Properties

Label 425.3.t.c.224.1
Level $425$
Weight $3$
Character 425.224
Analytic conductor $11.580$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(24,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.t (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,8,0,0,-8,-8,40,16,0,-8,-40,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 224.1
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 425.224
Dual form 425.3.t.c.74.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.509666 + 1.23044i) q^{2} +(-0.523336 + 2.63099i) q^{3} +(1.57420 - 1.57420i) q^{4} +(-3.50400 + 0.696990i) q^{6} +(7.37170 + 4.92562i) q^{7} +(7.66104 + 3.17331i) q^{8} +(1.66671 + 0.690373i) q^{9} +(-1.61572 - 8.12279i) q^{11} +(3.31786 + 4.96553i) q^{12} +(16.1480 - 16.1480i) q^{13} +(-2.30358 + 11.5809i) q^{14} +2.13880i q^{16} +(-6.50562 - 15.7060i) q^{17} +2.40265i q^{18} +(1.20778 - 0.500280i) q^{19} +(-16.8171 + 16.8171i) q^{21} +(9.17115 - 6.12797i) q^{22} +(5.21946 + 26.2400i) q^{23} +(-12.3582 + 18.4954i) q^{24} +(28.0993 + 11.6391i) q^{26} +(-16.1016 + 24.0978i) q^{27} +(19.3584 - 3.85063i) q^{28} +(-13.7583 + 9.19303i) q^{29} +(2.68003 - 13.4734i) q^{31} +(28.0125 - 11.6032i) q^{32} +22.2165 q^{33} +(16.0096 - 16.0096i) q^{34} +(3.71051 - 1.53694i) q^{36} +(-3.77234 + 18.9648i) q^{37} +(1.23113 + 1.23113i) q^{38} +(34.0344 + 50.9361i) q^{39} +(-14.6853 + 21.9781i) q^{41} +(-29.2636 - 12.1214i) q^{42} +(-9.06895 + 21.8944i) q^{43} +(-15.3303 - 10.2434i) q^{44} +(-29.6266 + 19.7959i) q^{46} +(-26.8680 + 26.8680i) q^{47} +(-5.62714 - 1.11931i) q^{48} +(11.3288 + 27.3503i) q^{49} +(44.7268 - 8.89671i) q^{51} -50.8404i q^{52} +(-10.8340 - 26.1557i) q^{53} +(-37.8574 - 7.53030i) q^{54} +(40.8445 + 61.1281i) q^{56} +(0.684154 + 3.43947i) q^{57} +(-18.3236 - 12.2435i) q^{58} +(-9.12070 + 22.0193i) q^{59} +(-42.9373 - 28.6898i) q^{61} +(17.9442 - 3.56932i) q^{62} +(8.88596 + 13.2988i) q^{63} +(34.6035 + 34.6035i) q^{64} +(11.3230 + 27.3362i) q^{66} -70.4415 q^{67} +(-34.9654 - 14.4831i) q^{68} -71.7687 q^{69} +(-102.865 - 20.4612i) q^{71} +(10.5780 + 10.5780i) q^{72} +(29.5868 - 19.7693i) q^{73} +(-25.2578 + 5.02408i) q^{74} +(1.11375 - 2.68883i) q^{76} +(28.0991 - 67.8373i) q^{77} +(-45.3277 + 67.8377i) q^{78} +(1.41599 + 7.11865i) q^{79} +(-43.4936 - 43.4936i) q^{81} +(-34.5274 - 6.86792i) q^{82} +(124.385 - 51.5218i) q^{83} +52.9469i q^{84} -31.5619 q^{86} +(-16.9865 - 41.0090i) q^{87} +(13.3980 - 67.3563i) q^{88} +(-38.6522 + 38.6522i) q^{89} +(198.577 - 39.4995i) q^{91} +(49.5234 + 33.0905i) q^{92} +(34.0458 + 14.1023i) q^{93} +(-46.7533 - 19.3658i) q^{94} +(15.8678 + 79.7729i) q^{96} +(44.0470 + 65.9209i) q^{97} +(-27.8790 + 27.8790i) q^{98} +(2.91482 - 14.6538i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} - 8 q^{6} - 8 q^{7} + 40 q^{8} + 16 q^{9} - 8 q^{11} - 40 q^{12} + 16 q^{13} - 8 q^{14} - 64 q^{21} - 56 q^{22} - 40 q^{23} + 80 q^{24} + 176 q^{26} - 16 q^{27} - 56 q^{28} - 48 q^{29}+ \cdots + 224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.509666 + 1.23044i 0.254833 + 0.615221i 0.998582 0.0532379i \(-0.0169542\pi\)
−0.743749 + 0.668459i \(0.766954\pi\)
\(3\) −0.523336 + 2.63099i −0.174445 + 0.876995i 0.790080 + 0.613004i \(0.210039\pi\)
−0.964525 + 0.263991i \(0.914961\pi\)
\(4\) 1.57420 1.57420i 0.393549 0.393549i
\(5\) 0 0
\(6\) −3.50400 + 0.696990i −0.584001 + 0.116165i
\(7\) 7.37170 + 4.92562i 1.05310 + 0.703659i 0.956520 0.291666i \(-0.0942095\pi\)
0.0965803 + 0.995325i \(0.469210\pi\)
\(8\) 7.66104 + 3.17331i 0.957631 + 0.396664i
\(9\) 1.66671 + 0.690373i 0.185190 + 0.0767081i
\(10\) 0 0
\(11\) −1.61572 8.12279i −0.146884 0.738436i −0.982077 0.188479i \(-0.939644\pi\)
0.835193 0.549957i \(-0.185356\pi\)
\(12\) 3.31786 + 4.96553i 0.276488 + 0.413794i
\(13\) 16.1480 16.1480i 1.24216 1.24216i 0.283051 0.959105i \(-0.408654\pi\)
0.959105 0.283051i \(-0.0913464\pi\)
\(14\) −2.30358 + 11.5809i −0.164541 + 0.827205i
\(15\) 0 0
\(16\) 2.13880i 0.133675i
\(17\) −6.50562 15.7060i −0.382683 0.923880i
\(18\) 2.40265i 0.133480i
\(19\) 1.20778 0.500280i 0.0635675 0.0263305i −0.350673 0.936498i \(-0.614047\pi\)
0.414241 + 0.910167i \(0.364047\pi\)
\(20\) 0 0
\(21\) −16.8171 + 16.8171i −0.800814 + 0.800814i
\(22\) 9.17115 6.12797i 0.416870 0.278544i
\(23\) 5.21946 + 26.2400i 0.226933 + 1.14087i 0.911303 + 0.411735i \(0.135077\pi\)
−0.684370 + 0.729135i \(0.739923\pi\)
\(24\) −12.3582 + 18.4954i −0.514926 + 0.770642i
\(25\) 0 0
\(26\) 28.0993 + 11.6391i 1.08074 + 0.447658i
\(27\) −16.1016 + 24.0978i −0.596356 + 0.892510i
\(28\) 19.3584 3.85063i 0.691372 0.137522i
\(29\) −13.7583 + 9.19303i −0.474425 + 0.317001i −0.769694 0.638414i \(-0.779591\pi\)
0.295268 + 0.955414i \(0.404591\pi\)
\(30\) 0 0
\(31\) 2.68003 13.4734i 0.0864526 0.434627i −0.913181 0.407555i \(-0.866382\pi\)
0.999633 0.0270721i \(-0.00861839\pi\)
\(32\) 28.0125 11.6032i 0.875391 0.362599i
\(33\) 22.2165 0.673228
\(34\) 16.0096 16.0096i 0.470870 0.470870i
\(35\) 0 0
\(36\) 3.71051 1.53694i 0.103070 0.0426929i
\(37\) −3.77234 + 18.9648i −0.101955 + 0.512563i 0.895732 + 0.444594i \(0.146652\pi\)
−0.997687 + 0.0679693i \(0.978348\pi\)
\(38\) 1.23113 + 1.23113i 0.0323982 + 0.0323982i
\(39\) 34.0344 + 50.9361i 0.872677 + 1.30605i
\(40\) 0 0
\(41\) −14.6853 + 21.9781i −0.358178 + 0.536051i −0.966175 0.257888i \(-0.916973\pi\)
0.607997 + 0.793939i \(0.291973\pi\)
\(42\) −29.2636 12.1214i −0.696752 0.288604i
\(43\) −9.06895 + 21.8944i −0.210906 + 0.509172i −0.993563 0.113281i \(-0.963864\pi\)
0.782657 + 0.622453i \(0.213864\pi\)
\(44\) −15.3303 10.2434i −0.348417 0.232805i
\(45\) 0 0
\(46\) −29.6266 + 19.7959i −0.644058 + 0.430345i
\(47\) −26.8680 + 26.8680i −0.571660 + 0.571660i −0.932592 0.360932i \(-0.882459\pi\)
0.360932 + 0.932592i \(0.382459\pi\)
\(48\) −5.62714 1.11931i −0.117232 0.0233189i
\(49\) 11.3288 + 27.3503i 0.231201 + 0.558169i
\(50\) 0 0
\(51\) 44.7268 8.89671i 0.876995 0.174445i
\(52\) 50.8404i 0.977699i
\(53\) −10.8340 26.1557i −0.204416 0.493503i 0.788111 0.615533i \(-0.211059\pi\)
−0.992526 + 0.122031i \(0.961059\pi\)
\(54\) −37.8574 7.53030i −0.701062 0.139450i
\(55\) 0 0
\(56\) 40.8445 + 61.1281i 0.729365 + 1.09157i
\(57\) 0.684154 + 3.43947i 0.0120027 + 0.0603416i
\(58\) −18.3236 12.2435i −0.315925 0.211094i
\(59\) −9.12070 + 22.0193i −0.154588 + 0.373209i −0.982132 0.188192i \(-0.939737\pi\)
0.827544 + 0.561401i \(0.189737\pi\)
\(60\) 0 0
\(61\) −42.9373 28.6898i −0.703890 0.470324i 0.151401 0.988472i \(-0.451622\pi\)
−0.855291 + 0.518148i \(0.826622\pi\)
\(62\) 17.9442 3.56932i 0.289423 0.0575697i
\(63\) 8.88596 + 13.2988i 0.141047 + 0.211092i
\(64\) 34.6035 + 34.6035i 0.540679 + 0.540679i
\(65\) 0 0
\(66\) 11.3230 + 27.3362i 0.171561 + 0.414184i
\(67\) −70.4415 −1.05137 −0.525683 0.850681i \(-0.676190\pi\)
−0.525683 + 0.850681i \(0.676190\pi\)
\(68\) −34.9654 14.4831i −0.514197 0.212987i
\(69\) −71.7687 −1.04013
\(70\) 0 0
\(71\) −102.865 20.4612i −1.44881 0.288185i −0.592883 0.805289i \(-0.702010\pi\)
−0.855923 + 0.517104i \(0.827010\pi\)
\(72\) 10.5780 + 10.5780i 0.146916 + 0.146916i
\(73\) 29.5868 19.7693i 0.405299 0.270812i −0.336167 0.941802i \(-0.609131\pi\)
0.741466 + 0.670990i \(0.234131\pi\)
\(74\) −25.2578 + 5.02408i −0.341321 + 0.0678930i
\(75\) 0 0
\(76\) 1.11375 2.68883i 0.0146546 0.0353793i
\(77\) 28.0991 67.8373i 0.364924 0.881003i
\(78\) −45.3277 + 67.8377i −0.581125 + 0.869715i
\(79\) 1.41599 + 7.11865i 0.0179239 + 0.0901095i 0.988712 0.149830i \(-0.0478725\pi\)
−0.970788 + 0.239939i \(0.922873\pi\)
\(80\) 0 0
\(81\) −43.4936 43.4936i −0.536958 0.536958i
\(82\) −34.5274 6.86792i −0.421066 0.0837551i
\(83\) 124.385 51.5218i 1.49861 0.620745i 0.525441 0.850830i \(-0.323901\pi\)
0.973170 + 0.230085i \(0.0739005\pi\)
\(84\) 52.9469i 0.630320i
\(85\) 0 0
\(86\) −31.5619 −0.366999
\(87\) −16.9865 41.0090i −0.195247 0.471368i
\(88\) 13.3980 67.3563i 0.152250 0.765412i
\(89\) −38.6522 + 38.6522i −0.434294 + 0.434294i −0.890086 0.455792i \(-0.849356\pi\)
0.455792 + 0.890086i \(0.349356\pi\)
\(90\) 0 0
\(91\) 198.577 39.4995i 2.18217 0.434060i
\(92\) 49.5234 + 33.0905i 0.538298 + 0.359679i
\(93\) 34.0458 + 14.1023i 0.366084 + 0.151637i
\(94\) −46.7533 19.3658i −0.497375 0.206020i
\(95\) 0 0
\(96\) 15.8678 + 79.7729i 0.165290 + 0.830968i
\(97\) 44.0470 + 65.9209i 0.454092 + 0.679597i 0.985913 0.167260i \(-0.0534919\pi\)
−0.531820 + 0.846857i \(0.678492\pi\)
\(98\) −27.8790 + 27.8790i −0.284480 + 0.284480i
\(99\) 2.91482 14.6538i 0.0294426 0.148018i
\(100\) 0 0
\(101\) 140.647i 1.39254i −0.717779 0.696271i \(-0.754841\pi\)
0.717779 0.696271i \(-0.245159\pi\)
\(102\) 33.7426 + 50.4994i 0.330810 + 0.495092i
\(103\) 42.3283i 0.410954i 0.978662 + 0.205477i \(0.0658746\pi\)
−0.978662 + 0.205477i \(0.934125\pi\)
\(104\) 174.953 72.4681i 1.68224 0.696808i
\(105\) 0 0
\(106\) 26.6613 26.6613i 0.251522 0.251522i
\(107\) −61.3221 + 40.9741i −0.573104 + 0.382936i −0.808086 0.589064i \(-0.799497\pi\)
0.234983 + 0.972000i \(0.424497\pi\)
\(108\) 12.5875 + 63.2818i 0.116551 + 0.585942i
\(109\) 116.798 174.800i 1.07154 1.60367i 0.315770 0.948836i \(-0.397737\pi\)
0.755770 0.654837i \(-0.227263\pi\)
\(110\) 0 0
\(111\) −47.9220 19.8500i −0.431730 0.178828i
\(112\) −10.5349 + 15.7666i −0.0940615 + 0.140773i
\(113\) −140.877 + 28.0222i −1.24670 + 0.247984i −0.773969 0.633224i \(-0.781731\pi\)
−0.472729 + 0.881208i \(0.656731\pi\)
\(114\) −3.88338 + 2.59479i −0.0340648 + 0.0227613i
\(115\) 0 0
\(116\) −7.18670 + 36.1300i −0.0619543 + 0.311465i
\(117\) 38.0622 15.7659i 0.325318 0.134751i
\(118\) −31.7420 −0.269000
\(119\) 29.4040 147.824i 0.247092 1.24222i
\(120\) 0 0
\(121\) 48.4202 20.0563i 0.400167 0.165755i
\(122\) 13.4175 67.4541i 0.109979 0.552902i
\(123\) −50.1387 50.1387i −0.407632 0.407632i
\(124\) −16.9909 25.4287i −0.137024 0.205070i
\(125\) 0 0
\(126\) −11.8345 + 17.7116i −0.0939247 + 0.140568i
\(127\) 100.009 + 41.4251i 0.787472 + 0.326182i 0.739927 0.672687i \(-0.234860\pi\)
0.0475454 + 0.998869i \(0.484860\pi\)
\(128\) 21.4713 51.8363i 0.167744 0.404971i
\(129\) −52.8577 35.3184i −0.409750 0.273786i
\(130\) 0 0
\(131\) −77.0656 + 51.4936i −0.588287 + 0.393081i −0.813788 0.581162i \(-0.802598\pi\)
0.225501 + 0.974243i \(0.427598\pi\)
\(132\) 34.9732 34.9732i 0.264948 0.264948i
\(133\) 11.3676 + 2.26116i 0.0854707 + 0.0170012i
\(134\) −35.9016 86.6742i −0.267923 0.646822i
\(135\) 0 0
\(136\) 140.968i 1.03653i
\(137\) 102.046i 0.744863i 0.928060 + 0.372431i \(0.121476\pi\)
−0.928060 + 0.372431i \(0.878524\pi\)
\(138\) −36.5780 88.3072i −0.265058 0.639907i
\(139\) −30.2420 6.01550i −0.217568 0.0432770i 0.0851025 0.996372i \(-0.472878\pi\)
−0.302671 + 0.953095i \(0.597878\pi\)
\(140\) 0 0
\(141\) −56.6284 84.7504i −0.401620 0.601067i
\(142\) −27.2506 136.998i −0.191906 0.964775i
\(143\) −157.258 105.076i −1.09970 0.734799i
\(144\) −1.47657 + 3.56475i −0.0102539 + 0.0247552i
\(145\) 0 0
\(146\) 39.4044 + 26.3292i 0.269893 + 0.180337i
\(147\) −77.8870 + 15.4927i −0.529843 + 0.105392i
\(148\) 23.9160 + 35.7928i 0.161595 + 0.241843i
\(149\) −23.3099 23.3099i −0.156443 0.156443i 0.624546 0.780988i \(-0.285284\pi\)
−0.780988 + 0.624546i \(0.785284\pi\)
\(150\) 0 0
\(151\) −53.9466 130.239i −0.357262 0.862507i −0.995683 0.0928198i \(-0.970412\pi\)
0.638421 0.769688i \(-0.279588\pi\)
\(152\) 10.8404 0.0713185
\(153\) 30.6685i 0.200448i
\(154\) 97.7910 0.635006
\(155\) 0 0
\(156\) 133.760 + 26.6066i 0.857438 + 0.170555i
\(157\) −78.3942 78.3942i −0.499326 0.499326i 0.411902 0.911228i \(-0.364865\pi\)
−0.911228 + 0.411902i \(0.864865\pi\)
\(158\) −8.03741 + 5.37042i −0.0508697 + 0.0339900i
\(159\) 74.4850 14.8160i 0.468459 0.0931823i
\(160\) 0 0
\(161\) −90.7719 + 219.143i −0.563800 + 1.36113i
\(162\) 31.3491 75.6835i 0.193513 0.467182i
\(163\) −90.7416 + 135.804i −0.556697 + 0.833156i −0.997935 0.0642345i \(-0.979539\pi\)
0.441238 + 0.897390i \(0.354539\pi\)
\(164\) 11.4803 + 57.7154i 0.0700019 + 0.351923i
\(165\) 0 0
\(166\) 126.789 + 126.789i 0.763791 + 0.763791i
\(167\) 163.517 + 32.5256i 0.979145 + 0.194764i 0.658620 0.752476i \(-0.271141\pi\)
0.320525 + 0.947240i \(0.396141\pi\)
\(168\) −182.202 + 75.4707i −1.08454 + 0.449230i
\(169\) 352.517i 2.08590i
\(170\) 0 0
\(171\) 2.35840 0.0137918
\(172\) 20.1898 + 48.7424i 0.117382 + 0.283386i
\(173\) 3.26113 16.3948i 0.0188504 0.0947676i −0.970215 0.242246i \(-0.922116\pi\)
0.989065 + 0.147479i \(0.0471158\pi\)
\(174\) 41.8018 41.8018i 0.240240 0.240240i
\(175\) 0 0
\(176\) 17.3730 3.45570i 0.0987102 0.0196347i
\(177\) −53.1594 35.5199i −0.300335 0.200678i
\(178\) −67.2590 27.8596i −0.377859 0.156514i
\(179\) 35.7824 + 14.8215i 0.199901 + 0.0828019i 0.480388 0.877056i \(-0.340496\pi\)
−0.280487 + 0.959858i \(0.590496\pi\)
\(180\) 0 0
\(181\) 8.42674 + 42.3641i 0.0465566 + 0.234056i 0.997057 0.0766687i \(-0.0244284\pi\)
−0.950500 + 0.310724i \(0.899428\pi\)
\(182\) 149.810 + 224.207i 0.823132 + 1.23190i
\(183\) 97.9531 97.9531i 0.535263 0.535263i
\(184\) −43.2811 + 217.589i −0.235223 + 1.18255i
\(185\) 0 0
\(186\) 49.0789i 0.263865i
\(187\) −117.065 + 78.2203i −0.626015 + 0.418290i
\(188\) 84.5912i 0.449953i
\(189\) −237.393 + 98.3313i −1.25605 + 0.520271i
\(190\) 0 0
\(191\) −107.196 + 107.196i −0.561234 + 0.561234i −0.929658 0.368424i \(-0.879898\pi\)
0.368424 + 0.929658i \(0.379898\pi\)
\(192\) −109.151 + 72.9320i −0.568492 + 0.379854i
\(193\) 40.1233 + 201.713i 0.207893 + 1.04515i 0.933920 + 0.357482i \(0.116364\pi\)
−0.726028 + 0.687666i \(0.758636\pi\)
\(194\) −58.6627 + 87.7949i −0.302385 + 0.452551i
\(195\) 0 0
\(196\) 60.8886 + 25.2209i 0.310656 + 0.128678i
\(197\) −77.7868 + 116.416i −0.394857 + 0.590945i −0.974627 0.223835i \(-0.928142\pi\)
0.579770 + 0.814780i \(0.303142\pi\)
\(198\) 19.5162 3.88201i 0.0985667 0.0196061i
\(199\) 123.283 82.3749i 0.619511 0.413944i −0.205823 0.978589i \(-0.565987\pi\)
0.825334 + 0.564645i \(0.190987\pi\)
\(200\) 0 0
\(201\) 36.8645 185.331i 0.183406 0.922043i
\(202\) 173.058 71.6828i 0.856721 0.354865i
\(203\) −146.704 −0.722678
\(204\) 56.4036 84.4140i 0.276488 0.413794i
\(205\) 0 0
\(206\) −52.0825 + 21.5733i −0.252828 + 0.104725i
\(207\) −9.41607 + 47.3378i −0.0454883 + 0.228685i
\(208\) 34.5373 + 34.5373i 0.166045 + 0.166045i
\(209\) −6.01511 9.00225i −0.0287804 0.0430730i
\(210\) 0 0
\(211\) 113.713 170.184i 0.538925 0.806559i −0.457660 0.889127i \(-0.651312\pi\)
0.996585 + 0.0825683i \(0.0263123\pi\)
\(212\) −58.2291 24.1193i −0.274665 0.113770i
\(213\) 107.666 259.929i 0.505474 1.22032i
\(214\) −81.6701 54.5702i −0.381636 0.255001i
\(215\) 0 0
\(216\) −199.825 + 133.519i −0.925115 + 0.618142i
\(217\) 86.1213 86.1213i 0.396872 0.396872i
\(218\) 274.610 + 54.6233i 1.25968 + 0.250565i
\(219\) 36.5289 + 88.1885i 0.166799 + 0.402687i
\(220\) 0 0
\(221\) −358.673 148.567i −1.62295 0.672250i
\(222\) 69.0821i 0.311181i
\(223\) 44.4897 + 107.408i 0.199506 + 0.481649i 0.991693 0.128629i \(-0.0410577\pi\)
−0.792187 + 0.610278i \(0.791058\pi\)
\(224\) 263.653 + 52.4438i 1.17702 + 0.234124i
\(225\) 0 0
\(226\) −106.280 159.059i −0.470265 0.703801i
\(227\) −29.9302 150.469i −0.131851 0.662859i −0.989015 0.147816i \(-0.952776\pi\)
0.857164 0.515044i \(-0.172224\pi\)
\(228\) 6.49140 + 4.33742i 0.0284711 + 0.0190238i
\(229\) −3.69064 + 8.91000i −0.0161164 + 0.0389083i −0.931733 0.363144i \(-0.881703\pi\)
0.915617 + 0.402053i \(0.131703\pi\)
\(230\) 0 0
\(231\) 163.774 + 109.430i 0.708977 + 0.473723i
\(232\) −134.576 + 26.7687i −0.580067 + 0.115382i
\(233\) −216.700 324.315i −0.930044 1.39191i −0.919982 0.391960i \(-0.871797\pi\)
−0.0100614 0.999949i \(-0.503203\pi\)
\(234\) 38.7980 + 38.7980i 0.165803 + 0.165803i
\(235\) 0 0
\(236\) 20.3050 + 49.0206i 0.0860381 + 0.207714i
\(237\) −19.4701 −0.0821523
\(238\) 196.875 39.1609i 0.827205 0.164541i
\(239\) −372.281 −1.55766 −0.778831 0.627233i \(-0.784187\pi\)
−0.778831 + 0.627233i \(0.784187\pi\)
\(240\) 0 0
\(241\) 136.315 + 27.1147i 0.565621 + 0.112509i 0.469614 0.882872i \(-0.344393\pi\)
0.0960065 + 0.995381i \(0.469393\pi\)
\(242\) 49.3563 + 49.3563i 0.203952 + 0.203952i
\(243\) −79.6872 + 53.2453i −0.327931 + 0.219116i
\(244\) −112.755 + 22.4284i −0.462111 + 0.0919197i
\(245\) 0 0
\(246\) 36.1388 87.2468i 0.146906 0.354662i
\(247\) 11.4248 27.5818i 0.0462541 0.111667i
\(248\) 63.2872 94.7160i 0.255190 0.381919i
\(249\) 70.4583 + 354.218i 0.282965 + 1.42256i
\(250\) 0 0
\(251\) 154.052 + 154.052i 0.613754 + 0.613754i 0.943922 0.330168i \(-0.107106\pi\)
−0.330168 + 0.943922i \(0.607106\pi\)
\(252\) 34.9232 + 6.94665i 0.138584 + 0.0275661i
\(253\) 204.709 84.7932i 0.809126 0.335151i
\(254\) 144.168i 0.567591i
\(255\) 0 0
\(256\) 270.472 1.05653
\(257\) −162.362 391.977i −0.631760 1.52520i −0.837408 0.546578i \(-0.815930\pi\)
0.205648 0.978626i \(-0.434070\pi\)
\(258\) 16.5175 83.0389i 0.0640212 0.321856i
\(259\) −121.222 + 121.222i −0.468039 + 0.468039i
\(260\) 0 0
\(261\) −29.2777 + 5.82370i −0.112175 + 0.0223130i
\(262\) −102.638 68.5803i −0.391747 0.261757i
\(263\) 132.058 + 54.7003i 0.502122 + 0.207986i 0.619344 0.785120i \(-0.287399\pi\)
−0.117221 + 0.993106i \(0.537399\pi\)
\(264\) 170.202 + 70.4999i 0.644704 + 0.267045i
\(265\) 0 0
\(266\) 3.01146 + 15.1396i 0.0113213 + 0.0569158i
\(267\) −81.4652 121.921i −0.305113 0.456634i
\(268\) −110.889 + 110.889i −0.413764 + 0.413764i
\(269\) −8.93614 + 44.9250i −0.0332199 + 0.167008i −0.993834 0.110878i \(-0.964634\pi\)
0.960614 + 0.277886i \(0.0896337\pi\)
\(270\) 0 0
\(271\) 329.809i 1.21701i −0.793550 0.608504i \(-0.791770\pi\)
0.793550 0.608504i \(-0.208230\pi\)
\(272\) 33.5918 13.9142i 0.123499 0.0511551i
\(273\) 543.126i 1.98947i
\(274\) −125.562 + 52.0095i −0.458255 + 0.189816i
\(275\) 0 0
\(276\) −112.978 + 112.978i −0.409341 + 0.409341i
\(277\) −234.642 + 156.783i −0.847082 + 0.566002i −0.901629 0.432509i \(-0.857628\pi\)
0.0545479 + 0.998511i \(0.482628\pi\)
\(278\) −8.01157 40.2769i −0.0288186 0.144881i
\(279\) 13.7685 20.6060i 0.0493495 0.0738568i
\(280\) 0 0
\(281\) 141.231 + 58.4999i 0.502603 + 0.208185i 0.619556 0.784953i \(-0.287313\pi\)
−0.116953 + 0.993137i \(0.537313\pi\)
\(282\) 75.4189 112.872i 0.267443 0.400257i
\(283\) 311.786 62.0182i 1.10172 0.219145i 0.389447 0.921049i \(-0.372666\pi\)
0.712272 + 0.701904i \(0.247666\pi\)
\(284\) −194.140 + 129.720i −0.683592 + 0.456761i
\(285\) 0 0
\(286\) 49.1414 247.050i 0.171823 0.863813i
\(287\) −216.511 + 89.6819i −0.754395 + 0.312480i
\(288\) 54.6992 0.189928
\(289\) −204.354 + 204.354i −0.707107 + 0.707107i
\(290\) 0 0
\(291\) −196.488 + 81.3882i −0.675218 + 0.279684i
\(292\) 15.4548 77.6963i 0.0529272 0.266083i
\(293\) 27.2633 + 27.2633i 0.0930488 + 0.0930488i 0.752099 0.659050i \(-0.229042\pi\)
−0.659050 + 0.752099i \(0.729042\pi\)
\(294\) −58.7592 87.9393i −0.199861 0.299113i
\(295\) 0 0
\(296\) −89.0814 + 133.320i −0.300951 + 0.450404i
\(297\) 221.757 + 91.8547i 0.746656 + 0.309275i
\(298\) 16.8013 40.5618i 0.0563801 0.136114i
\(299\) 508.008 + 339.440i 1.69902 + 1.13525i
\(300\) 0 0
\(301\) −174.697 + 116.729i −0.580388 + 0.387803i
\(302\) 132.756 132.756i 0.439591 0.439591i
\(303\) 370.039 + 73.6054i 1.22125 + 0.242922i
\(304\) 1.07000 + 2.58320i 0.00351972 + 0.00849736i
\(305\) 0 0
\(306\) 37.7359 15.6307i 0.123320 0.0510807i
\(307\) 4.80965i 0.0156666i −0.999969 0.00783330i \(-0.997507\pi\)
0.999969 0.00783330i \(-0.00249344\pi\)
\(308\) −62.5557 151.023i −0.203103 0.490334i
\(309\) −111.365 22.1519i −0.360405 0.0716890i
\(310\) 0 0
\(311\) 267.024 + 399.630i 0.858598 + 1.28498i 0.957074 + 0.289843i \(0.0936031\pi\)
−0.0984763 + 0.995139i \(0.531397\pi\)
\(312\) 99.1031 + 498.225i 0.317638 + 1.59688i
\(313\) 73.7441 + 49.2742i 0.235604 + 0.157426i 0.667768 0.744369i \(-0.267250\pi\)
−0.432164 + 0.901795i \(0.642250\pi\)
\(314\) 56.5047 136.414i 0.179951 0.434441i
\(315\) 0 0
\(316\) 13.4352 + 8.97712i 0.0425165 + 0.0284086i
\(317\) 117.988 23.4692i 0.372201 0.0740353i −0.00544574 0.999985i \(-0.501733\pi\)
0.377647 + 0.925950i \(0.376733\pi\)
\(318\) 56.1927 + 84.0983i 0.176707 + 0.264460i
\(319\) 96.9027 + 96.9027i 0.303770 + 0.303770i
\(320\) 0 0
\(321\) −75.7103 182.781i −0.235858 0.569411i
\(322\) −315.906 −0.981074
\(323\) −15.7147 15.7147i −0.0486524 0.0486524i
\(324\) −136.935 −0.422639
\(325\) 0 0
\(326\) −213.347 42.4374i −0.654440 0.130176i
\(327\) 398.773 + 398.773i 1.21949 + 1.21949i
\(328\) −182.248 + 121.774i −0.555634 + 0.371263i
\(329\) −330.405 + 65.7216i −1.00427 + 0.199762i
\(330\) 0 0
\(331\) 38.9023 93.9184i 0.117530 0.283741i −0.854157 0.520015i \(-0.825926\pi\)
0.971687 + 0.236274i \(0.0759262\pi\)
\(332\) 114.701 276.912i 0.345484 0.834071i
\(333\) −19.3802 + 29.0045i −0.0581988 + 0.0871006i
\(334\) 43.3183 + 217.776i 0.129695 + 0.652023i
\(335\) 0 0
\(336\) −35.9683 35.9683i −0.107049 0.107049i
\(337\) −539.044 107.223i −1.59954 0.318168i −0.686842 0.726807i \(-0.741004\pi\)
−0.912696 + 0.408639i \(0.866004\pi\)
\(338\) 433.752 179.666i 1.28329 0.531556i
\(339\) 385.310i 1.13661i
\(340\) 0 0
\(341\) −113.772 −0.333642
\(342\) 1.20200 + 2.90187i 0.00351461 + 0.00848501i
\(343\) 33.5487 168.661i 0.0978097 0.491722i
\(344\) −138.955 + 138.955i −0.403940 + 0.403940i
\(345\) 0 0
\(346\) 21.8349 4.34324i 0.0631067 0.0125527i
\(347\) 212.258 + 141.826i 0.611695 + 0.408722i 0.822466 0.568814i \(-0.192597\pi\)
−0.210771 + 0.977535i \(0.567597\pi\)
\(348\) −91.2964 37.8162i −0.262346 0.108667i
\(349\) 513.215 + 212.580i 1.47053 + 0.609113i 0.966980 0.254854i \(-0.0820273\pi\)
0.503549 + 0.863967i \(0.332027\pi\)
\(350\) 0 0
\(351\) 129.122 + 649.141i 0.367869 + 1.84940i
\(352\) −139.511 208.792i −0.396337 0.593160i
\(353\) −408.644 + 408.644i −1.15763 + 1.15763i −0.172648 + 0.984984i \(0.555232\pi\)
−0.984984 + 0.172648i \(0.944768\pi\)
\(354\) 16.6117 83.5128i 0.0469258 0.235912i
\(355\) 0 0
\(356\) 121.692i 0.341832i
\(357\) 373.534 + 154.723i 1.04631 + 0.433398i
\(358\) 51.5822i 0.144084i
\(359\) 159.526 66.0778i 0.444362 0.184061i −0.149272 0.988796i \(-0.547693\pi\)
0.593634 + 0.804735i \(0.297693\pi\)
\(360\) 0 0
\(361\) −254.057 + 254.057i −0.703759 + 0.703759i
\(362\) −47.8317 + 31.9602i −0.132132 + 0.0882877i
\(363\) 27.4279 + 137.889i 0.0755588 + 0.379860i
\(364\) 250.420 374.780i 0.687967 1.02962i
\(365\) 0 0
\(366\) 170.449 + 70.6023i 0.465708 + 0.192902i
\(367\) 11.3429 16.9759i 0.0309071 0.0462558i −0.815694 0.578483i \(-0.803645\pi\)
0.846601 + 0.532227i \(0.178645\pi\)
\(368\) −56.1220 + 11.1634i −0.152505 + 0.0303352i
\(369\) −39.6492 + 26.4927i −0.107450 + 0.0717960i
\(370\) 0 0
\(371\) 48.9675 246.176i 0.131988 0.663547i
\(372\) 75.7946 31.3952i 0.203749 0.0843956i
\(373\) −690.960 −1.85244 −0.926220 0.376983i \(-0.876961\pi\)
−0.926220 + 0.376983i \(0.876961\pi\)
\(374\) −155.910 104.175i −0.416870 0.278544i
\(375\) 0 0
\(376\) −291.098 + 120.577i −0.774196 + 0.320682i
\(377\) −73.7207 + 370.619i −0.195546 + 0.983075i
\(378\) −241.982 241.982i −0.640164 0.640164i
\(379\) 97.1405 + 145.381i 0.256308 + 0.383591i 0.937200 0.348792i \(-0.113408\pi\)
−0.680893 + 0.732383i \(0.738408\pi\)
\(380\) 0 0
\(381\) −161.327 + 241.443i −0.423431 + 0.633709i
\(382\) −186.532 77.2642i −0.488304 0.202262i
\(383\) 182.466 440.512i 0.476412 1.15016i −0.484868 0.874588i \(-0.661132\pi\)
0.961280 0.275574i \(-0.0888678\pi\)
\(384\) 125.144 + 83.6184i 0.325895 + 0.217756i
\(385\) 0 0
\(386\) −227.747 + 152.176i −0.590019 + 0.394238i
\(387\) −30.2306 + 30.2306i −0.0781151 + 0.0781151i
\(388\) 173.111 + 34.4340i 0.446163 + 0.0887473i
\(389\) −84.5808 204.196i −0.217431 0.524926i 0.777098 0.629379i \(-0.216691\pi\)
−0.994530 + 0.104453i \(0.966691\pi\)
\(390\) 0 0
\(391\) 378.169 252.684i 0.967183 0.646251i
\(392\) 245.482i 0.626228i
\(393\) −95.1478 229.707i −0.242106 0.584496i
\(394\) −182.889 36.3788i −0.464184 0.0923320i
\(395\) 0 0
\(396\) −18.4794 27.6564i −0.0466652 0.0698395i
\(397\) −23.6042 118.666i −0.0594565 0.298908i 0.939603 0.342266i \(-0.111194\pi\)
−0.999060 + 0.0433581i \(0.986194\pi\)
\(398\) 164.191 + 109.709i 0.412539 + 0.275650i
\(399\) −11.8981 + 28.7246i −0.0298199 + 0.0719916i
\(400\) 0 0
\(401\) 434.146 + 290.087i 1.08266 + 0.723409i 0.963026 0.269409i \(-0.0868282\pi\)
0.119633 + 0.992818i \(0.461828\pi\)
\(402\) 246.827 49.0970i 0.613998 0.122132i
\(403\) −174.292 260.846i −0.432486 0.647262i
\(404\) −221.406 221.406i −0.548034 0.548034i
\(405\) 0 0
\(406\) −74.7699 180.510i −0.184162 0.444607i
\(407\) 160.142 0.393471
\(408\) 370.886 + 73.7738i 0.909034 + 0.180818i
\(409\) −136.013 −0.332550 −0.166275 0.986079i \(-0.553174\pi\)
−0.166275 + 0.986079i \(0.553174\pi\)
\(410\) 0 0
\(411\) −268.482 53.4044i −0.653241 0.129938i
\(412\) 66.6331 + 66.6331i 0.161731 + 0.161731i
\(413\) −175.694 + 117.395i −0.425409 + 0.284249i
\(414\) −63.0455 + 12.5405i −0.152284 + 0.0302911i
\(415\) 0 0
\(416\) 264.979 639.715i 0.636968 1.53778i
\(417\) 31.6534 76.4181i 0.0759074 0.183257i
\(418\) 8.01105 11.9894i 0.0191652 0.0286827i
\(419\) −73.0669 367.332i −0.174384 0.876687i −0.964571 0.263822i \(-0.915017\pi\)
0.790187 0.612865i \(-0.209983\pi\)
\(420\) 0 0
\(421\) −273.997 273.997i −0.650824 0.650824i 0.302367 0.953192i \(-0.402223\pi\)
−0.953192 + 0.302367i \(0.902223\pi\)
\(422\) 267.357 + 53.1807i 0.633548 + 0.126021i
\(423\) −63.3301 + 26.2322i −0.149716 + 0.0620146i
\(424\) 234.759i 0.553678i
\(425\) 0 0
\(426\) 374.701 0.879580
\(427\) −175.206 422.985i −0.410319 0.990598i
\(428\) −32.0318 + 161.034i −0.0748405 + 0.376249i
\(429\) 358.753 358.753i 0.836254 0.836254i
\(430\) 0 0
\(431\) 67.5084 13.4283i 0.156632 0.0311561i −0.116151 0.993232i \(-0.537056\pi\)
0.272783 + 0.962075i \(0.412056\pi\)
\(432\) −51.5402 34.4381i −0.119306 0.0797177i
\(433\) 251.710 + 104.262i 0.581317 + 0.240790i 0.653910 0.756572i \(-0.273127\pi\)
−0.0725929 + 0.997362i \(0.523127\pi\)
\(434\) 149.860 + 62.0742i 0.345301 + 0.143028i
\(435\) 0 0
\(436\) −91.3074 459.033i −0.209421 1.05283i
\(437\) 19.4313 + 29.0810i 0.0444653 + 0.0665470i
\(438\) −89.8934 + 89.8934i −0.205236 + 0.205236i
\(439\) 28.7213 144.392i 0.0654244 0.328910i −0.934187 0.356783i \(-0.883873\pi\)
0.999611 + 0.0278730i \(0.00887340\pi\)
\(440\) 0 0
\(441\) 53.4060i 0.121102i
\(442\) 517.046i 1.16979i
\(443\) 619.331i 1.39804i 0.715103 + 0.699019i \(0.246380\pi\)
−0.715103 + 0.699019i \(0.753620\pi\)
\(444\) −106.687 + 44.1910i −0.240285 + 0.0995293i
\(445\) 0 0
\(446\) −109.484 + 109.484i −0.245480 + 0.245480i
\(447\) 73.5271 49.1292i 0.164490 0.109909i
\(448\) 84.6432 + 425.530i 0.188936 + 0.949844i
\(449\) −348.576 + 521.681i −0.776339 + 1.16187i 0.206687 + 0.978407i \(0.433732\pi\)
−0.983026 + 0.183466i \(0.941268\pi\)
\(450\) 0 0
\(451\) 202.251 + 83.7750i 0.448450 + 0.185754i
\(452\) −177.656 + 265.880i −0.393043 + 0.588231i
\(453\) 370.888 73.7743i 0.818738 0.162857i
\(454\) 169.889 113.516i 0.374205 0.250036i
\(455\) 0 0
\(456\) −5.67318 + 28.5210i −0.0124412 + 0.0625460i
\(457\) 127.865 52.9634i 0.279792 0.115894i −0.238375 0.971173i \(-0.576615\pi\)
0.518167 + 0.855280i \(0.326615\pi\)
\(458\) −12.8442 −0.0280442
\(459\) 483.229 + 96.1203i 1.05279 + 0.209412i
\(460\) 0 0
\(461\) −135.609 + 56.1709i −0.294162 + 0.121846i −0.524884 0.851174i \(-0.675891\pi\)
0.230722 + 0.973020i \(0.425891\pi\)
\(462\) −51.1775 + 257.287i −0.110774 + 0.556898i
\(463\) −522.332 522.332i −1.12815 1.12815i −0.990478 0.137669i \(-0.956039\pi\)
−0.137669 0.990478i \(-0.543961\pi\)
\(464\) −19.6620 29.4263i −0.0423750 0.0634187i
\(465\) 0 0
\(466\) 288.606 431.929i 0.619326 0.926887i
\(467\) −7.06740 2.92741i −0.0151336 0.00626855i 0.375104 0.926983i \(-0.377607\pi\)
−0.390237 + 0.920714i \(0.627607\pi\)
\(468\) 35.0988 84.7360i 0.0749974 0.181060i
\(469\) −519.274 346.968i −1.10719 0.739803i
\(470\) 0 0
\(471\) 247.281 165.228i 0.525012 0.350802i
\(472\) −139.748 + 139.748i −0.296077 + 0.296077i
\(473\) 192.496 + 38.2899i 0.406969 + 0.0809512i
\(474\) −9.92325 23.9568i −0.0209351 0.0505419i
\(475\) 0 0
\(476\) −186.416 278.992i −0.391631 0.586117i
\(477\) 51.0733i 0.107072i
\(478\) −189.739 458.071i −0.396944 0.958307i
\(479\) 742.358 + 147.664i 1.54981 + 0.308276i 0.894493 0.447081i \(-0.147536\pi\)
0.655314 + 0.755357i \(0.272536\pi\)
\(480\) 0 0
\(481\) 245.329 + 367.160i 0.510039 + 0.763327i
\(482\) 36.1119 + 181.547i 0.0749209 + 0.376653i
\(483\) −529.057 353.505i −1.09536 0.731894i
\(484\) 44.6504 107.796i 0.0922529 0.222718i
\(485\) 0 0
\(486\) −106.129 70.9132i −0.218373 0.145912i
\(487\) −8.66318 + 1.72321i −0.0177889 + 0.00353843i −0.203977 0.978976i \(-0.565387\pi\)
0.186188 + 0.982514i \(0.440387\pi\)
\(488\) −237.903 356.047i −0.487506 0.729605i
\(489\) −309.811 309.811i −0.633561 0.633561i
\(490\) 0 0
\(491\) −224.608 542.252i −0.457450 1.10438i −0.969426 0.245383i \(-0.921086\pi\)
0.511976 0.859000i \(-0.328914\pi\)
\(492\) −157.857 −0.320847
\(493\) 233.892 + 156.281i 0.474425 + 0.317001i
\(494\) 39.7607 0.0804871
\(495\) 0 0
\(496\) 28.8169 + 5.73204i 0.0580986 + 0.0115565i
\(497\) −657.508 657.508i −1.32295 1.32295i
\(498\) −399.934 + 267.228i −0.803081 + 0.536602i
\(499\) 109.936 21.8676i 0.220312 0.0438229i −0.0836997 0.996491i \(-0.526674\pi\)
0.304012 + 0.952668i \(0.401674\pi\)
\(500\) 0 0
\(501\) −171.149 + 413.190i −0.341614 + 0.824730i
\(502\) −111.037 + 268.067i −0.221190 + 0.533999i
\(503\) −265.535 + 397.401i −0.527902 + 0.790061i −0.995588 0.0938335i \(-0.970088\pi\)
0.467686 + 0.883895i \(0.345088\pi\)
\(504\) 25.8746 + 130.080i 0.0513385 + 0.258096i
\(505\) 0 0
\(506\) 208.666 + 208.666i 0.412384 + 0.412384i
\(507\) 927.468 + 184.485i 1.82933 + 0.363875i
\(508\) 222.645 92.2226i 0.438278 0.181541i
\(509\) 235.103i 0.461891i −0.972967 0.230946i \(-0.925818\pi\)
0.972967 0.230946i \(-0.0741820\pi\)
\(510\) 0 0
\(511\) 315.481 0.617380
\(512\) 51.9650 + 125.455i 0.101494 + 0.245029i
\(513\) −7.39162 + 37.1602i −0.0144086 + 0.0724370i
\(514\) 399.555 399.555i 0.777345 0.777345i
\(515\) 0 0
\(516\) −138.807 + 27.6104i −0.269005 + 0.0535084i
\(517\) 261.655 + 174.832i 0.506102 + 0.338166i
\(518\) −210.940 87.3740i −0.407219 0.168676i
\(519\) 41.4278 + 17.1600i 0.0798223 + 0.0330635i
\(520\) 0 0
\(521\) −118.016 593.308i −0.226519 1.13879i −0.911840 0.410546i \(-0.865338\pi\)
0.685321 0.728241i \(-0.259662\pi\)
\(522\) −22.0876 33.0564i −0.0423134 0.0633265i
\(523\) 721.650 721.650i 1.37983 1.37983i 0.534934 0.844894i \(-0.320336\pi\)
0.844894 0.534934i \(-0.179664\pi\)
\(524\) −40.2554 + 202.378i −0.0768233 + 0.386217i
\(525\) 0 0
\(526\) 190.369i 0.361918i
\(527\) −229.048 + 45.5605i −0.434627 + 0.0864526i
\(528\) 47.5166i 0.0899935i
\(529\) −172.563 + 71.4781i −0.326207 + 0.135119i
\(530\) 0 0
\(531\) −30.4031 + 30.4031i −0.0572563 + 0.0572563i
\(532\) 21.4544 14.3353i 0.0403277 0.0269461i
\(533\) 117.764 + 592.041i 0.220946 + 1.11077i
\(534\) 108.497 162.377i 0.203178 0.304078i
\(535\) 0 0
\(536\) −539.655 223.533i −1.00682 0.417038i
\(537\) −57.7215 + 86.3863i −0.107489 + 0.160868i
\(538\) −59.8321 + 11.9013i −0.111212 + 0.0221215i
\(539\) 203.856 136.212i 0.378212 0.252713i
\(540\) 0 0
\(541\) 110.903 557.546i 0.204996 1.03058i −0.732016 0.681288i \(-0.761420\pi\)
0.937012 0.349297i \(-0.113580\pi\)
\(542\) 405.812 168.093i 0.748730 0.310134i
\(543\) −115.869 −0.213387
\(544\) −364.477 364.477i −0.669995 0.669995i
\(545\) 0 0
\(546\) −668.285 + 276.813i −1.22397 + 0.506983i
\(547\) 71.5805 359.860i 0.130860 0.657879i −0.858550 0.512730i \(-0.828634\pi\)
0.989410 0.145148i \(-0.0463659\pi\)
\(548\) 160.641 + 160.641i 0.293140 + 0.293140i
\(549\) −51.7573 77.4602i −0.0942755 0.141093i
\(550\) 0 0
\(551\) −12.0180 + 17.9862i −0.0218112 + 0.0326428i
\(552\) −549.823 227.744i −0.996056 0.412580i
\(553\) −24.6255 + 59.4512i −0.0445307 + 0.107507i
\(554\) −312.501 208.806i −0.564081 0.376907i
\(555\) 0 0
\(556\) −57.0764 + 38.1372i −0.102655 + 0.0685922i
\(557\) 146.512 146.512i 0.263038 0.263038i −0.563249 0.826287i \(-0.690449\pi\)
0.826287 + 0.563249i \(0.190449\pi\)
\(558\) 32.3719 + 6.43917i 0.0580141 + 0.0115397i
\(559\) 207.105 + 499.996i 0.370493 + 0.894448i
\(560\) 0 0
\(561\) −144.532 348.932i −0.257633 0.621981i
\(562\) 203.593i 0.362264i
\(563\) −328.584 793.273i −0.583631 1.40901i −0.889499 0.456936i \(-0.848947\pi\)
0.305868 0.952074i \(-0.401053\pi\)
\(564\) −222.558 44.2696i −0.394607 0.0784922i
\(565\) 0 0
\(566\) 235.217 + 352.027i 0.415577 + 0.621955i
\(567\) −106.389 534.854i −0.187635 0.943306i
\(568\) −723.125 483.177i −1.27311 0.850663i
\(569\) −120.952 + 292.003i −0.212569 + 0.513187i −0.993817 0.111034i \(-0.964584\pi\)
0.781248 + 0.624221i \(0.214584\pi\)
\(570\) 0 0
\(571\) 224.810 + 150.213i 0.393713 + 0.263071i 0.736631 0.676294i \(-0.236415\pi\)
−0.342918 + 0.939365i \(0.611415\pi\)
\(572\) −412.966 + 82.1440i −0.721968 + 0.143608i
\(573\) −225.931 338.130i −0.394295 0.590105i
\(574\) −220.697 220.697i −0.384489 0.384489i
\(575\) 0 0
\(576\) 33.7846 + 81.5632i 0.0586538 + 0.141603i
\(577\) 63.2031 0.109537 0.0547687 0.998499i \(-0.482558\pi\)
0.0547687 + 0.998499i \(0.482558\pi\)
\(578\) −355.598 147.293i −0.615221 0.254833i
\(579\) −551.703 −0.952855
\(580\) 0 0
\(581\) 1170.70 + 232.868i 2.01498 + 0.400805i
\(582\) −200.287 200.287i −0.344136 0.344136i
\(583\) −194.952 + 130.263i −0.334395 + 0.223435i
\(584\) 289.400 57.5653i 0.495548 0.0985706i
\(585\) 0 0
\(586\) −19.6507 + 47.4411i −0.0335337 + 0.0809575i
\(587\) −283.753 + 685.040i −0.483395 + 1.16702i 0.474592 + 0.880206i \(0.342596\pi\)
−0.957987 + 0.286812i \(0.907404\pi\)
\(588\) −98.2209 + 146.998i −0.167042 + 0.249997i
\(589\) −3.50359 17.6137i −0.00594837 0.0299045i
\(590\) 0 0
\(591\) −265.581 265.581i −0.449375 0.449375i
\(592\) −40.5619 8.06826i −0.0685167 0.0136288i
\(593\) −185.647 + 76.8977i −0.313065 + 0.129676i −0.533683 0.845685i \(-0.679192\pi\)
0.220618 + 0.975360i \(0.429192\pi\)
\(594\) 319.674i 0.538172i
\(595\) 0 0
\(596\) −73.3889 −0.123136
\(597\) 152.209 + 367.465i 0.254956 + 0.615519i
\(598\) −158.747 + 798.076i −0.265464 + 1.33458i
\(599\) −457.825 + 457.825i −0.764316 + 0.764316i −0.977099 0.212784i \(-0.931747\pi\)
0.212784 + 0.977099i \(0.431747\pi\)
\(600\) 0 0
\(601\) 703.378 139.911i 1.17035 0.232796i 0.428611 0.903489i \(-0.359003\pi\)
0.741735 + 0.670693i \(0.234003\pi\)
\(602\) −232.665 155.462i −0.386487 0.258242i
\(603\) −117.405 48.6309i −0.194702 0.0806482i
\(604\) −289.944 120.099i −0.480040 0.198839i
\(605\) 0 0
\(606\) 98.0293 + 492.826i 0.161764 + 0.813245i
\(607\) −577.021 863.573i −0.950612 1.42269i −0.905805 0.423695i \(-0.860733\pi\)
−0.0448067 0.998996i \(-0.514267\pi\)
\(608\) 28.0282 28.0282i 0.0460990 0.0460990i
\(609\) 76.7753 385.975i 0.126068 0.633786i
\(610\) 0 0
\(611\) 867.731i 1.42018i
\(612\) −48.2783 48.2783i −0.0788861 0.0788861i
\(613\) 626.391i 1.02185i 0.859627 + 0.510923i \(0.170696\pi\)
−0.859627 + 0.510923i \(0.829304\pi\)
\(614\) 5.91799 2.45131i 0.00963842 0.00399237i
\(615\) 0 0
\(616\) 430.537 430.537i 0.698924 0.698924i
\(617\) 557.109 372.249i 0.902933 0.603320i −0.0150736 0.999886i \(-0.504798\pi\)
0.918006 + 0.396566i \(0.129798\pi\)
\(618\) −29.5024 148.319i −0.0477385 0.239998i
\(619\) 437.249 654.389i 0.706379 1.05717i −0.288635 0.957439i \(-0.593201\pi\)
0.995014 0.0997323i \(-0.0317987\pi\)
\(620\) 0 0
\(621\) −716.368 296.729i −1.15357 0.477825i
\(622\) −355.628 + 532.235i −0.571749 + 0.855684i
\(623\) −475.318 + 94.5466i −0.762950 + 0.151760i
\(624\) −108.942 + 72.7926i −0.174586 + 0.116655i
\(625\) 0 0
\(626\) −23.0442 + 115.851i −0.0368119 + 0.185066i
\(627\) 26.8327 11.1145i 0.0427954 0.0177264i
\(628\) −246.816 −0.393019
\(629\) 322.402 64.1298i 0.512563 0.101955i
\(630\) 0 0
\(631\) −767.465 + 317.894i −1.21627 + 0.503794i −0.896221 0.443608i \(-0.853698\pi\)
−0.320046 + 0.947402i \(0.603698\pi\)
\(632\) −11.7417 + 59.0297i −0.0185787 + 0.0934013i
\(633\) 388.241 + 388.241i 0.613336 + 0.613336i
\(634\) 89.0118 + 133.216i 0.140397 + 0.210119i
\(635\) 0 0
\(636\) 93.9308 140.577i 0.147690 0.221034i
\(637\) 624.591 + 258.714i 0.980520 + 0.406145i
\(638\) −69.8452 + 168.621i −0.109475 + 0.264297i
\(639\) −157.320 105.118i −0.246198 0.164504i
\(640\) 0 0
\(641\) −703.209 + 469.870i −1.09705 + 0.733026i −0.966050 0.258357i \(-0.916819\pi\)
−0.131001 + 0.991382i \(0.541819\pi\)
\(642\) 186.314 186.314i 0.290209 0.290209i
\(643\) 724.957 + 144.203i 1.12746 + 0.224266i 0.723375 0.690456i \(-0.242590\pi\)
0.404085 + 0.914721i \(0.367590\pi\)
\(644\) 202.081 + 487.867i 0.313790 + 0.757557i
\(645\) 0 0
\(646\) 11.3268 27.3453i 0.0175338 0.0423303i
\(647\) 874.070i 1.35096i 0.737379 + 0.675479i \(0.236063\pi\)
−0.737379 + 0.675479i \(0.763937\pi\)
\(648\) −195.188 471.225i −0.301216 0.727199i
\(649\) 193.595 + 38.5084i 0.298297 + 0.0593350i
\(650\) 0 0
\(651\) 181.514 + 271.654i 0.278823 + 0.417288i
\(652\) 70.9377 + 356.628i 0.108800 + 0.546976i
\(653\) 960.997 + 642.117i 1.47166 + 0.983335i 0.994524 + 0.104507i \(0.0333266\pi\)
0.477140 + 0.878827i \(0.341673\pi\)
\(654\) −287.426 + 693.908i −0.439489 + 1.06102i
\(655\) 0 0
\(656\) −47.0066 31.4088i −0.0716565 0.0478793i
\(657\) 62.9607 12.5237i 0.0958307 0.0190619i
\(658\) −249.263 373.048i −0.378819 0.566942i
\(659\) 318.726 + 318.726i 0.483651 + 0.483651i 0.906295 0.422645i \(-0.138898\pi\)
−0.422645 + 0.906295i \(0.638898\pi\)
\(660\) 0 0
\(661\) 191.121 + 461.408i 0.289140 + 0.698045i 0.999986 0.00530241i \(-0.00168782\pi\)
−0.710846 + 0.703347i \(0.751688\pi\)
\(662\) 135.388 0.204514
\(663\) 578.585 865.913i 0.872677 1.30605i
\(664\) 1116.41 1.68134
\(665\) 0 0
\(666\) −45.5658 9.06360i −0.0684171 0.0136090i
\(667\) −313.036 313.036i −0.469320 0.469320i
\(668\) 308.610 206.207i 0.461991 0.308693i
\(669\) −305.871 + 60.8416i −0.457207 + 0.0909441i
\(670\) 0 0
\(671\) −163.666 + 395.126i −0.243914 + 0.588861i
\(672\) −275.958 + 666.221i −0.410651 + 0.991400i
\(673\) −522.061 + 781.320i −0.775722 + 1.16095i 0.207446 + 0.978247i \(0.433485\pi\)
−0.983168 + 0.182704i \(0.941515\pi\)
\(674\) −142.801 717.911i −0.211871 1.06515i
\(675\) 0 0
\(676\) −554.932 554.932i −0.820905 0.820905i
\(677\) 1091.43 + 217.100i 1.61216 + 0.320679i 0.917218 0.398386i \(-0.130430\pi\)
0.694943 + 0.719065i \(0.255430\pi\)
\(678\) 474.102 196.379i 0.699265 0.289645i
\(679\) 702.908i 1.03521i
\(680\) 0 0
\(681\) 411.546 0.604325
\(682\) −57.9857 139.990i −0.0850231 0.205264i
\(683\) 256.456 1289.29i 0.375484 1.88769i −0.0789027 0.996882i \(-0.525142\pi\)
0.454387 0.890804i \(-0.349858\pi\)
\(684\) 3.71259 3.71259i 0.00542776 0.00542776i
\(685\) 0 0
\(686\) 224.626 44.6809i 0.327443 0.0651325i
\(687\) −21.5107 14.3730i −0.0313110 0.0209213i
\(688\) −46.8276 19.3966i −0.0680634 0.0281928i
\(689\) −597.310 247.414i −0.866923 0.359091i
\(690\) 0 0
\(691\) 93.4894 + 470.003i 0.135296 + 0.680178i 0.987582 + 0.157103i \(0.0502154\pi\)
−0.852286 + 0.523075i \(0.824785\pi\)
\(692\) −20.6750 30.9423i −0.0298771 0.0447143i
\(693\) 93.6660 93.6660i 0.135160 0.135160i
\(694\) −66.3285 + 333.456i −0.0955742 + 0.480484i
\(695\) 0 0
\(696\) 368.075i 0.528844i
\(697\) 440.724 + 87.6654i 0.632315 + 0.125775i
\(698\) 739.826i 1.05992i
\(699\) 966.675 400.410i 1.38294 0.572832i
\(700\) 0 0
\(701\) 777.458 777.458i 1.10907 1.10907i 0.115796 0.993273i \(-0.463058\pi\)
0.993273 0.115796i \(-0.0369420\pi\)
\(702\) −732.921 + 489.722i −1.04405 + 0.697610i
\(703\) 4.93156 + 24.7926i 0.00701502 + 0.0352669i
\(704\) 225.167 336.987i 0.319840 0.478674i
\(705\) 0 0
\(706\) −711.085 294.541i −1.00720 0.417197i
\(707\) 692.771 1036.81i 0.979875 1.46649i
\(708\) −139.599 + 27.7679i −0.197173 + 0.0392202i
\(709\) −433.937 + 289.947i −0.612041 + 0.408953i −0.822593 0.568630i \(-0.807474\pi\)
0.210553 + 0.977583i \(0.432474\pi\)
\(710\) 0 0
\(711\) −2.55448 + 12.8423i −0.00359281 + 0.0180623i
\(712\) −418.771 + 173.461i −0.588162 + 0.243625i
\(713\) 367.531 0.515472
\(714\) 538.469i 0.754159i
\(715\) 0 0
\(716\) 79.6605 32.9965i 0.111258 0.0460845i
\(717\) 194.828 979.467i 0.271727 1.36606i
\(718\) 162.610 + 162.610i 0.226476 + 0.226476i
\(719\) 345.349 + 516.851i 0.480318 + 0.718847i 0.989930 0.141557i \(-0.0452110\pi\)
−0.509612 + 0.860404i \(0.670211\pi\)
\(720\) 0 0
\(721\) −208.493 + 312.032i −0.289172 + 0.432776i
\(722\) −442.087 183.118i −0.612309 0.253627i
\(723\) −142.677 + 344.452i −0.197340 + 0.476420i
\(724\) 79.9548 + 53.4241i 0.110435 + 0.0737902i
\(725\) 0 0
\(726\) −155.686 + 104.026i −0.214443 + 0.143286i
\(727\) −181.405 + 181.405i −0.249526 + 0.249526i −0.820776 0.571250i \(-0.806459\pi\)
0.571250 + 0.820776i \(0.306459\pi\)
\(728\) 1646.65 + 327.540i 2.26189 + 0.449917i
\(729\) −310.231 748.965i −0.425557 1.02739i
\(730\) 0 0
\(731\) 402.871 0.551123
\(732\) 308.395i 0.421305i
\(733\) −84.8211 204.776i −0.115718 0.279367i 0.855400 0.517968i \(-0.173311\pi\)
−0.971118 + 0.238600i \(0.923311\pi\)
\(734\) 26.6690 + 5.30478i 0.0363337 + 0.00722723i
\(735\) 0 0
\(736\) 450.677 + 674.487i 0.612334 + 0.916422i
\(737\) 113.814 + 572.182i 0.154429 + 0.776366i
\(738\) −52.8056 35.2836i −0.0715523 0.0478097i
\(739\) −113.071 + 272.978i −0.153006 + 0.369388i −0.981733 0.190265i \(-0.939065\pi\)
0.828727 + 0.559653i \(0.189065\pi\)
\(740\) 0 0
\(741\) 66.5884 + 44.4929i 0.0898629 + 0.0600445i
\(742\) 327.862 65.2159i 0.441863 0.0878920i
\(743\) 415.988 + 622.570i 0.559876 + 0.837914i 0.998142 0.0609312i \(-0.0194070\pi\)
−0.438265 + 0.898846i \(0.644407\pi\)
\(744\) 216.076 + 216.076i 0.290425 + 0.290425i
\(745\) 0 0
\(746\) −352.159 850.187i −0.472063 1.13966i
\(747\) 242.882 0.325143
\(748\) −61.1491 + 307.417i −0.0817502 + 0.410986i
\(749\) −653.871 −0.872992
\(750\) 0 0
\(751\) −683.178 135.892i −0.909691 0.180949i −0.282003 0.959414i \(-0.590999\pi\)
−0.627688 + 0.778465i \(0.715999\pi\)
\(752\) −57.4652 57.4652i −0.0764165 0.0764165i
\(753\) −485.930 + 324.688i −0.645326 + 0.431193i
\(754\) −493.598 + 98.1828i −0.654640 + 0.130216i
\(755\) 0 0
\(756\) −218.910 + 528.496i −0.289564 + 0.699069i
\(757\) 262.415 633.525i 0.346651 0.836889i −0.650360 0.759626i \(-0.725382\pi\)
0.997011 0.0772631i \(-0.0246182\pi\)
\(758\) −129.374 + 193.622i −0.170678 + 0.255438i
\(759\) 115.958 + 582.962i 0.152778 + 0.768066i
\(760\) 0 0
\(761\) −305.005 305.005i −0.400795 0.400795i 0.477718 0.878513i \(-0.341464\pi\)
−0.878513 + 0.477718i \(0.841464\pi\)
\(762\) −379.305 75.4484i −0.497775 0.0990136i
\(763\) 1722.00 713.275i 2.25688 0.934830i
\(764\) 337.495i 0.441747i
\(765\) 0 0
\(766\) 635.021 0.829009
\(767\) 208.287 + 502.850i 0.271561 + 0.655606i
\(768\) −141.547 + 711.607i −0.184307 + 0.926572i
\(769\) −303.275 + 303.275i −0.394376 + 0.394376i −0.876244 0.481868i \(-0.839959\pi\)
0.481868 + 0.876244i \(0.339959\pi\)
\(770\) 0 0
\(771\) 1116.26 222.037i 1.44780 0.287986i
\(772\) 380.699 + 254.375i 0.493133 + 0.329501i
\(773\) 192.675 + 79.8088i 0.249257 + 0.103246i 0.503814 0.863812i \(-0.331930\pi\)
−0.254557 + 0.967058i \(0.581930\pi\)
\(774\) −52.6045 21.7895i −0.0679644 0.0281518i
\(775\) 0 0
\(776\) 128.258 + 644.798i 0.165281 + 0.830925i
\(777\) −255.494 382.373i −0.328821 0.492115i
\(778\) 208.144 208.144i 0.267537 0.267537i
\(779\) −6.74144 + 33.8915i −0.00865396 + 0.0435064i
\(780\) 0 0
\(781\) 868.612i 1.11218i
\(782\) 503.653 + 336.530i 0.644058 + 0.430345i
\(783\) 479.568i 0.612475i
\(784\) −58.4966 + 24.2301i −0.0746130 + 0.0309057i
\(785\) 0 0
\(786\) 234.148 234.148i 0.297898 0.297898i
\(787\) −919.662 + 614.498i −1.16857 + 0.780811i −0.979558 0.201164i \(-0.935527\pi\)
−0.189009 + 0.981975i \(0.560527\pi\)
\(788\) 60.8102 + 305.714i 0.0771703 + 0.387962i
\(789\) −213.027 + 318.817i −0.269996 + 0.404077i
\(790\) 0 0
\(791\) −1176.53 487.334i −1.48739 0.616099i
\(792\) 68.8315 103.014i 0.0869084 0.130068i
\(793\) −1156.64 + 230.069i −1.45856 + 0.290125i
\(794\) 133.982 89.5239i 0.168743 0.112750i
\(795\) 0 0
\(796\) 64.3970 323.746i 0.0809008 0.406716i
\(797\) 56.6619 23.4701i 0.0710940 0.0294481i −0.346853 0.937919i \(-0.612750\pi\)
0.417947 + 0.908471i \(0.362750\pi\)
\(798\) −41.4081 −0.0518899
\(799\) 596.781 + 247.195i 0.746910 + 0.309380i
\(800\) 0 0
\(801\) −91.1062 + 37.7374i −0.113741 + 0.0471129i
\(802\) −135.666 + 682.039i −0.169160 + 0.850423i
\(803\) −208.386 208.386i −0.259509 0.259509i
\(804\) −233.715 349.779i −0.290690 0.435049i
\(805\) 0 0
\(806\) 232.126 347.401i 0.287997 0.431018i
\(807\) −113.521 47.0217i −0.140670 0.0582673i
\(808\) 446.315 1077.50i 0.552370 1.33354i
\(809\) −676.209 451.829i −0.835858 0.558503i 0.0623592 0.998054i \(-0.480138\pi\)
−0.898218 + 0.439551i \(0.855138\pi\)
\(810\) 0 0
\(811\) 961.868 642.700i 1.18603 0.792478i 0.203587 0.979057i \(-0.434740\pi\)
0.982440 + 0.186579i \(0.0597399\pi\)
\(812\) −230.941 + 230.941i −0.284410 + 0.284410i
\(813\) 867.724 + 172.601i 1.06731 + 0.212301i
\(814\) 81.6192 + 197.046i 0.100269 + 0.242071i
\(815\) 0 0
\(816\) 19.0282 + 95.6614i 0.0233189 + 0.117232i
\(817\) 30.9806i 0.0379200i
\(818\) −69.3211 167.356i −0.0847446 0.204592i
\(819\) 358.240 + 71.2583i 0.437411 + 0.0870065i
\(820\) 0 0
\(821\) 555.958 + 832.050i 0.677172 + 1.01346i 0.997803 + 0.0662547i \(0.0211050\pi\)
−0.320631 + 0.947204i \(0.603895\pi\)
\(822\) −71.1252 357.570i −0.0865270 0.435000i
\(823\) −45.0492 30.1009i −0.0547378 0.0365746i 0.527900 0.849306i \(-0.322979\pi\)
−0.582638 + 0.812732i \(0.697979\pi\)
\(824\) −134.321 + 324.279i −0.163011 + 0.393542i
\(825\) 0 0
\(826\) −233.993 156.349i −0.283284 0.189285i
\(827\) −402.321 + 80.0267i −0.486483 + 0.0967675i −0.432237 0.901760i \(-0.642276\pi\)
−0.0542461 + 0.998528i \(0.517276\pi\)
\(828\) 59.6963 + 89.3418i 0.0720970 + 0.107901i
\(829\) 153.097 + 153.097i 0.184677 + 0.184677i 0.793390 0.608713i \(-0.208314\pi\)
−0.608713 + 0.793390i \(0.708314\pi\)
\(830\) 0 0
\(831\) −289.696 699.389i −0.348612 0.841623i
\(832\) 1117.56 1.34322
\(833\) 355.861 355.861i 0.427204 0.427204i
\(834\) 110.161 0.132087
\(835\) 0 0
\(836\) −23.6403 4.70235i −0.0282779 0.00562482i
\(837\) 281.527 + 281.527i 0.336352 + 0.336352i
\(838\) 414.741 277.121i 0.494918 0.330694i
\(839\) 278.253 55.3480i 0.331648 0.0659690i −0.0264576 0.999650i \(-0.508423\pi\)
0.358106 + 0.933681i \(0.383423\pi\)
\(840\) 0 0
\(841\) −217.057 + 524.021i −0.258094 + 0.623093i
\(842\) 197.491 476.785i 0.234549 0.566252i
\(843\) −227.824 + 340.963i −0.270254 + 0.404463i
\(844\) −88.8960 446.910i −0.105327 0.529515i
\(845\) 0 0
\(846\) −64.5544 64.5544i −0.0763054 0.0763054i
\(847\) 455.729 + 90.6502i 0.538051 + 0.107025i
\(848\) 55.9416 23.1718i 0.0659689 0.0273252i
\(849\) 852.762i 1.00443i
\(850\) 0 0
\(851\) −517.327 −0.607905
\(852\) −239.692 578.667i −0.281328 0.679187i
\(853\) −111.217 + 559.124i −0.130383 + 0.655479i 0.859215 + 0.511615i \(0.170953\pi\)
−0.989598 + 0.143864i \(0.954047\pi\)
\(854\) 431.162 431.162i 0.504874 0.504874i
\(855\) 0 0
\(856\) −599.815 + 119.311i −0.700718 + 0.139382i
\(857\) −1104.79 738.200i −1.28914 0.861377i −0.293622 0.955922i \(-0.594861\pi\)
−0.995521 + 0.0945445i \(0.969861\pi\)
\(858\) 624.269 + 258.581i 0.727586 + 0.301376i
\(859\) −260.316 107.826i −0.303046 0.125526i 0.225979 0.974132i \(-0.427442\pi\)
−0.529024 + 0.848607i \(0.677442\pi\)
\(860\) 0 0
\(861\) −122.644 616.572i −0.142443 0.716111i
\(862\) 50.9295 + 76.2213i 0.0590829 + 0.0884238i
\(863\) 44.4457 44.4457i 0.0515014 0.0515014i −0.680887 0.732388i \(-0.738406\pi\)
0.732388 + 0.680887i \(0.238406\pi\)
\(864\) −171.436 + 861.869i −0.198422 + 0.997533i
\(865\) 0 0
\(866\) 362.854i 0.419000i
\(867\) −430.707 644.598i −0.496778 0.743481i
\(868\) 271.144i 0.312378i
\(869\) 55.5355 23.0035i 0.0639073 0.0264713i
\(870\) 0 0
\(871\) −1137.49 + 1137.49i −1.30596 + 1.30596i
\(872\) 1449.49 968.518i 1.66226 1.11069i
\(873\) 27.9034 + 140.280i 0.0319626 + 0.160687i
\(874\) −25.8790 + 38.7307i −0.0296099 + 0.0443143i
\(875\) 0 0
\(876\) 196.330 + 81.3225i 0.224121 + 0.0928339i
\(877\) −250.521 + 374.931i −0.285657 + 0.427515i −0.946351 0.323139i \(-0.895262\pi\)
0.660695 + 0.750655i \(0.270262\pi\)
\(878\) 192.304 38.2516i 0.219025 0.0435668i
\(879\) −85.9972 + 57.4615i −0.0978353 + 0.0653714i
\(880\) 0 0
\(881\) 192.046 965.483i 0.217987 1.09589i −0.704452 0.709752i \(-0.748807\pi\)
0.922439 0.386143i \(-0.126193\pi\)
\(882\) −65.7130 + 27.2192i −0.0745046 + 0.0308608i
\(883\) 908.452 1.02882 0.514412 0.857543i \(-0.328010\pi\)
0.514412 + 0.857543i \(0.328010\pi\)
\(884\) −798.496 + 330.748i −0.903276 + 0.374149i
\(885\) 0 0
\(886\) −762.051 + 315.652i −0.860103 + 0.356266i
\(887\) −48.8583 + 245.627i −0.0550827 + 0.276919i −0.998504 0.0546769i \(-0.982587\pi\)
0.943421 + 0.331596i \(0.107587\pi\)
\(888\) −304.143 304.143i −0.342503 0.342503i
\(889\) 533.193 + 797.979i 0.599767 + 0.897614i
\(890\) 0 0
\(891\) −283.016 + 423.563i −0.317638 + 0.475379i
\(892\) 239.117 + 99.0454i 0.268068 + 0.111037i
\(893\) −19.0092 + 45.8922i −0.0212869 + 0.0513911i
\(894\) 97.9249 + 65.4313i 0.109536 + 0.0731894i
\(895\) 0 0
\(896\) 413.605 276.362i 0.461613 0.308440i
\(897\) −1158.92 + 1158.92i −1.29200 + 1.29200i
\(898\) −819.556 163.020i −0.912646 0.181537i
\(899\) 86.9888 + 210.010i 0.0967617 + 0.233604i
\(900\) 0 0
\(901\) −340.317 + 340.317i −0.377711 + 0.377711i
\(902\) 291.555i 0.323232i
\(903\) −215.687 520.713i −0.238856 0.576648i
\(904\) −1168.19 232.367i −1.29224 0.257043i
\(905\) 0 0
\(906\) 279.804 + 418.756i 0.308835 + 0.462204i
\(907\) 338.757 + 1703.05i 0.373492 + 1.87767i 0.470524 + 0.882387i \(0.344065\pi\)
−0.0970321 + 0.995281i \(0.530935\pi\)
\(908\) −283.984 189.752i −0.312758 0.208978i
\(909\) 97.0986 234.417i 0.106819 0.257884i
\(910\) 0 0
\(911\) 1492.51 + 997.265i 1.63832 + 1.09469i 0.914401 + 0.404811i \(0.132663\pi\)
0.723922 + 0.689882i \(0.242337\pi\)
\(912\) −7.35633 + 1.46326i −0.00806615 + 0.00160446i
\(913\) −619.472 927.106i −0.678502 1.01545i
\(914\) 130.337 + 130.337i 0.142600 + 0.142600i
\(915\) 0 0
\(916\) 8.21630 + 19.8359i 0.00896976 + 0.0216549i
\(917\) −821.743 −0.896121
\(918\) 128.015 + 643.575i 0.139450 + 0.701062i
\(919\) 506.869 0.551544 0.275772 0.961223i \(-0.411067\pi\)
0.275772 + 0.961223i \(0.411067\pi\)
\(920\) 0 0
\(921\) 12.6541 + 2.51706i 0.0137395 + 0.00273296i
\(922\) −138.230 138.230i −0.149924 0.149924i
\(923\) −1991.48 + 1330.66i −2.15761 + 1.44167i
\(924\) 430.077 85.5476i 0.465451 0.0925839i
\(925\) 0 0
\(926\) 376.485 908.914i 0.406571 0.981549i
\(927\) −29.2223 + 70.5489i −0.0315235 + 0.0761045i
\(928\) −278.737 + 417.160i −0.300364 + 0.449526i
\(929\) −272.070 1367.79i −0.292863 1.47232i −0.794510 0.607251i \(-0.792272\pi\)
0.501646 0.865073i \(-0.332728\pi\)
\(930\) 0 0
\(931\) 27.3656 + 27.3656i 0.0293937 + 0.0293937i
\(932\) −851.665 169.407i −0.913803 0.181767i
\(933\) −1191.16 + 493.396i −1.27670 + 0.528827i
\(934\) 10.1880i 0.0109080i
\(935\) 0 0
\(936\) 341.626 0.364985
\(937\) −76.7261 185.233i −0.0818848 0.197687i 0.877634 0.479331i \(-0.159121\pi\)
−0.959519 + 0.281643i \(0.909121\pi\)
\(938\) 162.268 815.774i 0.172993 0.869695i
\(939\) −168.233 + 168.233i −0.179162 + 0.179162i
\(940\) 0 0
\(941\) −1497.87 + 297.945i −1.59179 + 0.316626i −0.909899 0.414830i \(-0.863841\pi\)
−0.681889 + 0.731456i \(0.738841\pi\)
\(942\) 329.334 + 220.054i 0.349611 + 0.233603i
\(943\) −653.355 270.628i −0.692847 0.286987i
\(944\) −47.0948 19.5073i −0.0498886 0.0206645i
\(945\) 0 0
\(946\) 50.9953 + 256.371i 0.0539063 + 0.271005i
\(947\) −565.096 845.726i −0.596723 0.893058i 0.403033 0.915186i \(-0.367956\pi\)
−0.999755 + 0.0221273i \(0.992956\pi\)
\(948\) −30.6498 + 30.6498i −0.0323310 + 0.0323310i
\(949\) 158.534 797.004i 0.167054 0.839835i
\(950\) 0 0
\(951\) 322.706i 0.339334i
\(952\) 694.356 1039.18i 0.729365 1.09157i
\(953\) 297.230i 0.311889i −0.987766 0.155945i \(-0.950158\pi\)
0.987766 0.155945i \(-0.0498421\pi\)
\(954\) 62.8428 26.0303i 0.0658730 0.0272855i
\(955\) 0 0
\(956\) −586.045 + 586.045i −0.613017 + 0.613017i
\(957\) −305.662 + 204.237i −0.319396 + 0.213414i
\(958\) 196.662 + 988.688i 0.205284 + 1.03203i
\(959\) −502.640 + 752.255i −0.524130 + 0.784416i
\(960\) 0 0
\(961\) 713.498 + 295.540i 0.742453 + 0.307534i
\(962\) −326.734 + 488.992i −0.339640 + 0.508308i
\(963\) −130.493 + 25.9567i −0.135507 + 0.0269540i
\(964\) 257.270 171.902i 0.266878 0.178322i
\(965\) 0 0
\(966\) 165.325 831.144i 0.171144 0.860397i
\(967\) 1093.12 452.787i 1.13043 0.468239i 0.262502 0.964931i \(-0.415452\pi\)
0.867927 + 0.496692i \(0.165452\pi\)
\(968\) 434.595 0.448961
\(969\) 49.5693 33.1212i 0.0511551 0.0341808i
\(970\) 0 0
\(971\) 510.211 211.336i 0.525449 0.217648i −0.104160 0.994561i \(-0.533215\pi\)
0.629608 + 0.776913i \(0.283215\pi\)
\(972\) −41.6248 + 209.262i −0.0428239 + 0.215290i
\(973\) −193.305 193.305i −0.198669 0.198669i
\(974\) −6.53565 9.78129i −0.00671011 0.0100424i
\(975\) 0 0
\(976\) 61.3616 91.8341i 0.0628705 0.0940923i
\(977\) −302.204 125.177i −0.309318 0.128124i 0.222624 0.974904i \(-0.428538\pi\)
−0.531942 + 0.846781i \(0.678538\pi\)
\(978\) 223.305 539.105i 0.228328 0.551232i
\(979\) 376.415 + 251.512i 0.384489 + 0.256907i
\(980\) 0 0
\(981\) 315.345 210.707i 0.321453 0.214788i
\(982\) 552.735 552.735i 0.562866 0.562866i
\(983\) −1004.98 199.903i −1.02236 0.203360i −0.344683 0.938719i \(-0.612014\pi\)
−0.677678 + 0.735359i \(0.737014\pi\)
\(984\) −225.009 543.221i −0.228668 0.552053i
\(985\) 0 0
\(986\) −73.0887 + 367.442i −0.0741265 + 0.372659i
\(987\) 903.685i 0.915587i
\(988\) −25.4344 61.4041i −0.0257433 0.0621499i
\(989\) −621.844 123.692i −0.628760 0.125068i
\(990\) 0 0
\(991\) −229.264 343.118i −0.231346 0.346234i 0.697575 0.716512i \(-0.254262\pi\)
−0.928921 + 0.370278i \(0.879262\pi\)
\(992\) −81.2600 408.521i −0.0819153 0.411816i
\(993\) 226.739 + 151.502i 0.228338 + 0.152570i
\(994\) 473.916 1144.14i 0.476777 1.15104i
\(995\) 0 0
\(996\) 668.524 + 446.693i 0.671209 + 0.448487i
\(997\) −1233.85 + 245.429i −1.23757 + 0.246167i −0.770146 0.637867i \(-0.779817\pi\)
−0.467421 + 0.884035i \(0.654817\pi\)
\(998\) 82.9374 + 124.125i 0.0831037 + 0.124373i
\(999\) −396.270 396.270i −0.396666 0.396666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.t.c.224.1 8
5.2 odd 4 425.3.u.b.326.1 8
5.3 odd 4 17.3.e.a.3.1 8
5.4 even 2 425.3.t.a.224.1 8
15.8 even 4 153.3.p.b.37.1 8
17.6 odd 16 425.3.t.a.74.1 8
20.3 even 4 272.3.bh.c.241.1 8
85.3 even 16 289.3.e.l.214.1 8
85.8 odd 8 289.3.e.d.158.1 8
85.13 odd 4 289.3.e.i.65.1 8
85.23 even 16 17.3.e.a.6.1 yes 8
85.28 even 16 289.3.e.c.40.1 8
85.33 odd 4 289.3.e.c.224.1 8
85.38 odd 4 289.3.e.m.65.1 8
85.43 odd 8 289.3.e.b.158.1 8
85.48 even 16 289.3.e.k.214.1 8
85.53 odd 8 289.3.e.l.131.1 8
85.57 even 16 425.3.u.b.176.1 8
85.58 even 16 289.3.e.i.249.1 8
85.63 even 16 289.3.e.b.75.1 8
85.73 even 16 289.3.e.d.75.1 8
85.74 odd 16 inner 425.3.t.c.74.1 8
85.78 even 16 289.3.e.m.249.1 8
85.83 odd 8 289.3.e.k.131.1 8
255.23 odd 16 153.3.p.b.91.1 8
340.23 odd 16 272.3.bh.c.193.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.3.1 8 5.3 odd 4
17.3.e.a.6.1 yes 8 85.23 even 16
153.3.p.b.37.1 8 15.8 even 4
153.3.p.b.91.1 8 255.23 odd 16
272.3.bh.c.193.1 8 340.23 odd 16
272.3.bh.c.241.1 8 20.3 even 4
289.3.e.b.75.1 8 85.63 even 16
289.3.e.b.158.1 8 85.43 odd 8
289.3.e.c.40.1 8 85.28 even 16
289.3.e.c.224.1 8 85.33 odd 4
289.3.e.d.75.1 8 85.73 even 16
289.3.e.d.158.1 8 85.8 odd 8
289.3.e.i.65.1 8 85.13 odd 4
289.3.e.i.249.1 8 85.58 even 16
289.3.e.k.131.1 8 85.83 odd 8
289.3.e.k.214.1 8 85.48 even 16
289.3.e.l.131.1 8 85.53 odd 8
289.3.e.l.214.1 8 85.3 even 16
289.3.e.m.65.1 8 85.38 odd 4
289.3.e.m.249.1 8 85.78 even 16
425.3.t.a.74.1 8 17.6 odd 16
425.3.t.a.224.1 8 5.4 even 2
425.3.t.c.74.1 8 85.74 odd 16 inner
425.3.t.c.224.1 8 1.1 even 1 trivial
425.3.u.b.176.1 8 85.57 even 16
425.3.u.b.326.1 8 5.2 odd 4