
\(335\) 923.109 183.618i 2.75555 0.548113i
\(336\) 45.0546 45.0546i 0.134091 0.134091i
\(337\) −401.062 267.981i −1.19009 0.795195i −0.207008 0.978339i \(-0.566372\pi\)
−0.983086 + 0.183144i \(0.941372\pi\)
\(338\) 469.106 + 194.310i 1.38789 + 0.574882i
\(339\) 49.2722i 0.145346i
\(340\) 0 0
\(341\) −103.675 −0.304031
\(342\) −27.1781 + 65.6136i −0.0794680 + 0.191853i
\(343\) −158.436 + 237.116i −0.461912 + 0.691299i
\(344\) −57.9362 57.9362i −0.168419 0.168419i
\(345\) 10.9207 + 54.9018i 0.0316541 + 0.159136i
\(346\) −299.469 448.188i −0.865518 1.29534i
\(347\) −3.86080 + 19.4096i −0.0111262 + 0.0559353i −0.985950 0.167043i \(-0.946578\pi\)
0.974823 + 0.222979i \(0.0715780\pi\)
\(348\) −11.9042 + 4.93090i −0.0342076 + 0.0141692i
\(349\) 149.801 + 361.651i 0.429229 + 1.03625i 0.979533 + 0.201286i \(0.0645120\pi\)
−0.550304 + 0.834965i \(0.685488\pi\)
\(350\) −920.510 183.101i −2.63003 0.523145i
\(351\) −13.2340 + 8.84268i −0.0377037 + 0.0251928i
\(352\) −351.108 + 69.8398i −0.997466 + 0.198408i
\(353\) 138.024 138.024i 0.391003 0.391003i −0.484042 0.875045i \(-0.660832\pi\)
0.875045 + 0.484042i \(0.160832\pi\)
\(354\) −56.1692 37.5311i −0.158670 0.106020i
\(355\) −786.104 325.615i −2.21438 0.917226i
\(356\) 448.863i 1.26085i
\(357\) 0 0
\(358\) −763.416 −2.13245
\(359\) −136.163 + 328.726i −0.379284 + 0.915672i 0.612817 + 0.790225i \(0.290036\pi\)
−0.992100 + 0.125447i \(0.959964\pi\)
\(360\) 131.185 196.333i 0.364403 0.545368i
\(361\) 249.670 + 249.670i 0.691608 + 0.691608i
\(362\) −177.978 894.758i −0.491653 2.47171i
\(363\) 25.1825 + 37.6883i 0.0693733 + 0.103824i
\(364\) −8.94078 + 44.9484i −0.0245626 + 0.123485i
\(365\) 452.767 187.542i 1.24046 0.513814i
\(366\) 34.3200 + 82.8558i 0.0937705 + 0.226382i
\(367\) 80.1568 + 15.9442i 0.218411 + 0.0434446i 0.303083 0.952964i \(-0.401984\pi\)
−0.0846717 + 0.996409i \(0.526984\pi\)
\(368\) 71.2294 47.5940i 0.193558 0.129331i
\(369\) 178.644 35.5345i 0.484130 0.0962994i
\(370\) −406.859 + 406.859i −1.09962 + 1.09962i
\(371\) 392.376 + 262.177i 1.05762 + 0.706677i
\(372\) 49.7738 + 20.6170i 0.133801 + 0.0554220i
\(373\) 76.8209i 0.205954i 0.994684 + 0.102977i \(0.0328368\pi\)
−0.994684 + 0.102977i \(0.967163\pi\)
\(374\) 0 0
\(375\) −94.4077 −0.251754
\(376\) −106.219 + 256.436i −0.282498 + 0.682009i
\(377\) −1.92716 + 2.88419i −0.00511182 + 0.00765038i
\(378\) 236.883 + 236.883i 0.626676 + 0.626676i
\(379\) 114.959 + 577.940i 0.303323 + 1.52491i 0.768592 + 0.639739i \(0.220957\pi\)
−0.465269 + 0.885169i \(0.654043\pi\)
\(380\) 64.8088 + 96.9932i 0.170549 + 0.255245i
\(381\) −18.9019 + 95.0264i −0.0496113 + 0.249413i
\(382\) 370.735 153.564i 0.970511 0.401999i
\(383\) 89.4016 + 215.834i 0.233424 + 0.563537i 0.996576 0.0826832i \(-0.0263490\pi\)
−0.763151 + 0.646220i \(0.776349\pi\)
\(384\) 86.1081 + 17.1280i 0.224240 + 0.0446041i
\(385\) −423.459 + 282.946i −1.09989 + 0.734926i
\(386\) −946.017 + 188.175i −2.45082 + 0.487499i
\(387\) −137.025 + 137.025i −0.354070 + 0.354070i
\(388\) 105.603 + 70.5616i 0.272172 + 0.181860i
\(389\) −372.916 154.467i −0.958653 0.397087i −0.152177 0.988353i \(-0.548628\pi\)
−0.806477 + 0.591266i \(0.798628\pi\)
\(390\) 22.3123i 0.0572109i
\(391\) 0 0
\(392\) 44.7557 0.114173
\(393\) −53.2707 + 128.607i −0.135549 + 0.327244i
\(394\) −194.536 + 291.143i −0.493746 + 0.738943i
\(395\) 541.000 + 541.000i 1.36962 + 1.36962i
\(396\) −67.8598 341.154i −0.171363 0.861501i
\(397\) −146.553 219.332i −0.369151 0.552474i 0.599666 0.800251i \(-0.295300\pi\)
−0.968817 + 0.247776i \(0.920300\pi\)
\(398\) 174.728 878.415i 0.439014 2.20707i
\(399\) −16.5852 + 6.86980i −0.0415668 + 0.0172175i
\(400\) 150.809 + 364.086i 0.377023 + 0.910214i
\(401\) −234.691 46.6830i −0.585265 0.116416i −0.106428 0.994320i \(-0.533941\pi\)
−0.478837 + 0.877904i \(0.658941\pi\)
\(402\) −239.736 + 160.186i −0.596358 + 0.398473i
\(403\) 14.2250 2.82952i 0.0352977 0.00702114i
\(404\) 28.1305 28.1305i 0.0696300 0.0696300i
\(405\) −424.680 283.762i −1.04859 0.700648i
\(406\) 67.4525 + 27.9397i 0.166139 + 0.0688171i
\(407\) 191.154i 0.469666i
\(408\) 0 0
\(409\) 259.903 0.635461 0.317730 0.948181i \(-0.397079\pi\)
0.317730 + 0.948181i \(0.397079\pi\)
\(410\) 203.161 490.474i 0.495514 1.19628i
\(411\) −78.1442 + 116.951i −0.190132 + 0.284552i
\(412\) −151.812 151.812i −0.368475 0.368475i
\(413\) 42.0837 + 211.569i 0.101898 + 0.512274i
\(414\) 120.354 + 180.122i 0.290710 + 0.435078i
\(415\) −186.153 + 935.855i −0.448562 + 2.25507i
\(416\) 46.2687 19.1651i 0.111223 0.0460700i
\(417\) −55.8343 134.796i −0.133895 0.323252i
\(418\) 67.4471 + 13.4161i 0.161357 + 0.0320958i
\(419\) −142.640 + 95.3087i −0.340429 + 0.227467i −0.714018 0.700127i \(-0.753127\pi\)
0.373590 + 0.927594i \(0.378127\pi\)
\(420\) 259.569 51.6314i 0.618020 0.122932i
\(421\) 443.214 443.214i 1.05276 1.05276i 0.0542356 0.998528i \(-0.482728\pi\)
0.998528 0.0542356i \(-0.0172722\pi\)
\(422\) 578.287 + 386.399i 1.37035 + 0.915637i
\(423\) 606.497 + 251.219i 1.43380 + 0.593899i
\(424\) 211.859i 0.499668i
\(425\) 0 0
\(426\) 260.659 0.611875
\(427\) 109.591 264.575i 0.256653 0.619614i
\(428\) 253.691 379.675i 0.592735 0.887090i
\(429\) 5.24147 + 5.24147i 0.0122179 + 0.0122179i
\(430\) 110.189 + 553.956i 0.256253 + 1.28827i
\(431\) 423.447 + 633.734i 0.982477 + 1.47038i 0.879616 + 0.475684i \(0.157799\pi\)
0.102860 + 0.994696i \(0.467201\pi\)
\(432\) 27.4422 137.961i 0.0635237 0.319355i
\(433\) −87.4681 + 36.2305i −0.202005 + 0.0836732i −0.481392 0.876505i \(-0.659869\pi\)
0.279387 + 0.960179i \(0.409869\pi\)
\(434\) −116.821 282.031i −0.269173 0.649841i
\(435\) 19.6467 + 3.90798i 0.0451649 + 0.00898385i
\(436\) −80.0189 + 53.4669i −0.183530 + 0.122630i
\(437\) −23.6721 + 4.70868i −0.0541696 + 0.0107750i
\(438\) −106.158 + 106.158i −0.242369 + 0.242369i
\(439\) −30.7465 20.5441i −0.0700375 0.0467976i 0.520059 0.854131i \(-0.325910\pi\)
−0.590096 + 0.807333i \(0.700910\pi\)
\(440\) −211.238 87.4976i −0.480086 0.198858i
\(441\) 105.852i 0.240027i
\(442\) 0 0
\(443\) −634.146 −1.43148 −0.715740 0.698367i \(-0.753911\pi\)
−0.715740 + 0.698367i \(0.753911\pi\)
\(444\) 38.0134 91.7724i 0.0856157 0.206695i
\(445\) 387.688 580.216i 0.871209 1.30386i
\(446\) −777.880 777.880i −1.74412 1.74412i
\(447\) −7.10268 35.7076i −0.0158897 0.0798828i
\(448\) −411.348 615.626i −0.918187 1.37416i
\(449\) 86.1959 433.336i 0.191973 0.965114i −0.757874 0.652400i \(-0.773762\pi\)
0.949848 0.312713i \(-0.101238\pi\)
\(450\) −920.685 + 381.360i −2.04597 + 0.847468i
\(451\) −67.4939 162.945i −0.149654 0.361296i
\(452\) 307.185 + 61.1029i 0.679613 + 0.135183i
\(453\) 88.7607 59.3080i 0.195940 0.130923i
\(454\) 287.782 57.2435i 0.633882 0.126087i
\(455\) 50.3796 50.3796i 0.110724 0.110724i
\(456\) −6.70103 4.47749i −0.0146953 0.00981905i
\(457\) −246.501 102.104i −0.539390 0.223423i 0.0963202 0.995350i \(-0.469293\pi\)
−0.635710 + 0.771928i \(0.719293\pi\)
\(458\) 1094.83i 2.39046i
\(459\) 0 0
\(460\) 355.825 0.773533
\(461\) −172.768 + 417.100i −0.374769 + 0.904772i 0.618159 + 0.786053i \(0.287879\pi\)
−0.992928 + 0.118719i \(0.962121\pi\)
\(462\) 86.6785 129.724i 0.187616 0.280787i
\(463\) −57.1171 57.1171i −0.123363 0.123363i 0.642730 0.766093i \(-0.277802\pi\)
−0.766093 + 0.642730i \(0.777802\pi\)
\(464\) −5.98070 30.0670i −0.0128894 0.0647996i
\(465\) −46.5323 69.6405i −0.100069 0.149764i
\(466\) −165.457 + 831.808i −0.355058 + 1.78499i
\(467\) −76.1879 + 31.5580i −0.163143 + 0.0675761i −0.462760 0.886483i \(-0.653141\pi\)
0.299617 + 0.954059i \(0.403141\pi\)
\(468\) 18.6218 + 44.9569i 0.0397901 + 0.0960619i
\(469\) 902.998 + 179.617i 1.92537 + 0.382979i
\(470\) 1590.91 1063.01i 3.38492 2.26173i
\(471\) 28.7035 5.70949i 0.0609417 0.0121221i
\(472\) −68.4785 + 68.4785i −0.145082 + 0.145082i
\(473\) 156.017 + 104.247i 0.329846 + 0.220396i
\(474\) −216.538 89.6931i −0.456832 0.189226i
\(475\) 111.029i 0.233746i
\(476\) 0 0
\(477\) 501.069 1.05046
\(478\) 380.630 918.923i 0.796298 1.92243i
\(479\) −255.775 + 382.794i −0.533977 + 0.799153i −0.996153 0.0876357i \(-0.972069\pi\)
0.462176 + 0.886788i \(0.347069\pi\)
\(480\) −204.501 204.501i −0.426043 0.426043i
\(481\) −5.21704 26.2278i −0.0108462 0.0545277i
\(482\) −407.717 610.191i −0.845885 1.26596i
\(483\) −10.6827 + 53.7057i −0.0221174 + 0.111192i
\(484\) 266.195 110.261i 0.549989 0.227813i
\(485\) −75.5612 182.421i −0.155796 0.376125i
\(486\) 529.948 + 105.413i 1.09043 + 0.216900i
\(487\) 434.982 290.646i 0.893187 0.596809i −0.0220352 0.999757i \(-0.507015\pi\)
0.915223 + 0.402948i \(0.132015\pi\)
\(488\) 126.095 25.0819i 0.258392 0.0513974i
\(489\) −91.7633 + 91.7633i −0.187655 + 0.187655i
\(490\) −256.526 171.405i −0.523522 0.349806i
\(491\) 451.862 + 187.167i 0.920289 + 0.381196i 0.791986 0.610539i \(-0.209047\pi\)
0.128303 + 0.991735i \(0.459047\pi\)
\(492\) 91.6511i 0.186283i
\(493\) 0 0
\(494\) −9.62041 −0.0194745
\(495\) −206.941 + 499.600i −0.418063 + 1.00929i
\(496\) −71.2122 + 106.577i −0.143573 + 0.214872i
\(497\) −588.550 588.550i −1.18421 1.18421i
\(498\) −57.0266 286.692i −0.114511 0.575687i
\(499\) 281.711 + 421.610i 0.564551 + 0.844910i 0.998427 0.0560623i \(-0.0178545\pi\)
−0.433876 + 0.900972i \(0.642855\pi\)
\(500\) −117.076 + 588.580i −0.234152 + 1.17716i
\(501\) −83.1249 + 34.4315i −0.165918 + 0.0687255i
\(502\) 254.709 + 614.921i 0.507388 + 1.22494i
\(503\) 661.484 + 131.577i 1.31508 + 0.261585i 0.802292 0.596932i \(-0.203614\pi\)
0.512785 + 0.858517i \(0.328614\pi\)
\(504\) 192.055 128.327i 0.381062 0.254617i
\(505\) −60.6592 + 12.0659i −0.120117 + 0.0238928i
\(506\) 148.326 148.326i 0.293134 0.293134i
\(507\) 113.310 + 75.7115i 0.223492 + 0.149332i
\(508\) 568.996 + 235.686i 1.12007 + 0.463949i
\(509\) 349.504i 0.686648i −0.939217 0.343324i \(-0.888447\pi\)
0.939217 0.343324i \(-0.111553\pi\)
\(510\) 0 0
\(511\) 479.395 0.938150
\(512\) −223.266 + 539.012i −0.436067 + 1.05276i
\(513\) −22.0177 + 32.9519i −0.0429196 + 0.0642337i
\(514\) 696.221 + 696.221i 1.35451 + 1.35451i
\(515\) 65.1157 + 327.358i 0.126438 + 0.635648i
\(516\) −54.1724 81.0747i −0.104985 0.157121i
\(517\) 124.011 623.444i 0.239866 1.20589i
\(518\) −520.006 + 215.393i −1.00387 + 0.415818i
\(519\) −55.3631 133.658i −0.106673 0.257530i
\(520\) 31.3715 + 6.24017i 0.0603297 + 0.0120003i
\(521\) −262.240 + 175.223i −0.503339 + 0.336320i −0.781179 0.624307i \(-0.785381\pi\)
0.277840 + 0.960627i \(0.410381\pi\)
\(522\) 76.0323 15.1238i 0.145656 0.0289727i
\(523\) −145.221 + 145.221i −0.277669 + 0.277669i −0.832178 0.554509i \(-0.812906\pi\)
0.554509 + 0.832178i \(0.312906\pi\)
\(524\) 735.731 + 491.600i 1.40407 + 0.938168i
\(525\) −232.722 96.3965i −0.443279 0.183612i
\(526\) 419.991i 0.798461i
\(527\) 0 0
\(528\) −65.5098 −0.124072
\(529\) 174.266 420.715i 0.329425 0.795302i
\(530\) 811.377 1214.31i 1.53090 2.29115i
\(531\) 161.959 + 161.959i 0.305007 + 0.305007i
\(532\) 22.2620 + 111.919i 0.0418459 + 0.210373i
\(533\) 13.7078 + 20.5152i 0.0257182 + 0.0384901i
\(534\) −41.7048 + 209.664i −0.0780989 + 0.392630i
\(535\) −655.859 + 271.666i −1.22590 + 0.507786i
\(536\) 158.177 + 381.873i 0.295106 + 0.712450i
\(537\) −200.957 39.9728i −0.374221 0.0744372i
\(538\) −817.764 + 546.412i −1.52001 + 1.01564i
\(539\) −100.527 + 19.9961i −0.186507 + 0.0370985i
\(540\) 413.135 413.135i 0.765065 0.765065i
\(541\) 657.431 + 439.282i 1.21522 + 0.811981i 0.986857 0.161596i \(-0.0516642\pi\)
0.228358 + 0.973577i \(0.426664\pi\)
\(542\) 53.6632 + 22.2280i 0.0990096 + 0.0410111i
\(543\) 244.849i 0.450919i
\(544\) 0 0
\(545\) 149.615 0.274523
\(546\) −8.35251 + 20.1647i −0.0152976 + 0.0369317i
\(547\) 523.758 783.860i 0.957511 1.43302i 0.0569051 0.998380i \(-0.481877\pi\)
0.900606 0.434637i \(-0.143123\pi\)
\(548\) 632.218 + 632.218i 1.15368 + 1.15368i
\(549\) −59.3214 298.229i −0.108054 0.543222i
\(550\) 536.099 + 802.330i 0.974726 + 1.45878i
\(551\) −1.68501 + 8.47111i −0.00305809 + 0.0153741i
\(552\) −22.7119 + 9.40756i −0.0411447 + 0.0170427i
\(553\) 286.408 + 691.450i 0.517917 + 1.25036i
\(554\) 914.512 + 181.908i 1.65074 + 0.328353i
\(555\) −128.402 + 85.7957i −0.231356 + 0.154587i
\(556\) −909.619 + 180.934i −1.63601 + 0.325422i
\(557\) −303.284 + 303.284i −0.544495 + 0.544495i −0.924843 0.380348i \(-0.875804\pi\)
0.380348 + 0.924843i \(0.375804\pi\)
\(558\) −269.507 180.079i −0.482987 0.322722i
\(559\) −24.2519 10.0455i −0.0433844 0.0179704i
\(560\) 629.663i 1.12440i
\(561\) 0 0
\(562\) 261.932 0.466071
\(563\) 264.879 639.473i 0.470477 1.13583i −0.493476 0.869759i \(-0.664274\pi\)
0.963953 0.266072i \(-0.0857260\pi\)
\(564\) −183.517 + 274.652i −0.325384 + 0.486972i
\(565\) −344.303 344.303i −0.609386 0.609386i
\(566\) −4.41867 22.2142i −0.00780684 0.0392476i
\(567\) −277.580 415.428i −0.489559 0.732677i
\(568\) 72.8996 366.491i 0.128344 0.645231i
\(569\) 370.173 153.331i 0.650567 0.269474i −0.0328958 0.999459i \(-0.510473\pi\)
0.683463 + 0.729985i \(0.260473\pi\)
\(570\) 21.2604 + 51.3272i 0.0372990 + 0.0900477i
\(571\) −639.187 127.142i −1.11942 0.222666i −0.399505 0.916731i \(-0.630818\pi\)
−0.719912 + 0.694065i \(0.755818\pi\)
\(572\) 39.1776 26.1777i 0.0684924 0.0457651i
\(573\) 105.631 21.0112i 0.184347 0.0366688i
\(574\) 367.214 367.214i 0.639745 0.639745i
\(575\) −281.596 188.156i −0.489732 0.327229i
\(576\) −726.319 300.851i −1.26097 0.522311i
\(577\) 684.109i 1.18563i 0.805339 + 0.592815i \(0.201983\pi\)
−0.805339 + 0.592815i \(0.798017\pi\)
\(578\) 0 0
\(579\) −258.876 −0.447109
\(580\) 48.7281 117.640i 0.0840140 0.202828i
\(581\) −518.569 + 776.094i −0.892546 + 1.33579i
\(582\) 42.7712 + 42.7712i 0.0734900 + 0.0734900i
\(583\) −94.6550 475.863i −0.162359 0.816232i
\(584\) 119.570 + 178.950i 0.204744 + 0.306420i
\(585\) 14.7587 74.1968i 0.0252285 0.126832i
\(586\) 215.405 89.2236i 0.367585 0.152259i
\(587\) 141.750 + 342.216i 0.241483 + 0.582991i 0.997430 0.0716408i \(-0.0228235\pi\)
−0.755948 + 0.654632i \(0.772824\pi\)
\(588\) 52.2391 + 10.3910i 0.0888420 + 0.0176718i
\(589\) 30.0270 20.0634i 0.0509796 0.0340635i
\(590\) 654.756 130.239i 1.10976 0.220744i
\(591\) −66.4527 + 66.4527i −0.112441 + 0.112441i
\(592\) 196.505 + 131.300i 0.331934 + 0.221791i
\(593\) −585.245 242.416i −0.986922 0.408797i −0.169937 0.985455i \(-0.554356\pi\)
−0.816985 + 0.576658i \(0.804356\pi\)
\(594\) 344.431i 0.579850i
\(595\) 0 0
\(596\) −231.425 −0.388297
\(597\) 91.9883 222.080i 0.154084 0.371992i
\(598\) −16.3033 + 24.3996i −0.0272630 + 0.0408020i
\(599\) 315.855 + 315.855i 0.527304 + 0.527304i 0.919768 0.392463i \(-0.128377\pi\)
−0.392463 + 0.919768i \(0.628377\pi\)
\(600\) −22.0622 110.914i −0.0367703 0.184857i
\(601\) −242.067 362.279i −0.402774 0.602794i 0.573533 0.819182i \(-0.305572\pi\)
−0.976307 + 0.216388i \(0.930572\pi\)
\(602\) −107.788 + 541.887i −0.179050 + 0.900145i
\(603\) 903.170 374.105i 1.49779 0.620407i
\(604\) −259.680 626.922i −0.429933 1.03795i
\(605\) −439.327 87.3876i −0.726160 0.144442i
\(606\) 15.7535 10.5261i 0.0259958 0.0173699i
\(607\) −622.400 + 123.803i −1.02537 + 0.203959i −0.679000 0.734139i \(-0.737586\pi\)
−0.346371 + 0.938098i \(0.612586\pi\)
\(608\) 88.1749 88.1749i 0.145025 0.145025i
\(609\) 16.2928 + 10.8865i 0.0267534 + 0.0178760i
\(610\) −818.798 339.157i −1.34229 0.555996i
\(611\) 88.9259i 0.145542i
\(612\) 0 0
\(613\) −692.422 −1.12956 −0.564782 0.825240i \(-0.691040\pi\)
−0.564782 + 0.825240i \(0.691040\pi\)
\(614\) −184.992 + 446.610i −0.301290 + 0.727377i
\(615\) 79.1601 118.472i 0.128716 0.192637i
\(616\) −158.152 158.152i −0.256740 0.256740i
\(617\) −52.3292 263.077i −0.0848124 0.426381i −0.999741 0.0227645i \(-0.992753\pi\)
0.914928 0.403616i \(-0.132247\pi\)
\(618\) −56.8062 85.0165i −0.0919195 0.137567i
\(619\) −30.5428 + 153.549i −0.0493422 + 0.248060i −0.997582 0.0694940i \(-0.977862\pi\)
0.948240 + 0.317554i \(0.102862\pi\)
\(620\) −491.875 + 203.741i −0.793346 + 0.328615i
\(621\) 46.2610 + 111.684i 0.0744944 + 0.179845i
\(622\) −988.775 196.680i −1.58967 0.316205i
\(623\) 567.575 379.241i 0.911035 0.608734i
\(624\) 8.98845 1.78791i 0.0144046 0.00286525i
\(625\) −38.0547 + 38.0547i −0.0608875 + 0.0608875i
\(626\) −993.182 663.623i −1.58655 1.06010i
\(627\) 17.0519 + 7.06311i 0.0271959 + 0.0112649i
\(628\) 186.031i 0.296228i
\(629\) 0 0
\(630\) −1592.27 −2.52741
\(631\) 119.803 289.230i 0.189862 0.458368i −0.800071 0.599906i \(-0.795205\pi\)
0.989933 + 0.141538i \(0.0452048\pi\)
\(632\) −186.670 + 279.372i −0.295365 + 0.442044i
\(633\) 131.992 + 131.992i 0.208519 + 0.208519i
\(634\) 82.1506 + 412.999i 0.129575 + 0.651418i
\(635\) −531.940 796.105i −0.837701 1.25371i
\(636\) −49.1877 + 247.283i −0.0773392 + 0.388810i
\(637\) 13.2473 5.48723i 0.0207965 0.00861418i
\(638\) −28.7259 69.3506i −0.0450250 0.108700i
\(639\) −866.790 172.415i −1.35648 0.269820i
\(640\) −721.390 + 482.018i −1.12717 + 0.753153i
\(641\) 363.011 72.2074i 0.566320 0.112648i 0.0963771 0.995345i \(-0.469275\pi\)
0.469943 + 0.882697i \(0.344275\pi\)
\(642\) 153.776 153.776i 0.239526 0.239526i
\(643\) −182.915 122.220i −0.284471 0.190077i 0.405146 0.914252i \(-0.367221\pi\)
−0.689616 + 0.724175i \(0.742221\pi\)
\(644\) 321.577 + 133.202i 0.499344 + 0.206835i
\(645\) 151.589i 0.235022i
\(646\) 0 0
\(647\) 769.098 1.18871 0.594357 0.804201i \(-0.297407\pi\)
0.594357 + 0.804201i \(0.297407\pi\)
\(648\) 85.8381 207.231i 0.132466 0.319802i
\(649\) 123.217 184.407i 0.189856 0.284140i
\(650\) −95.4544 95.4544i −0.146853 0.146853i
\(651\) −15.9840 80.3568i −0.0245529 0.123436i
\(652\) 458.297 + 685.889i 0.702909 + 1.05198i
\(653\) −8.27876 + 41.6201i −0.0126780 + 0.0637368i −0.986606 0.163119i \(-0.947845\pi\)
0.973928 + 0.226856i \(0.0728446\pi\)
\(654\) −42.3446 + 17.5397i −0.0647472 + 0.0268192i
\(655\) −526.432 1270.92i −0.803713 1.94033i
\(656\) −213.866 42.5406i −0.326015 0.0648485i
\(657\) 423.234 282.796i 0.644192 0.430436i
\(658\) 1835.72 365.148i 2.78985 0.554936i
\(659\) 472.719 472.719i 0.717328 0.717328i −0.250729 0.968057i \(-0.580670\pi\)
0.968057 + 0.250729i \(0.0806703\pi\)
\(660\) −226.244 151.171i −0.342793 0.229047i
\(661\) 380.158 + 157.467i 0.575126 + 0.238225i 0.651237 0.758874i \(-0.274250\pi\)
−0.0761113 + 0.997099i \(0.524250\pi\)
\(662\) 480.756i 0.726218i
\(663\) 0 0
\(664\) −419.043 −0.631089
\(665\) 67.8888 163.898i 0.102088 0.246463i
\(666\) −332.027 + 496.914i −0.498539 + 0.746116i
\(667\) 18.6292 + 18.6292i 0.0279298 + 0.0279298i
\(668\) 111.577 + 560.937i 0.167032 + 0.839725i
\(669\) −164.034 245.494i −0.245193 0.366957i
\(670\) 555.873 2794.56i 0.829662 4.17099i
\(671\) −272.020 + 112.675i −0.405395 + 0.167920i
\(672\) −108.264 261.372i −0.161107 0.388946i
\(673\) −15.9051 3.16371i −0.0236331 0.00470091i 0.183260 0.983065i \(-0.441335\pi\)
−0.206893 + 0.978364i \(0.566335\pi\)
\(674\) −1214.15 + 811.269i −1.80141 + 1.20366i
\(675\) −545.412 + 108.489i −0.808018 + 0.160725i
\(676\) 612.536 612.536i 0.906119 0.906119i
\(677\) −854.921 571.240i −1.26281 0.843782i −0.269926 0.962881i \(-0.586999\pi\)
−0.992882 + 0.119099i \(0.961999\pi\)
\(678\) 137.809 + 57.0825i 0.203258 + 0.0841924i
\(679\) 193.149i 0.284461i
\(680\) 0 0
\(681\) 78.7512 0.115641
\(682\) −120.108 + 289.967i −0.176112 + 0.425172i
\(683\) −125.752 + 188.201i −0.184117 + 0.275551i −0.912034 0.410114i \(-0.865489\pi\)
0.727917 + 0.685666i \(0.240489\pi\)
\(684\) 85.6752 + 85.6752i 0.125256 + 0.125256i
\(685\) −271.173 1363.28i −0.395874 1.99019i
\(686\) 479.639 + 717.830i 0.699181 + 1.04640i
\(687\) 57.3259 288.197i 0.0834438 0.419500i
\(688\) 214.331 88.7787i 0.311527 0.129039i
\(689\) 25.9748 + 62.7087i 0.0376993 + 0.0910141i
\(690\) 166.206 + 33.0605i 0.240879 + 0.0479138i
\(691\) −32.4851 + 21.7058i −0.0470117 + 0.0314122i −0.578854 0.815431i \(-0.696500\pi\)
0.531842 + 0.846843i \(0.321500\pi\)
\(692\) −901.942 + 179.407i −1.30338 + 0.259259i
\(693\) −374.046 + 374.046i −0.539749 + 0.539749i
\(694\) 49.8138 + 33.2845i 0.0717778 + 0.0479604i
\(695\) 1332.08 + 551.766i 1.91666 + 0.793908i
\(696\) 8.79713i 0.0126395i
\(697\) 0 0
\(698\) 1185.05 1.69778
\(699\) −87.1075 + 210.296i −0.124617 + 0.300853i
\(700\) −889.579 + 1331.35i −1.27083 + 1.90193i
\(701\) −401.261 401.261i −0.572412 0.572412i 0.360390 0.932802i \(-0.382644\pi\)
−0.932802 + 0.360390i \(0.882644\pi\)
\(702\) 9.40031 + 47.2585i 0.0133908 + 0.0673198i
\(703\) −36.9927 55.3634i −0.0526212 0.0787531i
\(704\) −148.511 + 746.614i −0.210953 + 1.06053i
\(705\) 474.441 196.520i 0.672965 0.278751i
\(706\) −226.136 545.941i −0.320306 0.773288i
\(707\) −59.3377 11.8030i −0.0839288 0.0166945i
\(708\) −95.8273 + 64.0298i −0.135349 + 0.0904375i
\(709\) −279.901 + 55.6759i −0.394783 + 0.0785273i −0.388490 0.921453i \(-0.627003\pi\)
−0.00629329 + 0.999980i \(0.502003\pi\)
\(710\) −1821.42 + 1821.42i −2.56539 + 2.56539i
\(711\) 660.744 + 441.495i 0.929317 + 0.620950i
\(712\) 283.128 + 117.276i 0.397652 + 0.164713i
\(713\) 110.156i 0.154496i
\(714\) 0 0
\(715\) −73.2524 −0.102451
\(716\) −498.416 + 1203.28i −0.696112 + 1.68056i
\(717\) 148.310 221.961i 0.206848 0.309569i
\(718\) 761.667 + 761.667i 1.06082 + 1.06082i
\(719\) 119.674 + 601.644i 0.166446 + 0.836779i 0.970291 + 0.241941i \(0.0777839\pi\)
−0.803845 + 0.594838i \(0.797216\pi\)
\(720\) 371.440 + 555.899i 0.515889 + 0.772083i
\(721\) −63.6970 + 320.226i −0.0883453 + 0.444142i
\(722\) 987.549 409.056i 1.36780 0.566560i
\(723\) −75.3748 181.971i −0.104253 0.251689i
\(724\) −1526.50 303.640i −2.10842 0.419392i
\(725\) −100.770 + 67.3322i −0.138993 + 0.0928719i
\(726\) 134.585 26.7705i 0.185378 0.0368740i
\(727\) 244.413 244.413i 0.336194 0.336194i −0.518739 0.854933i \(-0.673598\pi\)
0.854933 + 0.518739i \(0.173598\pi\)
\(728\) 26.0160 + 17.3833i 0.0357363 + 0.0238782i
\(729\) −394.941 163.590i −0.541758 0.224403i
\(730\) 1483.61i 2.03235i
\(731\) 0 0
\(732\) 153.003 0.209020
\(733\) −516.266 + 1246.38i −0.704319 + 1.70038i 0.00941053 + 0.999956i \(0.497004\pi\)
−0.713730 + 0.700421i \(0.752996\pi\)
\(734\) 137.457 205.719i 0.187271 0.280271i
\(735\) −58.5513 58.5513i −0.0796617 0.0796617i
\(736\) −74.2058 373.058i −0.100823 0.506872i
\(737\) −525.901 787.066i −0.713569 1.06793i
\(738\) 107.575 540.816i 0.145766 0.732813i
\(739\) −602.925 + 249.740i −0.815866 + 0.337943i −0.751292 0.659970i \(-0.770569\pi\)
−0.0645741 + 0.997913i \(0.520569\pi\)
\(740\) 375.656 + 906.913i 0.507643 + 1.22556i
\(741\) −2.53241 0.503729i −0.00341756 0.000679796i
\(742\) 1187.86 793.700i 1.60088 1.06968i
\(743\) 218.711 43.5044i 0.294362 0.0585523i −0.0456999 0.998955i \(-0.514552\pi\)
0.340062 + 0.940403i \(0.389552\pi\)
\(744\) 26.0091 26.0091i 0.0349584 0.0349584i
\(745\) 299.149 + 199.885i 0.401542 + 0.268302i
\(746\) 214.860 + 88.9980i 0.288016 + 0.119300i
\(747\) 991.082i 1.32675i
\(748\) 0 0
\(749\) −694.430 −0.927143
\(750\) −109.373 + 264.049i −0.145830 + 0.352065i
\(751\) 249.467 373.353i 0.332180 0.497142i −0.627355 0.778734i \(-0.715862\pi\)
0.959534 + 0.281592i \(0.0908624\pi\)
\(752\) −555.715 555.715i −0.738982 0.738982i
\(753\) 34.8503 + 175.204i 0.0462820 + 0.232675i
\(754\) 5.83416 + 8.73143i 0.00773761 + 0.0115802i
\(755\) −205.809 + 1034.67i −0.272595 + 1.37043i
\(756\) 528.027 218.716i 0.698449 0.289307i
\(757\) 17.6369 + 42.5792i 0.0232984 + 0.0562473i 0.935101 0.354382i \(-0.115309\pi\)
−0.911802 + 0.410630i \(0.865309\pi\)
\(758\) 1749.62 + 348.021i 2.30821 + 0.459131i
\(759\) 46.8107 31.2779i 0.0616741 0.0412093i
\(760\) 78.1130 15.5376i 0.102780 0.0204443i
\(761\) −552.081 + 552.081i −0.725467 + 0.725467i −0.969713 0.244246i \(-0.921460\pi\)
0.244246 + 0.969713i \(0.421460\pi\)
\(762\) 243.881 + 162.956i 0.320054 + 0.213853i
\(763\) 135.215 + 56.0079i 0.177215 + 0.0734048i
\(764\) 684.604i 0.896079i
\(765\) 0 0
\(766\) 707.240 0.923289
\(767\) −11.8734 + 28.6649i −0.0154803 + 0.0373727i
\(768\) −22.5463 + 33.7429i −0.0293571 + 0.0439360i
\(769\) −625.504 625.504i −0.813400 0.813400i 0.171742 0.985142i \(-0.445060\pi\)
−0.985142 + 0.171742i \(0.945060\pi\)
\(770\) 300.789 + 1512.17i 0.390635 + 1.96386i
\(771\) 146.814 + 219.723i 0.190420 + 0.284984i
\(772\) −321.035 + 1613.95i −0.415848 + 2.09061i
\(773\) −1123.75 + 465.474i −1.45376 + 0.602166i −0.963090 0.269181i \(-0.913247\pi\)
−0.490667 + 0.871347i \(0.663247\pi\)
\(774\) 224.500 + 541.991i 0.290052 + 0.700247i
\(775\) 497.000 + 98.8595i 0.641291 + 0.127561i
\(776\) 72.0992 48.1751i 0.0929113 0.0620813i
\(777\) −148.161 + 29.4711i −0.190683 + 0.0379293i
\(778\) −864.056 + 864.056i −1.11061 + 1.11061i
\(779\) 51.0816 + 34.1316i 0.0655733 + 0.0438146i
\(780\) 35.1682 + 14.5671i 0.0450874 + 0.0186758i
\(781\) 855.757i 1.09572i
\(782\) 0 0
\(783\) 43.2592 0.0552481
\(784\) −48.4944 + 117.076i −0.0618551 + 0.149331i
\(785\) −160.677 + 240.470i −0.204684 + 0.306332i
\(786\) 297.985 + 297.985i 0.379116 + 0.379116i
\(787\) −37.8601 190.336i −0.0481069 0.241850i 0.949249 0.314527i \(-0.101846\pi\)
−0.997356 + 0.0726771i \(0.976846\pi\)
\(788\) 331.887 + 496.704i 0.421177 + 0.630336i
\(789\) −21.9909 + 110.556i −0.0278718 + 0.140121i
\(790\) 2139.88 886.365i 2.70870 1.12198i
\(791\) −182.276 440.053i −0.230437 0.556324i
\(792\) −232.919 46.3305i −0.294090 0.0584981i
\(793\) 34.2481 22.8839i 0.0431881 0.0288573i
\(794\) −783.233 + 155.795i −0.986440 + 0.196215i
\(795\) 277.163 277.163i 0.348633 0.348633i
\(796\) −1270.47 848.899i −1.59606 1.06646i
\(797\) −118.577 49.1164i −0.148780 0.0616266i 0.307051 0.951693i \(-0.400658\pi\)
−0.455831 + 0.890066i \(0.650658\pi\)
\(798\) 54.3457i 0.0681024i
\(799\) 0 0
\(800\) 1749.75 2.18719
\(801\) 277.369 669.628i 0.346278 0.835990i
\(802\) −402.460 + 602.324i −0.501821 + 0.751028i
\(803\) −348.522 348.522i −0.434025 0.434025i
\(804\) 95.9651 + 482.449i 0.119360 + 0.600061i
\(805\) −300.635 449.932i −0.373459 0.558921i
\(806\) 8.56592 43.0638i 0.0106277 0.0534290i
\(807\) −243.873 + 101.016i −0.302197 + 0.125174i
\(808\) −10.3941 25.0936i −0.0128640 0.0310564i
\(809\) −342.411 68.1098i −0.423253 0.0841902i −0.0211316 0.999777i \(-0.506727\pi\)
−0.402121 + 0.915587i \(0.631727\pi\)
\(810\) −1285.65 + 859.045i −1.58722 + 1.06055i
\(811\) −182.065 + 36.2150i −0.224494 + 0.0446547i −0.306056 0.952014i \(-0.599009\pi\)
0.0815613 + 0.996668i \(0.474009\pi\)
\(812\) 88.0762 88.0762i 0.108468 0.108468i
\(813\) 12.9621 + 8.66099i 0.0159435 + 0.0106531i
\(814\) 534.639 + 221.455i 0.656804 + 0.272057i
\(815\) 1282.44i 1.57355i
\(816\) 0 0
\(817\) −65.3610 −0.0800013
\(818\) 301.101 726.923i 0.368095 0.888659i
\(819\) 41.1134 61.5306i 0.0501996 0.0751290i
\(820\) −640.437 640.437i −0.781021 0.781021i
\(821\) 307.474 + 1545.78i 0.374512 + 1.88280i 0.462404 + 0.886669i \(0.346987\pi\)
−0.0878920 + 0.996130i \(0.528013\pi\)
\(822\) 236.569 + 354.051i 0.287797 + 0.430718i
\(823\) 196.185 986.291i 0.238378 1.19841i −0.657273 0.753653i \(-0.728290\pi\)
0.895651 0.444757i \(-0.146710\pi\)
\(824\) −135.422 + 56.0937i −0.164347 + 0.0680749i
\(825\) 99.1090 + 239.270i 0.120132 + 0.290025i
\(826\) 640.491 + 127.402i 0.775413 + 0.154239i
\(827\) −1321.52 + 883.014i −1.59797 + 1.06773i −0.645216 + 0.764001i \(0.723232\pi\)
−0.952758 + 0.303731i \(0.901768\pi\)
\(828\) 362.481 72.1020i 0.437780 0.0870798i
\(829\) −269.747 + 269.747i −0.325388 + 0.325388i −0.850830 0.525442i \(-0.823900\pi\)
0.525442 + 0.850830i \(0.323900\pi\)
\(830\) 2401.83 + 1604.85i 2.89377 + 1.93355i
\(831\) 231.205 + 95.7684i 0.278225 + 0.115245i
\(832\) 106.494i 0.127998i
\(833\) 0 0
\(834\) −441.695 −0.529611
\(835\) 340.259 821.457i 0.407495 0.983781i
\(836\) 65.1807 97.5499i 0.0779674 0.116686i
\(837\) −127.898 127.898i −0.152805 0.152805i
\(838\) 101.319 + 509.365i 0.120906 + 0.607834i
\(839\) 20.5664 + 30.7798i 0.0245130 + 0.0366862i 0.843524 0.537092i \(-0.180477\pi\)
−0.819011 + 0.573778i \(0.805477\pi\)
\(840\) 35.2507 177.217i 0.0419652 0.210973i
\(841\) −768.273 + 318.229i −0.913523 + 0.378393i
\(842\) −726.154 1753.09i −0.862416 2.08206i
\(843\) 68.9493 + 13.7149i 0.0817904 + 0.0162691i
\(844\) 986.584 659.215i 1.16894 0.781060i
\(845\) −1320.84 + 262.732i −1.56313 + 0.310925i
\(846\) 1405.27 1405.27i 1.66107 1.66107i
\(847\) −364.329 243.437i −0.430141 0.287411i
\(848\) −554.200 229.557i −0.653538 0.270704i
\(849\) 6.07887i 0.00716004i
\(850\) 0 0
\(851\) −203.104 −0.238665
\(852\) 170.178 410.846i 0.199739 0.482213i
\(853\) 43.8137 65.5718i 0.0513642 0.0768720i −0.804899 0.593412i \(-0.797780\pi\)
0.856263 + 0.516540i \(0.172780\pi\)
\(854\) −613.028 613.028i −0.717831 0.717831i
\(855\) −36.7481 184.745i −0.0429803 0.216077i
\(856\) −173.204 259.219i −0.202342 0.302825i
\(857\) −129.947 + 653.288i −0.151630 + 0.762297i 0.827880 + 0.560905i \(0.189547\pi\)
−0.979511 + 0.201392i \(0.935453\pi\)
\(858\) 20.7322 8.58754i 0.0241634 0.0100088i
\(859\) 530.649 + 1281.10i 0.617752 + 1.49138i 0.854308 + 0.519767i \(0.173981\pi\)
−0.236556 + 0.971618i \(0.576019\pi\)
\(860\) 945.076 + 187.987i 1.09893 + 0.218590i
\(861\) 115.890 77.4355i 0.134600 0.0899367i
\(862\) 2263.06 450.150i 2.62536 0.522216i
\(863\) −375.548 + 375.548i −0.435166 + 0.435166i −0.890381 0.455215i \(-0.849562\pi\)
0.455215 + 0.890381i \(0.349562\pi\)
\(864\) −519.301 346.986i −0.601042 0.401604i
\(865\) 1320.84 + 547.109i 1.52698 + 0.632496i
\(866\) 286.613i 0.330962i
\(867\) 0 0
\(868\) −520.802 −0.600002
\(869\) 294.467 710.907i 0.338858 0.818075i
\(870\) 33.6912 50.4224i 0.0387255 0.0579568i
\(871\) 93.6384 + 93.6384i 0.107507 + 0.107507i
\(872\) 12.8185 + 64.4428i 0.0147001 + 0.0739023i
\(873\) −113.939 170.522i −0.130515 0.195329i
\(874\) −14.2548 + 71.6635i −0.0163098 + 0.0819949i
\(875\) 843.160 349.249i 0.963612 0.399141i
\(876\) 98.0161 + 236.632i 0.111891 + 0.270128i
\(877\) 243.780 + 48.4908i 0.277970 + 0.0552917i 0.332107 0.943242i \(-0.392241\pi\)
−0.0541366 + 0.998534i \(0.517241\pi\)
\(878\) −93.0800 + 62.1940i −0.106014 + 0.0708360i
\(879\) 61.3735 12.2080i 0.0698220 0.0138885i
\(880\) 457.768 457.768i 0.520191 0.520191i
\(881\) −121.777 81.3688i −0.138226 0.0923595i 0.484535 0.874772i \(-0.338989\pi\)
−0.622761 + 0.782412i \(0.713989\pi\)
\(882\) −296.057 122.631i −0.335665 0.139037i
\(883\) 322.505i 0.365237i 0.983184 + 0.182619i \(0.0584574\pi\)
−0.983184 + 0.182619i \(0.941543\pi\)
\(884\) 0 0
\(885\) 179.173 0.202455
\(886\) −734.666 + 1773.64i −0.829194 + 2.00185i
\(887\) 34.9202 52.2618i 0.0393689 0.0589197i −0.811263 0.584681i \(-0.801220\pi\)
0.850632 + 0.525762i \(0.176220\pi\)
\(888\) −47.9552 47.9552i −0.0540037 0.0540037i
\(889\) −182.723 918.610i −0.205538 1.03331i
\(890\) −1173.66 1756.51i −1.31872 1.97361i
\(891\) −100.216 + 503.820i −0.112476 + 0.565454i
\(892\) −1733.94 + 718.221i −1.94388 + 0.805180i
\(893\) 84.7337 + 204.565i 0.0948866 + 0.229077i
\(894\) −108.099 21.5022i −0.120916 0.0240517i
\(895\) 1683.56 1124.92i 1.88107 1.25689i
\(896\) −832.399 + 165.574i −0.929016 + 0.184793i
\(897\) −5.56914 + 5.56914i −0.00620863 + 0.00620863i
\(898\) −1112.14 743.106i −1.23846 0.827513i
\(899\) −36.4189 15.0852i −0.0405104 0.0167800i
\(900\) 1700.15i 1.88905i
\(901\) 0 0
\(902\) −533.932 −0.591942
\(903\) −56.7469 + 136.999i −0.0628426 + 0.151715i
\(904\) 118.801 177.798i 0.131417 0.196679i
\(905\) 1710.95 + 1710.95i 1.89055 + 1.89055i
\(906\) −63.0480 316.964i −0.0695894 0.349850i
\(907\) 122.120 + 182.765i 0.134641 + 0.201505i 0.892663 0.450724i \(-0.148834\pi\)
−0.758022 + 0.652229i \(0.773834\pi\)
\(908\) 97.6601 490.970i 0.107555 0.540716i
\(909\) −59.3490 + 24.5832i −0.0652904 + 0.0270442i
\(910\) −82.5412 199.272i −0.0907046 0.218980i
\(911\) −495.652 98.5913i −0.544074 0.108223i −0.0846014 0.996415i \(-0.526962\pi\)
−0.459473 + 0.888192i \(0.651962\pi\)
\(912\) 18.9734 12.6776i 0.0208042 0.0139009i
\(913\) 941.226 187.221i 1.03092 0.205062i
\(914\) −571.150 + 571.150i −0.624890 + 0.624890i
\(915\) −197.777 132.150i −0.216149 0.144426i
\(916\) −1725.66 714.790i −1.88390 0.780338i
\(917\) 1345.66i 1.46746i
\(918\) 0 0
\(919\) −930.196 −1.01218 −0.506091 0.862480i \(-0.668910\pi\)
−0.506091 + 0.862480i \(0.668910\pi\)
\(920\) 92.9674 224.443i 0.101052 0.243960i
\(921\) −72.0807 + 107.876i −0.0782635 + 0.117130i
\(922\) 966.431 + 966.431i 1.04819 + 1.04819i
\(923\) −23.3556 117.416i −0.0253040 0.127212i
\(924\) −147.878 221.315i −0.160041 0.239518i
\(925\) 182.276 916.364i 0.197055 0.990663i
\(926\) −225.922 + 93.5798i −0.243976 + 0.101058i
\(927\) 132.667 + 320.288i 0.143115 + 0.345510i
\(928\) −133.499 26.5547i −0.143857 0.0286150i
\(929\) 954.224 637.592i 1.02715 0.686321i 0.0766557 0.997058i \(-0.475576\pi\)
0.950496 + 0.310737i \(0.100576\pi\)
\(930\) −248.685 + 49.4666i −0.267404 + 0.0531899i
\(931\) 25.2457 25.2457i 0.0271167 0.0271167i
\(932\) 1203.06 + 803.857i 1.29083 + 0.862508i
\(933\) −249.980 103.545i −0.267932 0.110981i
\(934\) 249.650i 0.267291i
\(935\) 0 0
\(936\) 33.2228 0.0354944
\(937\) −517.380 + 1249.07i −0.552166 + 1.33305i 0.363682 + 0.931523i \(0.381519\pi\)
−0.915848 + 0.401524i \(0.868481\pi\)
\(938\) 1548.51 2317.50i 1.65086 2.47068i
\(939\) −226.691 226.691i −0.241418 0.241418i
\(940\) −636.834 3201.58i −0.677483 3.40594i
\(941\) 1022.11 + 1529.70i 1.08620 + 1.62561i 0.718291 + 0.695743i \(0.244925\pi\)
0.367905 + 0.929864i \(0.380075\pi\)
\(942\) 17.2846 86.8953i 0.0183488 0.0922455i
\(943\) 173.131 71.7133i 0.183596 0.0760480i
\(944\) −104.933 253.331i −0.111158 0.268359i
\(945\) −871.454 173.343i −0.922174 0.183432i
\(946\) 472.317 315.592i 0.499278 0.333607i
\(947\) 38.5945 7.67691i 0.0407544 0.00810656i −0.174671 0.984627i \(-0.555886\pi\)
0.215425 + 0.976520i \(0.430886\pi\)
\(948\) −282.745 + 282.745i −0.298255 + 0.298255i
\(949\) 57.3319 + 38.3079i 0.0604129 + 0.0403666i
\(950\) −310.538 128.629i −0.326882 0.135399i
\(951\) 113.017i 0.118840i
\(952\) 0 0
\(953\) 183.445 0.192492 0.0962458 0.995358i \(-0.469317\pi\)
0.0962458 + 0.995358i \(0.469317\pi\)
\(954\) 580.495 1401.44i 0.608485 1.46901i
\(955\) −591.301 + 884.944i −0.619163 + 0.926643i
\(956\) −1199.89 1199.89i −1.25511 1.25511i
\(957\) −3.93041 19.7595i −0.00410701 0.0206473i
\(958\) 774.317 + 1158.85i 0.808264 + 1.20965i
\(959\) 265.266 1333.58i 0.276606 1.39059i
\(960\) −568.173 + 235.345i −0.591847 + 0.245151i
\(961\) −304.685 735.574i −0.317050 0.765426i
\(962\) −79.4005 15.7937i −0.0825369 0.0164176i
\(963\) −613.079 + 409.646i −0.636635 + 0.425386i
\(964\) −1227.96 + 244.257i −1.27382 + 0.253378i
\(965\) 1808.97 1808.97i 1.87458 1.87458i
\(966\) 137.833 + 92.0972i 0.142684 + 0.0953387i
\(967\) −1181.69 489.471i −1.22201 0.506175i −0.323965 0.946069i \(-0.605016\pi\)
−0.898050 + 0.439894i \(0.855016\pi\)
\(968\) 196.715i 0.203218i
\(969\) 0 0
\(970\) −597.751 −0.616238
\(971\) 349.777 844.437i 0.360224 0.869657i −0.635043 0.772477i \(-0.719018\pi\)
0.995267 0.0971803i \(-0.0309823\pi\)
\(972\) 512.141 766.473i 0.526894 0.788553i
\(973\) 997.319 + 997.319i 1.02499 + 1.02499i
\(974\) −308.974 1553.32i −0.317222 1.59478i
\(975\) −20.1288 30.1248i −0.0206449 0.0308972i
\(976\) −71.0174 + 357.029i −0.0727637 + 0.365808i
\(977\) 408.510 169.210i 0.418126 0.173194i −0.163694 0.986511i \(-0.552341\pi\)
0.581820 + 0.813318i \(0.302341\pi\)
\(978\) 150.343 + 362.961i 0.153725 + 0.371126i
\(979\) −688.340 136.919i −0.703105 0.139856i
\(980\) −437.645 + 292.425i −0.446577 + 0.298393i
\(981\) 152.414 30.3170i 0.155366 0.0309042i
\(982\) 1046.98 1046.98i 1.06617 1.06617i
\(983\) 553.287 + 369.695i 0.562856 + 0.376088i 0.804207 0.594350i \(-0.202590\pi\)
−0.241351 + 0.970438i \(0.577590\pi\)
\(984\) 57.8106 + 23.9459i 0.0587506 + 0.0243353i
\(985\) 928.713i 0.942856i
\(986\) 0 0
\(987\) 502.343 0.508959
\(988\) −6.28094 + 15.1635i −0.00635723 + 0.0153477i
\(989\) −110.764 + 165.770i −0.111996 + 0.167614i
\(990\) 1157.59 + 1157.59i 1.16928 + 1.16928i
\(991\) −305.291 1534.80i −0.308063 1.54874i −0.755939 0.654642i \(-0.772819\pi\)
0.447876 0.894096i \(-0.352181\pi\)
\(992\) 316.187 + 473.207i 0.318736 + 0.477023i
\(993\) −25.1726 + 126.551i −0.0253500 + 0.127443i
\(994\) −2327.96 + 964.271i −2.34201 + 0.970092i
\(995\) 909.048 + 2194.64i 0.913616 + 2.20566i
\(996\) −489.110 97.2901i −0.491075 0.0976808i
\(997\) −1280.55 + 855.639i −1.28441 + 0.858213i −0.995086 0.0990189i \(-0.968430\pi\)
−0.289321 + 0.957232i \(0.593430\pi\)
\(998\) 1505.57 299.476i 1.50858 0.300076i
\(999\) −235.817 + 235.817i −0.236053 + 0.236053i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.m.75.1 8
17.2 even 8 289.3.e.k.249.1 8
17.3 odd 16 289.3.e.c.131.1 8
17.4 even 4 17.3.e.a.10.1 8
17.5 odd 16 inner 289.3.e.m.158.1 8
17.6 odd 16 289.3.e.l.65.1 8
17.7 odd 16 289.3.e.d.224.1 8
17.8 even 8 289.3.e.d.40.1 8
17.9 even 8 289.3.e.b.40.1 8
17.10 odd 16 289.3.e.b.224.1 8
17.11 odd 16 289.3.e.k.65.1 8
17.12 odd 16 289.3.e.i.158.1 8
17.13 even 4 289.3.e.c.214.1 8
17.14 odd 16 17.3.e.a.12.1 yes 8
17.15 even 8 289.3.e.l.249.1 8
17.16 even 2 289.3.e.i.75.1 8
51.14 even 16 153.3.p.b.46.1 8
51.38 odd 4 153.3.p.b.10.1 8
68.31 even 16 272.3.bh.c.97.1 8
68.55 odd 4 272.3.bh.c.129.1 8
85.4 even 4 425.3.u.b.401.1 8
85.14 odd 16 425.3.u.b.301.1 8
85.38 odd 4 425.3.t.c.299.1 8
85.48 even 16 425.3.t.a.199.1 8
85.72 odd 4 425.3.t.a.299.1 8
85.82 even 16 425.3.t.c.199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.10.1 8 17.4 even 4
17.3.e.a.12.1 yes 8 17.14 odd 16
153.3.p.b.10.1 8 51.38 odd 4
153.3.p.b.46.1 8 51.14 even 16
272.3.bh.c.97.1 8 68.31 even 16
272.3.bh.c.129.1 8 68.55 odd 4
289.3.e.b.40.1 8 17.9 even 8
289.3.e.b.224.1 8 17.10 odd 16
289.3.e.c.131.1 8 17.3 odd 16
289.3.e.c.214.1 8 17.13 even 4
289.3.e.d.40.1 8 17.8 even 8
289.3.e.d.224.1 8 17.7 odd 16
289.3.e.i.75.1 8 17.16 even 2
289.3.e.i.158.1 8 17.12 odd 16
289.3.e.k.65.1 8 17.11 odd 16
289.3.e.k.249.1 8 17.2 even 8
289.3.e.l.65.1 8 17.6 odd 16
289.3.e.l.249.1 8 17.15 even 8
289.3.e.m.75.1 8 1.1 even 1 trivial
289.3.e.m.158.1 8 17.5 odd 16 inner
425.3.t.a.199.1 8 85.48 even 16
425.3.t.a.299.1 8 85.72 odd 4
425.3.t.c.199.1 8 85.82 even 16
425.3.t.c.299.1 8 85.38 odd 4
425.3.u.b.301.1 8 85.14 odd 16
425.3.u.b.401.1 8 85.4 even 4