Properties

Label 425.3.t.c
Level $425$
Weight $3$
Character orbit 425.t
Analytic conductor $11.580$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(24,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.t (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,8,0,0,-8,-8,40,16,0,-8,-40,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{16}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{16}^{6} + \zeta_{16}^{5} + \cdots + 1) q^{2} + (\zeta_{16}^{7} + \zeta_{16}^{5} + \cdots + 1) q^{3} + ( - 2 \zeta_{16}^{7} + \cdots + 2 \zeta_{16}) q^{4} + (\zeta_{16}^{7} - \zeta_{16}^{6} + \cdots - 1) q^{6}+ \cdots + (16 \zeta_{16}^{7} + 27 \zeta_{16}^{6} + \cdots + 28) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} - 8 q^{6} - 8 q^{7} + 40 q^{8} + 16 q^{9} - 8 q^{11} - 40 q^{12} + 16 q^{13} - 8 q^{14} - 64 q^{21} - 56 q^{22} - 40 q^{23} + 80 q^{24} + 176 q^{26} - 16 q^{27} - 56 q^{28} - 48 q^{29}+ \cdots + 224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(\zeta_{16}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
24.1
−0.382683 0.923880i
0.923880 0.382683i
−0.923880 0.382683i
−0.382683 + 0.923880i
0.382683 0.923880i
0.923880 + 0.382683i
−0.923880 + 0.382683i
0.382683 + 0.923880i
2.03153 + 0.841487i 0.134381 + 0.0897902i 0.590587 + 0.590587i 0 0.197441 + 0.295491i −6.12453 1.21824i −2.66313 6.42935i −3.43416 8.29078i 0
74.1 0.509666 1.23044i −0.523336 2.63099i 1.57420 + 1.57420i 0 −3.50400 0.696990i 7.37170 4.92562i 7.66104 3.17331i 1.66671 0.690373i 0
99.1 −1.33809 3.23044i 3.93755 + 0.783227i −5.81684 + 5.81684i 0 −2.73864 13.7681i −3.71485 + 5.55967i 13.6527 + 5.65512i 6.57593 + 2.72384i 0
124.1 2.03153 0.841487i 0.134381 0.0897902i 0.590587 0.590587i 0 0.197441 0.295491i −6.12453 + 1.21824i −2.66313 + 6.42935i −3.43416 + 8.29078i 0
199.1 2.79690 1.15851i 0.451406 + 0.675577i 3.65205 3.65205i 0 2.04520 + 1.36656i −1.53233 7.70353i 1.34942 3.25778i 3.19151 7.70500i 0
224.1 0.509666 + 1.23044i −0.523336 + 2.63099i 1.57420 1.57420i 0 −3.50400 + 0.696990i 7.37170 + 4.92562i 7.66104 + 3.17331i 1.66671 + 0.690373i 0
249.1 −1.33809 + 3.23044i 3.93755 0.783227i −5.81684 5.81684i 0 −2.73864 + 13.7681i −3.71485 5.55967i 13.6527 5.65512i 6.57593 2.72384i 0
299.1 2.79690 + 1.15851i 0.451406 0.675577i 3.65205 + 3.65205i 0 2.04520 1.36656i −1.53233 + 7.70353i 1.34942 + 3.25778i 3.19151 + 7.70500i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 24.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.p odd 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.3.t.c 8
5.b even 2 1 425.3.t.a 8
5.c odd 4 1 17.3.e.a 8
5.c odd 4 1 425.3.u.b 8
15.e even 4 1 153.3.p.b 8
17.e odd 16 1 425.3.t.a 8
20.e even 4 1 272.3.bh.c 8
85.f odd 4 1 289.3.e.i 8
85.g odd 4 1 289.3.e.c 8
85.i odd 4 1 289.3.e.m 8
85.k odd 8 1 289.3.e.b 8
85.k odd 8 1 289.3.e.d 8
85.n odd 8 1 289.3.e.k 8
85.n odd 8 1 289.3.e.l 8
85.o even 16 1 289.3.e.b 8
85.o even 16 1 289.3.e.d 8
85.o even 16 1 289.3.e.k 8
85.o even 16 1 289.3.e.l 8
85.o even 16 1 425.3.u.b 8
85.p odd 16 1 inner 425.3.t.c 8
85.r even 16 1 17.3.e.a 8
85.r even 16 1 289.3.e.c 8
85.r even 16 1 289.3.e.i 8
85.r even 16 1 289.3.e.m 8
255.bj odd 16 1 153.3.p.b 8
340.bj odd 16 1 272.3.bh.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
17.3.e.a 8 5.c odd 4 1
17.3.e.a 8 85.r even 16 1
153.3.p.b 8 15.e even 4 1
153.3.p.b 8 255.bj odd 16 1
272.3.bh.c 8 20.e even 4 1
272.3.bh.c 8 340.bj odd 16 1
289.3.e.b 8 85.k odd 8 1
289.3.e.b 8 85.o even 16 1
289.3.e.c 8 85.g odd 4 1
289.3.e.c 8 85.r even 16 1
289.3.e.d 8 85.k odd 8 1
289.3.e.d 8 85.o even 16 1
289.3.e.i 8 85.f odd 4 1
289.3.e.i 8 85.r even 16 1
289.3.e.k 8 85.n odd 8 1
289.3.e.k 8 85.o even 16 1
289.3.e.l 8 85.n odd 8 1
289.3.e.l 8 85.o even 16 1
289.3.e.m 8 85.i odd 4 1
289.3.e.m 8 85.r even 16 1
425.3.t.a 8 5.b even 2 1
425.3.t.a 8 17.e odd 16 1
425.3.t.c 8 1.a even 1 1 trivial
425.3.t.c 8 85.p odd 16 1 inner
425.3.u.b 8 5.c odd 4 1
425.3.u.b 8 85.o even 16 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 8T_{2}^{7} + 32T_{2}^{6} - 120T_{2}^{5} + 448T_{2}^{4} - 1144T_{2}^{3} + 1792T_{2}^{2} - 1736T_{2} + 961 \) acting on \(S_{3}^{\mathrm{new}}(425, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 8 T^{7} + \cdots + 961 \) Copy content Toggle raw display
$3$ \( T^{8} - 8 T^{7} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 8 T^{7} + \cdots + 8454272 \) Copy content Toggle raw display
$11$ \( T^{8} + 8 T^{7} + \cdots + 27572738 \) Copy content Toggle raw display
$13$ \( T^{8} - 16 T^{7} + \cdots + 9048064 \) Copy content Toggle raw display
$17$ \( T^{8} + 6975757441 \) Copy content Toggle raw display
$19$ \( T^{8} + 368 T^{6} + \cdots + 929296 \) Copy content Toggle raw display
$23$ \( T^{8} + 40 T^{7} + \cdots + 859299968 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 4240836608 \) Copy content Toggle raw display
$31$ \( T^{8} - 24 T^{7} + \cdots + 14536832 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 120057840128 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 59058658562 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 6201305218564 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 2259754549504 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 26754490624 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 2675455605124 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 106680004247552 \) Copy content Toggle raw display
$67$ \( (T^{4} + 168 T^{3} + \cdots - 9145694)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 71246079996032 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 51301810562 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 3948319764608 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 10\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 117588822570244 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 21682310986562 \) Copy content Toggle raw display
show more
show less